THE IMP LANGUAGE

A Reference Manual
Issue 1.1

Peter S. Robertson
Lattice Logic Ltd. 1986

Introduction

Character set. c e e o s
Atoms. e s e e o s
Compile-time features.
Statements o 0 0 0 e e .
Expressions. . . « . ¢« ¢ ¢ ¢ ¢ ¢ o o .
Declarations o . e o s s o o e e
Data prec151on specificati N .o « « o o
Access to structured variables
Own variables. . . . ¢« « ¢« « ¢ o & o &
Constant arrays. . « « ¢« ¢« ¢« « ¢« ¢ o .
Initialisation « . ¢« .« . . .
Assignment ¢ . ¢ ¢ 4 e e e .o
string resolution.
Conditions . . . e e e e e e e e e s
Conditional groups e e e e e e e e s e
Repetition « ¢ ¢ . o . ..
Block structure.
Begin blocks . . . « ¢ « ¢« ¢ ¢ ¢ o .
Procedures . e o e o o s e s s e s
Parameters . . . o e o s s e & e
Procedure specification. e o e e o e
External linkage . . e e e e e e e
Program file structure
Permanent procedures
Events o s e
Control transfer instructions. .« e e e
Implementation-dependent features. . .
Appendix 1 - A note on the grammar . .
Appendix 2 - Compiler messages
Appendix 3 - Sample program listings .
Appendix 4 - Standard events
Appendix 5 - Variant and archaic forms
Appendix 6 - ASCII character set . .

® o & o o o o o o o s e e s e o e o o o

o o o & o o o o e o o s o e o o

e o o o & o o o o

Introduction
Character set. . .
Atoms.
Compile-time features
Statements
Expressions.
Declarations

Data precision specificatlo
variable

Access to structured
Own variables. .
Constant arrays. . .
Initialisation . .
Assignment
String resolution. .
Conditions
Conditional groups .
Repetition
Block structure. . .
Begin blocks
Procedures
Parameters . .

Procedure specification

External linkage .

Program file structure

Permanent procedures
Events . . .

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

...-..........p—ag....

Control transfer instructions.
Implementation-dependent features.

Appendix 1 -
Appendix
Appendix
Appendix
Appendix

Appendix

N WN

Contents

@ o o o o o o o o o o o o & e 8 e o o o o o o o o

A note on the grammar
- Compiler messages .
Sample program listing
Standard events .
Variant and archaic form
ASCII character set

e o o o o o

e o o o o

e o o o o

e o o o o o e o e e e e s o o

e e o o o

e o e o o o o s e o o

Introduction

IMP is an "ALGOL-like" high-level language. Relative to ALGOL
60, the 1language adds program structuring, data structuring,
event signalling, and string handling facilities, but removes
(or retains in a modified form) intrinsically inefficient
features such as the ALGOL 60 name (substitution) parameter.

The language, based on Atlas Autocode, was originally designed
as the implementation language for the Edinburgh Multi-Access
System - hence its name - but has since been used successfully
for implementing systems, teaching programming and as a
general-purpose programming language on many different machines.

Two of the major design aims were:

1. The language should compile to efficient machine code.
2. The syntax of the language should be verbose rather than
obscure.

Most IMP systems provide comprehensive compile-time and run-time
diagnostics, together with an option to suppress generation of
run-time checks when compiling tested programs.

Input/output facilities are provided through the external
procedure mechanism and are therefore open-ended and can be
defined as required, though a standard set of procedures is
supported. Details of these procedures may be found in the
Lattice Logic publication: "The IMP Core Environment Standard".

It is assumed that the reader is familiar with the more general
concepts of high-level programming languages.

The examples of grammar given in the text are simplified in
order to show the general features of the syntax.

Introduction

IMP is an "ALGOL-like" high-level language. Relative to ALGOL
60, the 1language adds program structuring, data structuring,
event signalling, and string handling facilities, but removes
(or retains in a modified form) intrinsically inefficient
features such as the ALGOL 60 name (substitution) parameter.

The language, based on Atlas Autocode, was originally designed
as the implementation 1language for the Edinburgh Multi-Access
System - hence its name - but has since been used successfully
for implementing systems, teaching programming and as a
general-purpose programming language on many different machines.

Two of the major design aims were:

1. The language should compile to efficient machine code.
2. The syntax of the language should be verbose rather than
obscure.

Most IMP systems provide comprehensive compile-time and run-time
diagnostics, together with an option to suppress generation of
run-time checks when compiling tested programs.

Input/output facilities are provided through the external
procedure mechanism and are therefore open-ended and can be
defined as required, though a standard set of procedures is
supported. Details of these procedures may be found in the
Lattice Logic publication: "The IMP Core Environment Standard".

It is assumed that the reader is familiar with the more general
concepts of high-level programming languages.

The examples of grammar given in the text are simplified in
order to show the general features of the syntax.

Character set
An IMP program is a sequence of statements constructed using the

ASCII seven bit character set extended with an wunderlined
alphabet.

Newline

The NEWLINE (or LINE BREAK) character has ASCII code value 10
(NL) .

Quotes

Several language constructions call for one or more characters
(text) to be enclosed in quotes; between quotes all characters
are significant and stand for themselves.

N.B. Space, newline, and percent characters may appear between
quotes and stand for space, newline, and percent.

Two quote characters are used:

' - character quote
w - string quote

If it is required to include the delimiting quote within the
text it must be represented by two consecutive quotes: e.g.

KRN - the symbol quote
"A ""big"" dog" - a string of eleven characters

However, note: '"' and "“it's mine"

Spaces
Except when used to terminate keywords or when between quotes

(gq.v.) spaces are ignored by the compiler and may be used to
improve the legibility of the program.

Lower Case Letters

Except when enclosed in quotes (g.v.) lower case letters are
equivalent to the corresponding upper case letters.

Control characters

Except for NL (see above) all non-quoted characters whose ASCII
codes are outwith the range 32 to 126 inclusive are treated as
spaces, but will be sent to the 1listing unaltered. In
particular, the character FF (form feed) may be used to control
the pagination of program listing files.

Character set
An IMP program is a sequence of statements constructed using the

ASCII seven bit character set extended with an underlined
alphabet.

Newline

The NEWLINE (or LINE BREAK) character has ASCII code value 10
(NL) .

Quotes

Several language constructions call for one or more characters
(text) to be enclosed in quotes; between quotes all characters
are significant and stand for themselves.

N.B. Space, newline, and percent characters may appear between
quotes and stand for space, newline, and percent.

Two quote characters are used:

! - character quote
" - string quote

If it is required to include the delimiting quote within the
text it must be represented by two consecutive quotes: e.q.

IKEK] - the symbol quote
"A ""big"" dog" - a string of eleven characters

However, note: ""' and "it's mine"

Spaces
Except when used to terminate keywords or when between quotes

(g.v.) spaces are ignored by the compiler and may be used to
improve the legibility of the program.

Lower Case Letters

Except when enclosed in quotes (g.v.) lower case letters are
equivalent to the corresponding upper case letters.

Control characters

Except for NL (see above) all non-quoted characters whose ASCII
codes are outwith the range 32 to 126 inclusive are treated as
spaces, but will be sent to the 1listing unaltered. In
particular, the character FF (form feed) may be used to control
the pagination of program listing files.

Atoms

An atom is the basic unit of a program statement and is either a
keyword, a special symbol, an identifier, or a constant.

Keywords

A keyword is a sequence of underlined letters. In source
programs underlining is achieved by using the shift character,
percent (%), which 1is defined as underlining the subsequent
letters, underlining being terminated by any non-alphabetic
character. Hence the following statements are equivalent:

$string(7) %array %name P
$string (7) %arrayname P
and both represent: string(7)arrayname P

In this manual keywords will be written in lower case and
underlined. The following is a list of all the IMP keywords:

alias and array

begin byte

const constant continue control

cycle

diagnose dynamic

else end event exit external
false file finish fn for format
from function

if include integer

label list long

map monitor

name not

on of option or own
predicate program

real record repeat result return
routine

short signal spec start stop
string switch system

then true

unless until

while

Special symbols

The special symbols are:

T
<< >> & ! 1 ~

. ->

=== <=

= # < <= > >= ##
() { } []

: : e |

Atoms

An atom is the basic unit of a program statement and is either a
keyword, a special symbol, an identifier, or a constant.

Keywords

A keyword is a sequence of underlined letters. In source
programs underlining is achieved by using the shift character,
percent (%), which is defined as underlining the subsequent
letters, underlining being terminated by any non-alphabetic
character. Hence the following statements are equivalent:

$string(7) %array %name P
$string (7) %arrayname P
and both represent: string(7)arrayname P

In this manual keywords will be written in lower case and
underlined. The following is a 1list of all the IMP keywords:

alias and array

begin byte

const constant continue control

cycle

diagnose dynamic

else end event exit external
false file finish fn for format
from function

if include integer

label list long

map monitor

name not

on of option or own
predicate program

real record repeat result return
routine

short signal spec start stop
string switch system

then true I

unless until \

while

Special symbols

The special symbols are:

+ - * / // A AA
<< >> & ! 1 ~

. ->

== <=

= 4 < <= > >= ##
() { } []

: : e |

Identifiers

An identifier is a sequence of any number of letters and digits
starting with a letter, e.g. MAX, X, CASE 1, Case 2, case 2b.
All letters and digits are significant. .

With the exception of labels, all identifiers must be declared
before they may be used (see Declarations).

Constants

Integer Constants (Fixed Point)

a)

c)

d)

NUMERICAL constants
A numerical constant is a sequence of decimal digits.
For example: 7, 43, 2195, 0, 8, 100 000 000

CHARACTER constants

The ASCII code value of any character may be obtained as an
integer value by enclosing the character in single quotes.
When the required character is a single quote it must be
represented by two consecutive single quotes.

Examples: lAl' !al’ l+l' Ool’ '"'I l'll' (] l']

1)

Note the 1last three examples, which represent the code
values for single quote, space, and newline respectively.

The predefined named constant NL may be used in place of
the rather cumbersome form of a newline character enclosed
in quotes.

In general, a character is an integer in the range 0 <=
character <= 255.

MULTI-CHARACTER constants

The ASCII code values for several characters may be packed
together to form a single integer constant, by enclosing
the characters in single quotes and giving the prefix M.

e.g. M'over', M'Max', M'1+2', M'*@e#'

The value of the constant is calculated by evaluating the
expression: ...((Cl<<B + C2)<<B +C3)<<B + Wwhere
Cl, C2 .. are the characters in the order specified, and B
is an implementation-defined constant (commonly 8).

Note that M'?' = '?!

Constant Integer Expressions

An integer expression with operands which are constants may be
used wherever an integer constant is required (see Expressions).

Real Constants (Floating Point)

A real constant is a sequence of decimal digits optionally
including one decimal point. The constant may also be followed
by a scaling factor of the form @[signed integer constant]
meaning "times ten to the power .[signed integer constant]".
For example, ignoring any machine-dependent accuracy problems,
the following real constants all have the same value:

120.0, 120, 1.2€2, 12€1, 1200€-1
Note that a decimal integer constant is a special case of a real

constant.

Radix Specification

Integer and real constants may be specified to bases other than
ten by adding the prefix "[base] _" to the constant, where
[base] is the base represented to base ten. The letters

A,B,...,2 may be used to represent the 'digits' 10,11,...,35.
E.g. 2_1010 ten in binary
8 12 ten in octal
16_A ten in hexadecimal
3 0.1 one third

In the case of real constants any scaling factor will remain in
base ten unless a different base is explicitly requested.

E.g. 10 @ 2 one hundred
2_1010 € 2 one hundred
2_1010 @ 2_10 one hundred

*

string Constants

A string constant is a sequence of not more than 255 characters

enclosed in double quote characters - a double quote being
represented inside a string constant by two consecutive double
quotes. There are no restrictions on which characters may

appear within strings.
E.g. "starting time", "x = y*4+z", "a ""red"" hood"

Note i "a" is a string constant of one character.
‘a' is a character (integer) constant.

ii The null string, a string of no characters, is
permitted and is represented by two consecutive
double quotes ("").

EBCDIC Constants

String and character constants may be specified as using the
EBCDIC character set rather than ASCII by applying the Prefix E.
In the case of multi-character constants the E prefix replaces
the M prefix.

E.g. E"Ebcdic string", E'0', E'VOL1°®

The particular variant of EBCDIC used is
implementation-dependent.

Named constants

Named constants may be declared using the prefix constant in
front of a simple declaration with initialisation (see
Declarations). In the case of string constants the length
specification may be replaced by a star as the maximum length of
the string is the same as the actual length of the constant. A
named constant may be used wherever a literal constant of the
same type is required. Note that implementations may restrict
the use of named real and string constants as replacements for
literal constants.

[const] ::= constant [type] [cinit] ("," [cinit])*
[cinit) t:= [id] "=" [constant]

constant integer MAX = 17, MIN = 2

constant real PI = 3.14159

constant string (7) VERSION = "Vsn:1.6"

constant string (*) Default = "this/that/theother"

The keyword constant may be abbreviated to const.

Compile-time features

Listing Control

During the compilation of a program a line-numbered listing can
be produced. The statements list and endoflist may be used in a
nested fashion to control this listing. Following an endoflist,
listing is inhibited until either the end of the program is
searched or a matching list is encountered. The default is for
listing to be enabled.

Along with each line number in the listing file the compiler may
add a marker character to provide extra visual information about
the nature of the statements being listed. The markers are:

+ this line is a continuation of the previous line.
& this 1line is part of a file being included (see
include).

" the compiler is currently searching for a string
quote to match one given on a previous line.

' the compiler 1is searching for a character quote to
match one given on a previous line.

Include

Source text from one or more files may be included into the
stream of source being compiled by means of the include
statement.

IMP include statements come in three forms:

(1) "include" string constant ["list"] :
(ii) "from" module id "include" item list ["list"] ;
(1ii) "Include" item 1list ["1ist"] ;

Examples:

(1) include "specs.inc" endoflist
include "SYSELIBRARY:nasty.inc"

(ii) from LL include COMMON, FIXEDRULES
from IMP Include ASCII, EBCDIC endoflist

(iii) include FRED, JIM
include FORMATS, ROUTE endoflist

Form (i) is used when the name of the file containing the text
to be included can be specified precisely. Note that this is
likely to make the program containing it system-dependent.

In (ii), "module-id" is an IMP identifier and "item-list" is a
list of items separated by commas where each item is an IMP
identifier.

Form (iii) is a version of (ii) where the module-id is a private
one meaning "in the current place". This would normally be
taken to mean the currently selected (default) directory on
systems which support such a concept.

Apart from their uses in the include statement the identifiers
are ignored, in particular they will not clash with other local
identifiers.

Forms (ii) and (iii) are considered to have a scope in the same
way that identifiers have a scope. This scope is used to
inhibit the multiple inclusion of files. An include statement,
or part of it, will be ignored if a previous include which is
still in scope caused the inclusion of a file identified by the
same module-id and item-id. Note that as include statements of
form (i) do not include a module-id or item-id, they will be
included each time they are encountered in the source.

For example assume that the files identified by A, B and C (in a
manner as yet unspecified) have the following contents:

File A: recordformat F(integer x, y, 2)
endoffile

File B: include A ,
externalroutinespec Print Record(record (F) name R)
endoffile

File C: include A
externalroutinespec Read Record(record (F) name R)
endoffile

The following sample program is then quite valid:

begin
routine Process

include B
include C {this will not include A again)
include B {this will do nothing}
end
routine Analyse
include B {this will cause A and the spec of)
{Print Record to be included)
end

endofprogram

The mapping between the pair (module-id, item-id) and the
external object to which the pair corresponds is implementation
defined. Note that the external object need not be an operating
system file; it may, for example, be an element in a text
library or internal to the compiler itself. The two module-ids
IMP and SYSTEM are reserved over all systems to have special
meaning. The module-id IMP is reserved for use by the core
environment standard while the module-id SYSTEM is reserved for
use by individual implementors, for example to provide
interfaces to operating system facilities.

For example, on the Vax/VMS implementation the following two
complete programs would be identical.

begin begin
from IMP include MATHS, include "IMP_INCLUDE:MATHS.INC"
ASCII include "IMP_INCLUDE:ASCII.INC"
<text of program> <text of program>
end of program end of program

For form (ii), the VAX/VMS implementation generates a file name
of the form:

module-id _INCLUDE: item-id .INC

For form (iii), the VAX/VMS implementation generates a file name
of the form:

item-id .INC

The above rule for form (ii) may be overridden by means of an
environment definition file.

For implementation reasons the following two errors could be
generated:

1. Include files nested too deeply.

Currently include files may not be included to a depth
greater than 5. This restriction will be lifted in future
implementations.

2. File <file-id> has not been included.

This is caused by an include statement with a list of items
where after the processing of one member of the list the
scope (textual level) has changed from that of the whole
include statement. This is a result of including files
which contain unmatched BEGIN, END or procedure statements.
If this effect is really wanted it can be achieved by
splitting the include statement into two or more.

That is, instead of writing:

from LL include GATEBITS, ROUTEBITS, DRAWBITS

write: from LL include GATEBITS
from LL include ROUTEBITS
from LL include DRAWBITS

Statements

A STATEMENT is a sequence of atoms arranged according to the
syntactic rules of IMP.

Termination

Every statement must be terminated by a newline or, except in
the case of comment statements, a semicolon.

Null Statements

Redundant terminators (newlines or semicolons) effectively
generate null statements which are ignored by the compiler and
may be used to improve the legibility of the program.

Continuation

A statement may extend over several physical lines provided that
each line break occurs after a comma, or, and, or is preceded by
a hyphen (-) which is otherwise ignored.

E.g. . if X = Y then P
else P

1
0
is exactly equivalent to: if X = Y then P = 1 else P = 0
Note i The hyphen causes underlining to be terminated.
ii A hyphen between quotes stands for itself and does

not indicate continuation.
iii Comments (g.v.) may not be continued.

iv Some compilers will accept the archaic form of
continuation where the hyphen is replaced by the
keyword C.
Instructions

An instruction is any imperative statement which may be made
conditional, and is either an assignment, a routine call, a
control transfer, or a compound instruction.

Compound instructions

Two or more instructions may be joined using the keyword and to
form a compound instruction: e.g. A=0 and B=C-1. WIithin a
compound instruction a control transfer may only occur as the
final instruction. A compound instruction may appear wherever
an instruction is required, and results in the component
instructions being executed in the order given.

10

Comments

A comment is a sequence of characters which is ignored by the
compiler, and is intended to permit annotation of programs.

Comments are any sequence of characters, excluding right brace

and newline, enclosed in a pair of braces, { and }. A comment
may appear between any two atoms, but may not occur within an
atom. For convenience the closing brace may be replaced by a
newline.

In addition any statement which starts with an exclamation mark
is considered as a comment and will be ignored by the compiler.

The following is a valid fragment of a program containing
comments:

LIMIT = 100 {only 100 cases)
MINIMUM = 0 {(all positive
PROCESS (X {cases), Y {total cost})

! A A

! integer real

Print Report; ! note the semicolon

and will be seen by the compiler as:

LIMIT = 100
MINIMUM = O
PROCESS(X , Y)
Print Report

11

Expressions

Arithmetic Expressions

An arithmetic expression is a sequence of operators and integer
or real operands obeying the elementary rules of algebra. An
operand is either a constant, a variable, a function call, a map
call, or an arithmetic expression enclosed in parentheses or
vertical bars (see Declarations and Procedures).

a) Integer Expressions
All the operands and operators in an integer
expression must yield integer values.
The operators available are:

+ addition

- subtraction or unary minus

* multiplication

// 1integer division (the remainder of the division,
which is of the same sign as the dividend, is
ignored) .

A~ integer exponentiation. The second operand (the
exponent) must be a non-negative value.

b) Real Expressions
All the operands and operators in a real expression
must yield real or integer values. Integer values
will automatically be converted into their real
equivalents before being used.
The operators available are:

addition

subtraction or unary minus
multiplication

division

real exponentiation

>N * | +

c) Ambiguous expressions
Certain operators, such as + and -, may take either
integer or real operands. If the two operands are of
the same type the result of the operation will be of
that type. If the types differ, the integer operand
will first be converted to real and the operator will
yield a real result. Hence in the expression
(7.4 + 22 * 6), * will perform an integer
multiplication and + will perform a real addition
(see Precedence of operators).

d) Modulus

The modulus or absolute value of an expression
(integer or real) may be obtained by enclosing that
expression between vertical bars. E.g. |[X-Y]|

The type of the expression is unchanged.

12

Bit-Vector Expressions

All operands must yield bit-vector (integer) values. The
operations are performed on a bit-by-bit basis using the
operators:

& and

! inclusive or

1! exclusive or

<< left shift (logical)
>> right shift (logical)
~ complement (unary not)

It is permissible to mix integer and bit-vector expressions
but the full implications of this may be machine dependent.

The shifting operators (<< and >>) may only be used to
shift by a non-negative amount which is less than the
number of bits in an integer variable.

All operands are converted to integer precision before use.

string Expressions

All operands of a string expression must yield values of

type string. The only operator available is "." for
concatenation (joining together) and no sub-expressions in
parentheses are permitted. The result of the operation is

a string value whose actual length is the sum of the actual
lengths of the original operands.

E.g. "Mr ".surname

13

Precedence of operators

Highest: 1. ~ (unary not)

2. A, AA, <L, >

3. * /v //0 &

Lowest: 4. +, - (unary and binary), !, !!

The precedence rules may be overridden by means of
parentheses.

Note: =1AA2 = 0-(17r2) = -1

(-1)Ar2 =1

order of evaluation

Excluding the operator precedence rules described above, no
assumptions may be made about the order of evaluation of
expressions; the compiler is free to use the commutative,
associative, and transitive properties of operators to reorder
expressions.

Note i

ii

iii

iv

Unary minus is treated as 0-...

An expression may not contain two adjacent operators:;
they must be separated by parentheses E.g. 23%(-14)

Integer values will be converted to real where
necessary, but real values will never be converted to
integer unless this is explicitly specified using the
predefined functions INT, INTPT, TRUNC or ROUND.

Integer (or real) values may be explicitly converted
to real values using the predefined function FLOAT.

byteinteger and shortinteger values will
automatically be converted nto their integer
representations before being used.

14

Declarations

All identifiers except labels must be declared at the start of a
block before they may be used. The scope of an identifier is
the rest of the block in which it is declared, including any
blocks subsequently defined therein (see Block Structure and
note 3 on Labels and Jumps).

In the following discussion the phrase [type] has the
definition:

[type] ::= integer,
real, -
String Il(ll [max] ll)"'
record "(" [fm] ")"

and [max] is an integer constant in the range
1<=max<=255 defining the maximum number of
characters which may be held in the string.
[fm] defines the structure of the record (see
Records) .

When used to define pointer variables or maps(gq.v.) ([max])
and ([format]) may be specified as (*) meaning that the
defined object may reference any string variable or any
record variable.

1. Scalar Variables
a) Simple Variables

[simple] :

[type]
[simple dec] [y

::= [simple] [idents]
integer J,K, COUNT

real PRESSURE

string (30) COUNTRY, TOWN

record (CARFM) MINI, ROVER

Each variable is allocated an appropriate (machine
dependent) amount of storage to hold a value of the
appropriate type.

b) Simple Pointer Variables

type] name

[simple pointer])
simple pointer] [idents]

[simple pointer dec]

ee=
.
o=
..

~r-

integer name P
real name DATUM

string (15) name WHO,WHERE
record (CARFM) name CAR

Each variable is allocated enough storage to hold a
pointer to (i.e. the address of) a simple variable of
the specified type. The use of a simple pointer
variable is generally equivalent to the use of the
simple variable to which it currently points.

15

c)

d)

General Pointer Variables

[general pointer] ::= name
[general dec] ::= [general pointer] [idents]

name NA, NB

Each variable is allocated enough space to hold a
general pointer to a variable of any type. Such
pointers may be decomposed into an address, a size
and a type by means of the built-in functions ADDR,
SIZE OF, and TYPE OF (see Permanent Procedures).
General pointer variables may not be wused in a
context where a value is required.

Array Pointer Variables

[array pointer] t:= [atype] [aname]
[array pointer dec] ::= [array pointer] [idents]
[atype] t:= [type] array,
[type] name array,
name arra
[aname] :s= array "(" [dim] ")" name,
array name
[dim] s¢= [integer constant]

integer array name AN
real array name VALUES
string (20) array name NAMES, ADDRESSES
record (CARFM) array name MAKE
nteger name array name POINTERS
name array name GEN POINTERS
real array (4) name SPACE TIME

Each variable is allocated enough storage to hold a
pointer to (i.e. the address of) an array of the
specified type.

The three forms of [atype] permit access to arrays of
simple variables, simple pointer variables, and
general pointer variables.

The first form of [aname] specifies the dimension,
[dim], of the sort of array to be accessed; the
second form is an abbreviation for the case where
[dim] = 1.

16

2.

Arrays

[array] ::= [atype] (adefn] <"," [adefn]>*

[adefn] =
[bounds] =
[bound pair] ::= [lower bound] ":" [upper bound]
[lower bound] ::=
[upper bound] ::=

(idlist] "(" [bounds] ")"
[bound pair] < "," [bound pair] >*

[integer expression])
[integer expression]

integer array A(1:10),B,C(=-4:LIMIT)
real array Q(1l:J+K, 1:J-K)

string (12) array CLASS(-7:16)

record (CARFM) array TABLE(LOWER:UPPER)
integer name array FREQ('A':'2"')

name array WHAT(0:1)

note i

The bound pairs are evaluated and the required amount
of storage is allocated to each identifier.

ii

iii

In each bound pair the values of the bounds must
satisfy the condition:

Upper bound - Lower bound + 1 >= 0

This means that arrays may contain zero or more
elements.

The number of bound pairs (the dimension of the
array) usually may not exceed six, but this is
implementation dependent.

At the time of writing most implementations do
not support general (untyped) arrays.

17

Records

A record is a named collection of data objects. The
components (elements) of a record may be any of the forms
discussed in (1) and (2) above, with the following
limitations:

i Arrays within records must be one dimensional and
have constant bounds.
ii A record may not contain simple records (or record

arrays) of its own format. However it may contain
record pointer variables of its own format.

The internal structure of a record is defined using a
record format statement:

[format] ::= record format [fm] " (" [format list] ")"
[fm] t:= (1d]
[(format list] ::= [alternative] < or [alternative] >*
[alternative] ::= [dec list],

"(" [format 1list] ")"
:= [dec item] < "," [dec item] >*
:= [simple] [idents],

[pointer] [idents],

[general pointer] [idents],

[array pointer] [idents],

[array]

[dec list]
[dec item]

record format F(integer X, record(F)name LINK)

record (F) HEAD

record (F) array CELL(1:15)

record format AS(byte array CHAR(0:12) or string(12) TEXT)

Alternatives, as 1in the definition of AS above, provide a
means of imposing different interpretations on parts of a
record. Each alternative within a format list will start
at the same address within the record and will be padded
out with anonymous variables to the size of the longest.
The relation between pairs of elements in different
alternatives is machine-dependent. Alternatives may be
nested to any depth.

18

Note i Each element in a format must have an identifier
which is unique within that format; there are no
restrictions on the use of identifiers which have
been used outwith the format. For example, the
following program fragment is valid:

integer J, K
record format FM(integer J, K, L)

ii when space is allocated to a record variable the
elements are laid out in the order in which they
were declared. However see the relevant
implementation notes for machine-dependent
alignment considerations.

Occasionally it is necessary to be able to refer to a
recordformat before it is possible to define it, as in the
example below. A statement of the form:

recordformatspec [fm]

may be used to declare the format identifier. Until the
format is declared fully in a recordformat statement the
identifier may only be used In the declaration of record
pointer variables.

recordformatspec Y
recordformat X(record(Y)name P, real VALUE)
recordformat Y(record(X)name Q, integer VALUE)

19

Data precision specification

on some machines it is possible to offer a range of sizes and
precisions for variables of type integer or real, and so a
mechanism is provided for extending the set of arithmetic data
types. The size of integer variables may be changed by adding
the prefix byte, short, or long to the keyword integer, and the
precision of real variables may be changed by adding the prefix
long to the keyword real. The prefix is added immediately in
front of the integer or real keyword, and gives rise to
constructions such as:

byte integer
short integer name

own long real
external byte integer

The keywords byteinteger and shortinteger may be abbreviated to
byte and short respectively.

The exact meaning of each prefix is machine-dependent but may be
described approximately as:

byte - large enough to hold a character (unsigned)
short - a signed subset of integer values
long - a larger range than integer,

or greater precision and/or range than real

Commonly byte gives 8 bits (unsigned), short 16 bits (signed),
and long 64 bits.

Where values are required byte integers and short integers are
considered equivalent to normal integers, hence INTEGER=BYTE is
a valid instruction. However, where references are concerned
the types must be identical, hence INTEGERNAME==BYTE is not a
valid instruction. See Assignment.

Before use, byte values will be =zero-extended to integer
precision and short values will be sign-extended to Integer
precision.

If the host machine cannot support different data sizes the
addition of a prefix will not affect the allocation of
variables. Refer to the relevant implementation notes for
details of specific implementations.

20

Access to structured variables

Arrays

Access to particular elements of an array is achieved by
following the array identifier by a list of subscript
expressions enclosed in brackets.

e.g. Q(1l, K-3) A(J)

The number of subscript expressions must equal the number of
bound pairs given in the declaration of the array and the value
of the expressions must be integers within the range specified
by the corresponding bound pairs.

Record element selection

Selection of a specific element from a record is achieved by
following the record by:

" "lelement id)
where [element id] refers to an identifier within the format
associated with the given record. Clearly, if the record had
been declared using * as a format, no such selection is
possible.
Given the declarations:

record format F(integer X, record(F) name LINK)
record (F) R

some valid references to variables would be:

a pointer to a record of format F
an integer

R - a record of format F

R X - an integer

R_LINK - a pointer to a record of format F
R LINK X - an integer

R_LINK_LINK
R_LINK_LINK X

R | R_X] R_LINK [

v

[R LINK X | R _LINK LINK |

v

| R_LINK LINK X | R_LINK_LINK_LINK |

21

Own variables

Each variable declared in a block (g.v.) 1is allocated storage
when that block is entered, the storage being released when the
block is left. This means that local variables (and the values
in them) are lost between traverses of the block.

If, however, the prefix own 1is applied to a declaration the
variables are allocated statIcally (at load time) and so retain
their values when the block is not being executed (see
Procedures). The scope of the identifier is unchanged.

Own arrays must be one-dimensional and have constant bounds.

Constant arrays

The prefix constant may be used in place of own in the
declaration of an initialised array (see initialisation) to
indicate that the initial values cannot be altered. constant
arrays must be one-dimensional and have constant bounds.

A strict definition should prohibit the use of elements of
constant arrays wherever there is the possibility of their being
assigned new values. Unfortunately this is not convenient in
practice as it would prevent passing constant arrays as
parameters to routines which never attempt to write to them.
Accordingly in the context of == assignments (g.v.) the compiler
treats constant arrays as though they were own arrays and leaves
checking to hardware protection mechanisms.

22

Initialisation

Simple variables and pointer variables may be given initial
values when they are created; if no initial value is specified
the content of a variable is initially undefined. Note that
pointer variables must be assigned using "==" and simple
variables using "=" or "<-" (see Assignment).

integer A,B=4, C=-1-B (value in A is undefined)
real R=1.234@-5

strIng (7) WHO="anon"

nteger name P ==
own variables are initialised once (effectively before the
program begins execution) but ordinary variables are initialised
each time the containing block is entered. Arrays may only be
initialised if they are own or constant (q.v.). If an own or
constant array is to be initialised, every element in the array
must be given a value. In order to simplify this, each initial
value may be followed by a repetition count in parentheses, and
a star, (*), may be used to represent the number of remaining
elements in the array. For convenience a repetition count of

zero is permitted and means that the initialising constant is to
be ignored. For example the following declarations are all

equivalent:
own integer array A(2:5) = 7,7,7,7
own jnteger array A(2:5) = 7(4)
own integer array A(2:5) = 7(*)

The list of constants may extend over several physical lines
without the need for a continuation mark if each line ends with
a comma; a line break is also allowed after the equals sign.

constant string (3) array MONTH(1:12) =
IIJAN" R IIFEB" ’ "MARII ’
"APR" , "MAY" B IIJUN " ’
"JUL", "AUG", "SEP" ,
"OCT" , "Nov" , " DEC"

own integer array OPCODE(0:20) = {opcode values)
16_5800, 16_4800, 16_5000, 16_4000,
{ L LH ST STH }
16_5A00, 16_5B00, 16_5C00, 16_5D00,
{ A s M D }
16_1A00, 16_1B0O, 16_1C00, 16_1DOO,
{ AR SR MR DR }
=1(*) {all the rest)

23

Assignment

Assignments are instructions which cause the contents of
variables to be altered. Note that the compiler is free to
choose the order of evaluation of the left and right hand sides
of assignments, and so the use of functions and maps (q.v.) with
side-effects is to be discouraged.

There are three forms of assignment:
1. [variable] "=" [expression]

X=Y
A(P) = A(P)+1

Y = BIT<<12 !! MODE_FLAGS
PERSON = INITIALS.SURNAME

The expression 1is evaluated and the resulting value is
stored in the given variable. The expression may be of
type integer, real, or string, and the variable must be of
a compatible type; in the case of a real variable an
integer expression will have its result converted to real
before the assignment. Note that if N and M are (for
example) integer name variables, the statement N=M copies
the value In the variable pointed at by M into the variable
pointed at by N.

2. [pointer variable] "==" [reference to a variable]

The pointer variable is dynamically made equivalent to the
given variable; the types of both sides of the assignment
must be identical - this includes the formats of records,
and the maximum lengths of strings. The assignment may be
thought of as the assignment of the address of the variable
to the pointer. .

Oonce equivalenced the pointer variable may be used as a
synonym for the variable.

integer name N

Inteqer X

nteger array A(1l:6)
X=1

N == A(X) (N is now equivalent to A(1l))
X =2
N=20 {same effect as A(1l) = 0)

3. [variable] "<-" [expression]

This is similar to 1. above except that the value of
the expression will be truncated if necessary (see
Data Precision Specification).

E.g. string(4) s
S = "12345" {fails String Overflow at run-time)
S <= "12345" (will assign "1234" to S)

24

Record assignment

There are two special assignments for records:

1.

[record variable] "=" [record variable]

The area of storage associated with the right-hand record
is copied into that associated with the left-hand record in
a simple-minded fashion, ignoring the structure of the
records. The formats of the two records must be identical.

[record variable] "=0"
The storage area associated with the record is set to zero,
ignoring the structure of the record. The effect of this

shall be to set all integers to zero, all pointers to NIL,
all strings to the null string, and all reals to zero.

25

String resolution

The contents of a string variable may be searched for a
sub-string and decomposed accordingly.
The format of a resolution is:

[resolution] ::= [source] "->" [dest]

[dest] ::= [destl]? " (" [pattern] ")" [dest2]?
[source] ::= [string variable]

[pattern] ::= [string expression]

[destl] 1= [string variable] "."

[dest2] t:= "," [string variable]

§ => T.(",").U
TITLE(J) -> ("Sir").REST
WHO -> WHO. (LETTERS."B.Sc.")
§ -> ("HELLO".T)

[pattern] is evaluated and [source] is searched from left to
right to find the string of characters, [pattern].

If [pattern] can be found the resolution is deemed to have
succeeded otherwise it is deemed to have failed.

If the resolution succeeds, [source] can be considered to be of
the form: [left].[pattern].[right], where [left] and [right] are
the fragments of [source] respectively to the left and right of
the first occurrence of [pattern]. If [destl] has been
specified it is assigned the value [left]. If [dest2] has been
specified it is assigned the value (right].

Hence after executing the foilowing statements:
string(15) A, B, C, D
A = "123456789456123"
A -> B.("456").C
A -> ("61").D

B will contain "123", C will contain "789456123", and D will
contain "23",

A resolution may occur in two contexts:

1. as an instruction, in which case failure of the
resolution causes an event to be signalled (see
Events)

WHO -> ("Mr ").WHO; WHO = "Dr ".WHO

2. as a simple condition (see Conditions), in which case
the simple condition is satisfied if and only if the
resolution succeeds, resulting in the resolution
being performed and the necessary assignments being
made.

SAYING = A."*%*" B while SAYING -> A.(RUDE WORD).B

26

Conditions

Conditional statements are specified using the phrase

[cond

ition], which is defined as:

[condition] ::= [simple cond] <and ([simple cond]>*,

"and"

[simple cond] <or [simple cond]>#*

conditions are satisfied if all of the component simple

conditions are satisfied; "or" conditions are satisfied if any
one of the component simple conditions is satisfied.

[simple cond] has seven forms:-

1.

[expression] [comp] [expression]

[comp] ::= L LU - is equal to
nin, - is not equal to
nen, - is less than
e=", - is less than or equal to
nn, - is greater than
"=, - is greater than or equal to

The given expressions are evaluated and compared. The
simple condition is satisfied if the relation specified by
the comparator holds. Both expressions must yield values
of the same type.

Complete records or arrays may not be compared.

[expression] [comp] [expression] [comp] [expression]

This form of simple condition may be thought of as a
contraction of the form:

([x1) [compl] (x2] and [x2] [comp2] [x3])

except that the middle expression [x2] is only evaluated
once. Note that the third expression, ([x3], is only
evaluated if the condition specified by the first two
expressions is satisfied.

Such a simple condition is frequently used to check for a
range of values, E.g. 17 <= VALUE <= 100

Note that these double-sided conditions are only available
for value comparisons.

[reference to a variable] "==% [reference to a variable],
[reference to a variable] "##" [reference to a variable]

The two variables, which must be of identical type, are
compared for equivalence, that is their addresses are
compared. Note that the address of a pointer variable is
the address of the variable to which it is equivalent.

The simple condition is satisfied if the addresses are
equal (== specified) or not equal (## specified).

27

[predicate call] - see Procedures

The given predicate is called and the simple condition is
satisfied if and only if the predicate terminates by
executing the instruction true.

[resolution] - see String Resolution

The resolution is attempted. If it fails the simple
condition is not satisfied, otherwise the resolution is
performed and the condition is satisfied.

"(" [condition] ")"

This form of simple condition is provided to enable the use
of both and and or in a condition, as these connectives are
considered to have equal precedence. The connectives and
and or may not appear in the same condition unless
separated by levels of parentheses.

E.g. A=0 or (B=1 and C=2) or D=3
not [simple cond]
This simple condition is satisfied if and only if the
simple condition following not is not satisfied. For

example, the following simple conditions are exactly
equivalent:

>

#
not A =0

Evaluation of conditions

The evaluation of a condition proceeds from left to right,
simple condition by simple condition, terminating as soon as the
inevitable outcome of the condition is known.

For example, considering the condition:

A=0o0or B/A#C

If the variable A has the value zero the whole condition will be
satisfied without "B/A # C" being evaluated.

28

Conditional groups

- The most general form of a conditional group is a sequence of
statements of the form:

if [conditionl] then start

{statements to be executed if})
{[conditionl] is satisfied)

finish else if [condition2] then start
{statements to be executed if)
{[conditionl] is not satisfied and})
([condition2] is satisfied)

- finish else if [condition3] then start

seececececcccen

- finish else start

{statements to be executed if all the)
{(previous conditions are not satisfied)

finish
Note that "if start" and "finish else start" etc. are

complete statements In their own right and as such must be
— terminated by a newline or semicolon.

Any or all of the else statements may be omitted, and the
start-finish groups may be nested to any depth.

29

Alternative forms

1.

2.

then start may be elided into start.

If the start-finish brackets enclose only one instruction
the complete start-finish sequence may be replaced by that
instruction.

E.qg. .+ if [condition] then ([instruction]
or cecesessssssesssses €lse [instruction]

The keyword if may always be replaced by unless with the
effect of negating the whole of the condition. For
example, the following two statements are equivalent:

if X=0then Y= 1else 2 =-1
unless X = 0 then Z = -1 else Y = 1

In a statement of the form: "finish start" both of the
keywords finish and start may be omitted.

e.g. if A = 0 start
1

FLAG =
else if A >= 12
FLAG = 2
else if A < -4
FLAG = 0
else
FLAG = -1
finish

A statement of the form:
if [condition] then [instruction]
may be rewritten in the more natural form:
[instruction] if [condition]
E.g. NEWLINE if CHARS >= 60

Note that else is not available in this variant.

30

Repetition (loops or cycles)

Indefinite Repetition

A group of statements may be repeated indefinitely by enclosing
them between the statements cycle and repeat.

cycle
GET DATA
PROCESS DATA

repeat

Subsequently the group of statements between cycle and repeat
will be referred to as the 'cycle body'.
cycle-repeat groups may be nested to any depth.

Conditional Repetition

The number of times the cycle body is executed can be controlled
by modifying the cycle and repeat statements.

a. while [condition] cycle

Before each execution of the cycle body the specified
condition 1is tested. If the condition is satisfied the
cycle body is executed, otherwise control is passed to the
statement following the matching repeat.

The cycle body will be executed zero or more times.

b. for [control] "=" [init] "," [inc] "," [final) cycle

where

[control]::= [integer variable] - control variable
[init] ¢:= [integer expression] - initial value
[inc) ::= [integer expression] - increment
[final] ::= [integer expression] - final value

On each entry to the cycle the address of the control
variable and the values of the three expressions are
evaluated and saved; execution of the cycle body cannot
change them. The control variable is assigned the value
"[rinit]-[inc]".

At the start of each iteration the value in the control
variable is compared with the value [final]. If they are
equal control 1is passed to the statement following the
matching repeat, otherwise the value [inc] is added to the
control variable and the cycle body is executed.

31

This definition may be informally described by the
following program:

integer Temp Inc = Inc,
Temp Final = Final
?2?name Temp Control == Control (same type as Control)

Temp Control = Init-Temp Inc

while Temp Control # Temp Final cycle
Temp Control = Temp Control+Temp Inc
{cycle body}

repeat

The cycle body will be executed zero or more times.

on exit from the cycle the control variable will contain
the value it held immediately prior to the point at which
the cycle terminated, usually [final].

The execution of the cycle body must not alter the value of
the control variable.

The final form of conditional cycle is:

cycle
{cycle body)

repeat until [condition]

After each execution of the cycle body the condition is
tested. The loop is repeated if the condition is not
satisfied.

until loops always execute the cycle body at least once.

Note that until does not mean while not (.....).

Simple forms of loop

If the cycle body comprises only one instruction the loop may be
rewritten in the form:-

[instruction] ([loop clause]

i.e. [instruction] while [condition]

{instruction] for [control"="init}","[inc]","([£final]
[instruction] until [condition]

For example

A(J) =0 for J =1, 1, 20
READSYMBOL(S) until S = NL
SKIPSYMBOL while NEXTSYMBOL = ' '
B =B+l and N = N/2 while N # 0

32

Cycle control instructions

Two instructions are provided to control the execution of a
cycle from within the cycle body.

1. exit - causes the cycle to be terminated and
control to be passed to the statement
following the matching repeat.

The while and until forms of loop may be
expressed using exit:

cycle {while)
exit unless condition

repeat
cycle {until)

sevecece

exit if condition
repeat

2. continue - causes control to be passed to the repeat
of the current loop, where any until
conditions will be tested.

33

Block structure

An IMP program is constructed using one or more blocks, which
may be nested one within another; the depth to which this
nesting may be performed is implementation dependent.

Note that start - finish (see Conditional Groups) and cycle -
repeat (see Repetition) do not define blocks, they merely define
the scope of conditions and loops.

When control passes into a block all non-own variables declared
in that block (but not in blocks defined within it) are
allocated storage, and remain in existence holding their values
until control passes out of the block. At this point the
variables are destroyed and the storage space is released for
later use.

Begin blocks

The simplest type of block is enclosed between the statements
begin and end and is referred to as a begin block.

A begin block is entered by executing the begin and is left by
passing through the end to the following statement. They are
anonymous routines (g.v.) which have one implied call at the
point of definition. The main uses of begin blocks are to
declare arrays with bounds calculated at run-time, and to enable
the re-use of space taken up by large arrays which are only
needed for part of the program.

E.g. begin
nteger UPPER

UPPER = ... {calculate upper bound})
begin
nteger array CASES (1:UPPER)

end
begin

ntegerarray TEMP(1:1000)

co s

end
begin
real array WORK(1:2000)
end
end

34

Local and Global variables

An identifier is described as being local to a block if it was
declared in that block. Any identifiers which are in scope but
which were not declared in the block in question are referred to
as being %1oba1 to the block.

Clearly, identifiers may be local to only one block but may be
global to many.

begin {start of outer block}
Integer X {X is local to this block}
begin {start of inner block)
integer Y (Y is local to this block)
X=0 {X is global to this block)

end {of inner block)
end {of outer block)

Identifiers may always be redeclared in any block to which they
are global - the local incarnation taking precedence over the
global one.

begin
integer X
begin
integer x
X=0 {uses the X of the previous line)

end
end

Any attempt to redeclare a local variable will be faulted by the
compiler.

35

Procedures

A procedure is a block which has an associated identifier; a
complete procedure block may be considered as the declaration of
the procedure identifier.

Unlike begin blocks, procedures are not entered simply by
reaching their first statement; this results in control being
transferred to the statement following the matching end.
Instead, procedures are activated when they are called by giving
the procedure identifier in a context determined by the type of
procedure. The effect of a call is to suspend the current flow
of control and to pass control to the procedure. When the
procedure terminates normally, the previous flow of control is
resumed.

There are four forms of procedure, the exact form required being
specified by the heading of the block.

The phrase [param def]? stands for the optional parameter
definition and will be described later (see Parameters).

1. routine [id] [param def]?

A routine call may occur wherever an instruction |is
required.

When the call 1is executed, control is transferred to the
routine which executes until either the end is reached or

the instruction return is executed. This causes the
routine to terminate and the previous flow of control to be
resumed.

integer X, Y

routine CONVERT
If X < Y start
X = X+Y
finish else start
X = X-Y
finish
end

CONVERT

CONVERT unless X = Y

36

[type] function [id][param def]?

A function is a procedure which calculates a value of the
specified type (integer, short, byte, real, longreal,
string, or record) and may be used wherever an operand of
the specified type is required.

When a function is called its statements are executed until
the execution of an instruction of the form:

result "=" [expression]

This causes the function to terminate, returning the value
of the expression.

integer X, Y, Z

integer function SUM
result = X+Y
end

Z = SUM {same effect as Z = X+Y)

The keyword function may be abbreviated to fn.

(type] map [id] [param def]?

A map is a procedure which calculates a reference to a
variable of the specified type (integer, short, byte, real,
longreal, string, or record), and may be used wherever a
variable of the specified type is required.

When a map is called its statements are executed until the
execution of an instruction of the form:

result "==" [reference to a variable]

This causes the map to terminate, returning a reference to
(i.e. the address of) the given variable.

E.g. integer X, Y
integer map MIN
if X <Y then result == X else result ==
end
MIN =0

{the above statement is exactly equivalent to:}
(if X < Y then X = 0 else Y = 0)

37

4. predicate [id] [param def]?
A predicate is a procedure which tests the validity of an
hypothesis and may be used wherever a simple condition is
required. When a predicate is called its statements are
executed until either the instruction true is executed, in
which case the predicate returns and the simple condition
it constitutes is satisfied, or the instruction false is
executed, in which case the predicate returns and the
simple condition is not satisfied.
Note that a predicate does not return any value.
E.g. integer N
predicate SINGLE DIGIT
true if 0 <= N <=9
false
end
N = N/10 unless SINGLE DIGIT

Notes

i A routine may terminate by reaching end; all other types of
procedure must not be able to reach end, otherwise the
compiler will report a fault.

ii Procedures may be nested within any form of block.

iii Procedures may be recursive, that is, a procedure
definition may contain a reference to itself.

iv It is not possible to jump out of a block. Similarly a
procedure cannot be terminated by executing the appropriate
statement (return etc.) contained in an inner block. If it
is required to force a return from several blocks the
signal mechanism should be used (q.v.).

v Functions, maps, and predicates may alter variables global

to themselves, but such side-effects should be avoided or
used with caution as, in general, no assumptions may be
made about the order in which parts of statements will be
executed.

38

Parameters
In the ©previous discussion about procedures the phrase
[param def]? was used. This stands for an optional parameter
list definition.
[param def] ::= "(" [param list] ")"

where ([param 1list] 1is a 1list of declarations defining the

'formal' parameters. The declarations may be of any data type
except array; arrays may only be passed to a procedure as

array name parameters.

E.g. routine SWOP(integer name P, Q)
Inte%er £fn MAX(integer array name A, integer F, T)
predicate EQUIV(record(FM)name LEFT, RIGHT)

Parameters have the same properties as any variables declared
inside the procedure, except that the parameters are given
values at the time the procedure is called.

When a procedure is called 'actual' parameters must be supplied
which match the formal parameters exactly in number, order, and
type. Parameters are effectively assigned using "==" for those
passed by name (E.g. integer name, real array name) and using
"=" for those passed by value (E.g. string(10), integer).

For example assuming the declarations:

integer L, M, N
real R

Integerarrax V(=7:7)
record (FM) ONE, TWO

valid calls on the procedures mentioned in the previous example
are:

SWOP(L, M)

SWOP(V(L), V(M))

N = MAX(V, -1, 0)

M = MAX(V, L, 7)

N = M if EQUIV(ONE, TWO)

N.B. IMP name type parameters are passed by reference and not
by substitution (c.f. ALGOL 60).

39

Procedure parameters

In addition to being able to pass variables to procedures it is

possible to pass procedures as parameters. This is achieved by
using the procedure heading as the 'declaration' of the formal
parameter.
E.g. routine TRY(routine R(integer X))
integer J
R(J) for 3 =1, 1, 10
end

The routine TRY may now be called with a single parameter which
must be the name of a routine which itself has one integer
parameter. In this context the formal parameter names used to
specify the parameters of a procedure parameter are otherwise
ignored.

Note: If the routine TRY is itself to be passed as a parameter
the heading of the receiving routine would be something like:

routine CHECK(routine X(routine Y(integer 2)))

and the call would be:

CHECK(TRY)

40

Procedure specification

On occasions it may be necessary to use a procedure before it is
possible (or desirable) to define it. For example, where two or
more procedures call each other (mutual recursion) or where a
procedure is to be defined externally (see External Linkage).

As all identifiers must be declared before use, a procedure
specification statement is introduced.

This takes the form of the normal procedure heading with the
keyword spec inserted before the procedure identifier.

E.g. routine spec MAX(real SIZE)

This has no effect other than declaring the identifier to be a
procedure of the specified form which takes the given
parameters. Except in the case of external procedure
specifications the procedure must be defined 1later on in the
block to which the spec is local.

For example:

routine spec B(integer X)

routine A(integer Y)

B(Y-1)

end

routine B(integer X)

A(X+3)

end

Note that the spec statement and the procedure heading must
correspond, that is, the type and form of the statements must
match, as must the type, form, order and number of any
parameters.

41

External linkage

A complete program may be divided into several separately
compiled modules which are connected together in some way before
(or possibly while) the program is executed. This linkage is
requested by giving the prefix external to the relevant
declarations. The keywords system and dynamic may be used in
place of external; refer to the relevant implementation notes
for details of the effect of these keywords.

1. external variables

An external variable has all the properties of an own
variable, but is declared with the keyword own replaced by
external. Note that constants, record formats and

parameters may not be made external.

external integer CHOICE=4, WAIT = -5

external real array MEAN(-6:6)

The identifiers are then available for use by any program
that references them. A separately compiled module that
requires to use any of these variables must first declare
them using an external specification.

external integer spec WAIT, CHOICE

external real array spec MEAN(-6:6)

note 1 No initialisation may be given in an external
specification.

ii External arrays must be one-dimensional and have
constant bounds.

iii Even though all of the characters in the
identifier of an external entity are significant
to the compiler, system software might impose
constraints on the number of characters
significant for linkage purposes. Refer to the
relevant implementation notes for
system-dependent restrictions.

42

external procedures

A procedure may be made available to other modules by
prefixing the procedure heading with the keyword external.

external routine TRIAL(string(63) S)

External procedure definitions may not be nested within any
blocks.

If a module requires to use an externally defined procedure
it must first supply an external procedure specification.
For example:

external predicate spec LETTER(integer S)

This is similar to a procedure specification but only
requires the specified procedure to have been defined by
the time the module is executed.

An external ... spec may be given wherever other declarations
would be valid.

Alias

Any identifier being declared as external may be followed by
alias [string const] where the string constant specifies the
string to be used for external linkage. From within the module
the external object will be identified in the usual way.

E.g. externalrealfnspec SF alias "SLIB£SF1" (real ARG)

SX = SF(0.3)

43

Program file structure

A complete file of statements which may be processed by the
compiler comprises a sequence of one or more blocks and is
terminated by the physical end of the source file or the
statement:

endoffile
There may be no more than one begin block in this sequence
(unless nested within other blocks). Such a begin block must be
the last block. 1In this case the final two statements:

end
endoffile

may be replaced by the single statement:

endofprogram

Declarations may be made global to these blocks with the
restriction that variables must be own or external.

Examples of complete program files:

The null program:
endoffile

The most trivial program:

begin
end

A more reasonable file:
owninteger IN=0, OUT=0

externalroutine GET(integername SYM)
READSYMBOL (SYM)
IN = IN+1

end

external routine PUT(integer SYM)
PRINTSYMBOL (SYM)
OUT = OUT+1

end

begin
externalroutinespec PROCESS
PROCESS
WRITE(IN, 1)
PRINTSTRING (" characters in")
WRITE (OUT, 5)
PRINTSTRING (" characters out")
NEWLINE

endofprogram

44

Permanent procedures

Each file processed by the compiler is conceptually prefixed by
a set of declarations, which introduce the commonly used
procedures, making them available to every file without any
explicit action by the programmer. The compiler treats these
declarations as being global to the whole file and hence the
identifiers may be redeclared without error.

While the actual declarations may vary from machine to machine,
the following are standard and may be assumed present:

constinteger NL = 10

routine OPEN INPUT(integer STREAM,
strIng(255) FILE)

routine OPEN BINARY INPUT (integer STREAM,

string(255) FILE)

routine CLOSE INPUT

routine SELECT INPUT(integer STREAM)

routine READSYMBOL(name S)

routine SKIPSYMBOL

integer function NEXTSYMBOL

routine READ (name N)

routine PROMPT (string(255) S)

routine OPEN OUTPUT (integer STREAM,
string(255) FILE)

routine OPEN BINARY OUTPUT(integer STREAM,

string(255) FILE)

routine CLOSE OUTPUT

routine SELECT OUTPUT(integer STREAM)

routine PRINTSYMBOL(integer N)

routine PRINTSTRING(strIng(zss) S)

routine WRITE (integer N, PLACES)

routine NEWLINE :

routine NEWLINES (integer N)

routine SPACE

routine SPACES (integer N)

integer function REM(integer A, B)
long real function FLOAT(long real N)
long real function FRAC PT(long real L)
integer function INT PT(long real L)
integer function INT(long real L)
integer function ROUND(long real L)
integer function TRUNC(long real L)

string (1) function TOSTRING(integer SYMBOL)

integer function LENGTH (string(*)name S)

byte integer map CHARNO (string(*)name S, integer N)
strIng(zss)gg SUBSTRING (string(*)name S, integer F,T)

45

record format EVENT FM(integer EVENT, SUB, EXTRA,
string(255) MESSAGE)

record (EVENT FM)map EVENT

integer function ADDR (name V)

integer map INTEGER(Inte%er ADDRESS)

byte map BYTEINTEGER (integer ADDRESS)
byte map BYTE (integer ADDRESS)

short map SHORTINTEGER (integer ADDRESS)
short map SHORT (integer ADDRESS)

real map REAL(}nteger ADDRESS)

long real map LONGREAL(1integer ADDRESS)
string(*)map STRING(integer ADDRESS)
record (*)map RECORD (integer ADDRESS)

Integer function SIZE OF (name N)
integer function TYPE OF (name N)

Refer to the Lattice Logic publication "The IMP Core Environment
Standard". for the definitions of these procedures.

46

Events

During the execution of a program several (synchronous) events
may occur, such as arithmetic overflow, array bound fault etc.
(see Errors). Normally such events will cause the program to be
terminated with an error report and possibly diagnostic
information. However events may be trapped and used to control
the subsequent execution of the program.

The first non-declarative statements of any block may be of the
form:

on event [event list] start
{on-body statements)
finish

where [event list] is a 1list of integer constants in the range 0
to 15 1inclusive, representing the events to be trapped, or an
asterisk (*) in which case all events are to be trapped.

Oon entry to the block the on-body is skipped and execution
continues from the statements following the finish. If an event
specified in the [event 1list] is signalled during the execution
of the statements between the finish of the on event group and
the end of the block, control will be passed to the on-body (and
may well pass through the finish to the following statements).
If the event is not trapped iIn the current block a 'return' is
forced and the event is signalled in the new block at the point
from which the old block was entered. The process is repeated
until either the event is trapped or the outermost block of the
program is reached, in which case the event 1is reported as a
fault and execution terminates.

Note that some events may or may not be signalled automatically
in certain implementations or when the program has been compiled
with the compile-time checks inhibited. Refer to the relevant
implementation notes for details.

47

Signalling events

At any time during the execution of a program an event may be
signalled by executing an instruction of the form:

signal event [n][sub]?

[n] ::= [integer expression]
[sub] s:= " " [integer expression] [extra]?
[extra] ::= "," [integer expression]

The instruction causes event [n] to be signalled with sub-event
(default zero) and extra information (default zero). The value
of [(n] must be in the range 0 to 15 inclusive.

signal event 15 {event 15,0,0)
signal event 14,7 if X < 0 {event 14,7,0)

signal event 13,1,Y if Y # 0 (event 13,1,Y)

Note i In both the on and signal statements the keyword
event is optIonal and may be omitted.

ii An event signalled inside an incarnation of an
on-body will never be trapped into that incarnation.
Instead the search for a trap will start from the
previous block.

The pre-defined record map EVENT provides access to a
system-defined record containing information about the last
event to have been signalled. While the exact definition of the
record may vary from implementation to implementation the
following fields will always be present:

record format EVENT FH(igte efzgg?N§, SUB,)EXTRA,
S rIng essage

If no event has been signalled these fields will each contain
the value zero.

48

Control transfer instructions

Labels and Jumps

1.

Simple Labels
Any statement, excluding declarations, may be given one or
more simple labels. Optionally, the labels may be declared
at the head of the block in which they are to be used, with
the declaration taking the form:

label [idents]
e.qg. label NEXT, ERROR1l, ERROR2

Each label is located by writing it followed by a colon to
the left of the statement to which it refers:

NEXT: P=P+l if P< O
ERROR1:ERROR2 : FAULTS = FAULTS+1

Control is passed to a labelled statement by executing a
jump instruction of the form:

wesw [id]

E.g. => NEXT
->ERROR1 if DIVISOR = 0

Switch Vectors

A vector of labels may be declared in a similar manner to a
one-dimensional array, using the declarator switch.
The vector must have constant bounds.

switch SwW(4:9)
switch S1, S2(1:10), S3(11:20)

once declared, switch labels may be located in the same way
as simple 1labels, the particular label required being
selected by an integer constant.

SW(4): CHECK VALUE (1)

SW(6) :SW(7): ERROR FLAG = 1
LAST: SW(9): {all finished)

49

An asterisk (*) may be used when locating a switch label to
define any elements within the vector which would otherwise
be undefined.

switch LET('a':'z"')

LET('a'):LET('e'):LET('i'):LET('o'):LET('u'):

{deal with vowels)

LﬁT(*):(all the rest i.e. consonants)

Control is passed to one of these statements by executing
instructions of the form:

"->" [switch id] " (" (integer expression] ")"

E.g. =>SW(N) if N > 0

Note 1)

ii)

iii)

iv)

V)

->SW(N+2)
->SW(6)

Not all of the declared switch labels need be located
(in the previous examples SW(5): and SW(8): are
undefined) but an error will occur at run time if an
attempt is made to Jjump to a non-existent switch
label.

Labels may be used before they are located.

-> MISSING if HERE = 0

MISSING:

The scope of both types of label is 1limited to the
block in which they are defined, excluding any blocks
defined therein. That is labels cannot be global to
a block and therefore it is not possible to jump into
or out of a block.

The identifiers used for labels must not conflict
with other local identifiers.

The results of entering a for loop other than via the
for statement are undefined.

50

other control instructions

stop

monitor

This is an abbreviation for:
signal event 0,0,0

and usually results in the normal termination of the
program, although the event may be trapped in the
usual way.

This instruction passes control to the run-time
diagnostic package which should then generate a trace
of the state of the program. Oon implementations
without a diagnostic package monitor is a null
operation. Following the trace the previous flow of
control is resumed.

51

Implementation-dependent features

The following features are highly dependent on the particular
implementation of the language and the machine on which the
programs are to be executed. If used at all they should be used
with extreme care.

Constant pointers

Constant name-type variables may be declared and
nitialised to point at fixed machine addresses.

e.g. constant integer name CLOCK == 16_3C

subsequent reference to CLOCK will be identical to
references to INTEGER(16_3C)

Address Modifiers

References to simple pointer variables may be followed by
an integer expression enclosed in square brackets: e.g.
N[2]. The effect of this is effectively to interpret the
pointer variable as pointing to the zero'th element of an
infinite one-dimensional array of simple objects of the
type of the pointer variable. The value of the integer
expression is then used to index into this array to select
a particular simple variable.

E.g. integerarray A(1:12)
ntegername N, M
N == A(4)
M == N[3] {same as M == A(7))
N[-1] =0 {same as A(3) = 0)

Option
The statement: Option [string:constant] may be used to
select implementation-defined options. Refer to the

relevant implementation notes for details.

Control & Diagnose

These statements are only mentioned for completeness; they
are for compiler maintenance and should never be used
except by compiler developers.

Machine code

In-line machine code sequences may be inserted into an IMP
program. The general form of a machine code statement is:

"x" machine-code]
Statements of this form enable pseudo-assembler statements
to be included which reference the program-declared

objects. Refer to the relevant implementation notes for
details of the syntax of [machine-code].

52

indicates

Appendix 1

A note on the grammar

introduces the definition of a phrase
indicates a rule is optional
indicates zero or more instances of a rule
one or more instances of a rule
separates alternatives

define the scope of the above items

enclose phrase identifiers
enclose literal strings

keywords are underlined

LU

wpn

WA

WA

nwaw

<HUpn nony?

<WBW NClyR

<wpn, ncn>
<UBW, NCH>*
<WBW, WCH>4

->
or

->
or
or

->
or

->
or
or
or
or
or

->
or
or
or
or

53

A
ABC

A
ABC
ABCBC etc.
AB

AC

A
AB
AC
ABB
ABC
ACB etc.
AB

AC

ABB

ABC

ACB etc.

Appendix 2

Compiler messages

During the compilation of a program the compiler may generate
messages which are generally sent to the 1listing file and
possibly to an interactive report stream. These messages are
either error indications or warnings.

Errors

An error message indicates that the current statement does not
obey the rules of the language or that a necessary statement has
been omitted from the previous statement sequence.

Once an error has been detected the compiler ignores the rest of
the faulty statement and continues compiling with the next.
This may result in consequential errors which will disappear
once the original error is corrected. For example the compiler
will object to the following declaration:

integer aA,B,,C,D

The extra comma will cause the declaration of C and D to be
ignored and so subsequent references to them will be faulted
(NOT DECLARED). In general it 1is good practice to correct
errors in the order in which they occur in the listing.

Error messages start with an asterisk (*) and where possible
they contain a marker which points into the offending statement
at the position at which the compiler detected the error.

The error messages are:
Atom An unknown atomic element has been encountered. This

is commonly caused by mistyping a keyword.
E.g. intger, rutine, strat etc.

Bounds The size of an array or switch vector is negative.
E.g. switch S(10:1)

own {nteger array X(-1:-10)

Context An otherwise correct statement has been given in a
context where it is meaningless.
E.g. exit not contained within a cycle - repeat.
return not inside a routine.

Context [ID]
[ID] is the identifier of a record format which has
been used to define a record or record array within
the definition of [ID] itself. Note that it is valid
to declare record name and record array hnhame
variables in this context.
E.g. record format F(integer X, record(F) Y)

54

Duplicate

Form

Format

Index

Match

A local identifier is being redeclared.
E.g. real SUN,MON, TUE,WED, THUR, FRI,SAT, SUN

An unexpected atom has been encountered. This is
usually caused by the omission of an atom or the
insertion of an extra atom.

E.g. integer aA,B,,C
PRINTSTRING("BYE") NEWLINE (semicolon missing)

Illegal use of a record with a format which is
currently undefined.
E.g. recordformatspec FM

record (FM) name PT

PT =0

A switch 1label has been given an index outwith the
declared bounds.
E.g. switch S(1:5)

S(6):

The definition of a procedure does not match a
previous specification.
E.g. routinespec PROC(integer X)

routine PROC(real X)

Not a variable

An attempt has been made to use an object with a
constant value in a context where it could be
modified. This is commonly caused by using named
constants as though they were variables.
E.g. constant integer TEN = 10

TEN = TEN+1

Not declared

An undeclared identifier has been used. This error
is also commonly generated by omitting the percent
from the beginning of certain keywords (usually: if,
finish, and repeat).
E.g. integer SwWoOP

SWAP = 0

Note the following common error:

string(7)name P
This declares a simple string variable "namep"
instead of what was probably intended: a string
pointer variable "P". The reason is that the keyword
"name" has not been underlined.

55

Order This is similar to Context but is reserved for
statements which are given before they are valid or
after other statements which invalidate them. There
are three common causes:

1 The declaration of variables other than own or
external global to the outermost blocks of a
program.

E.g. integer X
begin

cescee

2 The declaration of an array following a label.
E.g. begin
LAB: integerarray A(1:5)

3 Declarations following an on statement.
E.g. on event 7 start
sto
finish
Integerarrax XX(2:7)

Size A constant has a value outwith the permitted range.
E.g. string(300) S

Too complex

The statement is too large or complicated to be
analysed. This error is quite rare and can
invariably be cured by splitting the offending
statement into two or more simpler statements.

Note that redundant continuations (-) at the end of
each line of a large 1list of array initialising
constants may provoke this error.

Type The type of a given variable or expression does not
match the type of object required by the context.

E.g. integer X
byte integer name P
P ==X

or X=1.2

%begin missing
An end has been found which has no matching begin (or
routine etc.).

%cycle missing
A repeat has been found which does not have a
matching cycle in the current block.

$end missing
The end of the program file has been reached before
all blocks have been terminated.

%finish missing
The end of a block has been reached and it contains a

start which has no matching finish.

56

frepeat missing
The end of a block has been reached and it contains a

cycle which has no matching repeat.

result missing
This occurs at the end of a function, map, or
predicate when it is not manifestly evident that
control must be passed back from the procedure at
run-time.
E.g. integer function F(integer X)
result = 0 if X <= 0
end

or predicate EVEN(integer N)
true i1f N&1 = 0

false 1f N&1 # O
(this will give the error as the compiler)
{is unlikely to be clever enough to detect)
{the 'completeness' of the conditions)

end

$start missing
The compiler has found a finish for which there is no
matching start.

"rid}" missing
The object identified by [id] has been specified in
the preceding block (by a spec or a label statement)
but has not subsequently been defined.

E.g. begin
routine spec CHECK
CHECK
end

57

Warnings

A warning indicates that the compiler has detected something
which, although not an error in itself, may indicate logical
errors elsewhere.

Warning messages start with a question mark (?) and are:

Access Control cannot reach the current statement. That is,
the previous executable statement was or implied an
unconditional transfer of control, and the current
statement is not labelled.

Non-local The control variable of a for loop is not local to
the current block. Such use of globals can lead to
unexpected infinite loops:

E.g. integer P

routine R
for P = 1,1,10 cycle
repeat

end

R for P = 1,1,20
[id]) unused

The given identifier has been declared but never
used.

58

Catastrophic errors

Under certain circumstances the compiler will be wunable to
continue after discovering an error, usually because the
compiler's tables will have been filled or corrupted.

These errors are:

Compiler error
There is a fault in the compiler itself.

Switch vector too large
A switch vector has been declared with a very large
number of elements.

Too many names
The compiler has no room left to describe new named
objects.

Dictionary full
The compiler has no room left to hold the text of new
identifiers. This is usually caused by declaring a
large number of long identifiers.

Input ended
The end of an input file has been reached without
endoffile or endofprogram being detected. This 1is
most commonly caused by mistyping endofprogram, or
leaving out a closing string quote.
Some compilers may choose to treat this as a warning
and complete the compilation.

String constant too long
A string constant has been discovered to contain more
than 255 characters. This 1is commonly caused by
leaving out the terminating quote.

Included file does not exist
The compiler cannot gain access to a file specified
in an include statement.

Program too complex
The program is so complex that the compiler has
filled its internal tables.

Too many faults!
This is generated when the compiler discovers a high
fault rate in the program. It is used to terminate
compilations which would otherwise generate a 1large
number of faults. This is commonly caused by faulty
declarations, or by attempting to compile something
which is not an IMP program.

59

1
2
3
4
5
6
7
8

25

Appendix 3
Sample program listings

%$begin
%constinteger PAGE SIZE = 63, {lines on a page)

FF = 12 {ASCII Form Feed)

$integer SYM, LINES LEFT = PAGE SIZE, LINE = 0
%on %event 9 g$start {end of file)

NEWLINE
$¥stop

$finish

%cycle

READSYMBOL (SYM) {provoke input ended before
{printing the line number)
LINE = LINE+1
WRITE(LINE, 3); SPACE
%cycle
PRINTSYMBOL (SYM)
texit %if SYM = NL
READSYMBOL (SYM)
frepeat
LINES LEFT = LINES LEFT-1
$if LINES LEFT = 0 $start
LINES LEFT = PAGE SI2E; PRINTSYMBOL(FF)
$finish

%repeat
%endofprogram

24 Statements compiled

60

1 %begin
2 $begin
3 frealname Q
4 %integer VALUE, X, X
* ! duplicate

$string(256) S
$switch SA(1:4), SB(5:2)
$routine %$spec CHECK

finteger %$functionspec KEY(%$integer LOCK)
$if X = 4 gstary

*»
\om\xgmmm
=
=]

[

]

* ! atom
10 VALUE = KEY
* ! form
11 X = VALUW
* ! not declared
12 X = X+1
13 sa(5):
* index
14 VALUE = 0
15 $finish
* $start missing
16 fexit 3if X < 0
* context
17 ¥stop
18 X=0
? access
19 %on %event 4 %start
* order
20 tintegerfn KEY(%real LOCK)
* match
21 NEWLINE
22 PRINTSYMBOL('=') $for X =1, 1, 12
? Non-local
23 $end

* result missing
? LOCK unused

24 Q == VALUE
* ! type
25 X = Q&7
* ! type

26 %endofprogram
* %end missing
$finish missing
* CHECK missing

*

Program contains 17 faults

61

Appendix 4

Standard Events

event sub-class meaning (+ex£ra)

0 TERMINATION
-1 abandon program
0 stop
>0 user generated error
1 OVERFLOW

Integer overflow

real overflow

string overflow

division by zero

truncation

significance lost

negative MOD, Pascal only

system error (+code)

2 EXCESS RESOURCE

not enough store

output exceeded

time exceeded

3 DATA ERROR

data transmission error

4 INVALID DATA

symbol in data (+symbol)

5 INVALID ARGUMENTS

for cannot terminate

I1Tegal parameter type

array inside-out

string inside-out

illegal exponent (+exponent)
negative argument for square root
zero or negative argument for logarithm
DISPOSE error, Pascal only
variant record misused, Pascal only
6 OUT OF RANGE

array bound fault (+index)

switch bound fault (+index)
illegal event signal

CHARNO out of range (+index)
TOSTRING out of range (+symbol)
Illegal shift (+shift)

7 RESOLUTION FAILS

8 UNDEFINED VALUE

unassigned variable

no switch label (+index)

for variable corrupt

NIL pointer used, Pascal only
reference to DISPOSEd object, Pascal only
missing case, Pascal only
disposing NIL pointer, Pascal only
9 INPUT/OUTPUT ERROR

OO WN -

H O wNH

[

VWONONLOLEWN -

Nooswn

NONO & WN

1 input ended

2 illegal stream (+stream)

3 file system error (+error code)
10 LIBRARY PROCEDURE ERROR
11 - 15 GENERAL PURPOSE

62

Appendix 5

Variant and archaic forms

Standard form
byteinteger
constant

function

longreal
map
shortinteger
#

~
A

AA

63

Variant
byte
const
£n
long

name function

name fn

short

<>

\\

.
~

DEC

NoOoOdsWNEHO

CHAR

NUL
SOH

ETX
EOT
ENQ
ACK
BEL

(NL)

Appendix 6

ASCII character set
HEX CHAR DEC HEX
20 space 64 40
21 ! 65 41
22 " 66 42
23 # 67 43
24 £ 68 44
25 % 69 45
26 & 70 46
27 ' 71 47
28 (72 48
29) 73 49
2A * 74 4A
2B + 75 4B
2C , 76 4C
2D - 77 4D
2E . 78 4E
2F / 79 4F
30 (o] 80 50
31 1 81 51
32 2 82 52
33 3 83 53
34 4 84 54
35 5 85 55
36 6 86 56
37 7 87 57
38 8 88 58
39 9 89 59
3A H 90 5A
3B H 91 5B
3C < 92 5C
3D = 93 5D
3E > 94 SE
3F ? 95 5F

64

P NKX E<CHOXOW OZBUHRUHT QUMBUADEY® %

104

111
112

114
115
116
117
118
119

120
121
122
123
124
125
126
127

OB HHRUHT QrHdUAQDY - %

£E<cnnrQT

te— N X

DEL

