
This document is a transcription of these scans1. The Atlas Autocode Ref-
erence Manual was printed on a Flexowriter printer, and by using Flexowriter-
specific characters as well as overprinting, has quite a number of non-ASCII
characters in it.

HTML entities are used for the following characters: Σ for Sigma, &sup2;
for squared, &frac12; for half, α for alpha, β for beta, π for pi, θ for theta,
&ne; for noteq, &le; for leq, &ge; for geq, &equiv; for equiv, &uarr; for
powers, &plusmn; for plus/minus, ø for slashed o.

A handful of overprinted characters need to use Unicode combining char-
acters. These are used to represent character literals in Autocode (see 5.3 (cf.
Section ??) and 5.6 (cf. Section ??) for examples.) However, most browsers
on most OSes don’t display these correctly, so we use strikeouts instead.
The characters are s, n and semicolon, and should in reality have either a
slash or vertical bar through them as follows: "s&#x0338;", "n&#x0338;",
";&#x0338;", "s&#x20d2;", "n&#x20d2;", ";&#x20d2;".

PREFACE

This manual is a reference manual which describes the Atlas

Autocode Compiler currently available (1/3/65) at Manchester

University. It is not a teaching manual though we have tried to

make it fairly readable. Further compilers may in the future

become available both on Atlas and other machines and it is

expected that they will be described with reference to this manual.

We would like to thank Mr. G. Riding for his many valuable

comments and suggestions and Miss Christina O’Brien who has typed

and re-typed the manuscript.
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J.S. Rohl.
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1.1

1 INTRODUCTION

An ATLAS AUTOCODE PROGRAM consists of a series of STATEMENTS

which describe in algebraic notation the calculation to be executed.

The statements are of two kinds, declarative statements giving the

nature of the quantities involved, and imperative statements which

describe the actual operations to be performed on them, and the sequence

in which they are to be carried out. The statements are not immediately
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recognisable by the computer and must first be converted into an

equivalent sequence of basic MACHINE INSTRUCTIONS. This is done by

a special translation program called a COMPILER which is held

permanently available in the machine. Not until the program has been

’compiled’ can it be executed.

The following example gives a general idea of the principles

involved in writing a program. We wish to fit a straight line

y = ax + b to sets of data of the form X1,Y1; X2,Y2; ----; Xn, Yn

which are to be punched and presented on a data tape in this order.

Each such set is to be terminated by the number 999999 and the final

set by two such numbers. For each set the quantities

a = n XiYi - Xi Yi

n Xi&sup2; - ( Xi)&sup2;

b = Yi - a Xi

n

c = Yi&sup2; - 2(a XiYi + b Yi) + a&sup2; Xi&sup2; + 2ab Xi + nb&sup2;

are calculated, the last being the sum of the squares of the deviations

(Yi - aXi - b)&sup2;.

The following is the formal program for this calculation. The

statements are to be interpreted in the written order unless a statement

is encountered which transfers control to another specifically labelled

statement. In general each statement is written as a new line, otherwise

it must be separated from the previous statement by a semi-colon.

1.2

begin

real a, b, c, Sx, Sy, Sxx, Sxy, Syy, nextx, nexty

integer n

read (nextx)

2: Sx = 0; Sy = 0; Sxx = 0; Sxy = 0; Syy = 0
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n = 0

1: read (nexty) ; n = n + 1

Sx = Sx + nextx; Sy = Sy + nexty

Sxx = Sxx + nextx&sup2; ; Syy = Syy + nexty&sup2;

Sxy = Sxy + nextx*nexty

3: read (nextx) ; ->1 unless nextx = 999 999

a = (n*Sxy - Sx*Sy)/(n*Sxx - Sx&sup2;)

b = (Sy - a*Sx)/n

c = Syy - 2(a*Sxy + b*Sy) + a&sup2;*Sxx - 2a*b*Sx + n*b&sup2;

newline

print fl(a,3) ; space ; print fl(b,3) ; space ; print fl(c,3)

read (nextx) ; ->2 unless nextx = 999 999

stop

end of program

BLOCKS AND ROUTINES

Complete programs are generally split up into a number of

self-contained units called ROUTINES, and each routine may be further

split into a number of BLOCKS. A detailed description of their

construction and use is deferred until later, but in the earlier sections

it is sufficient to note that the Autocode statements between begin

and end constitute a block. However when a block defines a complete

program as in the above example, end is replaced by end of program.

PHRASE STRUCTURE NOTATION

Atlas Autocode is a PHRASE STRUCTURE LANGUAGE and to assist in its

description we sometimes have resort to phrase structure notation. In

general, whenever a name appears in square brackets in the description of

an Autocode statement, we mean that in an actual statement it would be replaced

by a particular element of the class defined by the name. For example, in the

next section we define [NAME] and [EXPR] to denote a general name and a

general expression respectively, and with these definitions we could go on to

define a function of a single variable by

[NAME] ([EXPR])

and in an actual program this might be replaced by

g(x + y - 2)

since g is a name, and x + y - 2 is an expression. Further notes on phrase
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structure notation will be found in Appendix 1 (cf.\ Section~\ref{f0:A1.1}).

2.1

2. THE BASIC LANGUAGE

SYMBOLS OF THE LANGUAGE

A program is presented to the computer as a length of perforated

paper tape, prepared on a Flexowriter keyboard machine, the keys of which

are engraved with the following symbols:-

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789

= > < | * : , ’ & &sup2; / . + _ &frac12; ( ) [ ] ?

A back-spacing facility allows underlining and also the formation of

compound characters. For example :-

cycle &ne; &ge; &le; ; &uarr;

The last of these consists of an asterisk superimposed on a vertical bar .

It is usually referred to as a vertical arrow (and would be written

as such in a manuscript) and is used to denote exponentiation,

thus a&uarr;(n-1) means ’a raised to the power (n-1)’. Such a notation is

necessary because we have no means of effecting superscripts and subscripts

with a Flexowriter; the format is essentially one dimensional. There is

one exception, the superscript &sup2; for which there is a special symbol:

it is equivalent to &uarr;2.

Since the handbook itself is prepared on a Flexowriter the same

conventions for exponents will also be used in the text.

NOTE All SPACES and UNDERLINED SPACES in a program are ignored when the

program is read into the machine. Thus they may be used freely to assist

legibility in the written form of the program.
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NAMES

These are used to identify the various operands, functions and

routines which appear in the program. A name consists of one or

more Roman letters, possibly followed by one or more decimal digits,

and possibly terminated by one or more primes(’). For example:-

X I Alpha a10 TEMPI y’’ b3’

2.2

Underlined names and mixed names such as RK2ST are NOT allowed.

There are certain names, e.g. log, sin, exp, print, read, etc.

which have a standard meaning (the PERMANENT routines) but all other

names must be declared before any reference is made to them (see below).

In future a general name will be denoted by [NAME].

CONSTANTS

Numerical (positive) constants are written in a straight forward

notation. For example:-

2.538 1 .25 17.28 -1 1 7

The last two examples mean 1.728 and 10000000.

The numerical part can be written in any number of ways. For example: -

15 015 15. 15.000

are all equivalent. The exponent, where present, consists of

followed by an optional sign and decimal digits.

The symbol &frac12; is equivalent to the two symbols .5. Thus 2.5

may be punched as 2&frac12;.

There is a further specialised type of constant consisting

of a symbol (either basic or composite) enclosed in quotes. Its value

is that of the internal equivalent of the symbol, a list of which is

given in Appendix 5 (cf.\ Section~\ref{f0:A5.1}). Thus

8



’a’ &equiv; 33

’o’ &equiv; 2063

Though this form of constant may be used whenever a constant is relevant

it is most often used when reading symbols off a data tape (see Section 5).

DELIMITERS

These are a preassigned set of symbols and underlined words. For example:-

+ - * / ( , ) > &ge; -> ;

cycle repeat integer real if then caption comment

Note that -> consists of two symbols, - followed by >

Unlike names whose meaning can be defined by the user, delimiters

have fixed absolute meanings in the language.

2.3

TYPES

Calculations are performed on two principal types of operand,

real and integer (later on we shall introduce complex). Both are

represented by floating point numbers (in the form a*8&uarr;b where a

is held to a precision of 40 binary digits and b is an 8-bit integer);

but those of integer type are kept in an unstandardised form

(so that the least significant 24 bits can be used directly for

B-modification; the precise method of storage is described in the

section on machine instructions).

The locations in the computer store holding numbers are

distinguished by assigning names to them (see later), and reference to

the number is made by giving the appropriate name. Both real and integer

numbers referred to in this way are called variables and denoted by

[VARIABLE].

Programs will consist mainly of operations on real operands,

the use of integer operands being generally confined to counting and subscript

arithmetic.

DECLARATION OF VARIABLES

The names of variables used in a block are declared at the head of
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the block; For example:-

integer I, max, min

real t, Temp, VOL 1, VOL 2

The effect of these declarations is to allocate storage positions (ADDRESSES)

to the named variables, and any subsequent reference to one of the declared

names will then be taken as referring to the number stored in the appropriate

address. The format of these declarations is formally

[TYPE][NAME LIST]

where [TYPE] = integer, real

[NAME LIST] = [NAME][REST OF NAME LIST]

[REST OF NAME LIST] = [,][NAME][REST OF NAME LIST],NIL

N.B. This means of defining a list consisting of phrases separated

by commas is used throughout: See Appendix 1 (cf.\ Section~\ref{f0:A1.1}).

2.4

One dimensional arrays of elements may be declared by statements such as

array a,b(0:99), c(10:19)

which reserves space for three arrays of real variables a(i), b(i), c(i).

In the first two the subscript runs from 0 to 99, and in the third from

10 to 19.

To refer to a particular element of an array one might write

a(50) b(j) b(2n+2j-1) c(10+i)

It is the computed value of the argument, which may be a general integer

expression (see later), which determines the particular element.

Two dimensional arrays are declared in a similar way. For example:-

array A(1:20,1:20), B(0:9,0:49)

This defines and allocates storage for a 20 X 20 array A and a 10 X 50
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array B. To refer to a particular element, one writes, tor example:-

A(1,1) A(i-1,j+1) B(9,2K+1)

Should an array of integer elements be required, the declaration is

qualified by integer. For example:-

integer array Ka (1:50).

Arrays of more than 2 dimensions may also be declared. For example:-

array CUBE 1, CUBE 2 (1:10,1:10,1:10)

reserves 1000 locations for each of the two arrays CUBE 1, CUBE 2.

Storage allocated by all the above declarations has dynamic significance, i.e.

they are implemented at run time and not at compiler time. Consequently,

the arguments in array declarations need not be constants but may be general

integer expressions. The significance of this will be explained in the sections

on block structure and dynamic storage allocation (see later).

The format of an array declaration is

[TYPE’] array [ARRAY LIST]

where [TYPE’] = integer , real , NIL

[ARRAY LIST] = [NAME LIST] ([BOUND PAIR LIST])[REST OF ARRAY LIST]

[BOUND PAIR] = [EXPR]:[EXPR]

Here the [EXPR]’S must be integer [EXPR]’S (see P2.6 (cf.\ Section~\ref{f0:2.6}))

2.5

FUNCTIONAL DEPENDENCE

Functional dependence is indicated by writing the name of the

function followed by the list of arguments in parentheses (in a similar

fashion to array elements). For example: -

sin(2 x/a) arctan(x,y) TEMP(i) a(10,10)

Each argument can be an arithmetical expression (see below).

Within a block all names must be distinct, and it is not
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possible to have a function with the same name as a scalar. Thus

a and a(i) or f and f(x) would NOT be allowed to appear in the

same block.

STANDARD FUNCTIONS

Certain standard functions are available and may be used

directly in arithmetic expressions (see next section) without formal

declaration:

sin(x) cos(x) tan(x) log(x) exp(x) sqrt(x)

arcsin(x) (- /2 &le; result &le; /2)

arccos(x) (0 &le; result &le; )

arctan(x,y) (= arctan (y/x), - &le; result &le; )

radius(x,y) (= sqrt (x&sup2;+y&sup2;) )

mod(x) (= |x|)

fracpt(x) (= fractional part of x)

intpt(x) (= integral part of x)

int(x) (= nearest integer to x. i.e. intpt(x+.5))

parity(n) (= (-1)&uarr;n)

The last three functions are of type integer (see later), the rest of type real.

The arguments of all these functions may be general expressions, except

that the argument of the last must be of type integer.

A complete list of standard functions is given in Appendix 2 (cf.\ Section~\ref{f0:A2.1}).

ARITHMETIC EXPRESSIONS

A general arithmetical expression is denoted by [EXPR] and consists

of an alternating sequence of operands and operators possibly preceded by a

sign symbol, thus *

[&plusmn;’] [OPERAND][OPERATOR][OPERAND][OPERATOR] .... [OPERAND]

An [OPERAND] is a [VARIABLE], [CONSTANT], ([EXPR]), |[EXPR]|, or [FUNCTION],

and an [OPERATOR] is one of + - / &uarr; (the asterisk denoting multiplication).

**Or, more strictly, (See Appendix 1 (cf.\ Section~\ref{f0:A1.1}))

[EXPR] = [&plusmn;’][EXPR’]

[EXPR’] = [OPERAND][OP][EXPR’],[OPERAND]
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[OPERAND] = [NAME][APP],[CONST],([EXPR]),|[EXPR]|

[&plusmn;’] = +,-,NIL

2.6

An explicit multiplication sign is not required when ambiguity could not

arise from its omission. For example:-

2.5a1b means 2.5*a1*b

NOTE: When the compiler looks for a name, it finds the longest possible

name. Thus ab is taken as a name rather than a*b even if only a and b and not

ab were declared. In this case a fault (NAME ab NOT SET) would be indicated.

Examples of expressions are:-

A(i-1,j) + A(i+1,j) + A(i,j-1) + A(i,j+1) - 4A(i,j)

Z + log(1 + cos(2 (x/a + y/b + z/c)))

LENGTH * BREADTH * HEIGHT

1 + sqrt(x(i)&sup2; + y(i)&sup2; + z(i)&sup2;)

a * b/c * d/e

(x + y + z)/(a + b + c)

2.5x1b * (c + d)e

e = |x-y| + .00001

(1+x)&uarr;(n-3) * (1-x)&uarr;3

NOTES

1. Multiplication and division take precedence over addition and

subtraction and division takes precedence over multiplication. Thus

the fifth example means a * (b/c) * (d/e).

2. |[EXPR]| is interpreted as the positive magnitude of the

[EXPR]. Thus it is equivalent to mod([EXPR]).

3. An exponent is denoted by &uarr; [OPERAND] and exponentiation takes

precedence over the other operations. Thus the last example means

((1 + x) to the (n - 3))*((1 - x) to the 3). In the formation of

a &uarr; n, n must be an integer or integer [EXPR] (see next section);

then if

(i) n > 0, result = a*a*a.......*a (n times)
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(ii) n = 0, result = 1

(iii) n < 0, result = 1/(a*a*a.......*a)

4. To form a &uarr; b, where b is real we must write it in the form

exp(b*log(a)),where a must be positive.

INTEGER EXPRESSIONS

An [EXPR] is an integer [EXPR] if all the [OPERAND]’s are

scalars, array elements etc, declared to be of type integer, or are

integer constants or integer functions (e.g. int, intpt, or parity).

2.7

Thus it we assume that x is a real [VARIABLE] and i,n,j,k(1),k(2) are

integer [VARIABLE]’s the following are integer [EXPR]’s.

m*(n-1)/2

i + j + k(2) + int(x)

j &uarr; k

intpt(n*(n-1)/3)

The definition given above does not guarantee that an integer [EXPR]

will always give an integral result, e.g., 10/3 and j&uarr;(-1) are not

integral. There is no guarantee either that expressions like

n*(n-1)/2(which is integral) will always yield the exact answer (in this

particular case it does). When the result of such an operation is in doubt

it is preferable to use ’int’ e.g., int(n*(n-1)/2) to give an exact integer

result.

Except in certain special cases integer [EXPR]’s are evaluated by floating

point arithmetic in exactly the same way as general (real) expressions, but

are destandardised on assignment (explicit or implicit) to their integer

destination. The definition of an integer [EXPR] is a basis for checking

that such assignments are sensible. The special cases mentioned above refer to

the subscript expressions in array elements. Such expressions, which should

always be integer [EXPR]’s are usually simple linear forms which are dealt

with more appropriately by B-modification. It is mainly to facilitate

such operations (and the associated operation of counting) that integer’s

are used. Being destandardised quantities they can be transferred directly
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to B-registers without using the floating point accumulator.

ARITHMETIC ASSIGNMENTS

The general arithmetic instruction is

[VARIABLE] = [EXPR]

Examples are:-

X(p,q) = 1+2cos(2 (x+y))

a = (b+c)/(d+e)+F

i = i+1

The action of the general arithmetic assignment is to place

the computed value of the [EXPR] in the location allocated to the l.h.s.

[VARIABLE]. If the l.h.s. is a real [VARIABLE], the r.h.s. [EXPR]

may be of type real or integer, but if the l.h.s. is integer then

the r.h.s. must be an integer [EXPR]. For example, if y had been declared

real and i integer then we could write y = i but not i = y even if we knew

that y had an integral value.

2.8

LABELS, JUMPS AND CONDITIONAL OPERATORS

Normally instructions are obeyed sequentially, but frequently it

is required to transfer control to some instruction other than the next

in the sequence, or to obey an instruction only if certain conditions are

satisfied. The following facilities are provided:

SIMPLE LABELS Any instruction can be labelled ->10

by writing an integer [N] before it, separated ---

by a colon. More than one label is permitted. 10: ---

Unconditional jump instructions are written as 4:5: ---

-> [N] ->4

---

->5

VECTOR LABELS
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These are used to provide for a switch A(1 : 3)

multi-way switch. With reference to the ---

accompanying diagram the instruction ---

-> A(i) will jump to A(1), A(2) or A(3) ---

according as i = 1, 2 or 3. ---

A fault is signalled if the value of i A(1): ---

corresponds in any way to a label not set. ---

The general form of the label is [NAME]([N]): A(3): ---

The range must be declared at the head of ---

the routine by a statement of the form ---

switch [NAME]([&plusmn;’][N]:[&plusmn;’][N]) where ---

the [&plusmn;’] indicates that the integers ->A(i)

may be preceded by a sign if necessary. ---

For example:- ---

---

switch SEGMENT (-4:+4) A(2): ---

---

A list of switches can be given. For example:- ---

switch A,B,C(1:3),D(0:2)

The [NAME]’s must not conflict with those

of other operands in the same block.

2.9

CONDITIONAL LABELS

Another kind of multi-way switch is test 4, 5, 6

illustrated by the accompanying diagram. ---

Here the conditions at the places indicated ---

are tested in turn and control passes to the 4 case x<1:---

instruction following the first to be successful. ---

If none is satisfied a fault is signalled. 5 case 0&le;x&le;1:---

The general form of the label is [N] case [COND]: ---

where [COND] denotes the general 6 case x>1:---

condition defined in the next section. A ---

simple label [N]: may be used in place of ---

the last alternative(i.e. 6:) in which case control

passes directly to the following instructions
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if it reaches that point.

NOTE All labels are local to the block containing them and jump instructions

may only refer to labels within the block (see later).

CONDITIONAL OPERATORS

A CONDITIONAL OPERATOR of the form

if [COND] then or unless [COND] then

may be written before any unconditional instruction. These form the

FORMAT CLASS [UI] (see Appendix 1 (cf.\ Section~\ref{f0:A1.1})) and include arithmetic, jump and

test instructions.

The [COND] phrase takes one of the forms**

[SC] and [SC] and [SC] --- and [SC]

or [SC] or [SC] or [SC] --- or [SC]

or just [SC]

Here [SC] denotes one of the following ’simple’ conditions

[EXPR][o][EXPR] or [EXPR][o][EXPR][o][EXPR] or [(COND])

where [o] denotes one of the comparison symbols = &ne; > &ge; < &le;

If (or unless) the condition is satisfied the instruction is obeyed,

otherwise it is skipped and control passes directly to the next

instruction.

Examples of conditional instructions and conditional labels are

if x < 0 then x = mod(y)

if 0 &le; x &le; 1 and 0 &le; y &le; 1 then -> 1

case (y > 1 or y < - 1) and x &ge; 0:

** or, more strictly, (see Appendix 1 (cf.\ Section~\ref{f0:A1.1}))

[COND] = [SC] and [AND-C], [SC] or [OR-C], [SC]

[AND-C] = [SC] and [AND-C],[SC]

[OR-C] = [SC] or [OR-C],[SC]
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2.10

Alternatively, conditional operators may appear AFTER unconditional

instructions, in which case they are written

if [COND] or unless [COND]

for example x = 0 if |x| < .0000001

-> 1 unless z > R or z = 0

CYCLING INSTRUCTIONS

These are pairs of statements which allow a group of

instructions to be obeyed a fixed number of times. For example:-

cycle i = 0, 1, n-1

repeat

In the above example the instructions between cycle and repeat are

traversed n times, with i successively taking the values 0,1, ...,n-1.

After the final cycle, control goes to the statement following repeat.

The l.h.s. must be an integer name, but the r.h.s. quantities may be

general integer [EXPR]’s which are initially evaluated and stored. Thus

within the innermost cycle of the example below, the values of p,q and r

may be altered without affecting the number of times the cycle is traversed.

The initial value, increment, and final value must be such that

final value - initial value

increment

must be a positive integer or zero otherwise a fault is indicated.

For example:-

cycle i = 1,1,p

cycle k = 1,1,r

c(i,k) = 0

repeat

cycle j = 1,1,q
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cycle k = 1,1,r

c(i,k) = c(i,k) + a(i,j)*b(j,k)

repeat

repeat

repeat

NOTE Statements such as cycle x = .2,.1,1 are NOT allowed,and

should be replaced by an equivalent permissible form. For example:-

cycle i = 2,1,10

x = .1i

where i has keen declared integer and x real.

2.11

MISCELLANEOUS NOTES

1. end of program is the formal end of the program and appears after the

last written instruction; its action is to terminate the reading of the

program and to start obeying it from the first instruction.

2. The instruction stop can appear anywhere in the program and signifies

the dynamic end of the program; its action is to terminate the calculation.

3. The delimiter comment allows written comments to be inserted in a

program to assist other users in understanding it. The information

following comment (which may include composite characters) up to the

next newline or semi-colon is ignored by the computer. The delimiters page

and | are synonyms for comment, though the first has an obvious special use

in the pagination of programs.

4. It has been noted earlier that all spaces and underlined spaces in a

program are ignored and that Autocode statements are terminated by a semi-

colon or a newline. If a line is terminated by the delimiter c then the

following newline character is ignored by the computer. Thus a single

statement may extend over several lines of the printed page. It is not

anticipated that this facility will be frequently used, except when

writing comments and possibly long algebraic expressions.

5. If a programmer is prepared to exclude upper case letters from names

and captions, then he can effect a saving both in the size of the tape

and the speed of compilation, by using the special instruction

upper case delimiters
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and then writing all following delimiters in upper case without the

underlining. Thus the example of P2.10 (cf.\ Section~\ref{f0:2.10}) could then be written:-

CYCLE i = 1,1,p

CYCLE k = 1,1,r

c(i,k) = 0

REPEAT

CYCLE j = 1,1,q

CYCLE k = 1,1,r

c(i,k) = c(i,k) + a(i,j)*b(j,k)

REPEAT

REPEAT

REPEAT

The delimiter causes the compiler to replace each upper case letter by

the equivalent underlined lower case letter, so that a mixture of

normal and upper case delimiters can be used. If this is required only for

certain parts of a program then the instruction

normal delimiters

can be used to return the compiler to its normal operation.

3.1

3 STORAGE ALLOCATION AND THE BLOCK STRUCTURE OF PROGRAMS

THE STACK

In order to illustrate the principles of storage allocation, we

assume the following simplified picture of the data store (the stack),

a fuller description being given in the section on the use of machine instructions.

CELLS IN |St AVAILABLE CELLS

USE |

|\\\\\\\\| | | | | | | |

Each cell or location represents a 48 bit word in the computer store

and can be used to hold either a real or an integer variable. At any
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time during the running of a program, the stack pointer, St, points to the

next available location i.e. it contains the address of the next free word.

In the examples that follow, shaded areas represent locations

which hold information essential to the program, such as array dimensions

and origins, and are not of importance in the context of this section. Each

area may in fact consist of several locations. Cells which are allocated

to variables are indicated by the presence of the name given to the variable.

STORAGE ALLOCATION DECLARATIONS

The declarations which allocate storage space are

real integer array integer array

and to illustrate the stack mechanism we consider the following example:

begin

real a, b, c; integer i, max

array A(1:2,1:2), x(1:3)

After the above declarations the stack picture would be as below

St1 St2

| |

| |\\| a | b | c | i |max|\\|A(1,1)|A(1,2)|A(2,1)|A(2,2)|\\|x(1)|x(2)|x(3) |

St1 is the position of St before begin and St2 its position after the

declarations. Any further declaration advances St by an appropriate amount,

likewise any activity initiated by the instructions in the body of the block

causes St to be advanced(either explicity or implicity) still further.

Finally when end or end of program is reached, then St reverts to St1.

Variables declared by real and integer are called FIXED VARIABLES,

because the amount of storage space required can be determined at compiler time.

Array declarations, however, may have general integer expressions as the parameters

and hence have dynamic significance. For example one might have a declaration

such as

array A,B(1:m, 1:n),x(1:n)

In this case the space allocated will depend on the computed values

of m and n and cannot be determined at compiler time. The stack pointer

St is thus advanced in several stages following the initial step which

reserves space for all the fixed variables.
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3.2

BLOCK STRUCTURE OF PROGRAMS

This is illustrated by the following example:-

begin

real a,b,c

a = 1; b = 2

c = a+b

begin

real a,b,d

a = 2; d = 1

b = c

c = 4

end

a = a+b+c

end

The stack picture associated with the above block is given below:

St1 St2 St3

| | |

| |\\\\| a | b | c |\\\\| a | b | d | | |

1 2 3 4 5 6

Before the first begin St is at St1, and moves to St2 on entering the

outer block. After the second begin St is at St3 and reverts to St2

when end is reached. At the second end, corresponding to the first

begin, St assumes its original position, St1.

In the diagram, positions 1, 2, 3 correspond to the declarations

of the outer block, and 4, 5, 6 to those of the inner block. After the

instruction c = a+b, the value 3 is left in position 3; while the instructions

of the inner block leave the values 2, 1, 3, 4 in the positions 4, 6, 5, 3

respectively. The last instruction of the outer block leaves the value

7 in position 1.

3.3
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Thus the variables a, b of the inner block do not conflict with

a, b of the outer block, while a reference to c in the inner block is

taken to refer to the variable of that name declared in the outer block.

We say that a,b are LOCAL names to the inner block and c is a NON-LOCAL

name. We also note that the information stored in the variables of the

inner block is lost when the block is left, and that we could not refer

in the outer block to a variable declared in the inner block.

Futher details of the structure of programs will be given in the

section on routines, and for the present the following notes on blocks

will be sufficient.

1. Blocks may contain any number of sub-blocks and blocks may be nested to

any depth.

2. Names declared in a block take on their declared meaning in the block

and in any sub-blocks unless redeclared in the sub-block.

3. Labels are local to a block and transfers of control are only possible

between statements of the same block.

4. The outermost block of a program is terminated by end of program,

which causes the process of compiling to be terminated and transfers

control to the first instruction of the program.

A simple and common use of block structure arises when reading arrays

from tape, each array being preceded by its dimensions.

For example:-

begin

integer m,n

1: read(m,n)

begin

array A(1:m,1:n)

end

->1

end
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If the begin and end defining the sub-block were not included, then

the stack pointer would be advanced further each time a new array was read, without

ever being reset, and this could be very wasteful of storage space,

particularly for very large values of m and n.

4.1

4 ROUTINES

BASIC CONCEPTS

A large program is usually made up of several routines

each of which represents some characteristic part of the calculation.

Such routines may be called in at several different points in the program,

and their design and use is a fundamental feature of the language.

The introductory example consisted of a main block only (delimited by

begin and end of program) although it makes reference to the routines ’read’,

’print’, ’newline’, which are permanently available in the machine. In

exactly the same way however, the user may call in routines which he has

written himself in Autocode language. Consider for example a routine

to evaluate

y = a(m) + a(m+1)x+...........+ a(m+n)x&uarr;n (n &ge; 0)

where the coefficients are selected from some vector a.

routine poly(real name y, array name a, real x, integer m,n)

integer i

y = a(m+n) ; return if n = 0

cycle i = m+n-1,-1,m

y = x*y+a(i)

repeat

return

end

Given the values of x,m,n and the addresses of y and the array

elements a(i), it evaluates the polynomial and sets y to this value.

The statement end is the formal or written end of the

routine while return is the dynamic end, i.e. it is the instruction
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which returns control to the main routine. Where the formal end is also a

dynamic end as in the present example the return instruction preceding end

can be omitted; in this case end serves for both purposes.

NOTES

1: There can be any number of alternative exit points in a routine - i.e.

return can occur more than once.

2: return is a member of the FORMAT CLASS[UI] - i.e. it can be made conditional,

as above.

4.2

This routine can be EMBEDDED and used in a main routine as illustrated

below.

begin

real U, V, z, x ; integer m

array b(0:15), c(0:50)

routine spec poly (realname y, array name a, real x, integer m,n)

’

’

’

poly(U,b,z,0,m)

’

’

’

poly(V,c,x&sup2;,20,10)

’

’

stop

routine poly(realname y, array name a, real x, integer m,n)

integer i

y = a(m+n); return if n = 0

cycle i = m+n-1,-1,m

y = x*y+a(i)

repeat

return

end
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end of program

The routine is called in by the main routine whenever the

name ’poly’ appears. The first reference to ’poly’ would cause the poly

routine to evaluate

U = b(0) + b(1)z + ... + b(m)z&uarr;m

and the second would cause it to evaluate

V = c(20) + c(21)x&sup2; + ... + c(30)x&uarr;20

The parameters in the routine specification and routine

heading are the FORMAL PARAMETERS and the parameters in the call statements

are the ACTUAL PARAMETERS (see next section).

The body of the routine may be considered as a block

delimited by routine and end, and the concepts of storage allocation, local

and non-local names etc. apply to routines in exactly the sane manner as

for blocks. In fact a block may be considered as being an open routine

without parameters.

4.3

Any number of routines may be embedded in a main routine

in the above fashion and they are referred to as SUBROUTINES of the main

routine. If the body of a subroutine occurs before any reference to it

in the main routine, the routine specification may be omitted, but by

convention it is usual to place all the subroutine specifications among

the declarations at the head of the main routine and the bodies at the end.

FORMAL PARAMETERS AND ACTUAL PARAMETERS

The parameters of the routine are the items of information which

specify the action of the routine whenever it is used. The formal parameters

are the names by which this information is referred to inside the routine itself,

and the actual parameters are the names or expressions which are substituted

for the formal parameters whenever the routine is used in the main program.
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For each type of formal parameter there is a permissible form

for the actual parameter, as shown in the following table: -

Formal parameter type | Corresponding actual parameter

integer name | name of an integer variable

real name | name of a real variable

|

integer | an integer [EXPR]

| (similar to an integer assignment)

|

real | a general(i.e. real or integer)[EXPR]

| (similar to a real assignment)

|

integer array name | name of an integer array

array name | name of a (real) array

|

integer array | name of an integer array

array | name of a (real) array

| (the difference between these and the

| previous pair of parameters is

| explained below)

|

routine type i.e. | Sometimes it is required to pass on the

routine | name of a routine as a parameter.

real fn | In this case the actual parameter is the

integer fn | name of a routine which must correspond in

| type and specification with the formal

| parameter, the specification of which will be

| found in the routine body

|

4.4

In the example of a routine to evaluate a polynomial described earlier,

the formal parameter y is the name of the variable to which the result is assigned,

and the corresponding actual parameter must be a name, in this case the name of

a real variable. The formal parameter then is of type real name.

A reference to y inside the routine is essentially a reference to the non-local
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variable named by the actual parameter. The same applies to the array name

parameter a, a reference to a inside the routine being a reference to

the non-local array whose name is substituted for a in the calling statement.

The formal parameter real x on the other hand can be replaced by a

general arithmetic expression, which is evaluated and assigned to the local

variable x which is specially created in addition to any local real

variables declared in the routine, The same applies to the formal parameters

integer m,n. These are essentially local quantities, and expressions are substituted

in place of them are evaluated and the resultant values assigned to the local

integer variables m and n, which are lost on exit from the routine. Consequently

the routine should place the information it produces in variables which are

called by NAME (such as x and a).

The formal parameters x, m, n are said to be called by VALUE in so far

as it is only the values of the corresponding actual parameters which are of

interest. This is the essential difference between the formal parameter types

array and array name (or integer array and integer array name). In the former

case the array named by the actual parameter is copied into a specially created

local array, and a reference to the name in the routine is taken as referring to

this local array. As the copying process can be time-consuming and space-consuming

arrays should be called by NAME if at all possible, especially if they are large.

Another example of a routine is the following

routine matmult(arrayname A,B,C integer p,q,r)

integer i,j,k ; real c

cycle i = 1,1,p

cycle j = 1,1,r

c = 0

cycle k = 1,1,q

c = c+A(i,k)*B(k,j)

repeat

C(i,j) = c

repeat

repeat

end

This forms the product of a p x q matrix A and a q x r matrix B. The

result, a p x r matrix, is accumulated in C. The routine assumes that the first

element of each matrix has the suffix (1,1). A typical call sequence might be
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mat mult(N, x, y, 20, 20, 1)

where N, x, y had been declared by

array N(1:20,1:20), x,y(1:20,1:1)

4.5

FUNCTION ROUTINES

When a routine has a single output value it may be written as a

function routine and then used in an arithmetic expression in the same way as

the permanent functions (cos, sin etc.). For example, the polynomial routine

described earlier may be recast as a function routine as follows:-

real fn poly(arrayname a, real x, integer m,n)

integer i ; real y

y = a(m+n) ; if n = 0 then result = y

cycle i = m+n-1,-1,m

y = y*x+a(i)

repeat

result = y

end

NOTES

1: In general, the exit from a routine is of the form : result = [EXPR]

and this causes the EXPRESSION on the right hand side to be evaluated as

the value of the function.

2: result = [EXPR] acts as the dynamic end of a function (i.e. it corresponds

to return in a routine), and may appear any number of times within the function.

3: result = [EXPR] is a number of the FORMAT CLASS[UI] - i.e. it may

be made conditional.

The specification of the above routine would be written

real fn spec poly(arrayname a, real x, integer m,n)

and the routine can be called in an arithmetic statement, for example

y = a*b + 2h*poly(c,1/x,0,16)

An example of an integer function is given next. It selects the index of the

maximum element x(k) in a set of array elements x(m), x(m+1),....,x(n) (n&ge; m)
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integer fn max(arrayname x, integer m,n)

integer i,k

k = m

->1 if n = m

cycle i = m+1,1,n

k = i if x(i) > x(k)

repeat

1: result = k

end

A call sequence for this function routine might be

y = 1 + x(max(x,1,100))

4.6

SCOPE OF NAMES

In general all names are declared at the head of a routine

either in the routine heading or by the declarations integer, real, array, etc.,

and the various routine specifications.

Therefore they are local to that routine and independent

of any names occurring in other routines. However, if a name appears

in a routine which has not been declared in one of the above ways, then

it is looked for outside i.e. in the routine or block in which it

is embedded. If it is not declared there it is looked for in

the routine or block outside that and so on until the main block is reached.

Now the main block is itself embedded in a permanent block at

’zero level’ which contains the PERMANENT material, so that if a

name is not found in the main block it is looked for among these.

The permanent names may in fact be redeclared locally at any level, but

clearly it would be unwise to assign new meanings to such routines as

’log’, ’print’, etc. This outer block also contains supervisory

material for controlling the entry to and exit from the main block.

Very often, the only non-local names used in a routine will be the

permanent names. The level at which a name is declared is sometimes

referred to as its ’textual’ level.

PERMANENT ROUTINES
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The permanent names include the standard functions, sin, log, int,

etc. and the basic input/output routines read, print etc.

These routines are used in a program without declaration and without

the necessity of inserting the routine bodies, since these are

permanently available at level zero. A full list of the permanent routines

is given in Appendix 2 (cf.\ Section~\ref{f0:A2.1}).

[NOTE : the standard functions (and the same applies to ’read’)

are not strictly routines : THEIR NAMES CANNOT BE SUBSTITUTED AS

ACTUAL PARAMETERS IN PLACE OF FORMAL PARAMETERS OF ROUTINE TYPE.

they would first have to be redefined and renamed as formal

routines.]

4.7

FUNCTIONS AND ROUTINES AS PARAMETERS

This is illustrated by the following example involving an

integration routine

routine spec integrate(real name y, real a,b,integer n, real fn f)

which integrates a function f(x) over the range (a, b) by evaluating

y = (f(0) + 4f(1) + 2f(2) + ... + 4f(2n-1) + f(2n))(b-a)/(6n)

where f(i) = f(a + &frac12;i*(b-a)/n)

An auxiliary routine is required to evaluate f(x) and details of it

must be passed on to the integration routine. This is done by means of the

formal parameter type [RT] as defined earlier, and the body of the routine

might then be:-

routine integrate (real name y, real a, b, integer n, real fn f)

real fn spec f(real x)

real h; integer i

h = &frac12;(b-a)/n

y = 0

cycle i = 0,2,2n-2

y = y+2f(a+i*h)+4f(a+(i+1)h)

repeat
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y = (y-f(a)+f(b))h/3

end

To enable instructions such as

y = y+2f(a+i*h)+4f(a+(i+1)h)

to be translated, a specification of the formal parameter f is required.

In this case the delimiter real fn spec can be replaced by spec since the type

of the function is given explicitly by the formal parameter itself.

Now consider a programme to evaluate

z = exp(-y)cos(b*y)dy

for various values of b read from a data tape, the last value being

followed by 1000, using for n the integer nearest to 10b.

4.8

begin

routine spec integrate (real name y,real a,b,integer n,real fn f)

real fn spec aux (real y)

real z, b

comment Simpson rule integration

1:read (b)

if b = 1000 then stop

integrate (z, 0, 1, int(10b), aux)

newline

print (b, 1, 2);spaces(2);print(z, 1, 4)

-> 1

real fn aux(real y)

result = exp(-y) cos(b*y)

end

| routine integrate |

| |

end of program

NOTES

1: That the names given to the auxiliary routine and its
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parameters need not be the same in the integration routine as in the

main program, but they must correspond in type.

2: Since the result of the intergration is a single quantity, the routine

could be recast as a real fn :-

real fn spec integrate (real a,b, integer n, real fn f)

and called by, for example:-

print(integrate(0,1,int(10b),aux),1,6)

RECURSIVE USE OF ROUTINES

The name of a routine is local to the routine or block in which

its specification appears, and so the body of the routine is within the

scope of its own name. Hence it may call itself. It may also call itself

indirectly by invoking other routines which make use of it. On each activation

of the routine a fresh copy of the local working space is set up in the stack,

so that there will be no confusion between variables on successive calls.

(This does not apply however to own variables. See next section.) Some criterion

within the body of the routine must eventually inhibit the calling statement

and allow the process to unwind. Functions defined recursively, for example:-

n! = n(n-1)! , n > 1

= 1 , n = 1

can be implemented in this way, but it is always more efficient to use

recurrence rather than recursive techniques.

4.9

OWN VARIABLES

When a routine is left any information stored in variables corresponding

to local declarations in that routine is lost, and no furthur reference may

be made to it. In some cases it may be desirable to retain some of this

information and be able to refer to it on a subsequent entry to the routine.

This may be accomplished by prefixing the relevant declaration by own.

For example

own real a, b; own array A (1:10)
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The effect of own is to allocate storage space for the named variables

in a part of the store which is not overwritten when other routines are

called in and to set them to zero. This is done during the compiling of the

program and hence does not have dynamic significance; as a consequence an

own array declaration must have parameters which are integer constants.

5.1

5. INPUT AND OUTPUT OF DATA

The input and output of data will generally be accomplished by

means of permanent routines. In this section these permanent routines are

described and the precise form of data is given.

SELECTION OF DATA CHANNELS

The selection of an input channel is performed by the routine:-

routine spec select input (integer i)

This selects the input channel corresponding to the value of i, and

this channel, together with the particular input device assigned to it

in the Job Description (see section 7), remains selected until

another ’select input’ instruction is encounted.

Output channels are selected in a similar way, by means of the

routine:

routine spec select output (integer i)

In both cases channel 0 is initially selected, and in the absence of

a channel selection instruction, remains selected during the execution of a

program.

BASIC INPUT ROUTINES

Decimal numbers may be read from a data tape by means of the routine

routine spec read([VARIABLE])

This reads a decimal number from the currently selected data channel and
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places it in the location specified by the [VARIABLE], which may be of

type integer or real. The routine reads numbers in either fixed or floating

point form, for example:-

-0.3101 18 7.132 -7 3.1872 14

A number is terminated by any character other than a decimal digit,

the first decimal point, or an exponent. An exponent consists of a followed

by an optional number of spaces, an optional sign, and the decimal digits.

Spaces and newlines proceeding a number are ignored, but all other symbols

cause the routine to signal a fault (but see NOTE on P5.4 (cf.\ Section~\ref{f0:5.4})). A fault is also

indicated if a number assigned to an integer variable is not integral.

5.2

It should be noted that a single space is sufficient to terminate a

number, and that no spaces are allowed within the mantissa or within the numerical

part of the exponent (unlike constants appearing in a program where all spaces

are irrelevant and the number is terminated by the following name or delimiter).

Further since ’tabs’ are converted to a number of spaces, numbers may

be separated by ’tabs’. Several numbers in a sequence may be read by the routine:-

routine spec read([VARIABLE LIST])

For example, read(a,i,X(i))

This is treated as if it were a series of instructions

read (a) ; read(i) ; read(X(i))

hence the subscript of X(i) takes the value just assigned to i.

The read routine is an exception to the general form of a routine, as

it may have an indefinite number of real name and integer name parameters.

Successive numbers on a data tape may be read so as to fill

an array by means of the routine

routine spec read array(arrayname A)

For example:- array A(1:20, 1:20)

35



read array (A)

would cause the next 400 numbers on the data tape to be read so as to fill

the array A, row by row. It is thus equivalent to

array A(1:20, 1:20)

integer i,j

cycle i = 1,1,20

cycle j = 1,1,20

read (A(i,j))

repeat

repeat

Three permanent routines are provided for manipulating alpha-numeric

data. The first:-

routine spec read symbol (integername i)

reads the next symbol (simple or compound) from the selected channel,

converts it into a numerical equivalent and places the result in the

the specified integer location.

For example, if the next character on the data tape were an

asterisk (numerical equivalent 14) the instruction ’read symbol (p)’

would set the value of the integer variable p to 14 and move to the next

character on tape.

5.3

The second allows the next symbol on the data tape to be inspected without

moving on to the following one. It is

integer fn spec next symbol

The third:-

routine spec skip symbol

passes over the next symbol without reading it.
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A table of numerical equivalents and a description of the formation

of compound symbols is given in Appendix 5 (cf.\ Section~\ref{f0:A5.1}).

It is in testing symbols that the alternative form of a constant

is useful. For example, we could test if the next symbol on a tape were an

asterisk by

->1 if next symbol = 14

or ->1 if next symbol = ’*’

Since spaces and underlined spaces are ignored in a program, and newline

and semicolon are used as terminators, special symbols are provided to

represent them. Thus a space can be tested for by

->1 if next symbol = ’s’

The symbols are:-

s s representing a space

s s ’’ an underlined space

n n ’’ a newline

; ; ’’ a semi-colon

If the data itself contains these special symbols, then they can be tested only

by using the internal equivalent.

Finally there is a permanent input routine which permits the reading

of an indefinite number of decimal numbers into successive storage locations,

stopping when a particular symbol on the data tape is reached. This routine is

routine spec read sequence (addr s, integer p, integer name n)

The formal parameter type addr is explained in Section 9 (cf.\ Section~\ref{f0:9.1}); for the

present purpose it is sufficient to say that the actual parameter will be the

name of a variable, representing the first location into which the numbers are

to go. p is the numerical equivalent of the terminating character, and on

exit from the routine, n contains the number of numbers that have been read.

5.4

As an example of the use of the above routine, suppose a data tape

contains an unknown number of numbers, but less than 1000, and that the
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last number is followed by an asterisk. Then the instructions

array X (1:1000)

integer n

read sequence (X(1), 14, n) [or : read sequence(X(1),’*’,n)]

would cause the successive numbers to be read into X(1), X(2), etc.

If there were 800 numbers in the sequence, then n would be set to 800

when the routine was left.

NOTE

On input, each line of data is reconstructed to give an image of the

print-out produced by the Flexowriter. Thus ’backspace’,’tab’,’upper case’

and ’lower case’ do not appear as characters in the reconstructed line,

since they do not appear on the print-out. ’Tab’ produces an equivalent

number of spaces, ’backspace’ helps form a composite character, and

non-significant cases are ignored. Those positions containing an erase

are then deleted from this line. The line image is normally 160 characters,

but where the tab and backspace facilities are avoided, lines can be of any

length, sections of 160 characters being taken serially.

BASIC OUTPUT ROUTINES

The routines for the output of a single decimal number are

routine spec print fl (real x, integer m)

routine spec print (real x, integer m,n)

The first of these prints the value of x (which may of course be a

general [EXPR]) in floating point form, standardised in the range 1&le;x<10,

with m decimal digits after the decimal point. The number is preceded by

a minus sign if negative, and a space if positive. The exponent is preceded

by and consists of a space or a minus sign and two decimal digits, the first of

which is replaced by a space if it is not significant.

The second routine prints the value of x in fixed point form with m

digits before the decimal point and n after. Non-significant zeros, other than one

immediately before the decimal point, are suppressed, and a minus sign or space

precedes the first digit printed. If |x| &ge;10&uarr;m then extra digits are included

before the decimal point, the effect being to spoil any vertical alignment of

38



the printed page.

5.5

It should be noted that no terminating characters are included

by the above routines. They may be included by the user by means

of the routines:-

routine spec newline

routine spec space

routine spec newlines(integer n)

routine spec spaces (integer n)

routine spec tab

routine spec print symbol (integer i)

The first of these resets the carriage of the appropriate printer

(or punches the newline character), and the second causes the printer to

skip a character position. If a number of consecutive spaces or newlines

are required, the third and fourth routines may be used, for example:-

spaces (5)

newlines (3)

The fifth routine punches the tab character or causes the printer to move to the

next tab setting. These settings are at positions 8, 16, 24, 32, 48, 64, 80,

96, 112, 128, 144, and 159. The sixth prints the symbol corresponding to the

value i.

The routine:-

routine spec newpage

causes the lineprinter to commence a new page, if the output

device is a line printer, or punches 30 newline characters if it is a punch.

The routine:-

routine spec runout (integer n)

punches n runout characters (used to seperate sets of results, for example)
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on the punch. It has no effect if the output is on a line printer.

Arrays of numbers may be output by means of the routines

routine spec print array fl (array name A, integer m)

routine spec print array (array name A, integer m,n)

For a one-dimensional array, the elements of the array are printed

across the page, each number being terminated by two spaces, or a newline

if the right hand edge of the page has been reached. The successive rows of

a two dimensional array are printed as above, successive planes of a three

dimensional array are printed as two dimensional arrays, and so on. Each

array is started on a newline and the printing style for the individual

numbers is the same as that of the ’print fl’ and ’print’ routines.

5.6

CAPTIONS

There is a special facility for printing captions. For example

caption ssss TABLE s OF s TEMP s AGAINST s; VOL

This prints the information after caption up to, but not including, the

terminating symbol ’newline’ or ’semi-colon’, since spaces and underlined space

are ignored and ’newline’ and ’semi-colon’ are used as terminators, we also use

the special characters:-

s or s

s ’’ s

n ’’ n

; ’’ ;

Thus

newline

caption A s = ss ; print (y,1,3); newline

caption B s = ss ; print (2,1,3); newline

would be printed as

A = 1.712
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B = -2.380

In general c can be used (in its usual sense) in a caption it the information

is too long to fit on one line across the page. In view of this if an

underlined word ending in c is used at the end of a caption, it must be

terminated by ’semi-colon’ not ’newline’.

BINARY INPUT AND OUTPUT

Binary tape may be read and punched by means of the routines

routine spec read binary (integername i)

routine spec punch binary (integer i)

The first reads the next row of holes on the tape as a binary number

(in the range 0-127, with the tape so oriented that the sprocket hole comes

between the digits of value 4 and 8), and places it in the named variable.

Binary data tapes must be preceded by ***B or, if they contain characters of

of even parity, by

***P

***B

The second punches the seven least significant binary digits of the

integral part of the integer expression as a row of holes on the output

tape.

NOTE: Cards or 5-hole tape may be used in which case the operations are on

5 or 12 digits rather than 7.

6.1

6 MONITOR PRINTING AND FAULT DIAGNOSIS

FAULT MONITORING

There are two types of fault which can be detected by the compiler,

those which can be found during compiling and those which become evident during

the running of the compiled program. To aid the programmer in correcting

these faults information is automatically printed out where a fault occurs.

COMPILER TIME MONITORING

During compiling an outline of the program is produced as an aid to the
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finding of faulty instructions. It also associates each block and routine with

its serial number, for use in tracing faults found at run time (see later).

All faults during compiling are monitored. Those to which a line

number can be attached, such as NAME NOT SET, are preceded by it, while

those which can only be found at the end of a routine such as TOO FEW

REPEATS are monitored after the END. In calculating the line number, blank

lines are ignored, and lines joined by the continuation symbol c count as one.

Finally at the end of each routine all the non-local variables except the

permanent routines and functions are printed out. Although these do not

necessarily indicate a fault, they may indicate a name which should have been

declared locally. A typical program monitor might be

0 BEGIN BLOCK : SERIAL NO = 89, M/C ADDRESS = 2721

26* NAME TEMP NOT SET

55* LABEL 7 SET TWICE

70 BEGIN ROUTINE POLY:SERIAL NO = 90, M/C ADDRESS = 3210

115* NAME TEMP NOT SET

115* REAL NAME X IN EXPRESSION

120 END ROUTINE POLY : OCCUPIES 256 M/C INSTRUCTIONS

* LABEL 18 NOT SET

NON-LOCAL VARIABLES A TEMP1 S1

182 END OF PROGRAM: OCCUPIES 800 M/C INSTRUCTIONS

The above should be self-explanatory. It indicates that the program

started at line 0 and finished on line 182. These are physical lines

and exclude all blank lines on the print-out. The outer block is given

the serial number 89. The routine POLY started on line 70 and was given

the serial number 90. There were mistakes in lines 26 and 55 and two in line

115. Finally label 18 was not set in the routine POLY.

6.2

Since there may be more than one statement on a line, it is not possible

to tell specifically which statement is involved but the faults are printed

in the order in which they are discovered. A full list of faults is given

in Appendix 4 (cf.\ Section~\ref{f0:A4.1}) together with a brief description of their nature.
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RUN TIME MONITORING

During the running of a program certain faults may be detected

both by the compiler and by the machine and its supervisor program.

For example, the supervisor program detects the case where the square

root of a negative argument is being requested and the compiler detects

faults connected with switch and test instructions.

The standard procedure is to print out 2 lines of information

specifying the fault and the line on which it occurs followed by a list

of useful information found in the FIXED part of the stack. For example:-

LINE 117 ROUTINE 90

EXP OVERFLOW

ROUTINE 90

ARRAY(1:10,1:5)

ARRAY(1:10,1:5)

10 5

0.3333333341 0 -1.1249999997 -1 0.0000000000 -99

6 4

CYCLE(CURRENT VALUE = 6, FINAL VALUE = 10, INCREMENT = 1)

CYCLE(CURRENT VALUE = 4, FINAL VALUE = 5, INCREMENT = 1)

BLOCK 89

0.0000000000 -99 3.7152463802 3

10 5 3 6

ARRAY(1:10,1:5)

ARRAY(1:10,1:5)

6.3

indicates that an instruction in line 117 routine 90 (the line number

refers to the entire program, not just the routine), resulted in exponent

overflow. Then follows a list of the scalars, array dimensions and cycles

of the routine in the order in which they were originally declared,

followed by the list for the routine or block which called this routine,
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then that of the routine which called it and so on until the main block

is reached. Thus the above might correspond to:-

begin

real a,b

integer i,j,k,l

array X,Y(1:10,1:5)

’

’

’

’

matrix fn (X,Y,i,j)

’

’

’

routine matrix fn(arrayname A,B integer m,n)

real a,b,c ; integer i,j

’

’

’

cycle i = 1,1,m

cycle j = 1,1,n

’

’

’

repeat

repeat

end

end of program

6.4

NOTES

1: This fault print out must be interpreted with care. When the fault occurs,

the fault print out routine looks in the STACK to find the fixed variables and

interpret them (see section 10). Now every location in the store initially looks

as if it contains a real quantity. Thus:-

(i) until an integer is assigned a value, it will appear as (and be printed
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as) a floating point quantity (probably zero).

(ii) until an array declaration is obeyed, it will appear as 2 floating-

point quantities.

(iii) until a cycle has been entered, it will appear as 3 floating-

point quantities.

Conversely, since all sub-routines of a program share the same space,

then on entry to the second and subsequent routines, the stack will contain

the values left by the previous routine and these will be interpreted accordingly,

if the current routine does not alter them.

2: The ’CURRENT VALUE’ attributed to a cycle is the value of the integer

name used on the left hand side of the instruction at the time of the fault.

Thus if a program consisted of a number of cycles one after other, controlled

by i, and the fault were inside the last cycle, then all cycles would have the

same ’CURRENT VALUE’ - the current value of i.

3: Only cycles, arrays, integers and reals are distinguished.

(i) for integer name’s and real name’s the address of the actual paramter

is printed (as an integer) .

(ii) for array fn’s (see Section 9 (cf.\ Section~\ref{f0:9.1})) its parameters are printed (as integers).

(iii) for routines and function’s used as parameters, six real quantities

are printed.

(iv) for complex quantities, the real and imaginary parts are printed in

floating point style.

6.5

FAULT TRAPPING

The above standard monitoring procedure involving the termination of

the program, is not always convenient. For example if a program is dealing

with a series of data sets, it may be preferable to restart on the next

’case’ in the event of (say) EXP OVERFLOW rather than terminate the entire job.

An instruction is provided which enables the user to trap certain

faults and transfer control to some preassigned point in the program. It

takes the form:-

fault [FAULT LIST]

where [FAULT LIST] = [N-LIST]->[N] [REST OF FAULT LIST]

For example:-
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fault 1,2,5 ->18, 3,4 ->10

means ’if a fault of type 1,2 or 5 subsequently occurs then jump to label 18 ; and

if a fault of type 3 or 4 occurs then jump to label 10.

The effect is to preserve all the necessary control data to enable control

to revert to this point in the program (and then jump to label 18 or 10) should

one of the specified types of faults occur at some lower (or the same) level.

The label must be in the same block as the trapping statement, which will

usually be in the ’main’ block at (say) level 1 or 2.

The fault instruction has dynamic significance, and a following fault

instruction can change this trapping action. All faults not referred to

by a fault instruction are dealt with in the usual way (i.e. they cause

the program to be terminated).

The first two lines of the standard fault monitoring are printed for

faults trapped in this way. Appendix 4 (cf.\ Section~\ref{f0:A4.1}) contains the list of faults which

can be trapped and the corresponding fault numbers.

FAULT DIAGNOSIS

Provision is made to compile certain checking facilities in

selected parts of the program. Having been compiled they can then be

switched on or off at run time by means of instructions in the program.

The formats are:-

compile[check]

stop[check]

[check]on

[check]off

6.6

The first pair of statements are DECLARATIVES which delimit the areas of

the program in which provision is to be made for the particular checking facility.

The second pair are INSTRUCTIONS which turn the facility on or off (initially they

are on). They do this by setting a certain switch which is examined whenever

the facility is about to be executed. If the relevant switch is on then the

facility is executed, if off it is skipped. If the facility has not been

compiled in the first place then the instructions have no effect. This switch
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setting is extremely fast so that there is nothing to be gained from recording

the current state of the switch (in some integer, say), and testing this before

each setting order. For example, the following sequence causes queries to be

printed every tenth time round the cycle.

cycle i = 1,1,m

queries off

if fracpt(1/10) = 0 then queries on

’

’

’

’

repeat

The switch sensing on the other hand is a time consuming operation and it

is for this reason that the declaratives are provided to delimit the areas of the

program in which this takes place. In most cases, however, the check is compiled

over the entire program.

The checking facilities in question are described by the phrase:-

[check] = queries, routine trace, jump trace, array bound check

They will be described in turn.

QUERY PRINTING

Any arithmetic instruction (including complex) can be followed by a ?,

for example:-

a = b(i) + c?

When the facility is operative the new value on the l.h.s. is printed every

time the instruction is obeyed. The style of printing will be fixed, floating,

or complex floating according as the l.h.s. is of integer, real, or complex

type.

[Unlike the other facilities, ?’s are normally compiled so that a

compile queries at the head of a program is redundant. Also ignore queries

is equivalent to stop queries.]

47



6.7

ROUTINE TRACING

When the routine trace is operative it causes the routine number to

be printed each time a routine or block is entered and left. The correspondence

between the routine number and the name can be found from the program outline

produced during compilation. The printout of a routine trace might appear

R95 R97 RF96 END96 END97 R99.......

Here R, RF denote routine and real fn respectively. The full list of

abbreviations is: -

B begin R routine

IF integer fn RF real fn CF complex fn

IM integer map RM real map CM complex map

JUMP TRACING

The jump trace facility allows the flow of the program to be followed

in greater detail. For every jump instruction obeyed the label number

is printed; for every test the value of the label at which the [COND]

is satisfied is printed; for every switch the value of the switching

index is printed. Thus a label trace might appear

->3 T1 ->4 ->6 S3 ->7 ->8 ->9

Here T and S refer to test and switch respectively. If the label and

routine trace are both operative the print out might appear:-

R95 ->3 T1 ->4 ->5 R97 S3........

ARRAY BOUND CHECK

If this facility is operative the values of the subscript

expressions in all array elements are checked to see if they lie in the

range specified by the bound pairs in the array declarations. If not, the

program is terminated with the appropriate monitoring.

OTHER CHECKING FACILITIES

Certain checks are built into the object program e.g., whether
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a cycle instruction calls for an integral number of cycles and whether a

switch index is out of range or corresponds to a label not set. All

are time and space consuming operations. They can be removed from an

object program which is otherwise ready for production by means of the

declaration

production run

7.1

7 PRESENTATION OF COMPLETE PROGRAMS

JOB DESCRIPTIONS

The running of programs on the computer is controlled by a

supervisor program held permanently in the machine. The supervisor

accepts complete programs as a series of tapes (program and data) and

a JOB DESCRIPTION which may be on a separate tape or included with the

program or data. A full description of the system is given elsewhere

[1], and in this section we give examples to illustrate the general

principles of job descriptions.

PROGRAM AND DATA ON SAME TAPE

The simplest form of job consists of job decription, program and

data on the one tape. For example:-

JOB

UMA, JONES 5/2

OUTPUT

0 LINEPRINTER 100 LINES

STORE 32 BLOCKS

COMPUTING 10000 INSTRUCTIONS

COMPILER AA

begin

| |

| PROGRAM |
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| |

| |

end of program

| |

| DATA |

| |

| |

***Z

NOTES

1. The title (and line) identifies the job. The first few characters

will be a code to identify the particular organisation and the rest will

be information of an arbitrary form to identify the programmer and the

program within the organisation.

Reference

[1] ’Documents and Job Description’ I.C.T. Ltd., October 1963.

This gives a full description of the possible arrangements of program

and data tapes and the utilisation of the multi-channel input/output

facilities on Atlas.

7.2

2. The OUTPUT information says that reference to channel 0 in the

program means the lineprinter (if no output channel is selected in the

program channel 0 is used). The number of LINES gives an upper limit

to the amount of output that is to be permitted.

2. STORE gives an upper limit on the number of 512 word main store

blocks used by the program and data.

3. COMPUTING gives a limit on the running time of the program. An

’INSTRUCTION’ is equivalent to 2048 machine instructions.

The OUTPUT, STORE, and COMPUTING sections are optional, both

individually and collectively. If they are omitted the allowances given

in the above example are assumed, i.e., 100 LINES, 32 BLOCKS, 10000

INSTRUCTIONS. These should in fact be adequate for most small problems,

except possibly the 100 LINES. The foregoing example could therefore be
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shortened to:-

JOB

UMA, JONES 5/2

COMPILER AA

begin

| |

| PROGRAM |

| |

| |

end of program

| |

| DATA |

| |

| |

***Z

A program tape is always assumed to be on input channel 0 so that in the above

case, the data for the problem is also on channel 0, which is the channel

used in the absence of a contrary ’select input’ instruction in the

program. ***Z is an end of tape marker and indicates that all the

information on that tape has been read. This must be on a line of

its own, and must be followed by at least one ’newline’.

7.3

PROGRAM AND DATA TAPES SEPARATE

Often when a program is being used for production runs, it is

convenient to keep the program on a separate tape which is never changed.

For each run the job description and data form a separate tape. For example:-
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COMPILER AA

(title 1)

begin

| |

| PROGRAM |

| |

| |

end of program

***Z

The data tape including the job description, would be

JOB

(title 2)

INPUT

0 (title 1)

SELF = 1

DATA

| |

| DATA |

| |

| |

***Z

The input section gives the relevant program as being channel 0 (the program

channel) and SELF = 1 indicates that the data tape is to be read as channel 1.

Thus an instruction ’select input(1)’ is required in the program. This

tape could, if necessary, include any OUTPUT, STORE, and COMPUTING information

since this is the part of the job description.

Possible titles for the above example might be

(title 1) UMA, P10

(title 2) UMA, P10/RUN 26
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7.4

PROGRAM ON SEVERAL TAPES

It is often convenient to have the program itself on two or more distinct

tapes, where, for example, the program may be so long that it would be physically

unmanageable to keep it on one tape.

Alternatively the program may contain a large section (declarations and

routines perhaps) which is common to many programs and which can conveniently

be kept on a separate tape.

The instruction

now compile from input [N]

is used to switch the compiler from one input stream to another. For example:-

JOB

(title 1)

INPUT

1 (title 2)

2 (title 3)

COMPILER AA

begin

| FIRST PART |

| OF |

| PROGRAM |

| |

now compile from input 1

***Z

COMPILER AA

(title 2)

| SECOND PART |

| OF |

| PROGRAM |
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| |

end of program

***Z

DATA

(title 3)

| |

|DATA |

| |

| |

***Z

8.1

8 COMPLEX ARITHMETIC

As indicated previously, facilities exist for the manipulation

of complex as well as real and integer quantities. complex quantities

are stored as a pair of real numbers in consecutive locations (the real and

imaginary parts respectively). The address of the complex quantity is

that of the real part.

DECLARATIONS

All quantities must be declared before they are referred to.

For example:-

real R1, R2, R3

complex z

complex array P(1:10), Q(1:10,1:10)

causes 3 locations to be reserved for R1, R2, R3, 2 for z, 20 for P and

200 for Q.

STANDARD FUNCTIONS

The following standard functions are added to those previously

given:-

re(z) (real part of z)
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im(z) (imaginary part of z)

mag(z) (modulus of z)

arg(z) (argument of z - in radians)

conj(z) (complex conjugate of z)

The argument z may be any [EXPR] (in the complex sense as described below)

The functions

csin, ccos, ctan, cexp, clog, csqrt

have complex [EXPR]’s as arguments and yield results of complex type.

For example if z = x + iy, cexp(z) = exp(x)(cos(y) + i sin(y))

In the case of clog and csqrt it is the principal value which is computed,

i.e., the value for which the argument lies in the range - &le; <

8.2

ARITHMETIC EXPRESSIONS

The arithmetic expression [EXPR] is still of the form

[&plusmn;’][OPERAND][OPERATOR][OPERAND][OPERATOR] ........ [OPERAND]

but [OPERAND] is now expanded to be

[VARIABLE],[CONSTANT],([EXPR]),|[EXPR]|,[FUNCTION] or i

Here i is a delimiter denoting the i (or j) of complex algebra notation.

Examples of this more general expression are:-

(V*conj(I) - I*conj(V))/(2i)

(Z1Z2 + Z2Z3 + Z3Z1)/Z3

Y(1,2) + csin(conj(Y(2,1)))

R0*(1 + 2iQ0d)

i

When a complex number is written out explicitly (say x + iy),
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then it is regarded as 3 operands (x,i and y) connected by the two

operators + and (implied) *. Thus if the brackets were omitted

from the denominator in the first example it would mean

((V*conj(I) - I*conj(V))/i)2

ARITHMETIC INSTRUCTIONS

The form of an assignment instruction remains

[VARIABLE] = [EXPR]

but [VARIABLE] now includes complex scalars and complex array elements. For

example:-

Z = Z1Z2/(Z1 + Z2)

Y = G + i2 f*c

A(p,q) = 2csin(2 z)

R = R1 + re(Z)

P = &frac12;re(V*conj(I) + I*conj(V))

8.3

NOTES

1. Just as real quantities may not appear on the r.h.s. of an integer

assignment (except as arguments of integer functions), so complex

quantities may not appear in real or integer expressions.

However, the functions

re(z), im(z), mag(z), arg(z)

convert from complex to real quantities and may therefore appear on

the r.h.s. of a real assignment. In fact any function whose

value is real regardless of its arguments may be used in a real

expression (just as any integer function, regardless of its argument,

may appear in an integer expression). Thus if X and B are real and Y

complex then:-

X = B + im(Y)

is valid.
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2. re(z) and im(z) are actual locations in the store and can therefore

be used on the l.h.s. of an instruction (whose mode is then real).

For example:-

re(z) = sqrt(2)

im(y) = 5 + im(z1)

However, mag(z) and arg(z), even though they do define z, are not locations

in the store and cannot be used on the l.h.s. If a complex quantity

is being evaluated by means of the evaluation of its magnitude (m) and

argument (a), the assignment is done by

z = m*(cos(a) + i sin(a))

or z = m*cexp(ia)

8.4

CONDITIONS

In conditional operators, [EXPR]’s must be real (in the sense

of note 1 of the previous section ). Hence the following are legitimate:-

if arg (z) &ge; /2 then -> 3

3 case mag(z) &ge; 1 :

ROUTINES AND FUNCTIONS

Since routines and functions are allowed to operate on complex

quantities, the parameter types have been expanded to include

Formal parameter type | Corresponding actual parameter

complex name | name of a complex variable

|

complex | any expression (which will be

| evaluated as if for a complex

| assignment)

|

complex array name | name of a complex array

|
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complex array | name of a complex array

|

The routine types [RT] have also been expanded to include complex fn.

As an example we will rewrite the function routine for the polynomial

a(m) + a(m+1)x+.......... + a(m+n)x&uarr;n

assuming x and the coefficients a(i) to be complex.

complex fn poly (complex arrayname a, complex x, integer m,n)

integer i ; complex y

y = a(m+n) ; result = y if n = 0

cycle i = m+n-1, -1, m

y = y*x + a(i)

repeat

result = y

end

8.5

INPUT-OUTPUT OF COMPLEX NUMBERS

Data is punched in the form

[REAL PART] &plusmn; i [IMAGINARY PART]

but the individual parts can be punched in any acceptable ’real’ form. Both

parts must be punched however. For example:-

3+i4 0+i1 -0.5+i 0 1.17 3 -i2.13 4

They may be read by the instruction

read(Z1,Z2,Z3,Z4)

The permanent routines
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print complex(complex z, integer m,n)

print complex fl(complex z, integer n)

print the value of z in the form

[REAL PART] &plusmn; i [IMAGINARY PART]

the individual parts being printed with the aid of the corresponding real

routines, ’print’ and ’print fl’, using the same digit layout parameters.

For 7-hole tape this form of output is compatible with the format for

punching complex data.

NOTES

1. Spaces are permitted except in the two number parts themselves. In these

they may only appear after an (see description of basic input routines).

2. The other input and output routines described in Section 5 (cf.\ Section~\ref{f0:5.1})

have not been generalised to deal with complex numbers.

3. One may of course read a pair of real numbers on a data tape as a

complex number by the ’real’ read instruction

read(re(z),im(z))

9.1

9 STORE MAPPING

THE ADDRESS RECOVERY FUNCTION

The absolute address of any variable is not generally known in

an Autocode programme, but it may be obtained by means of a standard

function. For example:-

s = addr(A(0,0))

This places the address of A(0,0) into the variable s. The argument

may be any variable, real, integer, or complex and the result is an integer

giving the absolute address of the storage location allocated to that

variable.

Absolute addresses are used in conjunction with array functions

(see below) and with the ’storage’ functions
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integer (integer n)

real (integer n)

complex (integer n)

These give the contents of the address in question as an integer,

real, or complex number. In the last case the real and imaginary parts

of the number are assumed to be in n and n+1. The actual parameter

may of course be an integer expression e.g., s+k-1. These functions

may be employed on the left hand side of an assignment statement as

well as in an expression. Thus the pair of instructions

s = addr(a)

real(s) = b

are equivalent to

a = b

ARRAY FUNCTIONS

The declarations of Section 2 (cf.\ Section~\ref{f0:2.3}), define variables and allocate

storage space for them. In this section we introduce a declaration

which defines variables as the numbers contained in storage locations

that have already been allocated. This is of importance in communicating

between routines with the addr type of formal parameter and in renaming

variables (see below).

An example is

array fn X(s,p)

which defines X(i) as the real number in the storage location whose

address is given by s+i*p. Thus it defines a vector X(i) in

terms of an origin s and a dimension parameter p.

9.2

Array functions may define rectangular arrays with any number

of subscripts. For example:-
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array fn Y(s,p,q)

defines Y(i,j) &equiv; real (s+i*p+j*q)

integer or complex array functions may be defined by prefixing the declaration

by integer or complex, (i.e. integer array fn X(s,p))

Array functions may also describe scalars. For example :-

array fn A(s)

defines A to be real (s). In this way, elements of a vector, say, can be

given individual names.

The parameters in array functions may lie general integer expressions.

As an example, assume that 100 storage locations have keen allocated

in some way, and that the starting address is given by the integer

variable s1. Then to define the contents of these locations as a

vector x(i), one could write

array fn x(s1,1)

x(0) would then correspond to the number in address s1, x(1) to that

in s1+1 etc. If it is desired that the first location should

correspond to x(1), the declaration would be written

array fn x(s1-1,1)

If we had wanted to define a 10 x 10 matrix, stored row by row

rather than a vector, we could have written

array fn A(s1,10,1)

and A(0,0) would correspond to address s1.

array fn A(s1-11,10,1)

would define a matrix in the available space whose first element

was A(1,1).

NOTES
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1. If the suffices of arrays are to start from (1,1,---1) rather than

(0,0,---0), an appropriate adjustment must be made to the expression giving

the origin in the array function declaration.

2 Space redefined by array fn’s may still be referred to by its original

name.

9.3

THE RENAMING OF VARIABLES WITHIN A BLOCK

We illustrate this with an example, suppose we wait to define and

allocate storage for pairs of real variables x(i), y(i) so that they

are in succesive locations. The array declaration will only define

a vector or matrix array stored in the conventional manner, so we

adopt the following device

begin

integer s

array a(1:2000)

s = addr(a(1))

array fn x(s-2,2), y(s-1,2)

------

------

------

The first pair of numbers could then be referred to either as

x(1), y(1) or a(1), a(2), the second by x(2), y(2) or a(3), a(4) etc.

Since the array declaration is for 2000 variables, up to 1000 pairs

x(i), y(i) can be accommodated.

As another example, suppose we have defined a matrix A and allocated

storage for it by the declaration

array A(1:10,1:10)

and we wish to define the first column of A as a vector, then we could

write

array fn y(addr(A(1,1)) - 10,10)
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which defines y(i) &equiv; real (addr(A(1,1)) - 10 + 10*i)

i.e. as the first column of A. Thus y(1) is equivalent to A(1,1), y(2)

to A(2,1), - - - -,y(10) to A(10,1).

In the case of complex array functions the user must take into account

that a complex number occupies 2 consecutive locations. Thus if s1 is

the address of Q(1,1) of a complex array Q(1:10,1:10), then

complex array R(s1-20,20)

defines a vector R(i) whose elements are the first column of Q, i.e.,

R(1) &equiv; Q(1,1)

9.4

STORE MAPPING ROUTINES

Storage functions of arbitrary complexity can be obtained by means of store

mapping routines. These are essentially function routines which

compute an address. For example:-

real map X (integer i,j)

result = s+&frac12;i*(i-1)+j-1

end

computes the address of the (i,j)th element of a real lower triangular matrix

stored by rows starting with X(1,1) at locations. Here s is a non-local

quantity, but would probably be local to the routine in which such a

statement appeared. Such a function may also be employed on the l.h.s.

of an assignment statement. For example:-

X(i-1,j+1) = [EXPR]

In the same way we can also define integer map and complex map routines.

If the map is placed at the end of a program a specification must

be given before the routine can be referred to, for example

real map spec X(integer i,j)
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We can now complete the list of formal parameter types

Formal parameter type | Corresponding actual parameter

|

addr | the name of any integer,real or complex

| variable (including an array element). The

| address of the variable is handed on as the

| parameter proper. It is equivalent to an

| integer parameter in the body of the

| routine. In fact an addr parameter

| replaced by x is equivalent to

| an integer parameter replaced

| by addr (x)

|

real map | the actual parameter is the name

integer map | of a mapping routine of the

complex map | specified type

|

10.1

10:THE USE OF MACHINE INSTRUCTIONS

STACK STRUCTURE

Machine instructions can be used in routines either to make an

inner loop more efficient or to effect some operation which cannot

easily be done otherwise. It is assumed that the reader is reasonably

familiar with the logical structure of the machine, that is with the

basic order code. It also essential to know how data is stored in the

stack. We illustrate this with reference to the following routine.

routine matrix fn (array name A,B integer m,n real fn F)

real a,b,c ; integer i,j

array C(1:m,1:n),E(1:m)

real fn spec F (real x)

’

’

’
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cycle i = 1,1,m

cycle j = 1,1,n

’

’

’

’

repeat

repeat

’

’

’

end

NOTES

1. The first word of the local stack section contains the control number

for returning to the calling routine (the first half word) and the previous

contents of Bd, the current level B-line (the second half word). The 1st

half word of the second word contains the test link (which records the position

within the label list of a test instruction), and the 2nd half word contains

information ( the number and type of the routine and the number of fixed

variables) required by the run-time fault monitor routine. Here Bd refers

to the B-line associated with the routine, and corresponds to the textual

depth of the routine in the program in which it is embedded. If (say)

this is 2 then Bd &equiv; B2. The relative locations of the fixed variables A,

B, m, n etc., are assigned at compile time. Immediately on entry to the routine

the current value of B90, which always points to the next available location

in the stack, is recorded in Bd and the previous contents of Bd recorded in

the stack (as already noted). B90 is then advanced to the end of the fixed

storage allocation. When the declarations for C and D are ’obeyed’ it is

advanced again to the final value shown.

10.2

10.3

2. Destandardised quantities are formed by adding 0*8&uarr;(-12) to the standardised
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form. This constant will be found in location *1000001. This octal form

of the address can be used in machine instruction formats(see later).

There are no integer name or real name parameters in this example; if

present they would be represented (at the appropriate place among the fixed

variables) by single words, namely their addresses, in a destandardised form.

They are at present in distinguishable from integer’s. Similarly for

complex name parameters. A complex quantity requires two consecutive

words, representing the real and imaginary parts.

3. ARRAYS. The primary reference to an array consists of a pair of words. The

second half of the 1st word points to the (1st word of the) ’dope vector’,

that of the second word to the ’Iliffe vector’. The dope vector contains

the values of the bound-pair list together with the number of pairs, i.e. the

dimensionality of the array. If there is more than one array associated

with same bound-pair list they share the same dope vector. The Iliffe vector

gives the origin of each row of the matrix (which is stored by rows). The

purpose of this is to simplify computation involved in accessing an element

of the array. Thus for example to add C(i+5,j-6) into the accumulator

the instructions are:-

101, 96, d, i + &frac12; put i in 96

104, 96, 0, c + 1&frac12; 96 = 96 + 10

101, 97, d, j + &frac12; put j in 97

104, 97, 96, 5&frac12; 97 = 97 + entry for row (i+5)

320, 0, 97, -6 acc = acc + real ( 97 - 6)

Similarly to add the element D(i+5) of the one-dimensional array D

(which has no Iliffe vector) one may write

101, 97, d, i + &frac12; put i in B97

104, 97, 0, D + 1&frac12; B97 = B97 + addr (D(0))

320, 0, 97, 5 acc = acc + real (B97 + 5)

In these instructions i, C, j, D refer to the addresses of these quantities

(see later)

Arrays of k dimensions (>2) are stored in hierarchical fashion.

The primary Iliffe vector points to a set of arrays of k - 1 dimensions

stored end to end. Each such array consist of an Iliffe vector referring

66



to a set of k - 2 dimensional arrays, and so on.

10.4

4. THE PARAMETRIC FUNCTION F. Six words of information are kept here.

In addition to the control number for entering the routine it is

necessary to keep a record of the display of the relevant B-lines

when the routine is first substituted as an actual parameter. For

further details see the Compiler.

5. THE CYCLES. As explained in the text the initial and final values and

increment in a cycle are evaluated and checked for compatibility before

the cycle is commenced. The increment and final values, together with

the address of the controlled integer variable are recorded for use in

the execution of the cycle. The diagram illustrates how they are stored.

STACK INSTRUCTIONS

The following autocode formats involving the stack pointer (B90)

are available

st = st &plusmn; [EXPR’]

st = [EXPR]

[NAME] = st

st represents the contents of B90. In the last instruction the [NAME]

must be local to the routine containing the instruction, otherwise a

fault is indicated.

MACHINE CODE FORMATS

Some ’machine code’ formats are now described.

1. Where there is no symbolic address involved an instruction is written in

the form

[FD],[N],[N],[ADDRESS PART]

(and terminated as usual by ; or newline). Here [FD] refers to the

function digits, [N] to the Ba and Bm digits, and [ADDRESS PART] to the

address part, which may take a number of forms. It may be written as a
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constant in the usual way (preceded possibly by a sign) bearing in mind

that the binary point is located 3 places from the right hand end. Thus

0121, 80, 0, 2.5 is equivalent to

05064000 00000024

10.5

It may also consist of an octal number which consists of an * followed

by up to 8 octal digits, including any significant zeros. Thus

O101, 91, 0, *1001 is equivalent to

04066600 10010000

in octal notation.

Finally it may consist of a label or a (possibly signed) constant plus

a label. The label is replaced by the control number corresponding to it. We

may refer to labelled constants (see next section) in this way. For example

0334, 0, 0, 14:

0101, 99, 0, &frac12; + 14:

’

’

’

14: *03, *0000012

puts an unstandardised 10 in the accumulator, and a halfword 10 in 99

NOTE : The formal definition of [ADDRESS PART] is

[ADDRESS PART] = [&plusmn;’][CONST]+[N]:,[N]:,[&plusmn;’][CONST],[OW]

2. The format

[&plusmn;’][CONST]

is used to plant a standardised 48-bit floating point number in the current

location of the program.

3. Pairs of 24-bit words may be planted in the object program by means of the format

[ADDRESS PART][,][ADDRESS PART]
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Thus we may plant tables of integers or labels, for example:-

3,4

7:,8:

4. We now have an instruction format which uses a symbolic address.

[FD],[N], -,[NAME][&plusmn;CONST’]

where [&plusmn;CONST’]=[&plusmn;][CONST], NIL

Here the [NAME] can refer to anything which is represented in the fixed storage

sections of the stack. The resulting instruction is

[FD],[N], d, p [&plusmn; CONST’]

10.6

where (Bd, p) is the ’address’ of the name, Bd being the B-line pointing

to the appropriate section of the stack, and p being the address relative

to the origin of that section. Thus an instruction

0324, 0, -, a

appearing in the routine under discussion would be translated as

0324, 0, 2, 14

assuming Bd &equiv; B2, and that F occupies 6 words.

The effect would be to put a in the accumulator.

If the [NAME] refers to an unstandardised floating point integer then we

may wish to select the integral half for use in a B-line. For example

0101, 80, -, m+&frac12;

is equivalent to

69



0101, 80, 2, 6.5

If a and m had been real and integer name’s then 2 instructions would

be necessary in each case, thus

0101, 99, -, a + &frac12;

0324, 0, 99, 0

and

0101, 99, -, m + &frac12;

0101, 80, 99, &frac12;

If a is complex then

0324, 0, -, a

would put the real part into the accumulator, and

0324, 0, -, a+1

would load the imaginary part.

In the case of arrays we can select by similar means the two primary

reference words, and with their aid obtain access to the dope vector and/or

the array itself.

10.7

EXAMPLE ON THE USE OF MACHINE ORDERS

The following example forms the sum of three routines A, B, C of

similar dimensions. (It is in fact the permanent routine ’matrix add’)

routine matrix add (array name A, B, C)

comment The routine forms A = B + C

real dump

0101, 61, -, A + &frac12; ;comment dope vector of A

0101, 62, -, B + &frac12; ;comment dope vector of B
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0101, 63, -, C + &frac12; ;comment dope vector of C

0121, 65, 0, 4 ;comment check dimensions

0101, 64, 61, &frac12;

0172, 64, 0, 2

0225, 127, 0, 1:

2: 0101, 64, 61, &frac12;

0152, 64, 62, &frac12;

0225, 127, 0, 1:

0152, 64, ,63, &frac12;

0225, 127, 0, 1:

0124, 61, 0, 1

0124, 62, 0, 1

0124, 63, 0, 1

0203, 127, 65, 2:

0101, 65, -, A + &frac12; ;comment 65 = dope vector of A

0324, 0, 65, 1 ;comment 64 = no of elements in matrix

0322, 0, 65, 2

0320, 0, 0, *10000040

0356, 0, -, dump

0324, 0, 65, 3

0322, 0, 65, 4

0320, 0, 0, *10000040

0362, 0, -, dump

0330, 0, 0, *10000010

0356, 0, -, dump

0101, 64, -, dump + &frac12;

0101, 66, 65, 1&frac12; ;comment set 61 = address of 1st element of A

0104, 66, -, A + 1&frac12;

0101, 61, 65, 3&frac12;

0104, 61, 66, &frac12;

0101, 66, -, A + 1&frac12; ;comment set 62 = address of 1st element of B

0120, 66, 61, 0

0101, 62, -, B + 1&frac12;

0124, 62, 66, 0

0101, 63, -, C + 1&frac12; ;comment set 063 = address of 1st element of C

0124, 63, 66, 0

0122, 64, 0, 1 ;comment perform addition

5: 0324, 04, 62, 0
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0320, 64, 63, 0

0356, 64, 61, 0

0203, 127, 64, 5:

->4

1: 0121, 91, 0, 34

fault monitor ;comment DIMENSION FAULT

4: end

11.1

11.THE PERMANENT ROUTINES

In Section 5 (cf.\ Section~\ref{f0:5.1}), we decribed the input and output routines.

The permanent material also includes routines for the solution of linear

equations, the solution of systems of ordinary differential equations and

operations on matrices. Further routines may be added from time to

time.

LINEAR EQUATIONS

routine spec eqn solve(arrayname A,b, realname det)

This routine solves the equations

A(1,1)x(1) + A(1,2)x(2) +....+ A(1,n)x(n) = b(1)

A(2,1)x(1) + A(2,2)x(2) +....+ A(2,n)x(n) = b(2)

’ ’ ’

’ ’ ’

’ ’ ’

A(n,1)x(!) + A(n,2)x(2) +....+ A(n,m)x(n) = b(n)

(i.e. Ax = b), where the coefficients A(i,j) are stored in the

matrix A, and b(i) in the vector b. A is destroyed and the solution

is placed in b. If during the elimination process, the equations are

found to be linearly dependant, then ’det’ is set to zero and the

routine is left, with both A and b upset, otherwise ’det’ is set to

the determinant of A. Consequently ’det’ should be tested after each

call of the routine.

MATRIX ROUTINES

The matrix routines operate on two dimensional arrays(i.e. matrices

not vectors). The dimensions of the arrays are not required as parameter
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as the routines automatically find these from the declarations, and check

them for compatibility. The programmer may insert similar tests

in his own routines by means of the functions

integer fn spec dim (arrayname A)

integer fn spec bound (arrayname A, integer n)

The first gives the dimensionality of the array(1 for a vector, 2 for a

matrix etc.), and the second the nth bound (upper or lower) of the array

counting from left to right. For example, if A were declared by:-

array A(-5:+5, 1:p) where p = 10 then

dim(A) would have the value 2

bound(A,1) ’ ’ ’ ’ -5

bound(A,2) ’ ’ ’ ’ +5

bound(A,3) ’ ’ ’ ’ 1

bound(A,4) ’ ’ ’ ’ 10

11.2

The routines

routine spec unit (arrayname A)

routine spec null (arrayname A)

set A to be a unit matrix (checking that it is square) and a null matrix

respectively. The routines

routine spec matrix add (arrayname A,B,C)

routine spec matrix sub (arrayname A,B,C)

routine spec matrix copy (arrayname A,B)

set A to B+C, B-C and B respectively. Although the parameters are of

type arrayname, the operation of the routines is such that the same array

can be substituted for more than one of the parameters. For example:-

matrix add(A,A,A)
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doubles A. The same is not true of the following routines:-

routine spec matrix mult(arrayname A,B,C)

routine spec matrix mult’(arrayname A,B,C)

routine spec matrix trans (arrayname A,B)

These set A to B*C, B*C’ and B’ respectively where the ’ denotes transposition.

If it is required to, say, set a matrix to the product of itself and another

then the call

matrix mult(A,A,B)

will fail. It is necessary to declare another array, ’dummy’ say, and

then use ’matrix copy’ and’matrix mult’:-

matrix copy (dummy,A)

matrix mult(A,dummy,B)

Alternatively, a routine with parameters of type array may be defined which

calls the permanent routines :-

routine MATRIX MULT(arrayname A, array B,C)

matrix mult(A,B,C)

end

In this case a call of the form

MATRIX MULT(A,A,B) or even MATRIX MULT(A,A,A)

is possible.

11.3

The routines

routine spec matrix div(arrayname A,B, realname det)

routine spec invert(array name A,B, realname det)
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set A to inv(B) A and inv(B) respectively. In the process B is destroyed

and the value of its determinant placed in det. Should the matrix be

found to be singular, ’det’ is set to zero. Consequently ’det’ should be

tested after every call for these routines. If B is required at the end

of the routine, then the techniques described above should by used. The

function

real fn det (arrayname B)

sets ’det’ to the determinant of B and destroys B.

SOLUTION OF DIFFERENTIAL EQUATIONS

There are two routines available for advancing the solution of

a system of first order ordinary differential equations

dy(i)/dx = f(i)(x,y(1),y(2),....,y(n)) i=1,2,...,n

from x to x+h, using the Kutta-Merson fourth-order integration method.

The system is defined by means of an auxiliary routine, which must be

supplied by the user, of the form :-

routine spec aux(arrayname f, real x)

which must evaluate the derivatives f(i) in terms of y(1),y(2),..,y(n)

and x and then place them in f(1),f(2), ....., f(n).

The first routine

routine spec int step(arrayname y,real x,h, integer n c

realname e, routine aux)

advances the solution by a single step of length h of the Kutta-Merson process.

[2] Reference, L.FOX (Ed. ) Numerical Solution of Ordinary and Partial

Differential equations. Pergamon 1962, P.24.
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11.4

The parameters are :-

y name of a (real)array. On input y(1),y(2)...y(n) should

contain the solution at x. on output they will

contain the solution at x+h.

x the initial value of the independent variable

h the increment of the independent variable.

n the number of equations in the system.

e the name of a real variable, which on output will contain

an estimate of the maximum truncation error over the step.

aux the name of the routine which evaluates the derivatives at a

general point (see above).

The second routine

routine spec kutta merson(array name y,real x0,x1, realname e c

integer n,k, routine aux)

advances the solution, by means of a series of calls for ’intstep’, from

x0 to x1, keeping, if possible the estimate of the maximum truncation

error less than e. An initial step length of (x1-x0)/2&uarr;m where 2&uarr;(m+1)

>k &ge; 2&uarr;m, is taken. If over a step the local truncation error (given

by ’int step’) is greater than e, then the step length is halved; if

the error is less than .01e then the step length is doubled.

If three successive reductions in step length give no improvement in the

estimated truncation error, then e is replaced by twice the smallest error

achieved, and the integration process continued. The parameters are :-

y the name of a (real)array. On input y(1),y(2),..,. ,y(n)

should contain the solution at x0. On output they will

contain the solution at x1.

x0 the inital value of the independent variable.

x1 the final value of the independent variable.

e the name of a real variable, on input this should contain

the accuracy criterion. On output it will be unchanged if this

accuracy has been achieved ; if not, it will be replaced by a

more realistic value(see above).
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n the number of equations in the system

k an estimate of the number of steps required to cover the

range(see above)

aux the name of the routine which evaluates the derivatives

at a general point(see above).

A1.1

APPENDIX 1. PHRASE STRUCTURE NOTATION

In describing Atlas Autocode we use square brackets round an

entity to denote that it represents a class of entities and may be replaced

by any member of the class. We call an entity in square brackets a PHRASE.

For example we could define a decimal digit by

PHRASE[DIGIT] = 0,1,2,3,4,5,6,7,8,9

where the commas are interpreted as meaning ’or’. Thus there are ten

different things which can be called [DIGIT], and when we refer to [DIGIT]

elsewhere we mean that any of the ten will be legitimate.

We can then build up from this basis and describe, for example,

a signed digit as

PHRASE[SIGNED DIGIT] = +[DIGIT], -[DIGIT]

There are also places where a phrase may or may not appear and to

signify this a special phrase ’NIL’ may be written as the last alternative

in a phrase definition. For example the switch limits in a switch

declaration can be proceeded by a + or - sign if desired. (Absence of

a sign corresponds to +.) The relevant definition is

[NAME LIST]([&plusmn;’][N]:[&plusmn;’][N])

where PHRASE[&plusmn;’] = +,-,NIL

Thus -4:+4

-4: 4

1: 3

are examples of switch limits.

Alternatively we can use the special ? qualifier as follows.
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PHRASE[&plusmn;] = +, -

PHRASE[&plusmn;?] = [&plusmn;],NIL

The last is implicit and we can use [&plusmn;?] (e.g., in place of [&plusmn;’]) without

explicity giving the latter definition.

In the interest of efficiency however, it is preferable to

keep the depth of analysis as small as possible and for this reason we

use the former scheme.

The phrase structure notation can be used recursively, i.e., phrase

definitions may,directly or indirectly, use themselves. For example we

may define a ’list of names separated by commas’ by

PHRASE[NAME LIST] = [NAME][REST OF NAME LIST]

PHRASE[REST OF NAME LIST] = [,][NAME][REST OF NAME LIST],NIL

A1.2

[Since a ’,’ is used to separate the alternatives of a phrase definition

it cannot stand for itself like the other basic symbols. Instead we

must write [,]. Similarly [EOL] and [SP] are used to denote ’end of line’

and ’space’ in the source language.]

The qualifier * also indicates recursiveness and a [NAME LIST]

could be defined as

PHRASE[NAME LIST] = [NAME][,NAME*?]

PHRASE[,NAME] = [,][NAME]

the definitions

PHRASE[,NAME*?] = [,NAME*],NIL

PHRASE[,NAME*] = [,NAME][,NAME*],[,NAME]

being implicit. Again, however, for reasons of efficiency we use the former definition

Given the phrases of the language it is then possible to describe all the format

allowed in a program. For example, if we introduce the phrase[TYPE] as

PHRASE[TYPE] = integer, real, complex
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we can define the format for the scalar declarations as

FORMAT[SS] = [TYPE][NAME LIST][S]

The [SS] indicates that it is a source statement, which means it appears on

its own in an Autocode program.

In Atlas Autocode there is a further type or CLASS of format,

the unconditional instructions [UI], which have the special property that

they may be preceded by the conditional operators if [COND] then and

unless [COND] then.

A list of the phrases and formats of Atlas Autocode follows.

Note that some phrases ([S],[CONST],[NAME] and [TEXT]) are not formally defined.

These are defined by special built-in routines which we will not consider here,

but those interested may refer to the references given below.

A1.3

Finally we should point out that some of the definitions are not

completely rigid. For example, the arithmetic assignment statement is

defined as

FORMAT[UI] = [NAME][APP] = [EXPR]

In the routine which deals with this format, tests are made to ensure that

the [NAME][APP] does in fact describe a variable, and is not, for example,

a function.

References

[3]. Brooker,R.A., Morris,D. and Rohl,J.S. ’’Trees and Routines’’,

Computer Journal, Vol. 5. No. 1.

[4]. Brooker,R.A., MacCallum,I.R., Morris,D. and Rohl,J.S.

’’The Compiler Compiler’’ 3rd Annual Review of Automatic Programming

(ed. Goodman), Pergamon Press.

A1.4
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PHRASE [EXPR] = [&plusmn;’][EXPR’]

PHRASE [&plusmn;] = +, -

PHRASE [&plusmn;’] = +, -, NIL

PHRASE [EXPR’] = [OPERAND][OP][EXPR’],[OPERAND]

PHRASE [OPERAND] = [NAME][APP],[CONST],([EXPR]),|[EXPR]", i, BUT NOT if

PHRASE [APP] = ([EXPR-LIST]), NIL

PHRASE [EXPR-LIST] = [EXPR][REST OF EXPR-LIST]

PHRASE [REST OF EXPR-LIST]= [,][EXPR][REST OF EXPR-LIST], NIL

PHRASE [OP] = +, -, *, /, &uarr;, ., NIL

PHRASE [CR)[acc] = dsa, acc, ca, sac

PHRASE [A0] = acc +, acc-, acc*, acc/, acc|, addr, -, NIL

PHRASE [QUERY’] = ?, NIL

PHRASE (CR)[program] = programme, program

PHRASE [,’] = [,], NIL

PHRASE [iu] = if, unless

PHRASE [acc’] = acc, ca, sac

PHRASE [TYPE] = integer, real, complex

PHRASE [TYPE’] = integer, real, complex, NIL

PHRASE [NAME LIST] = [NAME][REST OF NAME LIST]

PHRASE [REST OF NAME LIST]=[,][NAME][REST OF NAME LIST], NIL

PHRASE [ARRAY LIST] = [NAME LIST]([BOUND PAIR LIST])[REST OF ARRAY LIST]

PHRASE [REST OF ARRAY LIST]=[,][NAME LIST]([BOUND PAIR LIST])[REST OF ARRAY LIST], NIL

PHRASE [BOUND PAIR LIST] = [BOUND PAIR][REST OF BOUND PAIR LIST]

PHRASE [REST OF BOUND PAIR LIST]=[,][BOUND PAIR][REST OF BOUND PAIR LIST], NIL

PHRASE [BOUND PAIR] = [EXPR] : [EXPR]

PHRASE [ARRAY FN LIST] = [NAME]([EXPR-LIST])[REST OF ARRAY FN LIST]

PHRASE [REST OF ARRAY FN LIST]=[,][NAME]([EXPR-LIST])[REST OF ARRAY FN LIST], NIL

PHRASE [SWITCH LIST] = [NAME LIST]([&plusmn;’][N]:[&plusmn;’][N])[REST OF SWITCH LIST]

PHRASE [REST OF SWITCH LIST]=[,][NAME LIST]([&plusmn;’][N]:[&plusmn;’][N])[REST OF SWITCH LIST], NIL

PHRASE [RT] = integer map, real map, complex map, integer fn,

real fn, complex fn, routine

PHRASE [FPP] = ([FP-LIST]), NIL

PHRASE [FP-LIST] = [FP][REST OF FP-LIST]

PHRASE [FP] = [FP-DELIMITER][NAME]

PHRASE [REST OF FP-LIST] = [FP][REST OF FP-LIST], NIL

PHRASE [FP-DELIMITER] = [,’][RT],[,’] integer array name, [,’] integer array,
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[,’] integer name, [,’] integer,

[,’][real’] array name, [,’][real’] array,

[,’] real name, [,’] real,

[,’] complex array name, [,’] complex array,

[,’] complex name, [,’] complex, [,’] addr, [,]

PHRASE [COND] = [SC] and [AND-C],[SC] or [OR-C],[SC]

PHRASE [AND-C] = [SC] and [AND-C], [SC]

PHRASE [OR-C] = [SC] or [OR-C],[SC]

PHRASE [SC] = [EXPR][COMP][EXPR][COMP][EXPR],

[EXPR][COMP][EXPR],([COND])

PHRASE [COMP] = =, &ne;, >, &le;, <, &ge;

A1.5

PHRASE [N-LIST] = [N][REST OF N-LIST]

PHRASE [REST OF N-LIST] = [,][N][REST OF N-LIST], NIL

PHRASE [ALPHA’] = , NIL

PHRASE [&plusmn; CONST’] = [&plusmn;][CONST], NIL

PHRASE [real’] = real, NIL

PHRASE [ADDRESS PART] = [&plusmn;’][CONST] + [N]:,[N]:,[&plusmn;’][CONST],[OW]

PHRASE [check] = routine trace, jump trace, queries, array bound check

PHRASE [FAULT LIST] = [N-LIST] -> [N][REST OF FAULT LIST]

PHRASE [REST OF FAULT LIST]=[,][N-LIST] -> [N][REST OF FAULT LIST], NIL

PHRASE [SIMPLE LABEL] = [N]:, BUT NOT [N]:[,]

PHRASE [RT’] = [RT],NIL

FORMAT CLASS[UI]

FORMAT [UI] = [NAME][APP] = [EXPR][QUERY’]

FORMAT [UI] = [NAME][APP]

FORMAT [UI] = ->[N]

FORMAT [UI] = ->[NAME]([EXPR])

FORMAT [UI] = caption [TEXT]

FORMAT [UI] = result = [EXPR]

FORMAT [UI] = return

FORMAT [UI] = stop

FORMAT [UI] = test [N-LIST]

FORMAT [UI] = [check]on

FORMAT [UI] = [check]off
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FORMAT [SS] = [UI][S]

FORMAT [SS] = [UI][iu][COND][S]

FORMAT [SS] = [iu][COND] then [UI][S]

FORMAT [SS] = cycle [NAME][APP] = [EXPR][,][EXPR][,][EXPR][S]

FORMAT [SS] = repeat [S]

FORMAT [SS] = [SIMPLE LABEL]

FORMAT [SS] = [N] case [COND]:

FORMAT [SS] = [NAME]([&plusmn;’][N]):

FORMAT [SS] = [TYPE][NAME LIST][S]

FORMAT [SS] = [TYPE’] array [ARRAY LIST][S]

FORMAT [SS] = [TYPE’] array fn [ARRAY FN LIST][S]

FORMAT [SS] = [RT’] spec [NAME][FPP][S]

FORMAT [SS] = [RT][NAME][FPP][S]

FORMAT [SS] = begin [S]

FORMAT [SS] = comment [TEXT][S]

FORMAT [SS] = end [S]

FORMAT [SS] = end of [program][S]

FORMAT [SS] = ignore queries [S]

FORMAT [SS] = production run [S]

FORMAT [SS] = page [TEXT][S]

FORMAT [SS] = switch [SWITCH LIST][S]

FORMAT [SS] = compile [check][S]

FORMAT [SS] = stop [check][S]

FORMAT [SS] = own [TYPE][NAME LIST][S]

FORMAT [SS] = own [TYPE’] array [ARRAY LIST][S]

FORMAT [SS] = fault [FAULT LIST][S]

FORMAT [SS] = [FD][,][N][,][N][,][ADDRESS PART][S]

FORMAT [SS] = [FD][,][N][,]-[,][ALPHA’][NAME][&plusmn;CONST’][S]

FORMAT [SS] = [&plusmn;’][CONST][S]

FORMAT [SS] = [ADDRESS PART][,][ADDRESS PART][S]

FORMAT [SS] = [NAME] = st [S]

FORMAT [SS] = st = [EXPR][S]

FORMAT [SS] = st = st [&plusmn;][EXPR’][S]

FORMAT [SS] = prepare to read perm [S]

FORMAT [SS] = define compiler

FORMAT [SS] = define master compiler
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FORMAT [SS] = define special compiler

FORMAT [SS] = advance 8 [S]

FORMAT [SS] = pl [NAME]([N][,][N][,][N])[S]

FORMAT [SS] = real exponentiation [s]

FORMAT [SS] = |[TEXT][S]

FORMAT [SS] = now compile from input [N][S]

FORMAT [SS] = upper case delimiters [S]

FORMAT [SS] = normal delimiters [S]

FORMAT [SS] = [TEXT][S]

A2.1

APPENDIX 2 INDEX OF STANDARD FUNCTIONS AND PERMANENT ROUTINES

All the functions and routines listed below are declared at level

0 and hence are permanently available unless the names are redeclared locally

by the user. The number in the right hand margin indicates the page on which

they are described more fully.

STANDARD MATHEMATICAL FUNCTIONS

integer fn spec intpt(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

integer fn spec int(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

integer fn spec parity(integer n) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec sin(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec cos(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec tan(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec log(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec exp(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec sqrt(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec arctan(real x,y) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec radius(real x,y) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec arcsin(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec arccos(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec fracpt(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec mod(real x) 2.5 (cf.\ Section~\ref{f0:2.5})

real fn spec re(complex z) 8.1 (cf.\ Section~\ref{f0:8.1})

real fn spec im(complex z) 8.1 (cf.\ Section~\ref{f0:8.1})

real fn spec mag(complex z) 8.1 (cf.\ Section~\ref{f0:8.1})
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real fn spec arg(complex z) 8.1 (cf.\ Section~\ref{f0:8.1})

complex fn spec csin(complex z) 8.1 (cf.\ Section~\ref{f0:8.1})

complex fn spec ccos(complex z) 8.1 (cf.\ Section~\ref{f0:8.1})

complex fn spec ctan(complex z) 8.1 (cf.\ Section~\ref{f0:8.1})

complex fn spec clog(complex z) 8.1 (cf.\ Section~\ref{f0:8.1})

complex fn spec cexp(complex z) 8.1 (cf.\ Section~\ref{f0:8.1})

complex fn spec csqrt(complex z) 8.1 (cf.\ Section~\ref{f0:8.1})

complex fn spec conj(complex z) 8.1 (cf.\ Section~\ref{f0:8.1})

STORAGE FUNCTIONS

integer fn spec addr(addr s) 9.1 (cf.\ Section~\ref{f0:9.1})

integer fn spec integer(integer s) 9.1 (cf.\ Section~\ref{f0:9.1})

real fn spec real(integer s) 9.1 (cf.\ Section~\ref{f0:9.1})

complex fn spec complex(integer s) 9.1 (cf.\ Section~\ref{f0:9.1})

MISCELLANEOUS FUNCTIONS

integer fn spec control no([ROUTINE NAME])

This gives the address of the first word of the routine in question

integer fn spec dim(arrayname A) 11.1 (cf.\ Section~\ref{f0:11.1})

integer fn spec bound(array name A,integer i) 11.1 (cf.\ Section~\ref{f0:11.1})

NOTE : The above classes of function cannot be substituted as an actual

parameter in a routine call, since they are implimented in a different way.

A2.2

INPUT ROUTINES

routine spec select input(integer n) 5.1 (cf.\ Section~\ref{f0:5.1})

routine spec read(addr s) 5.1 (cf.\ Section~\ref{f0:5.1})

routine spec read array(array name A) 5.2 (cf.\ Section~\ref{f0:5.2})

routine spec read symbol(integername i) 5.2 (cf.\ Section~\ref{f0:5.2})

integer fn spec next symbol 5.3 (cf.\ Section~\ref{f0:5.3})

routine spec skip symbol 5.3 (cf.\ Section~\ref{f0:5.3})

routine spec read sequence(addr s,integer p,integername n) 5.3 (cf.\ Section~\ref{f0:5.3})

routine spec read binary(integername i) 5.6 (cf.\ Section~\ref{f0:5.6})

OUTPUT ROUTINES

routine spec select output(integer n) 5.1 (cf.\ Section~\ref{f0:5.1})
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routine spec print(real x, integer m,n) 5.4 (cf.\ Section~\ref{f0:5.4})

routine spec print fl(real x, integer n) 5.4 (cf.\ Section~\ref{f0:5.4})

routine spec space 5.5 (cf.\ Section~\ref{f0:5.5})

routine spec spaces(integer n) 5.5 (cf.\ Section~\ref{f0:5.5})

routine spec newline 5.5 (cf.\ Section~\ref{f0:5.5})

routine spec newlines(integer n) 5.5 (cf.\ Section~\ref{f0:5.5})

routine spec tab 5.5 (cf.\ Section~\ref{f0:5.5})

routine spec newpage 5.5 (cf.\ Section~\ref{f0:5.5})

routine spec runout(integer n) 5.5 (cf.\ Section~\ref{f0:5.5})

routine spec print array(arrayname A, integer m,n) 5.5 (cf.\ Section~\ref{f0:5.5})

routine spec print array fl(arrayname A, integer m) 5.5 (cf.\ Section~\ref{f0:5.5})

routine spec print symbol(integer i) 5.5 (cf.\ Section~\ref{f0:5.5})

routine spec print complex(complex z,integer m,n) 8.5 (cf.\ Section~\ref{f0:8.5})

routine spec print complex fl(complex z,integer m) 8.5 (cf.\ Section~\ref{f0:8.5})

routine spec punch binary(integer n) 5.6 (cf.\ Section~\ref{f0:5.6})

MATRIX ROUTINES

routine spec null(arrayname A) A=0 11.2 (cf.\ Section~\ref{f0:11.2})

routine spec unit(arrayname A) A=I 11.2 (cf.\ Section~\ref{f0:11.2})

routine spec matrix add(arrayname A,B,C) A=B+C 11.2 (cf.\ Section~\ref{f0:11.2})

routine spec matrix sub(arrayname A,B,C) A=B-C 11.2 (cf.\ Section~\ref{f0:11.2})

routine spec matrix copy(arrayname A,B) A=B 11.2 (cf.\ Section~\ref{f0:11.2})

routine spec matrix mult(arrayname A,B,C) A=B*C 11.2 (cf.\ Section~\ref{f0:11.2})

routine spec matrix mult’(arrayname A,B,C) A=B*C’ 11.2 (cf.\ Section~\ref{f0:11.2})

routine spec matrix trans(arrayname A,B) A=B’ 11.2 (cf.\ Section~\ref{f0:11.2})

routine spec matrix div(arraynameA,B,realname det) A=inv(B)*A 11.3 (cf.\ Section~\ref{f0:11.3})

routine spec invert(arrayname A,B,realname det) A=inv(B) 11.3 (cf.\ Section~\ref{f0:11.3})

real fn spec det(arrayname B) result=|B| 11.3 (cf.\ Section~\ref{f0:11.3})

MISCELLANEOUS ROUTINES

routine spec eqn solve(arrayname A,b realname det) 11.1 (cf.\ Section~\ref{f0:11.1})

routine spec kutta merson(arrayname y,real x0,x1,realname e

integer n,k routine aux) 11.4 (cf.\ Section~\ref{f0:11.4})

routine spec intstep (arrayname y, real x,h, integer n

real name e, routine aux) 11.3 (cf.\ Section~\ref{f0:11.3})

A3.1
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APPENDIX 3 INDEX OF DELIMITERS

addr 9.1 (cf.\ Section~\ref{f0:9.1}) jump trace off 6.5 (cf.\ Section~\ref{f0:6.5})

and 2.9 (cf.\ Section~\ref{f0:2.9}) jump trace on 6.5 (cf.\ Section~\ref{f0:6.5})

array 2.4 (cf.\ Section~\ref{f0:2.4})

array fn 9.1 (cf.\ Section~\ref{f0:9.1}) now compile from input 7.4 (cf.\ Section~\ref{f0:7.4})

array bound check off 6.5 (cf.\ Section~\ref{f0:6.5}) normal delimiters 2.11 (cf.\ Section~\ref{f0:2.11})

array bound check on 6.5 (cf.\ Section~\ref{f0:6.5})

own 4.9 (cf.\ Section~\ref{f0:4.9})

begin 3.1 (cf.\ Section~\ref{f0:3.1}) or 2.9 (cf.\ Section~\ref{f0:2.9})

c 2.11 (cf.\ Section~\ref{f0:2.11}) queries off 6.5 (cf.\ Section~\ref{f0:6.5})

caption 5.6 (cf.\ Section~\ref{f0:5.6}) queries on 6.5 (cf.\ Section~\ref{f0:6.5})

case 2.9 (cf.\ Section~\ref{f0:2.9})

comment 2.11 (cf.\ Section~\ref{f0:2.11}) page 2.11 (cf.\ Section~\ref{f0:2.11})

compile array bound check 6.5 (cf.\ Section~\ref{f0:6.5}) production run 6.7 (cf.\ Section~\ref{f0:6.7})

compile jump trace 6.5 (cf.\ Section~\ref{f0:6.5})

compile queries 6.5 (cf.\ Section~\ref{f0:6.5}) real 2.3 (cf.\ Section~\ref{f0:2.3})

compile routine trace 6.5 (cf.\ Section~\ref{f0:6.5}) (real)array 2.4 (cf.\ Section~\ref{f0:2.4})

complex 8.1 (cf.\ Section~\ref{f0:8.1}) (real)array fn 9.1 (cf.\ Section~\ref{f0:9.1})

complex array 8.1 (cf.\ Section~\ref{f0:8.1}) (real)arrayname 4.1 (cf.\ Section~\ref{f0:4.1})

complex array fn 9.2 (cf.\ Section~\ref{f0:9.2}) real fn 4.5 (cf.\ Section~\ref{f0:4.5})

complex array name 8.4 (cf.\ Section~\ref{f0:8.4}) real fn spec 4.5 (cf.\ Section~\ref{f0:4.5})

complex fn 8.4 (cf.\ Section~\ref{f0:8.4}) real map 9.4 (cf.\ Section~\ref{f0:9.4})

complex fn spec 8.4 (cf.\ Section~\ref{f0:8.4}) real map spec 9.4 (cf.\ Section~\ref{f0:9.4})

complex map 9.4 (cf.\ Section~\ref{f0:9.4}) real name 4.1 (cf.\ Section~\ref{f0:4.1})

complex map spec 9.4 (cf.\ Section~\ref{f0:9.4}) repeat 2.10 (cf.\ Section~\ref{f0:2.10})

complex name 8.4 (cf.\ Section~\ref{f0:8.4}) return 4.1 (cf.\ Section~\ref{f0:4.1})

cycle 2.10 (cf.\ Section~\ref{f0:2.10}) result 4.5 (cf.\ Section~\ref{f0:4.5})

routine 4.1 (cf.\ Section~\ref{f0:4.1})

end 3.2 (cf.\ Section~\ref{f0:3.2}) routine spec 4.2 (cf.\ Section~\ref{f0:4.2})

end of program(me) 2.11 (cf.\ Section~\ref{f0:2.11}) routine trace off 6.5 (cf.\ Section~\ref{f0:6.5})

routine trace on 6.5 (cf.\ Section~\ref{f0:6.5})

fault 6.5 (cf.\ Section~\ref{f0:6.5})

spec 4.7 (cf.\ Section~\ref{f0:4.7})

i 8.2 (cf.\ Section~\ref{f0:8.2}) st 10.4 (cf.\ Section~\ref{f0:10.4})

if.....then 2.9 (cf.\ Section~\ref{f0:2.9}) stop 2.11 (cf.\ Section~\ref{f0:2.11})

.....if 2.9 (cf.\ Section~\ref{f0:2.9}) stop array bound check 6.5 (cf.\ Section~\ref{f0:6.5})
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integer 2.3 (cf.\ Section~\ref{f0:2.3}) stop jump trace 6.5 (cf.\ Section~\ref{f0:6.5})

integer array 2.4 (cf.\ Section~\ref{f0:2.4}) stop queries 6.5 (cf.\ Section~\ref{f0:6.5})

integer array fn 9.2 (cf.\ Section~\ref{f0:9.2}) stop routine trace 6.5 (cf.\ Section~\ref{f0:6.5})

integer array name 4.1 (cf.\ Section~\ref{f0:4.1}) switch 2.8 (cf.\ Section~\ref{f0:2.8})

integer fn 4.5 (cf.\ Section~\ref{f0:4.5})

integer fn spec 4.5 (cf.\ Section~\ref{f0:4.5}) test 2.9 (cf.\ Section~\ref{f0:2.9})

integer map 9.4 (cf.\ Section~\ref{f0:9.4})

integer map spec 9.4 (cf.\ Section~\ref{f0:9.4}) unless......then 2.9 (cf.\ Section~\ref{f0:2.9})

integer name 4.1 (cf.\ Section~\ref{f0:4.1}) ......unless 2.9 (cf.\ Section~\ref{f0:2.9})

upper case delimiters 2.11 (cf.\ Section~\ref{f0:2.11})

A4.1

APPENDIX 4 LIST OF MONITORED FAULTS

Fault monitoring is very dependent on the form of the compiler used.

We describe below the monitoring now given (1/3/65). It will probably change

with time but all changes will be designed to give the maximum information

COMPILING TIME FAULTS

1. Faults due to [NAME]’s not having been declared.

NAME[NAME]NOT SET

SWITCH[NAME]NOT SET

2. Faults, found in arithmetical instructions, which give special

indications but which are most often caused by [NAME]’s not being declared

at the current level. These special indications arise when the [NAME]’s appear

in the level above.

NAME[NAME]CANNOT APPEAR ON L.H.S.

SWITCH[NAME] IN EXPR

ROUTINE[NAME] IN EXPR

CALL FOR ADDR OF NON-VARIABLE

CALL FOR CONTROL NO OF NON-ROUTINE[NAME]

3. Arithmetic faults.

COMPLEX[NAME] IN EXPR

i IN EXPR

REAL[NAME] IN EXPR

REAL CONST IN INTEGER EXPR
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CALL FOR DIM OF NON-ARRAY NAME

CALL FOR BOUNDS OF NON-ARRAY NAME

NAME[NAME]HAS WRONG NUMBER OF PARAMETERS

(This may be due either to the wrong number of parameters appearing

or to the omission of a multiplication sign before a left bracket)

4. Faults found at the end of each block or routine.

LABEL [N] NOT SET There is a reference to label[N] or

CASE [N] NOT SET a case [N] which has not been set

NO LABELS SET

TOO FEW REPEATS cycle’s do not match repeat’s

5. Other faults.

AP FAULT An actual parameter fault:the call

sequence is not consistent with the

routine spec

FP FAULT A formal parameter fault: the routine

heading is not consistent with the

routine spec.

LABEL[N]SET TWICE Two or more instructions

CASE[N] SET TWICE have been given the same

SWITCH[NAME]SET TWICE label

A4.2

NAME[NAME]SET TWICE The name has been used for more than

one purpose at a given textual level

SWITCH[NAME]OUT OF RANGE A label[NAME]([N]) appears where [N]

lies outside the declared range of

the switch[NAME]

SWITCH[NAME]OUT OF RANGE A label[NAME]([N]) appears where [N]

lies outside the declared range of

the switch[NAME]

TOO MANY REPEATS Too many repeat’s in a block or routine
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[NAME] =ST NOT VALID The [NAME] is non-local

RESULT OUT OF CONTEXT A result = [EXPR] statement appears in a

routine other than a function or map

routine

NON-INTEGER CYCLE VARIABLE The controlled variable is not an integer

RUN TIME FAULTS

1. The following faults are monitored at run time. Normally they cause

the program to be terminated but it may be restarted by a fault instruction.

The relevant fault numbers appear in the tables below. For those numbers not

appearing, reference should be made to the ABL Manual\footnote{See URL http://www.bitsavers.org/pdf/ict.icl/atlas/CS348A.Atlas1.pgmMan.w67upd.pdf}.

DIV OVERFLOW Division by 0 or a non-standard number fault 1

EXP OVERFLOW Exponent overflow fault 2

SQRT -VE Sqrt of a negative argument fault 5

LOG -VE Log of a negative argument fault 6

INV TRIG FN OUT OF RANGE In inverse trig function e.g., fault 8

arcsin when the argument is not

within range (-1,+1)

INPUT ENDED Insufficient data so that a read fault 9

instruction effectively reads over

the end of the data tape

SPURIOUS CHARACTER IN DATA Spurious character (i.e. NOT fault 14

a decimal digit, point, sign,

or ) appears in data.

MORE THAN 3 SYMBOLS IN POSITION fault 15

A compound character formed from

more than 3 superimposed characters

has been encounted in textual data.

REAL QUANTITY INSTEAD OF INTEGER IN DATA fault 16

FAULT IN COMPLEX DATA the complex data is not punched fault 17

according to the conventions of P8.5 (cf.\ Section~\ref{f0:8.5})

A4.3

2. Faults which indicate programming errors but which always cause the

program to terminate
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INPUT NOT DEFINED An input or output channel has been selected

OUTPUT NOT DEFINED which is not mentioned in the Job Description

ALL TESTS FAIL All conditions in a test instruction fail

SWITCH VARIABLE NOT SET Refers to a multiway switch instruction

->[NAME]([EXPR])

where the value of [EXPR] is out of range

or corresponds to a missing label.

ARRAY DIMENSIONS NOT +VE Refers to a bound pair (L;U) where U-L+1&le;0.

NON-INTEGRAL CYCLE Refers to the check carried out immediately

prior to the execution of a cycle

CALLS FOR NON-EXISTENT ROUTINE Occurs when the routine and a specification

are not at the same level, or the former

is missing.

DIMENSION FAULT Occurs when a matrix routine is called

using parameters which are not matrices or

are incompatible.

ARRAY SUBSCRIPT OUT OF BOUNDS Occurs when compile array bound check is

used and the subscripts are not within

the right bounds.

3. Faults which can arise because of accessing array elements outside

the bounds given in the declaration e.g. A(10,3) when A had been declared

A(1:3,1:10). It the immediate cause is not obvious the compile array bound check

should be used. There are a number of indications such as

SV OPERAND

ILLEGAL BLOCK

A5.1

APPENDIX 5 NUMERICAL EQUIVALENTS OF BASIC AND COMPOUND SYMBOLS

The numerical equivalents for use in conjunction with the read symbol

and ’print symbol’ routines are given in the table overleaf. The table gives

the numerical equivalents of the basic symbols i.e. symbols comprising of a

single (upper or lower case) character.

Up to three basic symbols may be superimposed (by means of the

backspace facility) to form a compound symbol. For example:-

&ne; is formed from = _ /
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The numerical equivalent of a compound symbol is

a*2&uarr;14 + b*2&uarr;7 + c

where a,b,c are the numerical equivalents of the individual symbols, ordered

so that a>b>c. Thus the numerical equivalent is independent of the

order of punching the individual characters.

If only two symbols are used, the formula is

b*2&uarr;7 + c, b > c

Thus &ne; is equivalent to 86*2&uarr;14 + 28*2&uarr;7 + 15

and &ge; is equivalent to 86*2&uarr;7 + 27

A5.2

TABLE OF NUMERICAL EQUIVALENTS

0 32 ’ 64 96

1 33 A 65 space 97 a

2 34 B 66 98 b

3 35 C 67 99 c

4 newline 36 D 68 100 d

5 37 E 69 101 e

6 38 F 70 102 f

7 39 G 71 103 g

8 ( 40 H 72 104 h

9 ) 41 I 73 105 i

10 , 42 J 74 106 j

11 43 K 75 107 k

12 ? 44 L 76 108 l

13 & 45 M 77 109 m

14 * 46 N 78 110 n

15 / 47 O 79 : 111 o

16 0 48 P 70 112 p

17 1 49 Q 81 [ 113 q
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18 2 50 R 82 ] 114 r

19 3 51 S 83 115 s

20 4 52 T 84 116 t

21 5 53 U 85 117 u

22 6 54 V 86 _ (underline)118 v

23 7 55 W 87 | 119 w

24 8 56 X 88 120 x

25 9 57 Y 89 121 y

26 < 58 Z 90 122 z

27 > 59 91 123

28 = 60 92 &frac12; 124

29 + 61 93 125

30 - 62 94 126

31 . 63 95 127

B1.1

Atlas Autocode Reference Manual

Amendments for COMPILER AB

The major deviations of AB from the AA description are:

No complex. Ignore all references to same.

No test - case. Use a sequence of conditions.

No routine or jump tracing.

No distinction between real....and integer [EXPR]s.

No array or integer array formal parameters.

No maps, array fns, own variables.

New program map and stack print, see attached examples.

A detailed (but incomplete) list of textual alterations follows.

2.6 (cf.\ Section~\ref{f0:2.6}) after line 3

’’2.5a1b means 2.5*a1*b’

insert

’’c(b+1) means c*(b+1) if c is a scalar, but 2|a+b| is not

allowed for 2*|a+b|; * before | | may not be omitted.’’
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2.6 (cf.\ Section~\ref{f0:2.6}) NOTES 3/4: replace lines 8-15

’’In the formation ... must be positive.’’

by

’’a&sup2; or a&uarr;2 is compiled as a*a.

All other cases of a &uarr; n are distinguished at run

time by subroutine: if

(i) n = int (n) > 0, result = a*...*a

(ii) n = 0, result = 1

(iii) n = int (n) < 0, result = 1/a*...*a

(iv) n &ne; int (n) and a > 0, result = exp (n*log(a)) ’’

2.7 (cf.\ Section~\ref{f0:2.7}) ARITHMETIC ASSIGNMENTS: replace lines 10-13

’’but if the l.h.s. ... an integral value’’

by

’’but if the l.h.s. is integer and the r.h.s. turns out at

run time to be non-integral, it will be rounded to the

nearest integer. For example, if i is of type integer,

i = 2.7 will leave 3 in i.’’

2.9 (cf.\ Section~\ref{f0:2.9}) CONDITIONAL LABELS: delete this section.

2.9 (cf.\ Section~\ref{f0:2.9}) CONDITIONAL OPERATORS: replace line 11

’’[EXPR] ... ([COND])’’

by

’’[EXPR]o[EXPR] or ([COND])’’

4.3 (cf.\ Section~\ref{f0:4.3}) FORMAL PARAMETERS AND ACTUAL PARAMETERS: delete entry 4 of the table

’’integer array ... explained below)’’

4.5 (cf.\ Section~\ref{f0:4.5}) FUNCTION ROUTINES: insert after the end

’’There is no distinction between integer fn

and real fn, and both may be written fn.’’

4.9 (cf.\ Section~\ref{f0:4.9}) OWN VARIABLES: delete this section.

B1.2
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6.1 (cf.\ Section~\ref{f0:6.1})-6.3 (cf.\ Section~\ref{f0:6.3})

COMPILER / RUN TIME MONITORING: The examples on pp. 6.3 (cf.\ Section~\ref{f0:6.3}),6.1 (cf.\ Section~\ref{f0:6.1}),6.2 (cf.\ Section~\ref{f0:6.2})

should be replaced by those on pp. B1.3 (cf.\ Section~\ref{f0:B1.3}) - B1.4 in order. Note that

the first line of program is line 1.

6.5 (cf.\ Section~\ref{f0:6.5}) FAULT DIAGNOSIS: delete lines 7-8

’[check] on [check] off’’

6.6 (cf.\ Section~\ref{f0:6.6}) delete lines 3-23

’’The second pair ... entire program.’’

6.6 (cf.\ Section~\ref{f0:6.6}) replace line 25

’’[check] a ..’’

by

’’[check] = queries, array bound check’’

6.7 (cf.\ Section~\ref{f0:6.7}) ROUTINE TRACING: delete this section

6.7 (cf.\ Section~\ref{f0:6.7}) JUMP TRACING: delete this section

6.7 (cf.\ Section~\ref{f0:6.7}) OTHER CHECKING FACILITIES: insert after the end

’’the checks may be restored again by

normal run’’

6.7 (cf.\ Section~\ref{f0:6.7}) After the end of the chapter insert a new section

’’USE OF B-LINES AT COMPILE TIME

If the program fails in compiling B49 should

contain the current line number.

Various aspects of compiling are controlled by

digits of B2, and can be altered by compile time machine

instructions (see section 10.1a)*. Initially B2 = 0.

i | B2 & 2&uarr;i &ne; 0 | B2 & 2&uarr;i = 0 |

--|-------------------------|---------------------------|

2 | ignore queries | compile queries |

4 | production run | normal run |

7 | print compiled code | don’t print compiled code |

8 | don’t print program map | print program map |

9 | upper case delimiters | normal delimiters |

--------------------------------------------------------
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*Amendment on this page

8.1 (cf.\ Section~\ref{f0:8.1})-8.5 (cf.\ Section~\ref{f0:8.5})

COMPLEX ARITHMETIC: delete this chapter

9.1 (cf.\ Section~\ref{f0:9.1})-9.3 (cf.\ Section~\ref{f0:9.3})

ARRAY FUNCTIONS: delete this section

9.4 (cf.\ Section~\ref{f0:9.4}) STORE MAPPING ROUTINES: delete this section

10.5 (cf.\ Section~\ref{f0:10.5}) MACHINE CODE FORMATS; insert after subsection 1

’’1a. If such an instruction is followed by =, it is

obeyed immediately on compilation, not at run time.’’

APPENDICES: delete all inapplicable syntax definitions, and complex

library routine specs.

A1.4 (cf.\ Section~\ref{f0:A1.4}) line 13

’’PHRASE (CR) [program] = programme, program"

delete "programme’’

A2.1 (cf.\ Section~\ref{f0:A2.1}) MISCELLANEOUS FUNCTIONS: delete line 1

’’integer fn spec control no ([ROUTINE NAME])’’

A4.1 (cf.\ Section~\ref{f0:A4.1}) COMPILING TIME FAULTS subsection 3: delete lines 3-4

’’REAL [NAME] IN EXPR

REAL CONST IN INTEGER EXPR’’

B1.3

begin

real a, b, c, alpha, a1, a’

integer i, j, k, theta

array x (1:10)

routine spec test1 (real d, integer m)

routine spec test2 (real name e, integer name n, real fn test3)

real fn spec test3 (array name y)
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cycle k = 1, 1, 10

x(k) = k

repeat

k = 0

a = 1 ; alpha = 7.663 , a1 = 10.4 ; a’’ = 21.6

j = 2 ; theta = 123

test1 (2, 3)

routine test1 (real d, integer m)

real f

integer o

f = 1.5 ; o = 3

test2 (f, o, test3)

end

routine test2 (real name e, integer name n, realfn test3)

spec test3 (array name y)

real g

integer p

g = 6.7 ; p = 4

g = test3 (x)

end

real fn test3 (array name y)

real h

integer g

h = 6.43

cycle g = 1, 1, 10

h = sqrt(-2)

repeat

cycle g = 1, 1, 3

h = h + g

repeat

result = h

end

end of program
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***Z

COMPILER AB/3

1 BEGIN BLOCK NO = 91 ADDRESS =00115100

15 BEGIN ROUTINE<test1> NO = 92 ADDRESS =00116320

20 END ROUTINE<test1> OCCUPIES 37 LOCATIONS

21 BEGIN ROUTINE<test2> NO = 93 ADDRESS =00117000

27 END ROUTINE<test2> OCCUPIES 42 LOCATIONS

28 BEGIN REAL FN<test3> NO = 94 ADDRESS =00117530

39 END REAL FN<test3> OCCUPIES 79 LOCATIONS

40 END BLOCK OCCUPIES 244 LOCATIONS

PROGRAM ENTERED

A RUN TIME FAULT HAS OCCURRED AT

LINE 33 REAL FN <test3>

SQRT -VE

THE FOLLOWING BLOCKS AND/OR ROUTINES WERE EXECUTED

BLOCK 91

a= 1.0000 0 alpha= 7.6630 0 a1= 1.0400 1 a’’= 2.1600 1

j= 2 theta= 123

CYCLE <k> EXECUTED 10 TIMES

THE PROGRAM NEXT CALLS IN AT LINE 14

ROUTINE <test1>

f= 1.5000 0 o= 3

THE PROGRAM NEXT CALLS IN AT LINE 19

ROUTINE <test2>

g= 6.7000 0 p= 4

THE PROGRAM NEXT CALLS IN AT LINE 26

REAL FN <test3>
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h= 6.4300 0 g= 1

CYCLE <g> EXECUTED 0 TIMES

CYCLE <g> NOT ENTERED

THIS IS THE REAL FN IN WHICH THE FAULT OCCURRED

Last updated on 2007-Apr-12 23:45:00 by bfoley@compsoc.nuigalway.ie2

2See URL mailto:bfoley@compsoc.nuigalway.ie
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