Implementation of ALGOL 60 for the English Electric KDF9

By F. G. Duncan

Our decision to implement ALGOL 60 for the KDF9
was taken about 18 months ago. We saw in
ALGOL 60 the possibility of its use as an automatic
programming language for a wide range of wusers,
particularly those who had become accustomed to
working with earlier languages. On the one hand,
ALGOL 60 was quite obviously much more powerful
than any of the others, and on the other hand we wanted
to make a contribution towards the effort to establish
a language that could be universally understood and
implemented. From the first our ambition was to
implement the ALGOL 60 Report (Naur, ed., 1960)
as fully as we possibly could. Experience in writing
and using an ‘optimizing” compiler for DEUCE
(Duncan and Hawkins, 1959; Duncan and Huxtable,
1960) led to the desire to combine full ALGOL trans-
lation with the generation of “efficient” (or relatively
fast-operating) object programs. We realized, of course,
that this would entail considerable original work, and
planned to put about five man-years into the project.

This was at Kidsgrove, in the Data Processing and
Control Systems Division. There was also an interest
in ALGOL in the Atomic Power Division at Whetstone,
where, in fact, there were people who had produced
real, working, compilers. They were prepared to put
in one man-year or so on an independent ALGOL
compiler, to be made available before the more elaborate
Kidsgrove version. This would both help us to get
ALGOL established among users, and provide checks
on the development of the elaborate scheme. At first
we saw it as a very restricted ALGOL compiler; but
following some informal contacts with Professor van
Wijngaarden and Dr. Dijkstra of Amsterdam, whose
compiler (Dijkstra, 1961)* had by this time been com-
pleted, the Whetstone people were entertained magnifi-
cently at Amsterdam for a week, and returned able to
remove most of the restrictions they had previously
imposed.

This occasion is a suitable one for us to express
publicly our thanks to the Mathematisch Centrum,
Amsterdam, for their great generosity in making sure
that their work was fully understood by us; and also to
Dr. Naur’s group at Copenhagen, with whom I spent a
very useful week rather more than a year ago. Our
relations with both these groups have always been very
friendly.

Towards the end of last year, therefore, we found
ourselves with the possibility of having two compilers,
both able to deal with almost the whole generality of
the ALGOL Report. Naturally the question arose as
to whether one or other of these projects should be

* See also the paper on p. 125 of this issue.—Ed.

130

dropped. We decided to continue with both. Our
earlier experience and our discussions with a variety of
prospective users indicated that there would be a place
for each of two compilers with complementary
characteristics.

Compiler Characteristics
These characteristics, briefly, are as follows:

Whetstone. The aim is fast compiling. The operation
is what is sometimes called ‘‘one-pass-load-and-go.”
There is no particular attempt to obtain efficiency in
the object program. As in the case of the Elliott com-
piler described by Mr. Hoare,* compilation time is
much the same as paper-tape reading time. It is thought
that there will be about 3,000 words of instructions in
the compiler, and we hope that it will be available
during the autumn of 1962.

Kidsgrove. Compiling takes longer, but the time
should not be more than three minutes. There are
several passes through the program, aimed at recognizing
and giving special treatment to certain situations which
are amenable to ‘“optimization.” Examples of the
situations are simple ‘“‘for” statements making simple
use of the controlled variable, and exceptionally well-
behaved procedure declarations and their corresponding
calls. Situations which cannot clearly be recognized
as qualifying for optimization are given the full general
treatment—a “‘fail safe” method. An account of the
detection processes is given by Hawkins and Huxtable
(1962).

Now for the properties which the two compilers have
in common. First, both accept identical versions of
ALGOL 60. The restrictions are:

1. No integer labels.

2. A complete specification part must be provided
with each procedure declaration.

3. The declarator own is given the sense of Reformu-
lation 23 of ALGOL Bulletin 14, except that we do not
allow own arrays with ““‘dynamic” bounds.

4. Where a formal parameter is specified as a pro-
cedure, all the corresponding actual procedures must
have identical specifications. Second, both will be able
to accept the same paper-tape versions of the ALGOL
texts. Third, both will be able to deal with the same
procedures whose bodies are in KDF9 User Code.
This is an assembly code for the machine whose instruc-
tions are in one-to-one correspondence with those of
the computer itself. This point will be expanded later.

Thus there should be complete two-way compatibility.
Here one might mention an experimental compiler for

* See p. 127.



ALGOL 60 for the KDF9

integer k, p; real y, a, b; need a set of procedures for evaluating some frequently-
KDF 0.0 2 used functions, and the running speed of the ALGOL
9 4,0,0,2; versions, even when translated by an optimizing compiler,
ZERO; DUP; DUP; =VI1; =V2; might not be sufficiently close to that of the corresponding
2; SET 1; +; ="p”; machine-code versions. Input and output, and magnetic-
e T - 7 tape procedures must either themselves be in machine
P’k — ) > 7, .
code or make use of machine-code procedures. Some-

V2 VI va?s =b7s > Fr =V =V2; thing like the scheme we have proposed is necessary if
“piJ2; one wishes to get beyond the stage of “‘read one number,
1; V2;VI: ROUND F; =7 punch one number.”
’ As was mentioned earlier, machine-code procedures
ALGOL and ALGOL procedures can be included in the library.

It follows that the user of library procedures for input

. . and output need know nothing about the KDF9 User
The formal parameters, which are each enclosed in Code

quotation marks in the KDF9 text, are replaced auto-

matically by sequences of instructions for getting access system (Denison, 1962) makes use of a number of

;(;r’;hecarneé]tgresalqulzant;tnlets}.le eTxh;mSylseter\I/lla;lllr?ys\/gac“sri}., procedures \yhich have already chn cxprcs.sed in
Y s pic, ; ALGOL. It is probable that they will be rewritten in

spond to the local variable s of the Report version. In User Code for the sake of speed.

this version the sum is accumulated double length and

then rounded.

A matrix scheme proposed for use with our ALGOL

The reason for providing so fully for machine-code Acknowledgement
procedures is to simplify the introduction of features Acknowledgement is due to those colleagues whose
which it would otherwise be inconvenient or impossible work is described in these notes. Publication is by
to express within ALGOL. For example, one might permission of The English Electric Company Limited.
References

DeNisoN, S. J. M. (1962). A Proposed ALGOL 60 Matrix Scheme.” Paper to be presented to the IFIP Congress 62.

DuksTRA, E. W. (1961). “ALGOL 60 Translation,” ALGOL Bulletin, Supplement No. 10, Mathematisch Centrum, Amsterdam.

Duncan, F. G., and Hawkins, E. N. (1959). “‘Pseudo-Code Translation on Multi-level Storage Machines,” Proceedings of
ICIP, Paris, p. 144.

Duncan, F. G., and HuxtaBLE, D. H. R. (1960). “The DEUCE Alphacode Translator,” The Computer Journal, Vol. 3, p. 98.

The English Electric Co. Ltd. (1961). KDF9 Programming Manual.

GREEN, J. S. (1961). Introduction to ALGOL 60 Programming for the KDF9, The English Electric Co. Ltd.

Hawkins, E. N., and HuxTtaBLg, D. H. R. (1962). “A Multi-pass Translation Scheme for ALGOL 60, Annual Review
Automatic Programming, Vol. 3 (to be published).

NAUR, P. , ed. (1960). Report on the Algorithmic Language ALGOL 60, Regnecentralen, Copenhagen.

NAUR, P, ed. (1962). “ALGOL Bulletin, No. 14, Regnecentralen, Copenhagen.

RANDELL, B., and RusseLL, L. J. (1961 and 1962). Descriptions of work for DEUCE and KDF9 in internal memoranda of the
Atomic Power Division, The English Electric Co. Ltd.

Operating experience with FORTRAN
By A. E. Glennie

My purpose in this talk will be to describe the lessons The History of Our Use of FORTRAN
that I have learned from my own experience, and that

of my colleagues, in using FORTRAN during the last I think that you will be interested to hear how the use
three years. Some of the points I shall make are speci- of FORTRAN in the U.K.A.E.A. developed, as our
fically about the FORTRAN language itself; others are story is quite typical of the evolution of a laboratory’s
about automatic coding in general, and computer technique and practice. When, in 1958, we started our
operating systems incorporating compilers. 1 hope first experiments with FORTRAN on the IBM 704, we
that what 1 have to say about the latter aspects, as had had a long tradition of machine-language coding,
revealed in the use of FORTRAN, may be of interest but had also had some experience of automatic coding.

and value to those of you whose interests and preferences We were not, I think, prejudiced against automatic
may be in other languages—or in fields other than coding, yet we were somewhat disappointed with our
scientific computation. first experience with FORTRAN. This was the

132



