

ICL KDF9 Programming

The policV of International Computers limited
Is one of continuous development and improve
ment of its products and services, and the right
Is therefore reserved to alter the information
contained in this document without notice. ICl
makes every endeavour to ensure the accuracy
of the contents of this document but does not
accept lIabilitv for any error or omission. Anv
equipment or software performance figures and
times stated herein are those which ICl eKpecls
to be achieved in normal circumstances. Where
ever practicable, ICl is willing to verify upon
request the accuracy of any specific matter con
tained in this document_

With effect from 12th August 1968 the name of
English Electric Computers
has been changed to
International Computers limit .. d

Technical Publication 1002 mm (R)

@)International Computers Limited 1969

First Edition Januarv 1968

Second Edition October 1969

Issued bv Technical Publications Service
International Computers limited
Head Office: ICl House, Putney. london SW15
Produced bV I CL Printing Services
at K idsgrove, Staffordshire

CONTENTS

SECTION Page

l' Introduction
I-I The Basic System 1
1·2 Program 2
1-3 Hardware and Software 2
1-4 Programming Languages 2
1-5 Ability of Computer 3
1-6 Example of Usercode 3

2' Number Systems
2·1 Information Inside KDF 9 5
2- 2 Rules of Number Systems (Integers) 5
2-3 Rules of Number Systems (Fractions) 7

. 2·4 Conversion between Systems 8
2-5 Arithmetic Operations 10
2'6 Exercises 13

3' . Representation of Information
3-1 Main Store Memory of Bits 15
3'2 KDF 9 Character Code - paper tape 15
3'3 Referencing a particular digit 17
3·4 Kinds of Data 17
3-5 Number Representation 18
3-6 Fixed Point Numbers 19
3'7 Floating Point Numbers 22
3-8 Standard Floating Point 23
3·9 Number Precision 23
3'10 Examples 24
3'11 Exercises- 24

4' Breakdown of KDF 9 Word 28

6' Logical Structure
5-1 Main Store 31
5-2 Peripheral Device 32
5'3 Nesting Store 34
5-4 Arithmetic facilities 36
5-5 Q-store 36
6·6 Control Unit 37
6-7 Subroutine Jump Nesting Store 37

SECTION Page

6- Programs
6-1 USERCODE - Mnemonic Code 41
6-2 Example of Program 41
6-3 Library Extraction 45
6-4 Use of Main Store 46
6-5 Usercode CompiIer 48
6-6 Layout of Information in Main Store 48
6-7 Program Heading 50
6-8 Exercises 51

7- Constant Declarations
7-1 Definition of Constants 53
7-2 Compiler Actions 53
7-3 Numeric Constants 54
7-4 Binary Constants 56
7-5 Address Constants 57
7-6 Q-store Constants 58
7-7 Half-length Constants 59
7·8 P-Constants 60
7'9 The Instruction 'SET' 62
7·10 Exercises 65

8' Operations on Q-stores
8-1 One Q-store manipulative instructions 67
8-2 PartQ-store manipulative instruction 68
8·3 Two Q-store instructions 70
8·4 Q-store 0_ 70
8·5 Example 71
8·6 Exercise 71

9- Nesting Store Manipulations
9·1 Instructions 75
9-2 Example 76
9-3 Exercises 76

10- Main Store Operations
10-1 General Prine iples 79
10-2 Direct AddreSSing 79
10'3 Indirect AddreSSing 81
10-4 Jumps on Counters 82
10-5 Modified Address with Q facility 83
10-6 Examples 84
10-7 Exercises 85

SECTION Page

11- Basic Arithmetic Operations
11-1 Addition and Suuh'aclion 119
11-2 EXllmplcs 92
11-3 Logical Ollcrations 92
11-4 Radix Convcrsions 94
11·5 Exerciscs 98

12' Output Via OUTS
12·1 General Principlcs 101
12·2 OUT8 101
12'3 Dircctor's actions 102
12·4 Rules for Stream Numbers 102
12·5 Standard Plug Board 103
12·6 Punched Tape 103
12· 7 Examples 104
12'8 ExerCises lOS

13' Jumps.
13'1 .Jump Instructions 107
13'2 Examples 111
13'3 Exercises 111

14 introdUCtion to Library Extraction
14·1 General 113
14'2 Examples 113
14'3 Recommended format 114
14-4 Exercises 114

15- COlICept of Flowcharting.
15-1 General 117
15-2 Conventions 117
15-3 A Single Flowchart 120

is- Programming Exercise A
16·1 Example.problem 123
lS;2 Solution 124.
lS-3 Exercise 126

17- Input/Output Instructions
17-1 Basic Requirements 129
17·2 Devicc and TY)JEl Numbers 130
17-3 OUTS 130
17·4 Paper Tnpe 133
17·5 Purity and 8th Hole 135
17'S Fixed arid Variable length Dala 135
17'7 Paper Tape Instructions 1:J6
17'8 Paper Tape cheCking facilities 13 I!

SECTION Page

17-9 Protective Interlocks and Lockouts 139
17-10 On-line Typewriter 140
17-11 High Speed Printer 14~

17-13 Exercises 145

IS- Double and Half Length
IS-I NEXT facility 149
lS-2 Half -length felch and store 150
lS'3 Q.H.N. 151
lS-4 Examples 151
lS-5 Exercises 152

19- Multiplication and Division
19-1 Multiplic ation 153
19-2 Division 156
19-3 Examples 158
19·4 Exercises 159

20- Further Arithmetic Instruction
20-1 Shift Instructions 163
20'2 Accumulative Multiplication 165
20-3 Multiple Length Division 165
20·5 Single length Floating-Point 167
20-6 Numbers other thnn pure integers 170
20-7 Examples 170
20'S Exercises 171

21' Programming Exercise B 173

22- Magnetic Tape
22-1 Magnetic Tape Units 177
22'2 Examples 190
22-3 Exerciscs 191

23- Subroutines and S. J . N . S.
23·1 Functions of a Subroutine 193
23·2 Rules for writing subroutines 193
23'3 Control of S.J.N.S. 196
23-4 Examples 199
23-5 Exercises 199

24- Advance Control
24-1 Advance Control 201
24' 2 Short Loops 203
24':3 Exercises 205

SECTION Page

2&' Programming Exercise C 207

26' Director
26'1 Basic Functions 211
26·2 Entries to Director 212
26'3 Machinc Code Program Format 214
26·4 Typewritcr Interrupts 217
26'6 TYP(lwriter Log 219

27' US3rcode Compiler
27'1 Heading Sheet 221
27·2 Store Layout 224

28' Operating Instructions
28'1 Presentation 225
28'2 Format 225
28'3 Magnetic Tape schedulc 228
28'4 Operating Instructions 229
28'5 Restarts 229
28'6 Work tapes 229
28'7 Flexowriter 230
28'8 OUTS and OUT6 230
28'9 Paper Tape 230
28'10 OUT8 230
28'11 Timesharing and store limits 231
28'12 Time limits on programs 231.

29' . Software
29'1 NINEMASTER 233
29'2 Normal usage 233
29'3 Service Routine Library Manual 233
29·4 Exercise 233

30' IntroductiOn to Post
30'1 Principle 235
30'2 Postmaster Directives 235
30'3 Assembly Phase Messages 236
30'4 Correction Texts 237
30'5 Translation Phase Messages 240
30'6 Example 240

Appendix 1
Appendix 2
Appendix 3
Appendix 4

Appendix 5
Appendix 6
Appendix 7

Appendices
Answers
Review of elementary mathematics
Powers of Two
Instruction Cross Reference List

(with syllable counts)
Reference Tables, Failure Reports, etc.,
Other Peripheral Devices
Programming for TM 4 on KDF 9

Page
241
269
275
277

281
285
317

1- INTRODUCTION

1·1 The Basic System
All electronic digital computers consist of two main categories of equipment:

(a) The 'black boxes' which perform all the calculations, processing of data,
etc. and

(b) The' peripheral devices' via which the black boxes communicate with the
outside world.

KDF 9 is such a machine.

The black boxes are the Basic Computer, and unless peripheral devices exist
to feed in (input) commands and give out (output) results of calculations, etc.
It Is virtually useless to man.

INPUT, either as instructions or data, in the form of holes
In paper, etc. ____ ~_---.....,

Input Signals

BASIC COMPUTER

Output Signals

OUTPUT PERIPHERALS

Figure 1

OUTPUT, In u...
form of printed
results, etc.

Page 1

1-1-1 Peripheral Devices. Peripheral devices for input may be such
items as paper tape readers, electric typewriter (flexowriter), punched card
readers, magnetic tape units, etc .• which are the media via which we com
municate with the machine.

The output peripherals are such as high-speed-line-printers. and paper tape
punches.

1-2 Program
A sequence of instructions which the computer is to obey is known as a Program.

After a programmer has written a program it is prepared in a manner accep
table to one of the input peripherals. This device converts the program into
input signals which are fed to the computer and stored away in the 'memory' .
When all the instructions of the program have been stored away. and when
certain requisites have been carried out the computer fetches the instructions,
one at a time, from its memory and obeys them. Should the instructions, whilst
being obeyed, require some data from outside the computer, this will be asked
for and be expected to be received from one of the input peripherals. Eventually
the results are passed to an appropriate output device for printing, etc.

1- 3 The Hardware and Software
The physical ironwork and electronics of the basic computer and its peripheral
devices are known as the 'hardware' .

Those programs which enhance the ability of the hardware are called the
, software' .

The hardware by itself is like a car without a driver. It has ability to do certain
things but must be instructed (by software) what to do.

The main 'driver' of the hardware is that part of software known as the
''DIRECTOR'', which is a program that is fed into the machine at the beginning
of the day, and stays there governing the functioning of the computer. This
Director program will arrange for other programs to be received one at a
time into the computer and for thein to be run. On some versions of KDF 9
the Director program may be controlling four programs running concurrently.

1·4 Programming Languages
The computer is designed to only understand instructions Which are in a language
called 'Machine Code' (sometimes referred to as Binary Code). A program
of instructions in this code is not easily written, so another language has been
devised called USERCODE which is a mnemonic code, easily understood and
which has a one-to-one correspondence with Machine Code.

Software includes a program known as 'Compiler' which can take a Usercode
program and translate it into its eqUivalent Machine Code version. Hence
the programmer writes his program in Userc~dc, it is translated inside the
computer by Compiler, (it is then said to be 'compiled') and the computer is

Page 2

then able to obey the instructions of the translated version.

1· 5 Abllity of the Computer
A widely held misconception about computers is that they can 'think' like a
brain. This is not true. They obey instructions - admittedly much faster than
man can do - but that is all. These instructions, the program, must be precise,
and, if the results are to be of use, correct. Any logical error made by the
programmer, generally, will not be detected by the computer. Hence a com
puter is not an cJectronic brain, it is an extremely fast obeyer of instructions.

1·6 Example of a USERCODE Program Body
This is an example of a simple Usercode program, which causes two numbers
to be read in, added, and the result fed out. The reader is not expected to
understand it until he has learnt, among other things, the computer's logical
structure and information representation.

VO Q 0/AY27/AY27;
VI Q 0/ A Y92/ A Y92;
V2 Q 0/AY43/AY43;

YO; =QI; SET2; SET5; OUT; (OBTAINED USE OF READER);
VI; =Q2; DUP; =CI; =C2;
V2; =Q3; SETI; SET5; OUT; (OBTAINED USE OF PUNCH); =C3;
PIAQI; PARQI; (1ST NO. READ INTO Y27); JITR;
PIAQ2; PARQ2; (2ND NO. IN Y92); JITR;
Y27; Y92; +; (NOS. ADDED); ';Y43; (ANS IN Y43);
POAQ3; (Y43 PUNCHED);
1; Cl; SET6; OUT; C3; SET6; OUT; ZERO; OUT;
FINISH;

Page 3

NUMBER B'YBTEMS

I-I lldormatiOll Inside KDF 8
Information to be understood by KDF 9 has to be in binary patterns and on
occasions communication between the computer and programmer requires
the octal representation of these binary patterns. The following will explain
binary and octal number systems with reference to the more famlliar decimal
system.

2· 2 Rules of Number System (Integers)
When counting In the decimal system, only one of the digits 0 to 9 Is needed,
until it becomes necessary to specify the number "ten". We then put a 1 In
the next column to the left and reset the original digit from 9 to O. So to
represent "ten" we put 10, where 1 is a digit and 0 is a digit; notice that 10
is not one digit, it is a combination of two digits representing a number.

When ''nineteen'' is reached and the next number is required to be written
down there is no digit left to be put Into the right hand column so 0 is placed
there and "one" added to the tens column. This process continues until
"one-hundred" is required when the carry goes even further to the left.

There are two essential points to notice about this famillar process:

(al There could be as many zeros as we liked to the left of the number
(assuming it to be an integer) so that 0000027 is just the same as 27,

and

(b) A carry into the next most significant digit position occurs whenever the
given digit reaches the value "ten".

More formally it is said that any integer number n can be represented In the
decimal system by the equation:

r 0
n = +(dr x 10)+ +(do x 10)

where do, d1, etc. may be any of the digits 0 to 9.

Bear in mind that, for example, "sixteen" is the WORD used to represent the
number, whereas 16 is the representation of that number In the decimal system.
In facti 16 should be written as (1 x 101) + (6 x 100), but by convention we drop
the 101 etc.

1·1·1 Assume man had used a number system based on eight digits only
(0 to 7). Counting would be up to 7 and then the 'carry one' performed. This
would mean that to represent "eight" 10 would have to be written. Such a
system based on the digits 0 to 7 is called the Octal System. The octal l_
Is thus the same value as the decimal 8.

Page 5

Below a few decimal and octal numbers are listed for comparison.

Decimal Octal

6 6
7 7
8 10

14 16
15 17
16 20
19 23
20 24

Formally it is said that the number n can be represented in octal by:

r 0
n = ...•.•.••• +(dr X 8)+ +(do X 8)

where the d's may be any of the digits 0 to 7.

2·2·2 The base in the decimal system is "ten" and in octal "eight". This
base is called the RADIX of the system. In order to avoid confusion between
various systems the radix is written as a suffix in parenthesis after the number
unless it is abundantly clear which system is being used. Hence "fourteen"
would be 14(10) or 16(8)'

It is possible to have a number system with a radix of any number greater than
1 provided symbols are devised to represent digits greater than 9.

2·2·3 The Binary System is a number system with the Radix 2, the
permissible digits being 0 and 1.

The corresponding Binary equivalents of the decimal numbers 0 to 10 are:

Decimal Binary

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010

Formally it can be said that a binary number such as 1101001 represents:

6 5 432 1 0
(1 x 2)+(1 x 2)+(0 X 2)+(1 x 2)+(0 X 2)+(0 X 2)+(1 X 2)

Page 6

2·3 Rules for Number Systems (Fractions)
Extension of thc above section to cover fractions only requires the indices of
the Hadix to be continued to negative values.

The dccimal number 26' 905 in full should be written as

1 ° -1 -2 -3 (2 x 10)+(6 x 10)+(9 A 10)+(0 X 10)+(5 x 10).

Conventionally the 10' s arc dropped and to indicate where the indices of the
radix changc from positive to ncgative a point (in this system called the decimal
point) is inserted. Th(!re could be as many zeros as desired to the right of
the fraction so that the above number is also 0026·905000; the same rule
applies in othcr systcms with radices other than "ten".

2·3·1 In the octal system 15·\8) in full is

1 ° -1 (1 x 8)+(5 x 8)f(4 x 8) which is (1 x 8)+(5 x 1)+(4 x A)

or 8 + 5 + 1

N.B. The point in 15'4(8) is called the octal point.

2·3·2 Similarly in the binary system 1011'01(2) in MI is

(1 x 23)+(0 x 22)+(1 x 21)+(1 x 2°)+(0 x 2-1)+(1 x 2-2)

which is

(1 x 8)+(0 x 4)+(1 x 2)+(1 x 1)+(0 x 1)+(1 x !)
or 8 + 0 + 2 + 1 + ° + ~

or n· 25 (10)

N.B. The point in 1011'01(2) is called the binary point.

2·3·3 In decimal, 15·63472 is regarded as representing a number to 5
decimal places, which are lUlderstood to be 5 decimal fractional places. In
octal and binary the expressions are octal fractional places and binary
fractional places respectively.

2.3·4 It shoUld be exphasisL'<i that when we call 25, "twenty five", we
are justified in doing so because in everyday language it is lUlderstood that
the decimal system is being used. However, should be wish to talk of 31(8)
we must say, "three, one, octal", or "the octal representation of twenty
five".

Page 7

In the same way in binary, 101(2) should be referred to as "one. oh, one. binary".
or "the binary representation of five".

The reader should acquire the good habit of referring to numbers correctly; if
he doesn't he will find himself making such 'mistakes as wriling 1101 for
"eleven hundred and one" and then think of it as "thirteen" because he can see
only l' s and 0' s and immediately treat it as a binary number. '

2·4 CODversiem between Systems
Conversion of a number from its representation in one system to another has to
be performed in two stages: first the integer part is converted by one process
and then the fraction part by another. The two results are then written down
with the point inserted. The reason for this dual process is that integers have
positive radix indices whereas those for fractions are negative.

N . B. The reader is asked to bear in mind that this process is used by man
when converting on paper; in the computer the method is somewhat different.
Confusion between the two methods and their particular application could
unnecessarily increase the length of the program.

The Rules for Cemversiem (em paper)

1. Integers
(8) From Decimal to another system. Divide the decimal number by the radix
of the other system and keep a record of the remainder; divide the quotient
by the same radix recording the remainder and repeat this step until the
quotient is O.

The resulting remainders in reverse order are the digits of the number in the
new system from left to right.

Example: to convert 8632(10) to octal.

8 l8632
8 1.. 1079 r. 0
8 1 134 r. 7
8 1 16 r 6
8 1 2 r. 0

-0 r. 2

Hence 8632(10) is equivalent to 20670(8)

(b) From another system to Decimal. Multiply the most significant digit by
the radix from which the conversion is taking place;' add the result to the next
digit of the original number (0 is a digit) and again mulUplyby the liame radix;
continued oruy to the stage when the current result is added to the digit in the '
units column of the original.

Page 8

Example: to convert :1645(8) to decimal.

3 6 4 5

~ + 24 + 240 +1952
21 ao 244 1957

x 8 ~
2'10 1952

Hence 3645(8) is equivalent to 1957(10)

2. Fractions
(a) From Decimal to another system. Multiply the fraction by the radix of
the other system and keep a record of the resulting integral part; multiply
the resulting fractional part by the radix and repeat until the fraction becomes
zero or until sufficient precision is obtained. The resulting integral parts are
the digits of the number in the ncw system from left to right; the point must
then be inscrted to the left of the number.

Example: to convert 0068:159:175(10) tooetal.

0068:159:175
8

(0) 0546875000
__ 8

(4)' :175000
_8

(:1)0000

lIence 0 068:J59:J75 (10) is equivalent to 0 04:J (8)

(b) From another system to Decimal. Divide the least significant'digit by the
radiX, obtaining a fraction, insert the next digit of the original in front of this
resulting fraction and again divide; continue until all digits of the original
(including all zeros) have been brought down and divided.,

Example: to convert 00273(8) to Decimal.

8 / :J·OOOO
·375

8 / 7·375
·921875

8 / 2'921875
• 3652a<l:l75

Il / O· :1652:14:175
'0451l54296875

Hence' 027:1(8) is equivalent to 0045654296875
(10)

Page 9

N. B. The reader is not expected to learn these rules by heart.

2·4'2 Octal to Binary and vice versa. The group of three binary digits 111
represents "seven"; if a 1 is now added the group becomes 000 and a 1 appears
to the left.

Since the largest possible value for the group of three digits is seven, the group
can be looked upon as having a Radix of eight. There then must be some
relationship between these groups of three binary digits and the octal number
system.

By inspecting the follOWing examples it will be seen that every octal DIGIT can
be written down directly as its equivalent group of three binary digits. It
must be emphasised that the full group of three must appear so that '1(8) is
not· 001(2) and NOT '1(2)'

However, more significant integer zeros and least significant fraction zeros
may be omitted, e.g., '2(8) = '010(2) = -01(2)

Octal

5(8)

27

Binary

101(2)

010 111

·010 011

10111

·010011 ·23

12·36 001010 -011 110 = 1010'01111

In the last example, had it been required to convert 1010,01111(2) to octal, the
necessary 0 I s would have had to be inserted in order to complete the groups of
three before writing down the octal equivalent:

viz., 1010·01111 = 1 010 • 011 11
= 001010 • 011 110: 12'36(8)

Another point to remember is that when converting from binary to octal, the
grouping of threes must proceed from the binary point in either direction.

2' 5 Arithmetic Operations
The arithmetic operations used in decimal notation apply equally in the other
number systems provided it is remembered that the digits available for use
are restricted to one less than the radix being used, and that the multiplication
tables are ·different.

Page 10

Examples of the tables in octal are

x 3
x 6(8)
x 5(8)
x 10(8)

(8)

14
44(8)
43(8)

100(8)
(8)

There is no neL>d to learn the tables for the different systems; merely use the
normal tables and convert the partial answer of each operation performed. So
that, to multiply 35(8) by 4 (8) the procedure is:

3 5

6

4 4 x 5 ~ 20

20 (10) ~ 24 (8)

4 put down 4 and carry 2

4 x 3 = 12

12 (10) ~ 1\8)

14(8) + the 2(8) carried ~ 16(8)

put down 6 and carry 1

Answer
1

1 6 4 (8)

no more working so put down the 1 (8) carried

This is rather a tedious process, probably the reader would rather convert both
the multiplicands to decimal, obtain the product and then convert the answer
back. In practice programmers seldom find the need to perform this operation,
or in fact any of those in the next section but nevertheless he should know what
to do (-or better-where to look) should the need arise.

2·5·1 Examples of the four arithmetic rules are now given, using the
same equivalent numbcr in each group of three.

Decimal

Addition 22
(a) +21

4:1

(b) 23·5
22·25

+21·5
67·25

Octal

26
+25

53

27·4
26·2

~
103·2

Binary

10110
+10101
101011

10111· 1
10110·01

+10101·1
1000011·01

Page 11

Subtraction

(a)

(b)

Multiplication

(a)

(b)

24
-20

4

34·0
-15-5
18'5

Decimal

3
x4
12

25'50
x 12·25

25500 00
5100 00

510 00
127 50

31237 50
= 312- :1750

30
-24

4

42'0
-17-4

22-4

Octal

3
x4
14

31-4
x 14'2
3140 0
1460 0

63 0
4703

=470'3

Division (This 1s nasty at the best of times _)

Decimal

(a)

Page 12

O· 5454 ______ etc_

11/ 6'0

50
44"

60
55

50
44

6

Binary
0-100010: _____ etc_

1011/ 110·0
101 1

10
00
100
000
1000
0000
lliOO"o

1011 etc_

11000
-10100

100

100001·0
- 1110-1

10010-1

Binary

11
x 100
1100

11001'1
x 1100'01

110011000 00
11001100 00

1100 11
1001110000 11

= 100111000-011

Octal
0·4272. __ ••• etc_

13/ 6-0
5 4

40
26
120
115

30
26

4

2· 6 Exercises

1. What is the formal representation of:

(i) 157 (10)

(i1) 29 5 • (10)

(iii) 157
(8)

(iv) 35-4(8)

(v) 101(2)

(vi) 1101-01(2)

2. How would you represent "forty-five" in:

(i) decimal; (ii) octal; (iii) binary;

3. How would you represent "sixteen and a half" in:

(i) decimal; (ii) octal; (iii) binary;

4. Write down the binary equivalent of:

(i) 634- 23 (8)

(iii) 100· 001 (8)

6_ Write down the octal equivalent of:

(i) 101101>101(2)

(ii) 1101-1101 (2)

(iii) I-I (2)

. 6. Perform the following:

(i) 276 (8) + 167(8) + 32(8)

Page 13

(iv) 521· 63 (8) - 43· 67 (8)

7. Perform the following operations on the binary numbers given. (Hint;
in some oases, when the binary number has many digits it may save time to
convert to octal - calculate in octal - then convert back to binary.)

(i) 1011-1101 + 11·101 + 1·0001

(U) 1010111000011·00101 - 1001001·00010

(iii) 1011·1101 x 11·101

(iv) 10101·1 + 11·01 correct to 2 binary places.

Page 14

3· REPRESENTATION OF INFORMATION

3·1 Information Storage
To hold information, each storage location in the main "memory" is equipped
with 48 miniature mab'l1ctic cores and depending on the direction of magnetisation,
the computer will understand each core to represent either 0 or 1. Thus it
is possihle to hold a pattern of 48 binary digits, called' bits', at each address.
This pattern is called a 'word' .

For Bimplicity the contents of a 'word' can be represented on paper by sixteen
octal (ligits, one for each group of three binary digits. If for a moment we
assume that mab'l1ctisation of the cores ;mtielockwise means 0 and clockwise
me;ms 1, and assuming that each word has only 12 instead of 48 bits, then
the configuration:

"",_r-
000

.......... '" ,.......,~
000 000

3·2 KDF 9 Character Code

o (j(j' is understood to be:

~ (2) which may be written as:

2
(8)

It is now appropriate to discuss the KDF 9 Character Code, which is employed
for the typewriter :mel 8 hole paper tape. Most readers will know that the
Morse Code (md the teleprinter eode represent characters such as digits,
letters of the alphabet :Uld punctuation marks by dots and dashes from a
buzzer, or holes :md the absence of. holes in paper tape. The KDF 9 Code is
very similar.

A character is formed from 6 binary digits (bits), but it is more convenient
to look upon it as being formed from two octal digits. The number of different
patterns that may be constructed in this way from six bits is 64, viz., 0 to 63
inclusive. Since provision is made in the KDF 9 Charactcr Codc for a
generous selection of punctuation marks and other symbols, :md further since
both capital :md small letters are to be included, there are more than 64 items to
be represented. This means that many patterns in the code must be used twice
over. To distinb'Uish between the two possible me:mings of such a pattern,
'Case Shift' and 'Case Normal' characters arc employed. A pattern is
interpreted as being a character in case shift if the last' case' character
sensed was Case Shift, and in case normal if the last' case' character was
Case Normal. Note that those patterns with only one meaning have that meaning
in case shift or case normal.

Page 15

KDF 9 Character Code

Typewriter and
8-hole Paper
Tape Version Symbol

Octal Value Function Octal Value Normal Shifted

00 Space 40
01 41 A a
02 CR-LF 42 B b
03 43 C c
04 Tab 44 D d
05 45 E e
06 Case Shift 46 F f
07 Case Normal 47 G g

10 50 H h
11 51 I
12 52 J j
13 53 K k
14 54 L I
15 55 M m
16 56 N n

57 0 0

Symbol 60 P P

Normal Shifted 61 Q q

17 / 62 R r
20 0 63 S s
21 1 64 T
22 2 65 U u
23 3 < 66 V v
24 4 > 67 W w
25 5 70 X x
26 6 x 71 y Y
27 7 of 72 Z z
30 8 73
31 9 74
32 75
33 I. £ 76
34 77
35 +
36 *
37

Page 16

3- 2-1 Explanation of Code. The above code is used in connection with
paper tape. A sl ightly modified version applies for the high speed line printer.
Items left hlank such as 0 1(8)' 0:' (8) arc to be ignored.

Clt-I.F is the conventional short form of 'carringe return, line
fc"d' i. c., causing the follOWing character to be printed at the
b"ginning of the next line.

Tab is the same as 'tabulate' on a typewriter.

20 Shifted Is USed mainly in connection with' Algol' and refers to exponen-
(8) tiation.

:12
(fl)

To cause a character to be underlined it is only necessary to
precerle the character with :12 (8) .

The carriage of the flexowriter docs not move after underline is
typed.

:1:1 (8)Normal Is a suffix 10 below the line, and is on one character key.

7[) (8) Is the symbol called' End Message' .

It must be emphasised that 20(8) to :11(8) inclusive (in case normal) only refer
to the character form of the digits. If an address is to contain "thirty-eight",
then feeding in 2:1(8) followed by :10(8) would not be sufficient. This would only
have stored the character code of the digits :I and 8. The method of converting
2:1(R) , :10(8) into the NUMBEH "thirty-eight" will be dealt with under 'Radix
Convertion t •

3 -3 Reference to a particular digit in a KDF 9 word
The 48 binary digits in a KDF <;l word are numbered for reference purposes 00-
047, with 00 the most Significant (Le., the extreme left) digit.

The abbreviation Op is often used and interpreted to mean, according to con
text, either:

(i) The p th digit of a word,

or

(ii) A word containing a 1 in the pth position and 0 I S elsewhere.

Even though only the digits 00-047 exist, there is no reason why we should not
give p a value outside the range 0-47 and talk of, say, 049 or even D (-4), but
of course these digits will not exist in the word.

3-4 Data
In Chapter 1 we saw that the words of the computer may contain either
instructions to be performed or data relevant to the problem.

Page 17

Data may be of two kinds:

(i) Numbers which the computer works upon. and

(li) Characters of the Character Code.

It has already been shown how characters are stored; we shall now consider
the storage of NUMBERS.

3' 5 Number ReprssElDtatim
. Before we consider the representation of numbers in the computer we need to
be equipped with two new concepts of numbers.

<a) Any positive number may be represented by a fraction multiplied by an
integral power of nn integer.

e.g .•

+26·3
(10)

+0, 014(10)

26'3
100

26'3
32

x

x 5
2

·014 -6
. 015625 x 2 (see Appendix 3 for powers of 2)

(b) Any fraction may be represented by the integer 0 or -I, plus a positive
fraction.

e.g .• +'47(10)

-·47
(10)

o + ·47

-1 + ·53

By combining these two concepts we can represent any positive or negative
number 'x' by the equation:

e.g. ,

Page 18

x (-s+f) x RP where s is 0 for poSitive numbers, and

+26'3(10)

+26'3(10)

1 for negative numbers;
f is nny positive fraction;
p is a signed integer;
R is a positive integer.

Note that different values of
f and p may be used to
represent the same number.

+0·47
(10)

Note that the representation
of these two numbC!rs docs
not only vary in 's' but
necessarily also in • f' because:
-1 + :!I -0' 5:1

1

3' 5·1 Numbers in KDF 9. KO fo' 0 uses this equation to represent numbers,
.and siOl'e the computel' works in binary the value of R is always 2, so that the
equation becomes:

Provided the values of s, f and p, arc recorded, the value of x is uniquely
specified.

There arc two ways of recording s, f and p:

(a) In a system called' Fixed Point' - where:
s is held in ~O, ~Uld

f in D I-D4 7 in binary (the computer underst:Ulds that the point is between
DO and DI),

The programmer has to remcmber the valuc of each of the p' s for every word
containing a fixed point number,

(h) In a system callcd • Floating Point· - whcrc:
s Is hcld in DO,
I" in DO-D47 in binary (thc computer understand that the point is bclween

08 and D9), and
p Is held in D I-D8 in a kind of binary,

Since, in both systems, • s' reprcsents either a positive or negative number
by 0 or 1 respectively, and is held in DO, we call DO the Sign Digit.

To differentiate betwecn fixed and Floating-Point Number instructions the
latter are followed by thc lellcr F,

3' 6 Fixed Point Numbers
Thc computer understands the layout of a fix cd point numbcr to be:

DO Dl D2 D:I D4 D5 D46 D47

~.

-vc +vc

s

Page 19

Programmer's Notebook

± ve
p

If's, f and pare reeorded as sho'Ml above we say that' the number x is held
in the word to p integral places'. This means that the true value of x is
obtained when the point is taken from between DO and Dl and placed just
after Dp; this implies that the digits D1 to Dp are binary integral plaees,
(the Sign Digit, DO is not included).

In fact the programmer always (in fixed point numbers) considers the point
to be just after Dp.

Examples; If the word contains;

DO D1 D2 D3 D4 D5 D6 D7 DB D47

o o o o o 1 o o o o

and the programmer considers it is holding x to 5 integral places. (i. e. ,
p~5 and the binary point is just after D5) then the true value of x is
00001. 0000 =\2)'

If he considers that the number of integral places is :!, i. e., the binary point
is just after D3, then x is 000.01000 ... =. 01 (2)'

Again, if he considers it is -4 integral places, (i. e. , the point is just after
the imaginary D (-4» then x is '000000001 = 2-9 .

Making p very large (and hence f very small) for a particular value of x may
result in some of the least significant digits of f being too far to the right as
to be held in DI-D4 7.

Similarly making p too small will result in making f so large that it ceases to
be a pure fraction, this is not permissible. It is therefore necessary to
ensure that the programmer knows the limits that p can taken for any x.

The equations: x < 2P for positive x

Ixl 2P for negative x (where Ixl means the value of x
without the - sign)

will give the best value of p if the algebraieally minimum is seleeted.

Page 20

e. g., (I) the be3t (i. e., minimum) value of p for 28' 9 (10) is 5 because

2fl'9(10) is less than 2" (N.B. 24 " 16; 25 ,- :12; 26
c. (4)

(ii) the best value of p for -(j4 is 6 because

6
64 is less thM or equal to 2

(iii) ,Uld for +0' 26 it is -I because

-I -2 -I
0·26 is less th,Ul 2 (N.B. 2 '2,,; 2 '5)

If the value of p obtained this way is used, maximum precision will be obtained
(i. e., the smallest possible number of least sib'Ilifieant bits arc lost off the
right h,Uld end) .

A larger value of p eould be used (but not smaller) if it were certain that no
required digits would be lost off the right hMd end.

Regarding integers, where there arc never My bits to the right of the point,
there is no reason at all why p should not be 47; in fact by making it 47,
extremely large integel's eM be stored. It is left to the reader to satisfy
himself that the largest positive integer possible under these eireumstMceS
Is 247 -I, ,Uld the largest negative number is _247 .

When considering negative numbers 'Ul interesting point emerges. We know
that the computer reqUires (+x)+(-x) to equal zero. That this is the case
(using the s, f Md P equation) is shown as follows where x ~ • 05 (10)

+

·05 -1
+0,0" (-0+~)2

(10) v

o

'45 -1
(-I + -:[;) 2

(It is essen tial, of course, that the p for both the numbe rs to be added be the
same) .

How C:Ul we quil'kly say what the contents of a word are, haVing been give the
contents of a word holding a number of opposite sign?

Consider: +12(10) held to 4 integral places in a 6 bit word, added to

Page 21

-12(10) held to 4 integral places in a 6 hit word.

DO D1 02 0:1 04 D5

0 1 0 0 0 +12
+ 0 0 0 0 -12

,0 0 0 0 0 0 ,
1

There is no room in the 6 hit word to hold the 'extra' bit. so it is lost. which is
exactly what we want. making the sum in the 6 bit word equal to zero. The
reader is asked to verify for himself the following rule: to change the sign of
the contents of a word. merely change all the I' s into 0' s and vice versa
starting at the most significant (left hand) end UP TO BUT NOT INCLUDING
the least significant 1 bit.

Summary of Fixed Point.

(a) The computer considers a binary point to exist between 00 and 01, with
00 = -1 or 0, and Dl to 047 as a positive binary fraction.

(b) The programmer may consider the point to be anywhere, say after Op,
when he says the number is held to p integral places.

(c) For maximum precision p should have the algebraically smallest possible
value.

(d) When working with pure integers p should be 47.

(e) p may be any value. even outside the range 1 to 47. in which case the extra
o poSitions are assumed to exist.

3· 7 Floating Point Numbers
The computer understands the layout of a floating point number to be:

~ • .,.;0;;,.1:...-..;;0;;.,..2 _._._0_7 _O_B....J~r

-ve -:Jve •

D10 D47 047 ...

+ve
S p (binary point)

In floating point we can not talk about "Integral places". the point is ALWAYS
between OB and 09. The Similarity between 00 and 01-047 in fixed point, and
00 and 09-047 in floating point will be immediately obvious.

The difficulty arises when tring. in 01-0B. to represent p which may be positive
or negative. From our previous discussion on the representation of numbers we
saw that a sign digit is required. Unfortunately DO has already been used as the

Page 22

sign digit for x. The problem is OVl'rcome by:

(i) III to UK bclllil considl'l'ed as a positive binary integl'l' with thl' point aftl'l'
Uti, and

(Ii) wro bl'inll represenled by a I bit in 01 with 0' sin 1>2 to OIL

This means thal Dl lo Oil l'ontains 128(10) for p O. Any val'iation of p is added
to 01' sUbtracted from this value. So tfmt, for example, p 1 lIives 10000001,
aiICI p -I J.l'iv(.'s 01l1l11l.

I';xamph.·s of noaling point:

• 1 (jo 5 (J 0) where the ('OmpUll'r has bl.en told that p

00: 0

7 is relll'esl'll ted by:

01-D8
0!J-047

12H17· 1:15(10) 10000111(2)
00100001000 .. "(2)

-1(10) whcre the (·omputer underst:ul(ls p 0 is represl'Illed by:

00, 1

01-08 128tO 128(10) 10000000(2)
09-0470 allO's

Because p is indeterminale for x O. zero is represented in the computer by
00-047 bcing all 0' s, i.e., exactly as wlUt fixed point wro.

3° 8 Standard Floating Point
To simplify floating point operalions, Ute maehinc expects to find all nonling
numbers in a standard form. (There is one exception, which is the instruction
which converts non-st:mdard noaling numbers to standard form.)

The standard form is arranged 50 that every number is expressed as precisely
as possible, which implies that p and f are chosen so that p takes the algebraically
minimum possible vnlue.

3° 9 Numbers Generally
Whl'n the point in any binnry numbel' puttern is moved m places to the len the
effect is to divide the number by 2m • similarly moving it to the right multiplies
It by 2m.

In fixed point we have f represented by 47 bits so the precision to which we can
hold :my fixed point number is 1 in 247 (i.e., 1 in about 104Xl014).

:19
In noating point f has only :19 bits and the pl'l.'CIsion is 1 in 2 (i. c., 1 in aboul
50 5Xl011).

It may be questioned, "What is the advantnge of noaUng OVlOl' fixed point ?"
There are two :mswel'S, firstly the tedium of rl'membl'l'ing p is l'l'mOVl.'I.i h'om

the programmer and secondly whereas the largest integer (p-4 7). that can be held
fixed point is

247 (i.e .. l'4xI014) in floating point p can be as large as 127 giving the largest
integer as 2127 (Ll! .• I· 7Xl038).

3·10 Examples
Character Code
1. A word containing 0755066207:l741(8)' when transferred to the typewriter causes

Mr. A.

to be typed.

2. If 4WAN. u u is typed into a word it would eventually contain

2400524156370000(8)'

(The manuscript way to indicate a space is by u).

Fixed Point Numbers
1. The contents of a 12 bit word in octal when x is 111·01001 2 held to 5
integral places is ()

0722(8)'

As the point can be imaginpd to be after D5 then the contents of the word arc
000111 010010. which when grouped into threes and expressed in octal is 0722.
We do not show the octal point because the point is not contained in the word.

2. The least number of integral places to which -0' 124 (10) can be held in a
word is -3.

-3 -3
(-0'124) = 0'124.;2 (N.B.2 = 0'125)

Floating Point Numbers
1. 7.25(10) in floating point with p = 6 is held as

o 10000110 00011101000

2. 7,25(10) in STANDARD floating point is held as

o 10000011 111010000

3. -7'25(10) in STANDARD floating point is held as

1 10000011 000110000

3·11 Exercises
1. If the following sets of characters are read into a KDF 9 word. show the
contents of the word in octal. Case normal is assumed.

(a) ABC D 3 4 ; -

Page 24

(b) END uR U N u

(c) [1' Q"!~

2. If a KDF 9 word holding the following octal patterns is typed out, show the
characters typed in the correct format.

(a) 06 33 07 21 00 31 06 63

(b) 07 02 41 42 06 02 41 42

~) 07 32 56 32 57 00 75 00

(Spaces are to be indicated byu)

3. What is the largest positive integer which can be held fixed point in a word
of 95 bits? Answer need not be expressed in decimal.

4. Convert the following decimal numbers to the octal pattern which represents
the contents of a 12 bit word, holding them fixed point to the specified number
of integral places.

Number(10) Integral Places (10)

(a) 16 11

(b) -16 4

(c) -0'575 0

(d) 31·5 5

(e) -0·09375 -3

(f) 1865 as an integer

(g) 0·0001 with maximum precision

5. Write out in full the contents of a KDF 9 word, ending on the right with a
string of dots to represent continuation of zeros if necessary, when the word
contains the following decimal numbers in STANDARD FLOATING POINT.
(Hint: compare with question 4) .

(a) 16 (d) 31'5

(b) -16 (e) 0

(e) -0'575 (f) -0-09375

Page 25

'tI

i
~

THE

KDF 9

wom ~ rr~Y
HAS BE USED

48 AS

BITS

APPLICATIONS OF THE imP 9 WORD

Eight 6-Bit Alpha-Numeric
Characters

One 48-Bit Fixed-Point
Number

Two 24-Bit (Half length)
Fixed-Point Numbers

Half of a 96-Bit (Double
Length) Fixed-Point
Number

tt

One 48-Bit Floating
Point Number

Two 24-Bit (Half length)
floating-Point Numbers -

Half of a 96 - Bit (Double
length) floating-Point
Number

-"-

Three 16-Bit (Fixed
point) Integers

Six 8-Bit Instruction
Syllables

[<~)r 47 Bits (f)

LSign

I ~ 23 Bits (f) I(S) I 23 Bits (f) - . --]

Sign Upper Half (U) L Sign Lowe!" Half (L)

I~ 47 Bits

Sign

[0 I 47 Bits-- - -------~-l

-_.- ~ a-Bit 39-Bit
I (S)I (P) (Fraction) ..
~Sign

IS-Bit (Fraction) IS-Bit (Fraction)

(L') (L)

39-Bit (Fraction)

39-Bit (Fraction)

16 Bits 16 Bits 16 ~-]

8 Bits S Bits oS Bits S B'..ts 5 Bits 1:1 Bits

4' THE BREAKDOWN OF THE KDF 9 WORD

4·1
We arc now in a position to understand the various ways that the KDF 9 word
may be used.

(a) Characters Each word has 48 bits and since each character requires 2
octal digits (i.e.,. 6 bits) for its representation each word may be used to hold
8.characters of the character code. The reader will often hear the expressions
'left or right justified', which means that, if only, say, 3 characters are in a
word then they are placed to either the extreme left or right of that word
respectively, with the other 5 characters as spaces (Octal 00).

(b) Single-Length Fixed Point Number A fixed point number of 48 bits as
explained in Section 3, may be held in one word.

(0) 2-Half-Length Fixed Point Numbers Sometimes the problem in hand only
rcquires fixed point numbers where If I can easily be held in 23 bits or less.
Thus If' plus 00, making 24 bits, may be held in 00-023; a similar half length
number may bc hcld in 024-047. Note.that integers are stored to 23 integral
placcs for both the half length numbers.

(d) Oouble-Len;th Fixed Potnt Number When If I requires more than 47 bits,
two 48 bit words are used to hold one fixed point number. The sign Oigit is in
00 of the more significant word. 00 of the 2nd word is ALWAYS 0 and is
ignored. If' is considcred to be stored in 01-047 of word 1 and continued in
01-047 of word 2, so that a pure integer is held to 94 integral places.

(e) Single-Length Floattng Potnt Number A floating point number as explained
in Section :I may be held in onc word.

(f) 2-Half-Length Floating Potnt Numbers As in item (c), above, two floating
point numbers may bc hcld in onc word. The most significant half word contains
's' in 00 and 'p' in 01-08 as for a full length number; If I is contained in 09-023.
The least significant half word is laid out In exactly the same manner in 024-047.
The values which 'p' can assume are the same as in single length.

(g) Oouble-Length Floattng Point Number As in item (d), above, two words may
be used to hold one floating point number. The sign digit is 00 of word 1. 00
of the 2nd word is ALWAYS 0 and is ignored. 'p' is held in 01-08 of word l.
For engineering purposes p minus 39 is in 01-08 of word 2. If I is considered
to be started in 09-047 of word 1 and continued in 09-047 of word 2. If p is less
than :19, word 2 is made into all O'S.

Page 27

(h) 3-Thlrd Length Integers For spl!cial purposes, which will be explained
when we deal with Q-stores. it is necessry for a 48 bit word to be broken
down into three IS-bit unsigned integers.

(I) Instructions Every instruction· in KDF 9 is contained in a group of 8,
16 and 24 bits. In this context 8 bits are called a syllable, so that an instruc
tion takes the length of I, 2 or 3 syllables.

In general, instructions take the following number of syllables:-

Arithmetic operations 1 syllable.
Shifts, indirect fetches and stores 2 syllables.
Jumps, direct fetches and stores 3 syllables.

The number of syllables for any particular instruction will be found in
Appendix 4.

The bits of a syllable are grouped like this:

00 000 000
B1B2 B3B4B5 B6B7B8

When the computer has executed an instrUction, it looks at the next two bits
in the store.and finds B1 and B2 of the first syllable of the next instruction.

If they are 00 an instruction of 1 syllable is understood,
01 2 syllables "
10 or 11 " 3 syllables

For example, the instruction

II +j"

Is one syllable and stored as

00 101 110.

" -;"

is one syllable and stored as
00 011 110.

The computer senses the 00 and knows it need not look any further than this
syllable for the complete instruction. The instruction "~M "is two
syllables and stored as Q .

01 000 000 kkkk qqqq

Page 28

where the k's and q's are the binary of K and Q.

Any instruction of 2 or 3 syllables may overlap from one word into the next,
as for example, if five syllables of a word are already filled and the next
instruction has 2 syllables then one of these will go into the already partly
filled word and the second into the first syllable of the next word.

This code, which the computer uses for instructions is called KDF 9 MACHINE
(or Binary) CODE and is obtained from the programmer's USERCODE
instructions via the COMPILER program. Since this book only aims at teach
ing the USERCODE the binary form of instructions will not be explained
further. What has been said is sufficient for the programmer's needs.

Page 29

LOGICAL STRUCTURE

5'1 Main Store
The KDF 9 computer is centred around the main store, which is arranged in
modules or blocks of 4096 words, each word containing 48 bits. Up to eight
modules may be fitted to the machine, so that the maximum capacity .if main
store is 32768 words. As mentioned earlier, eaeh bit is in fact a miniature
magnetic core. Thin wires pass through these cores for purposcs to be ex
plained later.

As far as the programmer is concerned, only the sending of NEW information
to a main store word will change its contents. Mere 'reading' of the word
docs not destroy it. However, from an engineering pOint of view this is not
strictly true; reading a word clears it and immediately replaces it.

Imagine four cores, magnetiscd, that is, holding information, and with wires
passing through thcm as shown.

Pulse.

If a pulse is sent through the main wire, this will cause an the cores to become
magnetised (in effect) in the direction of the pulse thus clearing the information
stored. As magnetic changes only take place in the cores holding 'oncs' current
is induced to flow in the sense wires as shown. It is by detecting these currents
that the computer knows what each core held originally, i.e., it has 'read' the
word.

The principle of reading data from and writing data into main store as follows.

The computer fetches a copy of the word into a 'transit camp' called the Fetch
Buffer, by perforating six operations:

(a) The pulse is sent through the main wire.

(b) a current is induced in the sense wires.

(0) these are sent to the main store buffer, via a gate G which is closed.

(d) a copy of the word is sent to the fetch buffer from the main store buffer.
and the word is pulsed back into the main store from the main store buffer.

We are then left with the original word still in the main store and a copy in
the fetch buffer.

To store a word from the store buffer into the main store, the five steps above
are repeated but with the following variations.

(a) Gate G is not closed so that thc buffer is not affected by the steps (a), (b)
and (cl.

Page 31

(b) In step (d) instead of a transfer from buffer to fetch buffer there is a
transfer from the store buffer into the main store buffer.

MAIN STORE

PULSE __ ~ __ ~ __ ~~e-~~--

G

For those interested, it takes 6 microsecs, to perform the Mainstore-Main
store Buffer cycle, and 10 microsecs. to complete a fetch instruction.

5'1·1 The words in the main store are numbered from 0 onwards.
For an installation of maximum size, the words would be numbered 0 to
32767. In the sequel the reader will see that other address notations are
also used.

5' 2 Peripheral Devices
Information may be transferred into the KDF 9 system and results obtained
from the system by means of a variety of input/output devices connected to
the main store via sixteen peripheral buffers. Although up to four devices
may be connected to each of nine of these buffers and one device to each of
the other seven, a buffer can only control one of these devices at a particular
instant.

Once a transfer of information to or from main store is initiated, the buffer
can see it through to completion, while the main computer can continue with
different work. The peripheral devices may include one or more of each of
the following.

(a) Paper tape readers, reading characters punched in paper tape in 5-. 7-,
or 8-hole code, at a speed of 1,000 characters per second.

Page 32

(b) Paper tape punches, perforating 8-hole paper tape at a speed of 110
characters per second. These punches can be modified to punch 5-hole tape.

(c) Magnetic tape units capable of transferring information either to or from
the computer at a rate of 40,000 characters per second. (These are the 1081
units)

(d) Similar units transferring 77,900 characters per second. (These are the
1085 units)

(e) Punched card readers capable of reading 80 column cards at 600 cards
per minute.

(f) Card punches, punching cards at 300 cards per minute.

(g) A Magnetic drum capable of holding 40,000 KDF 9 words and transferring
information to or from the computer at a rate of 5 x 11/ characters. per second.

(h) Four Disc File units, each capable of holding 16 discs, which contain up
to 4 x lei' words/unit each. The two exchange rates are: 4· 8 x 104 and
9' 6 x 104 characters per second.

(1) A graph plotter allowing maximum plot size of 29~" wide on a continuous
roll 120 feet long.

(j) High Speed Line Printers, capable of printing lines of up to 160 characters
at 1000 lines per minute.

(k) An electric typewriter operating at 10 characters per second. Only one of
these may be fitted, which, among other things provides a complete operating
log.

Up to sixteen of the peripheral devices may operate at anyone time Protective
Interlocks inside the machine ensure that no two input/output operations can
proceed together if they refer to a common area of main store or to a common
device. This precaution prevents the occurrence of effects detrimental to the
program.

In a similar manner computation may proceed while an input/output operation
Is in progress, the system of protective interlocks again preventing any
possibility of interference between the two processes. Thus no information may
be processed inside the machine until the transfer bringing that information into
the machine from some input device has been completed.

To assist in the control of peripheral devices a one-bit register, called the
'Test Register', is used enabling the program to interrogate the various
devices as to their current state. The necessary information is transferred
to the test register from the buffer unit of the device concerned.

Page 33

5·3 The Nesting Store
The nesting store of the KDF 9 can hold up to sixteen 48-bit words. The modc
of operation of the ncsting store is completely different from that of thc main
store, since the storage of words is organised in a way analogous to that used
for bullets in the magazine of a sten gun. (See diagram). At thc beginning of
a new program the nesting store is empty. If a word, (labelled 'A' in the
diagram) is fetched from the main store it is placed in the top of the nesting
store, pushing the 'spring bottom' down one unit to make room. Further
words fetched from the main store follow the same pattern, each new arrival
pushing the rest down one place to make room for itself.

3B of Fig. 4 shows the state of the nesting store after eight words have been
fetched, and 3C after sixteen have been fetched. Note the numbering of the
cells of the nesting store, Nl to N16 on the diagram. Nl always contains the
last word fetched. As there is only one way out of the nesting store, (the top),
as with the sten gun, the words.must etnerge in exactly the reverse order to
that in which they were inserted. The wor~labelled 'A' will be the last out.

The rule for the nesting store is, therefore, "first in, laRt out", exccpt that
there are a few instructions deliberately designed to reart:mge items in the
nesting store.

Automatic tests inside the machine check that no more than sixteen words have
been fetched into the nesting store, and also that a program does not attempt
to- remove more words than have previously been put in. A contravention of
either of these restriction leads to the immediate failure of a program.

Page 34

3A 3B 3C

H Nl

G N2

F N3

E N4

N3

Nt)

B N7

N8

N9

NIO

<:Ci---- _ F NIl
~-

Nl2

Nl,3

Nl4

N15

Nl6

C)

Analogy of a Nesting Store

Figure 4.

Page 35

5· 4 Arithmetic Facilities
A comprehensive range of arithn)etic operations, shifting operations, logical
operations and conditional jump instructions is included in the order code. All
of these operate on the top cell or cells of the nesting store. Since the location
of the data for these operations is fixed. an operative instruction such as
" +; ", to quote a simple example, is quite sufficient to take the numbers stored
in cells Nl and N2, add them, and leave the result in Nt.

The general l'ule fol' lhe nesltng store during any of these operations is lhal lhe
operands are removed from the nesting store into the Arithmetic Unit, pro
cessed, and the result put back into the most accessible cell or cells. If thc
number of words required for the result is less than the number of words
occupied by the original operands, all the words in the less accessible cells
that were not involved in the operation will have moved up one or more places
to fill the now unused cells, a process known as 'nesting up'. Thus if Nl
contains .the number 2, N2 contains the number 5, and N3 contains the number
9, all other cells being unoccupied, the state of the nesting store after the
instruction" +; " would be Nl contains the number 7 (~5+2) N2 contains the
number 9 (previously in N3) 'N3 to N16 inclusive being now unoccupied.

It must be remembered at all times that any operand used in an arithmetic
instruction is removed from the nesting store. Should it be required for a
later operation a second copy of it must be made before the first is used. A
special instruction exists for this purpose.

Arithmetic instructions may be performed on either single or double-length
numbers and these numbers may be either fixed or floating-point. The float
ing-point arithmetic operations are performed by hardware functions and are
programmed in just the same way as their fixed-point counterparts, except
that a floating point lable must be added to each arithmetic instruction.

Floating-point instructions in general take longer to execute than the corre
sponding fixed-point instructions. However, their greater Simplicity from
the programmer's point of view can lead to considerable economies in
time taken to write a working program. For this reason the floating-point
facilities are very convenient for scientific calculations.

In all arithmetic operations there is the risk that a result may become too
large for the word to hold. Because of this possibility there is a one-bit
'Overflow Register' connected with the arithmetic unit which is automatically
set if sucll nn overflow occurs. When the overflow register is set the machine
docs not automatically stop. The programmer should include overflow register
test instructions at suitable points in his program together with appropriate
remedial routines.

5·5 The Q-Stores
Information can be transferred between the top call of the nesting stm'e and one
of a set of fifteen Q-stores numbered Ql to Q15, An extra store, QO, may be
used by the programmer, but for certain special reasons it always has the

Pag~' :11;

value zero. A fetch from QO puts the value zero in Nl, while any quantity
sent from Nl to QO is lost, the eontents of QO remaining identically zero.
Each of the remaining fifteen Q-stores consists of a 48-bit fast access reg
ister. These stores may be used for a variety of purposes during the running
of a program. These uses include temporary storage of data or results when
their presence in the nesting store would be inconvenient, and the storage of
information which is obtained by calculation within a program but which is
required for the execution of certain instructions. For this latter purpose
the Q-store is often required to hold three independent 16-bit binary integers.
When it is dividied into three parts in this way, the sections are known
respectively as:-

(a) The COUNTEH (Digits DO to 015)

(b) The INCItEMENT (Digits 016 to 031)

(c) The MODIFIER (Digits 032 to 047)

Instructions are available for operating on each of the three parts individually.
No operation on one part can affect either of the other two, i. e. , no "spill"
from one part into another is allowed.

5· 6 The Control Unit
The control unit exercises control over all parts of the machine. It extracts
instructions from the main store as they are required, examines each in turn,
and initiates the appropriate actions. The instructions are obeyed sequentially
in the same ordcr as they arc stored until a transfer-of~ontrol instruction
(i. e., a jump) is encountered, in which case the sequence is broken and resumed
at another point usually specified in the control transfer instruction itself.

5· 7 The Subroutine Jump Nesting Store
The subroutine jump nesting store, usually abbreviated to SJNS, is used
automatically by the machine to store the address to which control must event
ually return when a subroutine is about to be entered. Since second or higher
order subroutines are quite often needed and since the return address for the
last one entered is required first, a nesting store is ideal for this purpose
because the return addresses always emerge in the correct order.

Page 37

Ins truc tions
of Main
Program

More
Ins truc tions
of Main
Program

Instructions
of
Subroutine 1

More
Instructions
of
Subroutine 1

Instructions
of
Subroutine 2

DIAGRAM OF PROGRAM USING 2ND ORDER SUBROUTINES

Sixteen cells are provided in the SJNS but programmers are recommended to
restrict their use to fourteen cells, leaving the remaining two for use by certain
control programs normally in use on the machine. This arrangement allows a
programmer to use subroutines up to the fourteenth order and should present no
practical restrictions. Communication is provided between the top of the SJNS
and the ordinary nesting store so that extra addresses may be inserted or surplus
ones removed.

Each cell of the SJNS has 16 binary digits. of which the first three represent the
syllable number in the range 0 - 5. The remaining 13 hold a word address in the
range 0 - 8191.

Page 3S

All instruction addresses in KDF 9 are of similar layout, leading to a rule that
all instructions in a program must be within the first 8192 words allocated
to that program - the rest of the store can, of course, be used for data. The
size of the Director program does not reduce the limit of 8192 for other pro~
grams - when the instruction word address (13 bits) is extracted by the control
unit, it adds the necessary correction factor (depending on where the first word
ef·~he program has been placed) into a 15 *bit register, thus allowing any poss
ible address on the final result.
*215 = 32768, thus 15 bits can accommodate the integers 0 to 32727 which are
the main store word addresses of the maximum sized installation.

Page 39

6· PROGRAMS

6· 1 Mnemonic Significance Of USERCODE
Throughout the KDF 9 Usercode the individual instructions have been kept as
short as possible, whilst at the same time they have been given some mne
monic connection with the operation required. Where a conventional math
ematical symbol is available, it has been used to express the corresponding
instruction in one symbol which is recognisable to all. This is possible for
such instructions as 'multiply'. 'divide', etc. For the other instructions the
name of the operation, or an abbreviation of the name, has been used.
Wherever possible the letters I and 0 have been excluded from these mnemonic
forms, because of possible confusion with the figures 1 and O. Spaces occurr
ing between symbols are ignored by the Compiler program.

6· 2 Example of a KDF 9 USERCODE Program
The example program which follows will be referred to on occasions through
out this manual. The program, although correct, is not intended to be the
most efficient method to adopt; it is purely for the purpose of illustration,
and should be referred to whenever a new instruction in the sequel is en
countered.

Page 41

Specification:
(a) To read Crom paper tape up to 99 integers each less than a mi"llion; the

- data having been punchcd in the format:

(1) (07)a (02)g N N N N N N
where there must be 6 N's e.g., 27 would be
punched as (CN) (CRLF) 000027

(2) After the last integer is to be (CN) (CRLF)_

(b) To sum these integers.

(0) To print the sum on the line printer.

P
KEABODlOOUPl
SUM INTEGERS
ST300; TL3;
V23: YD 124; YP2:
PROGRAM;

VO Q O/AYDO/AYD99;
VI B 30;
V2 P [7DC]
V3 Q O/AYPO/AYP2:
V4 Q 100/1/0;
V5 B 171717171717;
V6 B 1212121212121212;
V7 B 2020202020202020;
V8 B 070275/17:
V9 B 0702/11;
VI0 P PARITY [2D I:
V11 P DATAFAIL:-
V12 P DATAEXSS:
Vl3 B 7777/11;
Vl4 B 404040404040;
Vl5 B 202020202020;

VO; dQI;SET2:SET5:0UT;~C1;PREQI;V4; =Q2;
ZERO; V8; V2; =YP2; VI: =YPO; PARQI: J101TR;
CI; SET6; OUT;

*1: . YDOM2Q; DUP; PERM; J2=; (CHECKS FOR LAST);PERM; DUP; V13;
AND; V9; -; J102JZ; (CHECKS ON CRLF); DUP: V14; AND:
JI02tZ; (CHECKS NO EXCESS 32); DUP; V15; AND; BITS;
SET6; -; JI02tZ; (CHECKS FOR EXCESS 16); J103C2Z:
(LEAVES IF DATA EXCESS); V5; AND; V6; REV; TOB; +; REV: J1;

101; ERASE; ERASE: VIO: C1; SET6; OUT;
8;4; =YP1; ZERO; DUP; =YP2; =YPO; J3;

Page 42

2; ERASE; ERASE; V6; REV; FRB; V7; OR; =YP1;
3' V3, SET8;OUT;ZERO;OUT;
102; ERASE; ERASE; ERASE; V11; J4;
103; ERASE; ERASE; ERASE; V12; J8;

FINISH; -

Explanation
The section between the initial P and PROGRAM; is called the Program
Heading, which is followed (up to FINISH;) by the Program Body. The items
VO~ etc., up to and including V15= ... ; are called the Constant declarations.

The instructions of the program commence at VO; =Q1 etc., and continue to
the end. Every instruction MUST be terminated with a semi-colon. Notice
that the "spaces" are ignored so that the two following instructions are the
samr'

V3 Q 0/AYPO/AYP3
V3 QO/AYPO/A YP3

6.2-1 Jumps Instructions are obeyed in strict sequence, until a "jump" in-
struction is encountered, when the sequence will be broken. Consider the instruction
JI01TH; this means jump to reference label 101 if the test register is set, otherwise
continuc in sequence.

6· 2- 2 Reference Labels It is necessary to indicate to the machine the
point to which jumps are to be made. The technique of counting so many
syllables backward or forward has not been considered because of its extreme
fallibility and hecause the count would have to be corrected whenever the pro
gram is adjusted. Instead, provision is made for any instruction to carry one,
or, if so desired, more than one reference label. All control transfers indicate
their point of resumption by naming the appropriate reference label. -These
reference labels are always numeric and may take values from 1 to 1,011
inclusive. The actual'order in which the labels appear in the final program is
immaterial. A given reference label may be used only once although any number
of control transfer instructions may indicate a given label as their point of
resumption. Any duplication of reference label will be detected by Compiler
and a failure indicated.

The reference label is written in front of the instruction to which it refers,
and is separated from it by a semi-colon. The semi-colon is the separator
normally used between all items in the User Code. One label may be pre
ceded by another, if desired, separated by a semi-colon. The first instruction
of a program is automatically given the label "0", but if the program requires
a jump to that point it must have a reference in the permissible range and the
jump instruction must refer to this latter label.

6· 2· 3 The Asterisk In certain circumstances it is necessary for the
programmer to ensure that a particular instruction starts at the first syllable
of a main store word. To avoid the necessity of counting the number of
syllables used in a program, with all the attendant risk of error esspecially if

Page 43

the program is later modified, the asterisk facility is provided. Compiler
ensures that any instruction preceded by an asterisk will be compiled as
the first instruction in a new word, any redundant spaces in the preceding
word being filled with dummy instructions. If such an instruction also
requires a label the asterisk should be written before the label, since Com
piler will then compile a more efficient program.

6· 2· 4 Manuscript and Typescript Conventions When writing User
Code programs it is recommended that a column be reserved on the left-hand
side of the sheet for the labels, for easy reference when it is required to trace
a control transfer instruction. Apart from this convention, User Code in
structions, separated one from the next by a semi-co!on, are written one after
the other along a line. A new line may be started at any time, but it Is
recommended that this be done to separate the various stages In the logical
structure of the program whenever possible. With this kind of layout the pro
gram may be more easily followed after it has been written. Punch operators
should be instructed to follow exactly the layout of the program in manuscript,
starting a new line as and when the manuscript version does. In this way the
'editing characteristic of the manuscript are preserved as carriage-returns
etc., In the papaer tape version, and if the program is later reprinted from
the tape the original format Is precisely reporduced.

To prevent confusion the programmer should write:

letter 0 as 0 number 0 as ;
I as I 1 as 1
Z as .g 2 as 2
S as S 5 as 5

7 as 7

Semi-colongs should clearly show the dot above the comma.

The programmer is advised to write his program in pencil on alternate lines -
erros should be neatly crossed through or completely erased. Insertions can be
made on the spare lines.

6· 2' 5 The Comment Facillty Comments may be Inserted at any stage
of a User Code program provided each occurs between the semi-colon termin
ating the previous instruction and the next instruction. These comments must
adhere to the following simple rules:-

(a) Each comment must be enclosed in round brackets.

(b) No comment may include a semi-colon or an End Message symbol.

(c) Any round bracket opened during the course of a comment must have the
corresponding clOSing bracket, this implies that comments inside comments
are allowed.

Page 44

(d) Each comment must terminate with the closing bracket followed by a
semi-colon.

(e) Although there is no limit to the length of comments, the programmer is
advised to keep them short, if possible using only one letter referring to full
comments kcpt in his notebook.

When Compiler detects an opening round bracket immediately following a
semi-colon, it recognises that it has found a comment. It then ceases com
piling while it scans the subsequent characters for opening and closing brack
ets. keeping a tally of them until the final closing bracket is identified. Then
it checks again for a semi-colon, the detection of which Signifies the end of the
comment. Compilation is then resumed at the next instruction. This facility
enables the course of a program to be described at the same time as it is
written, the comments appearing with the instructions on the same tape. Note
that these comments do not appear 0:1 the compiled Machine Code program tape.

6· 2· 6 Finish and Zero Out The Compiler program translates each
Usercode instruction into Machine code, one at a time, in strict sequence,
only ceasing when it senses FINISH;. The instructions of the machine code
version are NOT obeyed at this stage. Because the last instruction to be
obeyed may not be the last one written, the instructions ZERO; OUT; must be
writtcn to indicate the program's dynamic end.

After ZERO; OUT; in the Example program are two lines of instructions which
arc entered by "jumps" from somewhere above and which are left by jumping
to before ZERO; OUT; so that in all cases ZERO; OUT; will be the last instruc
tions to be obeyed.

6· 2· 7 Fetch and Store To fetch a copy of the word in address V 4
(say) into the top cell of the nesting store (\. e., into NI) the instruction is V 4;

To store the contents of NI into YP2 (say) the instruction is =YP2;

The reader is not expected to understand anything further of the coding of this
program at this stage.

6· 3 Library Extraction
KDF !l has a wealth of Software wherein are many self contained sets of in
structions. These are housed on a special magnetic tape called NINEMASTER,
and called Library Subroutines.

The programmer can save himself much time if he uses these routines instead
of working out his own. He will find their specifications in the Service Routine
Library Manual.

Page 45

Let us suppose that between the two instructions:

REV; and =YPl; a routine is required which is the library subroutine numbered
L59, all the programmer need to do is insert JSL59.; between the above in
structions, and just before FINISH; write

library L59;
(See later re EXIT from the subroutine back to the main program.)

This process, called Library Extraction, may, however, only be employed if
the program is to be compiled by the Compiler of the system called POST.

6- 4 Use Of The Main Store
When the machine is switched on, the first step is to store the Director program
in the Main Store, starting at main store word address O. The Director
program is written (filled out with dummy instructions if necessary) so that it
is an exact multiple of 32 words. Say it is 3200 words long and stored in main
store word addresses 0 to 3199; then the'rest of the main store, from 3200
onwards, is available for other programs' instructions and data.

There is more than one kind of Director, each of different sizes, used for spe
cial features of KDF 9, and the programmer is never certain which Director
is in use when his program is run. Hence he cannot refer to words by their
main store addresses when writing his program. To overcome this he writes
the program as a self contained unit and uses what is called "Program's
Absolute addressing". This system is a numbe'i, preceded by a letter E, so
that the first word of his program is EO, the second El and so on to the end of
his program and data areas.

After Director is fed into the computer and it has called for other programs, it
will place these programs in the main store and keep a note of where the EO of
each has been placed. Note that EO is always placed in a Main Store Word whose
address is an exact multiple of 32. The form of Director which only provides
for one program to be run at a time places the program fed in, such that its

. EO address is immediately after the last word of Director.

When the programs are run Director modifies the E addresses of the program
by adding the main store address of EO. So that if EO is in Main Store Word
3200 and the program refers to E8, the machine understands this to mean store
word address 3208.

6· 4-1 Main Store - Instructions and Data The first eight words (EO -
E7) of a program are used for organisational procedures and will be dealt with
later. From E 8· onwards are the constant declarations followed by the instruc
tions' the remaining words of the store are reserved for data.

Page 46

When beginning to write a program, the programmer will not know the exact
number of words his program will need, so he refers to the data storage
areas symbolically. It is then left to Compiler to determine the space nec'"
essary for the instructions, and to add a correction factor determined by the
number of instructions used, so convcrting thc symbolic addresses to absolute
addresses.

Normally the first word of the data storage area is referred to in User Code
by the symbolic form YO, the subsequent words being Yl, Y2, Y3, ete. For
some applications one set of data storage locations is not sufficient. User
Code, therefore, allows the additional forms YAO, YAl. ... , YBO ,
YCO , and so on up to Y7.0 ,. The forms YOO , YIO ... are not
allowed because of the risk of confusing the letters 0 and I with the numbers
o and 1. It is also recommended that the forms YU and YV should not be used,
since these are reserved for possible use in certain control and diagnostic
routines. There are. therefore, 22 of these alternative sets in addition to the
main Y set.

It is possible that an area of main store will be required as working space by a
large subroutine. For this purpose stores known as W-stores are provided,
numbered WO, WI, W2 etc. It should be remembered that these W -stores are
common to all subroutines and should not be used for the permanent storage
of information, since one subroutine may destroy the information left in the
W -stores by a previous subroutine.

It is often necessary for a program to require certain contants during the
execution of the program. User Code provides facnities for these, and a set
of V-stores, numbered V/J, VI, V2, etc., are available for this purpose.
Chapter 7 explains their use in greater detail.

Finally, it is repeated, that addresses of the program may also be referred to
"absolutely" by using. EO, El, etc.

For the purpose of this manual the form Y y will be used to represent anyone of
these possible forms, where y represents any integer. Wherever Y y is used
anyone of the alternative V v' Ee , Ww' YA , YB ... YZ is permiSSible. The
sizes of the integers e, w, yare limited on1y by lhe totar capacity of the main
store.

A point to bear in mind is that an address such as Y -49,. meaning the 49th word
before YO is valid provided that its equivalent E address is not negative. How
ever this method of negative addressing has no practical programming use unless
it is known what are the contents of the words involved.

Page 47

6·5 Operation
The KDF 9 User Code Compilers which exist will accept User Code programs
either from paper tape or from magnetic tape, and will then process them char
acter by character to generate the equivalent program in machine code instruc
tions. During the compilation process, the instructions are checked in turn for
agreement with the permissible User Code forms, translated into machine code,
and stored in consecutive locations of the main store.

If an error is found it is reported and the Compiler continues working through
the program, to check for further errors. Therefore at the end of one comp
ilation run, either the correct machine code program is produced or a complete
list of all invalid instructions is given. A second compilation run with a correc
ted input tape should result in a valid machine code program.

At the end of compilation the program in main store is either run or trans
ferred to punched paper tape or magnetic tape as required, when it will be in
the correct form for subsequent input by the Director program loading routines.
The Compiler will require the main program to appear at the beginning of the
input tape, preceded only by such declarations as are required. The main
program is followed by any subroutines it needs; but where the library of
standard subroutines is available on magnetic tape, these may be called for
automatically and will not need separate presentation on the input tape if the
POST system is being used.

The time taken to compile a User Code program depends on the number of
instructions involved, but a rough estimate would be about twice the time taken
to read the input tape, plus an allowance for the output. This output time is
negligible for magnetic tape, but will be very much longer should paper tape
output be required.

6· 6 Layout Of Information In Main Store
Imagine the main store words to be arranged across the page in lines of 32
words, each line starting with a main store word address which is exactly
divisible by 32. The main store will hold programs following the pattern below.

Page 48

main store
word
addresses

o : 1 : 2
1 : ----,---,---------------. . :

32 '33 ' ____ J ___ ____ _

1 ,
~~.L __

EO

DIRECTOR

I

lao: 31
, I _______________ L __ ~ ___ _

,
I
1 63 --------------_ _---

E31

~---IL...-....L ___ J----L...l(..l~u... ... '---------------------------,--"'- Xg!!
1 E62 E63

[
CONSTANT D~~-~~~~~~~~-;-J------------1Y.~~ y.~~

or your Program

i--------------------r-----------r----------~
1 1st word of :
1 Last V Store instructions 1 2nd J..-______________II.-________________ .L ____________ .J _____________ _

J [INSTRUCTIONS
of your Program

---------------------.-....................... --------r--------T--------T--------,
I 1 1

W/J I WI : YA/J : YAI
~--~~¥_--~--~~~~~uu~~-------.--.-----J--------J--------

1 ' YA2: YA3:YD/J;
_~ __ L ___ -L---~

________________________ .,. ___ ~ ___ DA_'J:A-------,---.--------------____ _
STORAGE I Last YZ Store 1

I :.
: y/J: Yl ~ Y2 :

AREA for ---.J. ______________________ ~

your program 1
1

: ____ .1. ________ _
------------------______ 1 1

1 , , :
,------------------------- ------------------------1 , , ,

EO - E 7 is placed immediately after Director.

VO is placed in E8.

Fig. 6.

The first Instruction is placed immediately after the last V -store.

, ,

There is then a gap of possibly up to 31 words, (ollowed by the W, YA, .•.. ,
YZ store, as required, each immediately following the other. The last of these
required stores is followed by YO, which will have an E address which is an
exact multiple of 32.

Page 49

s· 7 Program Heading
The format of the program heading depends on the method used to compile the
program. That given in the Example, Section 6· 2 is for the Paper Tape
Compiler.

P indicates that the program to be compiled will be found
on paper tape.

KEABCDIOOUPI is the identifier of the program. The first 2 characters
are assigned to establishments and the following 5 are at
the programmers' disposal. Characters 8 " 9 are known
as the amendment number This is automatically incre
mented by 1 everytime a modification is made to the pro
gram. U stands for Usercode, P for Program, and the
lal;t character indicates how many modules of main store
are required.

SUM INTEGERS This is the title given by the programmer.

-. indicates the end of the 'A' blocks (to be defined later).

ST300; indicates that the program's instructions and data do not
need more than 300 words, however the number is rounded
up to the next multiple of 32. In this example EO - E319
would be made available.

TL3; indicates that the program is to be terminated if more than
3 seconds of running time have elapsed.

V23;YD124;YP2; is an indication of the address of the last of all classes'
symbolic addresses used in the program. The address of
the last Y store must not be quoted. Only those required
in the program need be specified. The first request must
be the V stores, the next (if required) the W store, then
follow the special Y stores in any order.

Page 50

So that the !'Instructions" may start at the "Beginning of a
linc", (the reason for which will be explained when lock
outs are dealt with) it is wise to request the number of V
stores which will terminate at the end of a line e.g., V23,
V55, V87 etc. In our example the last V store used is VI5,
so we request V23; this will cause VI6 to V23 to be set at
zero. Similarly to end the gap ilt "the end of a line" the
W, YA-YZ stores requested should total it multiple of 32.
Note that by requesting, say YR31, we have in fact requested
YRO-YR31, i.e., 32 YR-store.

6· 8 Exercises - Set 1
1. If the main store word address of EO is 1024 and E512 Is called yo

(a) What is the absolute address of Y19?

(b) What is the main store word address of YO?

(0) What do we call E517?

(d) What is anothcr name for the word called Y32?

(e) What is the main store word address of Y32?

(f) If the word whose main store word address is 1236 is called YA5, what
is another name for YAO?

2. What is the absolute address of VO in any program?

3. If a program contained the two consecutive instructions: V 4; =EI2;
what would be thc effect?

4. What is thc maximum number of words which the "gap" after the instruc
tions may be, and why?

5. Is it ever possible for EO to be placed in the main store word address 1183?
Explain your answer.

Exercises - Set 2
1. If the main store word address of EO is 2048 and E544 is called YO, and if
Y35 contains the number x = 128(10) as a fixed pOint number held to 47 integral
places; what are the contents of the main store word address 2Li27. expressed in
octal?

2. What are the contents of the same main store word address specified in the
previous question if the contents were the same number held in "Standard Floating
Point"?
Express your answer in Octal.

Page 51

7· CONSTANT DECLARATIONS

7'1 Definition of Constants
Most of the words used in a program will contain different Information every
time the program is run. For example, such items as, the balances of accollllts,
the date, the value of a parameter in an equation, all will vary depending on
the data fed in. Those numbers, words, etc., which stay constant Indcpendent of
Input data, such as the word "Debit" and "Credit", the value "2" in the equation
Y = 2x, etc., are termcd "CONSTANTS".

Since time would be wasted if the binary patterns of these constants had to be
completely regenerated whenever the program is to be run, the concept of
CONSTANT DECLARATIONS is used. These are special Instructions in USER
CODE which cause the Constants to be converted into binary by COMPILER
when thc Uscrcode version of the program Is translated into Machine Code.

The actual instructions which introduce these constants into a program are of
two distinct kinds. The first kind puts each constant into a V -store, from which
it may be recalled any number of times during the operation of the program.
The declaration of a constant for the V -stores takes the form Vv= (the approp
riate quantity); The letter v represents the number of the particular V -store
Involved.

The second method of introducing constants is by use of the instruction "SET
(followcd by the constant);". This causes the constant to be placed Into the
first cell of the nesting store ready for immediate use. The constant used with
SET must not require more than 16 bits for its binary representation.

7· 2 Compiler Actions
A statement in the program heading informs Compiler how many V -store words
are to be reserved for that program. When each constant declaration is en
countered during the initial translation run, the corresponding binary pattern of
a V -store declaration is generated and stored away in the nominated V -store.
In the same way, all the other USERCODE instructions are converted into their
binary code form and stored in the Main store. When one of these instructions
is a SET instruction the constant required is converted into its I6-binary digit
form, which then forms part of the 24 bits (3 syllables) necessary to hold the
machine code version of the SET instruction. This is a pure instruction, and
Is placed in Its correct sequential pOSition In the instructions.

When all the instructions and constant declarations of the program have been
translated and placed In their appropriate positions in main store by compiler,
that entire area of store from EO to the last Instruction may be output, in its
binary form, on paper or magnetic tape etc. Thus when this record of the
machine code (binary) program is fed Into the machine at a later date, the stor
age area allocated to the program is filled with the constants and instructions In
their correct positions.

Page 53

It is to be noted that the constant declarations themselves, in the form of
Vv= etc., do not appear on the machine code tape. It is recommended that
the constant declarations should all be written in order at the beginning of
the U sercode program, immediately following the program heading. This
serves to emphasize that they are dealt with on compilation and not at run
time, and also makes it easier for the programmer to keep track of the values
he assigns to the individual V -stores while the program is in preparation.
As the programmer may not know what V -store constants the program will
require until he encounters their need whilst writing the program, he is
advised to write them on a separate sheet of paper, completing it as nec
essary.

Although V -stores are intended to hold CONSTANTS they may be used in
just the same way as the Y-stores, etc. However, once the original infor
mation in a V -store has been overwritten with other data, it can never be
retrieved. Consequently it is strongly recommended that a program should
never cause a V -store to be overwritten except in very special circumstances.

The various forms that a V -store constant declaration may take now follow:

7·3 Numeric Constants
A numeric constant for a V -store will normally be declared as a decimal
number. In the KDF 9 system a decimal number z is defined in the following
manner:-

z = (sign) I . F 10 (sign) E.

The individual parts of this expression have the following meanings:-

(sign) :- eithcr of the symbols + or -. If the sign is omitted in either of the
two positions where it may appear, a + sign is assumed.

I : - a decimal integer.

F :- A decimal point followed by a decimal fraction.

E :- An integer exponent giving the power of 10 by which the number must be
multiplied to obtain its true value.

The parts I and. F may be omitted individually or both together, when (sign) 10
(sign) E by itself is valid The exponent part 10 (sign) E if used, must be
written in full; otherwise it must be the parts that remain must be in the order
specified by the definition.

For example, the number 746 may be written in any of the following forms:-

746

Page 54

In fixed-point working it is necessary to be able to specify the number of
integral places required for each number. This may be done in the declaration
by following the number z by the symbols /p. where p is an integer indicating
the position of the binary point. It should be noted that for a fractional number
the position of the unit digit may be beyond the more significant end of the 48
bit word. in which case p is. given as a negative number. Again if the number
Is very large. p may be given a value greater than 47. so that the most sig
nificant 47 binary digits are stored. the remaining digits being lost.

As it is e"pected that integers will form a large proportion of the constants
used in many programs. their declaration has been specially simplified. If
the symb(lls /p are omitted the number z will be treated as an integer and
automatically assigned the appropriate number of integral places in the binary
scale. so that it will be stored at the less significant end of the 48-bit word
I. e .• p = 47. In double length fixed point the missing p is interpreted as /94.
In half length /23 is understood.

The four possible forms for the declaration of a numeric constant will now be
listed. The abbreviation Vv means the V -store constant numbered v. and z is
a decimal number as defined above.

Vv = zIp;

VvD zIp;

Vv Fz;

VvD Fz;

Examples

VO 28;

VI 49/6;

V2 74·6;

V3 1/0;

a single-length numeric constant z given to p
integral places.

a double-length numeric constant z given to p
integral places. (When working double-length
it is convenient to consider DI of word 2 to be
D48 of word 1 - not DO of word 2 which is ignored).

A Floating-point single-length numeric constant.
In this case the symbols /p are not necessary
since the number is automatically put into stand
ard floating form.

a double-length Floating-pointnumeric constant.
The symbols /p are omitted as in the single-length
case.

gives 28 to 47 integral places.

gives 49 fixed point to 6 integral places.

gives rounded integer result i. e .• 75 fixed
point to 47 integral places.

gives failure indication from Compiler because
I cannot be held to zero integral places.

Page 55

V4 '" -13/-3' 10 '

V8D 32·2/90;

VIOD -240;

gives +10-13 to -3 Integral places.

gives -0· 00063 in Standard Floating POint, with the
most significant word in V6 and the least significant
in V7.

gives 32· 2 fixed point with the POint after D43 of V9.
Note the V7 has not been used as a separate declaration;
it was used in the declaration V6D '" etc.

gives -240 fixed point with the point after D47 of Vl1;
I. e., it is held to 94 Integral places.

7· 4 Binary Constants
Any binary pattern may be expressed in constant form for use in a program, but
for economy of space In writing It out, the octal system is used In Its acwal
expression. Thus a maximum of 16 octal digits wlll express a 48 bit binary
pattern of any configuration. A binary constant is always expressed in integer
form. U fewer than 16 octal digits are required a space wlll automatically be
left at the more Significant end of the word in which It is stored. However,
shOuld the constant be required at the more significant end of the register, with
zeros at the less significant end, the declared octal number may be followed
by the symbols /p. The least significant digit expressed In the specification
w1ll then be put into pOSition p, all register pOSitions below this being left as
zeros. In general the integer p may be chosen to position the binary pattern
anywhere along the register.

The declaration of a binary constant takes the form:-

Vv '" Bt/p where B Is the label for a binary constant, t Is the binary Integer
expressed in the octal form, p is the digit pOSition of the least Significant
bit expressed

As before. if the symbols /p are omitted a value p = 47 is assumed. A fallure
will be reported if any non-zero bit Is lost off either end. Double length binary
constants are NOT allowed.

Examples

VO B4142434445464750; gives the character code of ABCDEFGH In YO.

VI B75/5; gives as the first character In VI, the remaining seven char-
acters will be spaces (Octal 00).

V2 = B30; gives seven spaces followed by the character code representation
of the digit 8.

Page 56

V3 = B21/41; give six spaces followed by the representation of the digit 1
followed by one space.

V4 B4/4; puts a 1 bit in D2 andO's elsewhere.

7·5 Address Constants
It is often necessary to know the actual address of the main store word at
which a particular quantity is stored. Since such addresses are not known
until the program is compiled, it is reasonable to expect Compiler to provide
this information where required. So in User Code programs the addresses of
main store words are written symbolically, the absolute addresses being sub
stituted by Computer on compilation. Each address obtained in this way de
fines both the word and the syllable number of the location, so both data and
instructions may be located precisely in the main store. If a data address is
called for, the syllable number given will always be zero since an item of
data is always stored starting at the beginning of a new word. An instruction
on the other hand may begin at any syllable of a word.

The form of the declaration for an address constant is

Vv = A Yy; where A is the label for an address constant.
Yy is the symbolic address of the word required; y being an integer

This will cause Vv to contain an integer identical to the absolute address.

The address Yy may be replaced in this declaration by any of the following
valid forms of address:-

(a) YAy. YBy YZy excluding YIy and YOy;

(b) Ww. Ee.

(c) Vv. VvPp. Vv"Ll;

(d) Rr. pp. Ll. RrPp. RrLl. (Explained in a later section)

The action of Compiler when dealing with an address constant is as follows.
The E address equivalent of the symbolic address is calculated and the int
eger obtained is placed. (held to 47 integral places). in the appropriate V
store.

When it is required to enter the address of either the upper or lower HALF
of a word the address is to be followed by U or L. Upon sensing the U or L.
Compiler doubles the E address-integer and then adds 1 if the lower (L) half
of the word is being referred to.

Page 57

Since the maximum store has 32768 words (0-32767) 16 bits are necessary to
hold the largest address-integer possible, viz., E32767.L.

To iilustrate by examples; the declarations

(a) VI AYI4;.

(b) V2 AYI4L;

(c) V3 AY14U;

(Ii) V4 AE32700L;

would give the following address integers, if YO is assumed to be coincident
with E640.

(a) 654 - calculated as 640 plus 14

(b). 1309 - calculated as 640 plus 14, then doubled,
and then 1 added for the L.

(c) 1308 - calculated as 640 plus 14, then doubled.

(Ii) 65401- calculated as 42700, then doubled and 1 added for the L.

Suitable instructions exist to enable the machine to comprehend the address
integer 1309 as either AE1309 or AE654L as is appropriate.

Any of the address constant forms in (a), (b) or (c) above may be mOdified
with U or L.

Addresses of the form in (Ii) overleaf, are all INSTRUCTION addresses and will
always appear in syllable/word number form, as required for the jump nestiJlg
store. .

7· 6 Q-store Constants
It has been mentioned in Para. 5· 5 that a Q-store will often hold three inde
pendent 16 bit signed integers, and that for this reason it may be referenced
as three integers c, i and m.c Is the counter, stored in bits 0 - 15;i is the
increment, stored in bits 16 - 31; and m is the modifier, stored in bits
32 - 47.

The declaration of a Q-store constant takes the form:-

Vv = Q c/i/m where Q IS the label for a Q-store constant.

c, i. and m, may represent signed integers limited to the range -32768 to
+32767. This range is the greatest that can be accommodated In 16 bits. The
integers stored in c. lor m may be used to represent signed integers as such,

Page 58

or an absolute word address in which case the 16 bits are taken as containing
an unsigned 16 bit address-integer.

A typical declaration wherei and m are to contain address integers is of
the form Vv = Qc/AYy/AYY2; where y and Y2 are Y-store addresses.
Notice the A preceding the address: this indicates that the position
holds the integer of the E address equivalent to the address quoted.
i.e., V7 = Q 2/5/AY9L; would in affect be V7 = Q2/5/S3; if E41 were
identical to Y9.

The valid forms of address given in par agraph 7·5 may be used in place of Yy.

Example
The declaration to set a Q type constant, with c=100, i=AYPO, m=AYP99, into
V9 .would be:

V9 = QI00/AYP~/AYP99;

Note that the Q-store constant does NOT put the constant into a Q-store, it
only arrangcs at this stage to put the word into V9.

7' 7 Half-Length Constants
Facilities exist on KOF 9 for half-length fetching and storing, and so pro
vision has bcen made for the setting of half -length constants. With one
exception, any kind of constant may be stored as a half-length constant. The
exccption is thc Q-store constant which does not lend itself to half-length man
ipulation. The procedure for setting a half -length constant in some V -store
word is, first, to specify the constant itself, remembering that it may not
exceed a length of 24 bits, and then to state whether it is to be stored in the
upper (more significant) or lower (less significant) half of the destination word.

The two forms for a half -length constant declaration are:-

VvU = (specificat.ion). This will be stored in thc upper half (DO - 023) of the
constant store v.

VvL ~ (spccification). This will be stored in the lower half (024 - 047) of
the constant store v.

In thcse two declarations, (specification) may takc any of the forms given in
paragraphs 7' 3,7' 4 or 7' 5 above.

Notice that for an integer, p rcquires to be 23 for either an upper or lower
half length dec lar ation.

Examplcs
V19U 15/23;

V19L FI6.1;

V20U B12121212;

Page 59

V20L

V21U

V21L

7'8

B75/5;

AY28;

AV19U;

P-CoDstants
A single binary constant declaration of paragraph 7· 4 only permits the setting
up of one word of store. When a longer string of characters is required it is
possible to set them Into the store words by one declaration known as a
P-Constant declaration, when it also is not necessary to convert the characters
to their octal form. There are however restrictions as indicated below:

The general format of a P-constant declaration is:

Vv/w = P (string of items);

Vv/w specifies the area of main store, from Vv to Vw both Inclusive, which Is
to contain the items In the string, counting 8 items per main store word.

P tells Compiler that what follows is to be compiled in Its octal representation.

(string of items) may be a group of any combination of the items:

(a> the printable characters A to Z
o to 9
/+-'10

(b) the space character (Octal 00) declared as *

(0) the format symbols P for page change
C for carriage return line feed
S for space
N for case normal
D for dummy (Octal 77)
T for tabulate

EM for end message (~
Q for semi colon (when used on flexowriter,

converts to "read")

The rules for the use of this constant declaration are:-

(a) v must not be greater than w.

(b) If only one word of store is required /w may be omitted.

(0) If Vv/w=P; and Vx=etc" are two declarations In a program and v ~ x ~ w
there will, in general, be a compilation failure report for the later one declared.

Page 60

(ei) The initial J>, before (string of items). which may also be p, l.s not
printl'd or counted.

(e) There is no limino th('.numbcr of items in the string provided the
arca spcciIied by Vv/w can. accommodate them.

(f) If thcre arc less. items.in the string than could be accommodated in the
area, the items quoted are placed at the most significant end oC that area and
the l'cmaining area filled out with spaces (Octal 00). .

(g) Any pl'intablc LETTER may be declared in case normal or case shiIt
but wiJl be printed in case normal. Formal symbols may be declared in
case normal or case shift.

(h) The format symbols,. either Single or in groups, must be enclosed in
underline square brackets l 1.

(1). If x items of a parlieularformatsymbol s,N,n orT are required
consecutively, the symbol may be preceded by x (decimal) instead of spec
iCying the symbol x lime.s.

(k) For eventual printing [)Ul'poses it may be necessary to arrange to have
the f.::>rmat· symbol P or C (if used) as the last items' in a V store word. This
can be achieved by preceding them with the approllriatenumber Of D's.

(1) Land 1 are NOT counted as items for the pUrpose of filling main store.

(m) Groups of printable characters, spaee characters and format symbols
may be repeated and be . in any ordcr .

(n) CRLF, non -printable characters. space and tab used on the f1exowriter
to punehthe declaration arc ignored.

(0) When the space character.(·) is declared it should NOT be enclosed in
the underlined square brackets. Dummy. octal 77. is ignored when sent
(or pl'inting on Lhe linc prh\ter or typewriter.

Examples:
V17/19 P KDF 9lS1 prog·lsl COURSE l4 del;

V20/24

V25

VO/I

V 26/ll8

V30

P18TH*JAN *1965. lc5sJ

to lcl 26TH/FEB./1965. lPl;

p parity ldcJ;

P lNCjMlcl PROGRAM lDENT;

P*M*TAPE*WANTED*lQl;

P lPEMJ;

Page 61

V31/37

V38/54

P LN3C35Sj HEADING L2CEMj;

P L 16Sj HEHE*IS*TIIE*TITLE. L CEMJ;

If the contents of V20 to V24. as set up in the second example, were sent
to be printed on the high specd line printer. the output would be:-

18TH JAN. 1965
TO

26TH/FEB. /1965.

7·9 The Instruction 'SET'
There exists a completely different method of introducing integer constants
into a program, by use of the instruction SET. SET is a three-syllable
instruction which is obeyed by the machine every time it is encountered during
the operation of a program, It allows a signed fixed point integer of not more
than 16 bits to be stored actually amongst the instruction syllables. When
SET is obeyed the specified integer constant is transferred to the tol' cell of
the nesting store ready for immediate use. The 16 bits are stored in digit
positions 32 - 47 of Nl, i.e., in the least significant 16 bits. The bit in digit
position 32, the sign digit, is copied into the remaining 32 bits 0 -31 to give a
true single-length signed constant in Nl.

The valid forms for the instruction SET are:-

(a) SET n, where n is a signed decimal integer in the range -32768 to
+32767.

(b) SET Bt, where t is an octal integer not greater than (177777)8'

(c) SET AYy, to give the true address of Yy.

In form (c) the symbolic address Yy may be replaced by any of the valid
forms listed in Paragraph 6 above

It should be noted that at run time the 16 bits generated by the SET instruction
are placed right justified in Nl and that digit positions 0 - 31 will all contain I',
if the most Significant of the 16 bits is a 1. It is the programmer's respon
sibility to take account of this.

The programmer may not specify the digit position of the least bit by the use
of /P' when using the set instruction.

The use of the instruction SET for small constants is more economical in
space than the corresponding procedure using V -store declarations, since
each constant declaration requires a main store word in which to store the
constant required. Further, each time a declared constant is required, for usp
a 'fetch' instruction has to be written in the program. In contrast, SET is
a single instruction which requires no main store space in which to store the

Page 62

constant, apart from the 3 syllable SET instruction Itself.

Examples:
SET 2: causes the integer +2 to be put into Nl, fixed pOint, held to

47 integral places.

SET~32700;

SETI0000;

SET B30;

SET AYD9U;

7·10 Exercises - SET 1
1. Compare and Contrast the action of Compiler when compiling the
declaration V7=4; and the instruction SET 4;

2. Declare the following constants starting with VO and using as many
succeeding V -stores as necessary.

(a) Declare 2· 3 x 105 as a single length fixed point number held to 18 in
tcgral places.

(b) Declare 17 x 1020 as a double-length fixed point integer.

(c) Declare 32· 2 as a double-length floating point number.

3. Declare a binary constant so that the word V3 will hold the characters:

(case normal) (CR-LF)

4. Declare constants starting at V7 so that they will contain the addresses
of:

(a) W3,

(b) V16,

(0) reference 12,

(ei) the less si.gnifioant half of Y AO.

(e) If YAO is E 64 what will the V -store contain incase (iv) above.

5. Which of the following Q-store constallt declarations are valid? Why
are the others not valid? (By "VALID" is meant, will compiler accept it?)

Page 63

(a) VO ~ Q 16/- 1/0;

(b) VI Q 0/0/32768;

(e) V2 - Q 1/1/1,024;

(d) V3 Q AYOU/AYAOL/AY-92:

(e) V4 Q 70/AYO/AYO;

(f) V5 AR4/ AH4U/ AH4L;

.6. Which of the following acclarations arc valid? Why arc the others
not valia?

(a) YOU D18/7;

(b) VOL AYOU;

(e) VlU - 17·5/4;

(a)VIL

(e) V2U

(f)V2L

AR7;

B1717171717;

AV2L;

.7; Which of the' following de~larationsarc valia? Why are th" othen;
not valid?

(a) VO PPDCJ;

(b) Vl/2 PPDCJ;

(e) V3 P DATEL*j 3Ha;

(d) V15/6 P ABCL12SCj;

(e) V17 P 32768*l2SJ;.

(f) V18/19 : P KD F9*Prog *Ex,lDCj;

(g) If V18 ana V19 arc sent to the line printer, what woula be printed?

8. Which of the following instruetionsare valid? Why are the others not
valia?

Page 64

(8) SETt1754:

(b) SET - 163;

(C) SET A Y64U;

(cJ) SET AR9;

(e) SET BI6/5;

(f) SET 1710+2;

(g) SET Y40;

(b) SET0772;

9. What is a more straight forward way of setting V4 up with a 1 bit in
D2 and O's elsewhere. than that given in the examples of paragraph 7· 41

7-10 Exercises - SET 2
1. Declare a constant for V3/4 to hold toth. as a double-length fixed
point number with maximum precision.

2. Declare a binary constant so that the word V5 will hold the binary
number

+ 1101011 0011011 to 7 integral places.

3. Write a SET instruction to cause 3· 5 to be put into N1 as a fixed point
number held to 43 integral places.

Page 65

a· OPERATIONS IN Q-8TORES

8'1 General Manipulative Instructions for one Q tore
It has been stated that a Q-store may be regarded either as a slllgle 48-bit word
or alternatively as a group of three lIldependent 16-bit signed lIltegers. Separate
instructions exist in the KDF 9 Usercode for deallllg with Q-stores as a whole,
or for dealing with one or more of the individual parts of a Q-store. These are
summarised here in tabular form 111 such a way as to lIldicate the relations between
the different forms available.

Qq; Cq; Iq; Mq; Fetch from Q-store to N1 of the
nestlllg store.

'Qq; ~Cq; =Iq; =Mq; Store contents of Nll1l Q-store

=-tQq; =+Cq; =+Iq; =+Mq; Add contents of N1 to Q-store
(no check on 16 bit capacity).

=RCq; =Rlq; =RMq; Reset Q-store to 0/1/0 and then
put contents of N1 into appropriatE
part.

Note that the four instructions 111 the third row of the table (=+Qq; etc.) operate
in an identical manner to the correspondlllg sequence

Qq; + ; =Qq;

This implies that the nestlllg store is pushed down one place and subsequently
pulled up two places, thus reduclllg the effective capacity of the nestlllg store
by one cell durlllg th<l execution of this lIlstruction.

In general these lIlstructions transfer lIlformation between the top cell N1 of
the nestlllg store and the designated Q-store, numbered q. The direction of
the transfer is indicated by the following convention. If the first character
of the instruction is an '=', thelllformation is sent from the nestlllg store to
Q-store. If the' =' is not present, the lIlformation is fetched from the Q-store
to the nestlllg store. It should be remembered that 111 any transfer from the
nesting store to another location, the contents of the first cell N1 of the
nestlllg store will not be preserved.

Any transfer from a location such as a Q-store to the nestlllg store will cause
all the previous information contallled 111 the nesting store to nest down one cell
in order to make room for the new item in N1.

In the table it will be noticed that all entries in the first column contain the letter
Q. This indicates that these instructions treat the Q-store as one complete

Page 67

48-bit word. All entries In the second column contain the letter C, Indicating
that an operation Is performed on the counter in digit positions 0-15. The I
In the third column Indicates that an operation is performed on the Increment
In digit positions 16-31. In the last column theM Indicates that an operation
is performed on the modifier in digit positions 32-47. .

For the transfers listed in the first column, all 48 bits of the Q-store are
involved, so that all 48 bits.of Nl will also be used. For the transfers in the
remaining columns, only 16 bits of the Q·store are involved. In these cases,
whether the counter, the increment, or the modifier of the Q-store is involved,
only 16 bits will appear in Nl. Since these 16 bits represent an integer, they
are stored in the least significant digit positions in Nl, 1. e. ,in digit positions
32-47. When a negative 16-b1t number is transferred from a Q-store to the
nesting store, the sign digit is copied into the remaining 32 bits of Nl to give a
true single-length signed integer. When a 16 bit number is sent from the
nesting store to a Q-store the most significant 32 bits of the word in Nl are
ignored, and no check Is made that they are all copies of the sign digit. The
whole oINI Is cleared in the usual way when the store operation is completed.
Any quantity stored in a Q,.store will remain there until it is replaced by
different information, and as many copies may be taken as are required. Q-stores
behave like main stores in this respect. Thus a 'fetch' from aQ-store puts a
copy into the nesting store, and the original information is retained in the Q-st.ore
with no change.

The 'reset' instructions In the bottom row of the table each involve changes to
all three parts of the designated Q-store. These changes take place in two stages:

(8) the counter, increment, and modifier parts, stored in c/i/m, are reset
to 0/1/0; .

then

(b) the 16 bit pattem from Nl Is stored In the appropriate one of the three parts.

In all of the instructions in the table the integer q is the numbe'r of the Q-store
involved. q will normally take one of the values 1 to 15. A value of zero for q
may be used, provided It Is remembered that QO Is by definition always ·Identi-
cally zero. .

s· a SpeClal.Dultructl.oD8 involvfllg one part of a Q'"8tore
For each of the three parts of a Q-store there are a few special instructions
which l!1ay refer only to that part and no others .

Firstly, for the counter there are two such instructions:

NCq;

DCq;

The first of these, NCq, changes the IJfel?f the integer In the counter poSition

Page 68

of the Q-store. The machine does this by subtracting the original counter from
zero and replacing the result in the counter position. The second, DCq, subtracts
1 from the integer in the counter position and replaces the result in the counter
position.

Examples:
If Q8 contains -3/+7/+2
then the instruction NC8;
will cause Q8 to become +3/+7/+2

If Q15 contains -4/-6/3
then the instruction DC 15;
will cause Q15 to become -5/-6/3

For the increment there are four special instructions each of which resets the
integer in the increment poSition to one of the values +1, -I, +2, -2. These
particular values are chosen because they are the values most commonly
required in this position. The instructions to do this are:-

Iq +1; Iq ; +2;
Iq ; -1; Iq = -2;

(Mq and Cq remain unchanged).

Examples:
If Q2 contains -3/+7/+2
then the instruction 12 ; -1;
will cause Q2 to become -3/-1/2;

IfQ14 contains 16/1/AYI/J
then the instruction I14 ; +2;
will cause Q14 to become 16/2/AYI/J

For the modifier there are two special instructions. The integer stored in the
increment position may be either added to or subtracted from the integer stored
in the modifier poSition, the result being used to replace the original contents
of the modifier.

The two instructions are:-

M + Iq;
M - Iq;

(Cq and Iq remain unchanged)

N.B. A common mistake is to write these instructions as I+Mq; I-Mq;

Examples
If Q9 contains 2/-18/5
then the instruction M - 19;
will cause Q9 to become 2/-18/+23

Page 69

If Q10 contains :l/4/ A Y2
then the instruction M + 110
will cause QI0 to become :1/4/AY6

It will be noticed that nonc of these special instructions requires information from
the nestinl-(store. Thcrefore, they all leave the nesting store unchanged.

8' 3 Operations involving two Q-stores
It is n"cessary on occasions to transfer information from one Q -store to ;mother.
It should be remembered that in ;my such transfer the Q-store from which the
information is copied will remain unchanged. Only the sections of the Q-store
into which the transfer is directed will be changed, those sections not involved
in the transfer remaining unaltered. In the instructions listed below, information
is transferred from a Q-store numberedk (which may takl' ;my value from 1 to 15,
or 0 if required) i11to the Q-store numbered q (which may take ;my value from
1 to 15). k is the number of theQ-store whic;l remains unchanged, and q'is the
number of the Q-store which changes either wholly or in part. The transfer
ins tructions are:-

Ck TO Qq; tnmsfer counter only.
Ik TO Qq; transfer increment only
Mk TO Qq; transfer modifier only
IMk TO Qq; transfer increment and modifier
CMk TO Qq; tr:msfer counter and modifier
Clk TO Qq; transfer countcr and increment
Qk TO Qq; transfer whole of Qk.

None of these instructions disturbs the nesting stOl'e in any way.

Note that an instruction such as Ck TO Cq; is invalid, these instructions must
end with TO Qq;

Example:
If Q5 holds
and Q8 holds

:1/-I/AY2
2/AY5/AY6

The instruction eMS TO Q5 will leave

Q5 holding 2/-1/ AY6
and Q8 holding 2/ A Y5/ A Y6

8'4 Effect of Setting q ~ 0 or k = 0
If QO is used in any instruction involving operations on Q-stores, its effect may
be understood from the following observations:-

Since QO has no physical existence inside the machine except by convention,
and since by convention it is always required to yield the value 0, any fetch
from QO or [my of its parts will always produce the value O. If the fetch is
to the nesting store, the 0 will go into Nl and the rest of the store Will nest
down one cell.

Page 70

A store into QO from part or all of another Q-store will produce no effect whatever.
A store into QO from the nesting store has the effect of erasing the contents of
N I, thc rest of the store nesting up one cell in the usual way.

8' 5 Example: Setting Q-stores
Suppose It Is desired to set two Q-stores, Ql and Q2. Q1 is to contain the value
6 In the counter, 1 in the increment, and the main store word address of Y47 in
the modifier. Q2 Is to contain 4 in the counter, 1 in the Increment and 0 in the
modifier. During the course of this process it will be necessary to use the
Instruction for fetching a constant from the main store to the nesting store.
In Usercode this Is done simply by naming the constant. Thus the instruction
Vv; will fetch the constant numbered v from the main store into the top cell
Nl of the nesting store, leaving the copy in the main store location Wldisturbed.
The essence of the process, therefore, is that the constant declaration Vv =
(specification); sets the binary pattern for that constant into the appropriate
main store word through the action of Compiler (as described in paragraph 5·2).
The instruction Vv; fetches it when required from the main store to the nesting
store where it may be used in a calculation or. as in this case, transferred to
Wlother location. The Usercode instructions to set Ql and Q2 are:-

VO = Q 6/1/AY47;
VO; =Ql; SET+4; =RC2;

The first line is the declaration to Compiler that a Q-store constant Is required
whose three parts are as designated. This will normally"llppear at the head of
the program with the rest of the constant declarations.

The second line contains the instructions which are actually obeyed when the
program Is run. The first of these fetches the declared constant into the top
cell N1 of the nesting store. The second instruction transfers it from Nl to Ql.
leaving the nesting store empty. Ql is now set as required. The instruction
SET+4; puts the binary integer whose decimal value is +4 into Nl. The last
instruction sets Q2 to 0/1/0 and then transfers the number +4 from Nl into the
cOWlter poSition of Q2. thus giving the desired form 4/1/0.

This example has illustrated two possible ways of setting Q-stores. both of
which are used very frequently in normal Usercode programs.

Note that in the specimen of Usercode given in the example. every instruction
is terminated with a semi -colon I ; I. It is an invariable rule in Usercode that
a semi-colon must be written after every instruction.

Further Examples:
(i) If Q7 contains 4/2/0, the instruction M+I7; will result in Q7 becoming
4/2/2.

(Ii) If Q15 contains -14/1/0, the instructions nC15; NC15; will result
in Q15 becoming 15/1/0.

Page 71

(iii) If Q14 contains IS/9/7, the instruction 114=-2; will result in Q14
becoming IS/ -2/7.

(iv) To set Q15 to contain 37/AY5/1S, use a V-store constant declaration
V2(say) : Q37/ AY5/1S; and when it is required in the program to set up Q15,
use the two instructions: V2: =Q15;

An alternative method is the string of instructions:
SET37: =CI5; SETAY5; =115; SET\S: =MI5;

(v) To set Q13 to contain 0/1/0. the following instructions could be used
SETl; =RI13:

(vi) To set Q12 to contain S/I/O, use SETS; =RCI2;

8- 6 Exercises - Setl
1. Write instructions to perform the following operations, without using
V-stores. (The instruction +; may not be used, its use having not yet been
fully explained.)

(i) The top 3 cells of the nesting store con min three integers. Form
their sum in QI.

(ii) The counter of Q5 contains the integer 7; change the contents of C5
to 5 in 3 different ways.

(iii) Set up Q 1 so that it contains:
(a) 64/1/f1
(bj 3/ A Yf1/ A Y64
(c) f1/ -2/1
(d) ~/I/~
(e) 74/1/1

2. Ql contains I/AYf1/AY31
Q2 contains 512/1/~

Without using the nesting store set up Q3 so that it contains the following. The
contents of Ql and Q2 are not to be mutilated.
{a) ~/AYI/AY31
(b) 512/ -2/~
(c) -511/1/~
(d) +513/1/1
(e) 512/AY~/1

B· 6 Exercises - Set2
I. If yf1 is at E320:

(i) Declare a constant for V7 so that after the instructions V7; =Q5; are
obeyed, the contents of Q5 will be AY3/-I/AE4U. What would this declaration

Page 72

have been if it had been declared by a BINARY constant.

(ii) What would the binary constant declaration have had to be if Q5 were
to contain AY3/-1/AE4L.

(iii) Declare a Q-store type constant for va so that after the instructions V8:
=Y2; are obeyed, the contents of E322 will be the fixed point number 100(10)
held to 32 integral places.

2. If Qa contains 63/9/3 what will it contain after the following sets of
instructions have been obeyed. Qa is assumed to be reset to 63/9/3 before
each set of instructions.

(i) SETIO; =-+Qa;
(ii) SETBIO; =-+Qa;
(iii) SETBIOI 0;=-+Q8;
(iv) SET2; =-+Qa;
(v) SETBIO; =+Ma;
(vi) SETIO; =+Ma;
(vii) SETIO; =+18;
(viii) SETIO; =+ca;

3. What will Q5 contain after the following instructions?

SETB177777; =RI5; SET1; =+15;

4. What will Q5 contain after the following instructions?

SETB177777; =RM5; SET1; =-+Q5;

Page 73

9' NESTING STORE MANIPULATIONS

9'1
The instructions introduced in this Section are concerned solely with the mani
plllation of information contained in the nesting store.

ERASE;

ZERO;

DUP;

DUPD;

Removes the word in NI from the nesting store, the remainder of. the
store nesting up one place. Used whenever a word in the nesting
store is redundant, to prevent overfilling.

Puts a ward of all zeros into NI (this is zero in either fixed or
floating point).

Takes the word in NI and makes two copies of it, one in NI and the
other in N2, pushing all other words in the nesting store down one
cell. Since a quantity is lost from the nesting store when it is
involved in an operation, the DUP instruction is extensively used
to make a second copy.

Takes the double-length pattern of 96 bits in NI and N2, and puts
copies of into NI, N2 and N3, N4.

The rest of the store nests down two places.

REV; Interchanges the words in NI and N2, any other words in the nesting
store remaining unaffected. REV; is used for example, to set
operands in the correct positions for such arithmetic instructions
as subtract or divide, in which the order of the operands is
significant.

REV D; Interchanges the double-lentJth patterns in NI, N2 and N3, N4, any
other words in the nesting store remaining unaffected.

PERM; Performs a cyclic shift of the three words in NI, N2 and N3 by
bringing the word from N2 to the top, the word from N3 into N2,
and putting the word from NI down into the third cell. This
instruction 1s frequently used to put a single-length result out of
the way further down the nesting store until it is required. If NI,
N2, N3 originally contain the word a, b, c respectively, the final
order of these words after the instruction PERM; is b, c, a.

CAB; Performs a cyclic shift like PERM; but in the reverse direction.
The word from N3 is brought to the top, and the words from NI and
N2 are moved down one cell. This instruction is used to bring an
operand from N3 to NI ready for immediate use. If NI, N2, N3
originally contain the words a, b, c, respectively, the final order
of these words after the instruction CAB; is c, a, b, from which
circumstance this instruction derives its name.

DUMMY; Has no effect at all. It serves only to occupy one syllable of
instruction space that would otherwise be unused.

Page 75

9·2 Example:
The nestingstorc will vary by tbc instructions given, ns indicated.

Nl +2 AY5 +2 +32 AY5 AE4U AE4U 0 0

N2 AY5 +2 +:12 AY5 BaO -37 AE4U AE4U AE4U
N:l + 32 +32 AY5 B:lO AE4U AY5 -:17 AE4U 0
N4 B:1O B:1O B:1O AE4U -37 . B:1O AY5 -:17 AE4U
N5 AE4U AE4U AE4U -:17 [0'+2'7 F+2'7 B:IO AY5 AE4U
N6 - :17 -:17 -:17 F+2'7 18 18 F.2·7 B:lO -:17
N7 F+2'7 F.2· 7 F+2'7 18 18 F+2'7 AY5
N8 18 18 18 18 B:1O

All otbers Empty

START REV PERM ERASE ERASE REVD DUP ZERO DUPD

9' 3 Exercises - Setl,
1. What single nesting store instruction is equivalent to

CAB; CAB: ?

2. What singlc nesting store instruction is equivalent to

PERM; PERM; ?

3. If the top three cells of the nesting store contain (Nl) 1; (N2)2; (N3) 3;
and the rest are empty wb~t :I nesting store instructions are necessary to obt\lin
(Nl) 1; (N2) 2; (N3) 2; (N4) 1; (Na) 3 ?

9· 4 Exercises - Set 2
1. Write a string of instructions and declarations to cause:

Q5 to eontatn the standard floating point number 19.625

Q7 to contain the fixed point number 19.625 beld to 44 integral places.

Q8 to contain 15/6/AY_

Q9 to contain 15/6/AE_

Q10 to contain 15/6/ A Y45

Qll to contain AY3_/16/AYI5

Only two V store declarations and :3 SET instructions at most may be usee! for
constants. No Q-stores other than those mentioned may be used. It may be
assumed that the nesting store is originally empty. and that Y_ = IU28.

The nesting store is to be left empty.

Page 7f3

N. B. This question is only to test the reader IS \DIderstanding of certain point •.
in practice six V store delcarations together with six pairs of fetch and store
Instructions would be used.

Page 77

10- MAIN STORE OPERATIONS

10- ~ General Principles
It has been seen that main store words may be referenced in Usercode in various
ways: Yy, YAy, YBy. etc., Ww. Ee. Vv. But it must always be remembered
that inside the machine no such distinction is made. and that it is the program's
absolute address which is stored with the instruction, ready for swift reference
when the instructions are obeyed at run time.

To avoid needless repetition. it is to be understood that wherever the symbolic
address Yy is written in this section it may be replaced by any of the forms
given above.

The only basic machine instructions concerned in main store operations are
these:-

(a) The I fetch' instruction, which transfers a copy of one word of information
from the main store into the top cell of the nesting store. leaving the original
in the main store location.

(b) The I store' instruction, which stores the word from the top cell NI of the
nesting store into a specified word location in the main store, irrespective
of the previous contents of that main store location. The word is erased from
Nl.

These two instructions are distinguished in Usercode by use of the '=' sign.
Every store instruction written in Usercode is preceded by an = sign. To omit·
the = sign converts the instruction to a fetch instruction. It will be remembered
that this notation has already been used in the discussion on Q-stores in
Section 8.

10-2 Direct Addressing

10-2-1 UnmodIfied Addresses. The simplest main store operation is the
transfer of a single word between the main store and the nesting store. The
two corresponding instructions are:-

Yy;

=Yy;

fetches a copy of the word whose symbolic address is Yy to the top
cell NI of the nesting store, leaving the origlnalin the main store.

stores the contents of NI in the main store at the location whose
symbolic address is Yy. The word is erased from NI, and any
previous word in Yy is replaced by the new word.

Example:
To place in YPI a copy of the word existing in YT45. The instructions are:
YT45;=YPI;

10-2-2. Modified Addresses. It is often necessary to write a sequence of
instructions in the form of a loop which performs the same operations every

Page 79

time it is obeyed, except that the main store addresses to which the JDlltruction
refer are required to change each time round the loop. Such changed addresses
are referred to as modified addresses.

A modified address instruction is of two parts:

(i) the base address, and

(11) the modifier, which is an integer added to the base address to determJDe
the actual address required.

The simplest form of address modification employs only the modifier part of
a Q-store, digit positions 32-47. The modifier is set to contain a signed
integer m, the remainder of the Q-store being ignored. Then the JDstructions:

(a) YyMq;

(b) =YyMq;

will effect the transfer to or from main store of the word whose address is m
words after Yy.

Example:
If the modifier position of Q5 contains the integer 93, then the instruction:

Y14M5;

is equivalent to Y107;

Consider now the sequence of instructions:

SET 18: = RC9;
1; Y1M9: =YP1M9; DC9; M+19; J1C9NZ;

The first two instructions cause Q9 to become 18/1/_. The first time Y1M9
is encountered a copy of Y1 is brought into N1 and then put from N1 JDto YP1
because M9 contains the integer 0 at this stage. DC9; M+I9; will now cause
Q9 to become 17/1/1, J1C9NZ has not been dealt with yst but the JDstruction
means "jump to reference labell1f the counter pos1tion of Q9 is not zero,
otherwise continue in sequence" (Section 10·4). Since C9 is not yst zero, the
computer goes back to reference 1 and now' YIM9 causes a copy of the contents
of Y(1+1) [... Y2) to be brought into Nl. =YPIM9 Will cause Nl to be stored into
YP(1+l) [=YP2). The reader will now see that the 'loop' from 1; to JIC9NZ;
causes copies of the words in Yl, Y2, Y18, to be stored JD YP1, yp2, ...• ,
YP18, respectively.

Had the instructions before the loop been:

SET18; =RC9: SET3; =19; then the loop would have causes copies of the words
Yl, Y4, Y7 .•... , Y52 to be stored in YPl, YP4,YP7,• , YPS2 respectivel;y.

Page 80

The reader will now see the meaning of the terms counter, increment j and
modifier, in connection with Q-stores.

10- 3 Indirect Addressing

10- 3-1 General Principles. The direct address instructions dealt with
above are entirely satisfactory for all cases in which a routine is required to
deal with a set of data starting at the one base address. However, this is not
always the case. The same loop may be needed to fetch words (say)

YAl, YA2, , YA52 the first time the program is run

YAI02, YAI03, , YA153 the second time

YP28, YP29, , YP79 the third time, etc.

Since the base address is a variable it is not possible to specify it directly in
the instructions.

What is needed for this purpose is a simple and convenient way of specifying
a base address for each set of data, and also a modifier for accessing the
contents of each set starting from its base address. This is done in KD F 9
Usercode by the use of indirect addressing instructions.

10-3-2 In this form of fetch or store instruc-
tion the base address is not specified directly in the instruction, but is given
indirectly by referring the machine to a Q-store in which it will find the base
address. Once again the modifier part of the Q-store is selected to hold this
information. It is only necessary to specify in the instruction which Q-store
to interrogate for the base address, and which Q-store is to be used as the
modifying register. The specification of a Q .. store for the base address takes
only 4 bits of instruction space, whereas to specify the base address in a
direct fetch or store instruction requires 15 bits. The indirect fetch or store
instruction as a whole is a two syllable instruction as opposed to the three
syllables required for a direct address instruction. These figures show that
there are very real advantages in the use of the indirect fetch or store
instructions even apart from the matter of their convenience.

It has been stated that in all indirect address instructions two Q-stol'es must
be specified: the first contains the base address; the second contains the
modifier which will be updated if requested. It should be emphasized that the
first Q-store must contain the actual word address of the base, which will be
written in Usercode programs in its symbolic form but exists inside the machine
as an absolute address in binary form. Thus if it were required to set the base
address of Y5 in the Q-store Ql, this could be done with the instructions:

SET AY5; =Ml;

Page 81

These instructions set the binary value of the address of Y5 into the modifier
of Ql, resulting in a valid base address stored in Ql ready to be used in an
indirect fetch or store instruction.

The basic forms of the indirect fetch and store instruction are:

MkMq;

=MkMq;

Indirect fetch

Indirect fetch

In these instructions Mk contains the base address in the modifier position of Qk,
and Mq contains the modifying integer in the modifier position of Qq.

Example:
If Ql contains 18/S/AYX42
and Q13 contains 12/4/8
then the instruction MIM13; would be equivalent to YX50;

It should be noticed, in this example, that Ml actually contains an integer
equivalent to the E address of YX42, so that if YX42 = E385, Ml will contain
385(10) in binary form.

The instruction MIM13; then is equivalent to E(385+8) i. e., E393(=YX50). In
consequence of this MIM13; is just the same as M13Ml;

Caution: Although the contents of a particular address may be copied into Nl
by quoting just the base address with DIRECT addressing (e. g., Yy;) such is
not possible with INDIRECT addressing. The instruction M5; (say) means
fetch into Nl a copy of the contents of M5. However, MOM5; means fetch into
Nl a copy of the word whose address is E(~+integer in M5).

10·4 Jumps on Counters
In paragraph 10· 2· 2 we saw the need to introduce an instruction which compares
the contents of the counter position of a Q-store with zero and then either causes
a jump to a reference label or continues with the instruction in sequence.

There are two conditional jumps of this form:

JrCqZ; jump to reference label r if the counter of Qq is zero.

JrCqNZ; jump to reference label r if the counter of Qq is non-·zero.

To illustrate one way in which these instructions may be used, suppose there
are n numbers stored in consecutive words from Yl to Yn inclusive and that it
is required to move copies of them to locations YAI to YAn inclusive,
preserving the same order. The integer n Is supposed given in the top cell Nl
of the nesting store. The appropriate instructions are:

=Rq; JlCIZ;

2; YIMl; =YAIMl; DCI; M+I1; J2CINZ;·····

1;

Page 82

These instructions perform the following operations:

(a) =RCI;

(b) JICIZ;

(c)

(d)

transfers n from Nl to the counter poSition of Ql, simultaneously
setting the increment to 1 and the modifier to o.

is thc instruction to jump to reference I if the counter of QI is
zero; i. e. , if n is zero. This by-passes the loop if it is
required to use it 0 times.

The loop itself starts with the reference label 2, fetches Y(I
modified by contents of MIl, stores it in YA(1 modified by
contents of MIl, and updates the Q-store ready for the next
entry to the loop. The instruction J2CINZ; causes a jump back
to label 2 to repeat the loop if the counter of Ql has not yet been
reduccd to zero. On the second entry to the loop, the modifier
of Ql contains the value I, so that Y2 is transferred to YA2,
and so on, until the n words have been transferred. Cl was
originally set at n and 1 is subtracted from it at each pass
through the loop. Hence the machine will only continue to
reference I when C I has been reduced to zero, 1. e., when the
machine has passed through the loop n times.

Reference label 1; prefaces the instruction sequence for the case
when no items are required to be transferred; Le., for the case
n = O.

It is essential the reader notices that if the instruction JICIZ; had not been
included and 'n' had originally been zero then the instruction J2CINZ; would
only have been obeyed when Cl was negative - the loop could have been repeated
infinitely. "Infinite loops", should always be guarded against by the programmer.

10- 5 Modified Address with Incremented Q-stores
In the example on the previous page it was necessary to decrease the counter of
Q1 by 1 and to increment the modifier by the contents of ll. This was done by the
instructions DCl; M+ll; In USERCODE the facility to perform these two operaUons
is given by writing a Q after the modifier part of either a direct or indirect modi
fied addre&s instruction. So that the example would be written as:

=RCl; JICIZ;

2; YIM1; =YAIMIQ; J2CINZ;

1;

The programmer should remember the sequence of events when using this

Q-facility.

(i) Access the main store word whose address is the sum of the base
address and of the integer m in the modifier part of Qq, then

Page 83

(11) Update the Q-store relatfDg to the modifier part of the addre .. ,
by adding the integer I in the increment position to the modifier, eo that the
modifier item haa the value m+I, and

(UI) Subtract 1 from the signed integer c in the counter position.

Note: In the Indirectly specified baae address form of main store addressing
(MkMq:) if the Q facUlty is used (MkMqQ) it only updates the q Q-store: the
k Q-store remains unchanged.

It will be noticed that the increment, which is unchanged by this process,
specifies the interval in the main store between successive fetches or stores.
For example, if it were required to fetch every third word the increment would
be assigned value 3. Also, the counter may be used to specify the number of
times the instruction is to be obeyed. For instance, if the instruction occurred
in a loop to be performed 30 times, the counter would be set initially to hold the
integer 30. Then, since lis subtracted from the counter each time the
instruction Is performed, the cycle will be completed when the counter reachel
the value_. As an illustration, the set of instructiona:

VO Q 4/7/3:

VO: : Ql: Y6MIQ;

will transfer the contents of VO into Ql (thus setting up the initial form of the
Q-store), and will then fetch the contents of Y(6+3) into the nesting store,
after which the Q-store will be updated by adding the increment to the modUier
and subtracting 1 from the counter. The final state of the Q-store will,
therefore, be Ql : 3/7/10. If the instruction Y6MIQ: Is now obeyed again,
the word transferred to the nesting store will be the word Y(6+10) or Y16, and
the Q-store will be further updated to Ql = 2/7/17 ready for the next time it ie
required.

In any Q-store used for this purpose, the increment may be set to any desired
value either positive or negative. It will be remembered from paragraPh 8' 2
that special facUlties exist for setting an increment to +1, -1 +2, or -2, which
are the most commonly required values.

10'6 Eumplee
(I) To place copies of the words in Y43 to Y98 into YPI to ypse
respectively: -

SET56: :RCl:

I: Y43Ml: :yplMIQ: JICINZ:

(ll) To interchange the words in Y43 to Y98 with those in YPI to YP5e
respectively: -

SETS6; :RCI:

I: Y43Ml: YPIMl: "Y43Ml: :YPIMIQ: JICINZ:

Page 84

(iii) To interchange the words in YI and Y2; Y3 and Y4, etc., up to
Y99 and YlOO:-

SET50; =RCI; 11=+2;

1; YIM1; Y2Ml; =YIM1; =Y2MIQ; JICINZ;

(iv) To place copies of the words in YO, Yl, YIO, Yll,
Y90, Y91 into YS1, YS2. YS3 ---. YS20:-

SETIO; ~RI1: SET20: =RC2;

1; YOM1; =YSIM2Q; YIMIQ; =YSIM2Q; JIC2NZ;

(v) If M12 contains the address of word (A) and MIl the address of
a word (B); to interchange these two words:-

E_M12; E_Mll; =E_M12; =E_Mll;

N.B. M12; Mll; =M12: =MIl; will Dot interchange the words in the
addresses given. it will only interchange the contents of MIl and M12.

(vi) To place copies of the words in YO, Yl, YIO, Yll, , Y90,
Y91 into consecutive addresses beginning at the address given in M4:-

SETIO; =RI1: SET20; =RC2;

1; YOMI; =M4M2Q; YIMIQ; =M4M2Q; JIC2NZ;

10·7 Exercises- Set!
1. Store the contents of Ql in Y_.

2. Fetch the contents of the word whose addl'ess is in Ml, and store them in
the word whose address is in M2.

3. Transfer the contents of YO, Yl, , Y3I in YAO. YAl, , YA31
respectively.
(a) Without using the 'Q' facility.

(b) Using the 'Q' facility.

4. A Q-type parameter in NI consists of two addresses, in 016-031 and 032-047,
and an integer n;;,o in 00-015. Fetch n consecutive words beginning at the address
in the modifier position of the parameter and store them in consecutive words
from the address in the increment position onwards.

5. Fetch the contents of YO and Yl, Y3 and Y4, Y6 and Y7 , Y90 and Y91,
and store them in consecutive words from the address given in M15 onwards.

10'7 Exercises - Set2
1. Put the sum of the contents of Ql and Q2 in E256.
The instruction +; must not be used.

Page 85

2. If yf1 is in E(;72, and Q5 contains 27/ A Y8/ A Y35, what will be the effect of
obeying the following sets of instructions. Q5 is assumed to be reset to
27/ A Y8/ A Y35 before each set of instructions.

(i) M5; "Y35;

(ii) Mf1M5; =Y:l5;

(iii) 15; 7M5; Y27M5; , Y:15;

(iv) 15; =M5; C5; -M4; M4M5; oY:l5;

(v) 15; ·-M5; C5; ~M4; M5M4; =Y:J5;

(vi) 15; ~M5; C5; =M4; Mil; oM4;

3. If Nl contains the integer 7 fixed point (47 integral places).

N2 contains A Y7 .
N3 contains AE7.
N4 contains the integer 320 fixed point (47 integral places), and if Yf1·- E:l2f1.

What will be the effect of the instructions:-

(i) =M6; REV; =M5; Mf1M5; =Mf1M6;

(ii) REVD; =M6: =+M6; Ef1M6; REV;

(iii) CAB; =M6; =+M6; Mf1M6; '-'Y7;

(iv) PERM; =M5; =M6; M5M6; =Y7;

4. What is the final overall effect of the following instructions if Yf1=E64f1
and if Nl originally contained the integer 93, and N2 the integer -93, and
QI = 0/1/0

Page 86

SETAY93: =RC2; =+12; SETAE64I;

Q2TOQ5; =C5; =+Cl; If1TOQl; C5;

=M5; M5MIQ; NCl; DCI; IlTOQ5; M5;

NC5; =+C5: =Y2; C5; =M5; Y43M5; =Y3;

KDF 9 CHARACTER ClODES

2nd
OCTAL 0 1 2
DIGIT

1st
PCTAL
DIGIT

0 C.N. SPACE CRLF
C.S. SPACE CRLF
P. SPACE LS
C.R. BLANK Y,6,E Y, 2, 8

1 C.N
C.S.
P. : = (
C.R. 4,8 3.8 X,5,8

2 C.N. 0 1 2
C.S. t [1
P 0 1 2
C.R. 0 1 2

3 C.N. S 9 -
C.S. () -
P. 8 9
C.R. 8 9 6,8

4 C.N. A B
C.S. a b
P. A B
C.R. 0,7,8 Y,1 Y,2

5 C.N. H I J
C.S. h i j
P. H I J
C.R. Y,8 Y,9 X,1

6 C.N. P Q R
C.S. p q r
P. P Q R
C.R. Y,7 X,8 X,9

7 C.N. X Y Z
C.S. x y z
P. X Y Z
C.R. 0,7 0,8 " 0,9

C.N. Paper Tape Code. Case Normal.
C.S. Paper Tape Code. Case Shift.
P. Printer Code.
C.R. Card Reader Code.

3

PC
0,2,8

)
X,2,8

3

<
3
3

10
£

10
X.6,8

C
c
C
Y,3

K
k
K
X,2

S
s
S
0,2

E.F.
5,8

4 5 6 7

TAB C.S. C.N.
TAB C.S. C.N.
ISS % ,
0,5,8 Y,5,8 0,4,8 Y,7,8

/
:

£ *
, /

X,3.8 X,4,8 0,3,8 0,1

4 5 6 7
> = x +
4 5 6 7
4 5 6 7

; + -
; = *

,
; + -
Y,4,8 Y X Y,3,8

D E F G
d e f g

D E F G
Y,4 Y,5 Y,6 Y,7

L M N 0
1 m n 0

L M N 0
X,3 X,4 X,5 X,6

T U V W
t u v w
T U V W
0,3 0,4 0,5 0,6

--
E.D. E.M.
6,8 7,8 X,7,8 2,8

Page 87

11' BASIC ARITHMETIC OPERATIONS

11'1 Addition and Subtraction

11'1' 1 General Principles, An importrult property of the nesting store must
be mentioned bd"ol'c Lht'se instrudions arc given in detail, In lmy arithmetic
opcration such as alb, a-b, etc., 'a' will be rcfcl'l'cd to as the first ~perand.
'b' as Lhe sccond opel':uui :Uld Lhe " -, eLl'. , as the operation or the fWlction,
The' logical way of proceeding with such an instruction is to fetch the first operand
, a', then to fetch the second Qper:md 'b' , :md then to perform the operation of
+, -, dc. This is in fact the way in which the arithmetic fWlctions have been
org:ulis{'d to operate inside the machine. It is particularly important to remember
this when performing an opel'ation such as -, in which the order of the operands
is signific:mt. With b in N 1 :md a in N2, the instructions +; or -; will produce
respectively aib or a-b in NI, a :md b themselves having been erased from the
nesting store in the usual way. This rule may be remembered from the phrase:

"N2 fWletion Nl"

which describes the order in which the machine deals with the operands in Nt md
N2 in an arithmetic instruction. It means that the operands may be fetched in
the order given in the problem ruld the arithmetic operation performed without
the need for rearrangements in the nesting store.

It is essential, when adding and subtracting in fixed point, that both opermds are
held to the S:lffie number of integral places; the result will also be given to that
number of integral places.

Addition and Subtraction Instructions. The add and subtract instrue-
tions for fixl..'<i-point numbers are:

+;

+0;

-0;

Adds the number in Nl to that in N2, leaving the result in Nl.
Overflow set if both numbers have the same sign and the result
exceeds single-length capacity (see Section 13'1-3 for testing
state of overflow register).

Adds the double-lf:mgth number in Nl md N2 to the double-length
number in N3 md N4, leaving the double-length result in Nl md
N2, Overflow set if both operands have the same Sign md the
result exceeds double-length capacity.

Subtracts the number in Nt from that in N2, leaving the result in
Nt. Overflow set if the operands have opposite signs and the result
exceeds single-length capacity,

Subtracts the double-length number in Nt and N2 from the double
length number in N3 md N4, leaving the double-length result in
N1 md N2, Overflow set if the operands are of opposite sign and
the result exceeds double-length capacity.

Page 89

NEG: Changes the sign of the number in Nl (' Negate') by subtracting
the original contents of NI from zero and leaving the result in
NI. Overflow set only if the original number in NI is negative
and of maximum size.

NEGD; Changes of the sign of the double-length number in NI and N2 by
subtracting it from zero and leaving the result in NI and N2.
Overflow set if the original number is negative and of maximum
size.

N. B. An incorrect result may be obtained if the DO digit of
the less significant half of a double-length number used in any
arithmetic operation is not zero.

11·1-3 Double-length to Single-length and vice versa. It is sometimes
necessary to add together a set of single-length fixed point numbers to form a
double-length sum. To do this each single-length number must first be
extended to double-length form, since it is not possible to add a single-length
number to a double-length number. When this extension to double-length form
is made the sign of the single-length number must be preserved. The instruc
tion for this purpose is:

STH; ('Stretch'). Takes a single-length fixed-point number in NI, moves
it down into N2, and fills Nl with 48 copies of the most significant
(sign) bit of the original number. This produces a double-length
number arithmetically equivalent to the original single-length
number, except that the number of integral places is increased by
47. The DO bit of N2 will be set to zero.

The inverse process to convert a double-length fixed point number to single
length, works in exactly the reverse way. The instruction is:

CONT; (' Contract'). Takes a double-length fixed point number in Nt and
N2 and replaces it by a single-length number obtained by removing
the more significant half. DJ of NI is preserved. The result has
47 less integral places than the original double-length number.
Overflow is set if the more significant half was not all zeros or
all ones - this indicates that the number is too large to be held in
a single-length register. Overflow is also set if DJ of N2 was
'one',

n-1-4 ComparisOD of Single-length Numbers
When it is required to compare two numbers, this could be done using ordinary
subtract operations. However, in certain awkward cases overflow could be set
by this process. To avoid this possibility a special instruction has been pro
vided in Usercode which compares the numbers in Nl and N2 and supplies an
indication in Nl !lB to their relative magnitudes. The instruction is:

SIGN: Takes two single-length fixed POint numbers in Nt and N2 and

Page 90

sets Nl equal to:-

(a) + 1 if the word in N2 is greater than the word in Nl.

(b) 0 if the two words are equal.

(c) -1 if the word in Nl is greater than the word in N2.

The numbers to be compared are treated as signed numbers in this
test, so that any negative number is smaller than any given positive
number. Note that the sign of the indicator left in Nl is the same
as the sign of the result which would have been obtained had a -;
instruction been performed with the original two numbers.

The original contents of Nl and N2 are, of course, erased.

The overflow register cannot be set by this instruction.

n·1· 5 Miscellaneous Instructions
ROUND; Rounds off a double-length fixed point number in Nl, N2 to single.,.

length, giving result in Nl. The rounding is achieved by adding
the Dl digit from N2 into the D47 position of Nl.

ROUND H; Intended for rounding-off a single-length fixed point number in Nl
to half-length before storing using half-length store. The effect
of this instruction is to add a 'one' in the D23 poSition if the D24
digit is a 'one'. The result appears in the DO-23 digits of Nl;
the state of the remaining 24 digits is undefined.

ABS; Produces in Nl the absolute (modulus) value irrespective of sign
of the fixed point number previously in Nl. The instruction
subtracts the data word from zero if it is negative, otherwise
leaves it unchanged.

MAX; Takes two signed fixed point numbers in Nl, N2 and rearranges
them so that the larger is in Nl, the smaller in N2. The instruc
tion effectively subtracts Nl from N2 and inspects the sign of the
result. If it is negative, they are already the right way round.
If it is positive, Nl and N2 are reversed and OVERFLOW is SET
to indicate the -reversal. This is the only time overflow is used
other than to indicate that capacity is exceeded: it must be
allowed for whenever MAX is used. Since in fixed point the
number of integral places for each number is in the programmers
notebook and not in the machine, each pattern is dealt with by
the machine as though it were held to zero integral places. This
infers that the two numbers must be held to the same number of
integral places for this instruction.

Page 91

11-2 Examples
1. If Y5 contains l!)- 7 (10) fixed point held to 12 integral places (say)
and Y6 contains 24- 5(10) fixed point held to 12 integral places (say)
then
(i) Y5; Y6: +; o·Y7; will eause 44- 2(10) held to 12 integral places to
be stored in Y7.

(ii) Y5; Y6:
be stored in Y7.

=Y7; will cause -4- 8(10) held to 12 integral places to

(iii) Y6; Y5; -; =Y7: will cause +4-8(10) held to 12 integral places to
be stored in Y7.

2. If Yl contains the more significant hall of the double length fixed point
number 19' 7(10) held to 70 integral places (say) and Y2 the less significant
half, and if Y3, Y 4 similarly contain 24· ~10) held to 70 integral places (say)
then the instructions Y2; Yl; Y4; Y3; +D; =Yo; ,"Y6; will cause 44· 2(10) held to
70 integral places to be stored in Y5, Y6. Note the order of fetching and
storing the individual halves of a double length number.

3. If N1 contains - 18- 5 fixed point held to 12 integral places (say) then the
instruction STR; will cause
Nl to hold the more significant half, and N2 the less Significant half of the
double length fiXed point number -18'5 held to 59 integral places. (Since the
number is negative N1 will be all ones, but as always with double length numbers,
DO of N2 will be zero.)

If the instruction CaNT; is now obeyed N1 would contain -18- 5 to 12 integral
places.

4. If N1 contains -15- 6 fiXed point held to 9 integral places (say) and N2 con
tains +7- 3 fiXed point held to 9 integral places then the instruction:

(i)
places.

SIGN would erase N2 and set N1 equal to +1 held to 47 integral

(ii) MAX would cause N2 and Nl to be reversed and this reversed
would be indicated by the overflow register being set.

11- 3 Logical Operations
In KDF 9 the term 'logical operations' refers to procedures which treat a
binary quantity as a pattern of individual bits, changing each bit if necessary
from 0 to I, or 1 to 0 according to some criterion, but never causing a carry
from one digit to the. next. Operations on one bit can in no way effect any of
the other . bits. Some logical operations act on single binary patterns, and
some compare two patterns to produce a third according to an appropriate set
of rules.

The two logical instructions which act on a single binary pattern are:-

J?age 92

11·3·1
NOT;

BITS;

Logical Operations - Single Word of Data
Talu's a 48-bit pattern in the top cell NI of the nesting store and
replaces it with a pattern gener:lted by changing each 1 to a 0 and
each 0 to I. The form of the written instruction indicates that
each diV;it i.n the result is "not" what it was before.

Talws a pattern of 48 bits in NI, counts the number of non-zero
bits in this pattern and leaves the COWlt as an integer inNI, held
to 47 intt'gral places. The original pattern is erased.

11· 3· 2 LOgical Operations - Two Words of Data
The logical instructions which compare two patterns require these patterns to
be in NI and N2. A bit from NI is compared with the corresponding bit from
N2 under a given set of rules, to generate one bit in the result pattern. When
all the bits have been compared in this way the original contents of Nl and N2
are erased and the resulting pattern left in NI. The possible combinations of
the binary digits to be compared arc:

(a) Both digits zero.

(b) Digits 0 and 1.

(c) Digits 1 and O.

(d) Both digits 1.

(b) and (c) are effectively the same since no preference is given to either of the
two patterns.

The three instructions of this kind are:-

OR;

AND;

NEV;

Gives a 1 in the result if one or other or both of the compared
bits is a 1. Thus combinations (b), (c) and (d) produce a I, while
combination (a) produces a O.

Gives a 1 only if both one and the other of the compared bits are
I' s. Combinations (a), (b) and (c) produce a O.

(' Not Equivalent '). Gives a 1 when the two bits under comparison
are different. Combinations (a) and (d) produce a O.

The follOWing examples using two 4-bit patterns will illustrate the
effects of these instructions:-

NI 0011
N2 OHII

0011
0101

0011
OlOi

OR 0111 AND 0001 NEV 0110

Page 93

11' 4 Radix Conversions

11' 4·1 General. Ideally the six information bits In a numeric character
punchl.'Cl on paper tape would form the binary equivalent of the decimal digit
represented by the given character. However, In the system adopted for paper
tape will show that the representation of decimal zero is octal 20 (decimal 16);
.decimal 1 is represented by octal 21 (decimal 17), and so on. It will be realised
that each of these binary code representations differs from its true binary equiva
lent by the presence of an extra bit In the fifth position from the least significant
end. This extra bit carries the octal value 20 or decimal 16, and for this reason
it is referred to as the "excess-I6" bit.

Therefore, when numeric information is read from paper tape Into the main
store as described, it is not In the binary form required by the machine. The
six information bits for each character on tape are transferred directly Into the
main store without change. However, many characters on tape are required to
specify anyone decimal quantity, one character for each decimal digit, that
same number of six-bit groups is read Into the designated main store word.
There may be a maximum of eight such characters to a number, or eight
six-bit groups in one word. Each of these six-bit groups will still be In the
excess-16 form, and the whole collection of six-bit groups will have to be con
verted to the true binary form before any calculations can be performed. A
special instruction is provided for this purpose In KDF 9 Usercode. together with
a corresponding instruction to convert binary information to character form in
preparation for output.

The most common use of these Instructions will be in the conversion from the
decimal scale to the binary scale or vice versa, but there is no reason why some
other scale should not be used Instead of decimal, provided the end-product inside
the machine is in binary. For instance, suppose that the input data are in hours,
minutes and seconds.

To enable the machine to operate on such data the simplest procedure would be to
convert each datum to seconds, expressed In the binary scale. For example,
suppose that one input datum is 1 hour 23 minutes 45 seconds. The successive
digits in this quantity represent 1 hour, 2 tens of minutes, 3 minutes, 4 iens of
seconds and 5 seconds, and each digit will be in the form of a six-bit binary code
representing its true binary value. The conversion to binary would have to
proceed in two stages:

(a) To change from the coded excess-16 form of each character to the true
binary form, and

(b) To convert froril.hours, etc., into seconds using the binary values from (a)
and various conversion constants, the result being the number of seconds in
binary.

Page 94

11·4·2 Removal of excess-I6 bit. Suppose that N1 contains eight numeric
chal'acters as read from paper tape, and that the following sequence of instructions
is performed:

VI U1717171717171717;

VI; AND:

Restricting attention for the moment to one character, suppose that its binary
form is 010101, which is the charactcr form of the decimal digit 5. The effect
of the instruction AND; on this character and VI is as follows:

VI 001111

5 010101

AND 000101

Evidently this result is the true binary representation of decimal 5, the excess-16
bit having been removed: Since this is also true for any of the other characters,
after this sequence of instructions N1 will contain the eight characters in the
form required for the second stage of the conversion to binary.

Before the removal of the excess links, the contents of Nl are said to be in
"character form", after removal of the excess 16 bits they are in "binary coded
form". When the second stage, now to be explained, has been performed, they
are in "true binary form".

11·4· 3 Principles of Radix Conversion
The conversion constants mentioned under (b) will now be further discussed.
In the example quoted, in paragraph n· 4·1, one digit was required for the hour
(although more than one could have been used), two digits for the seconds. The
least significant of these digits; e. g., the 5 in seconds, may in general take
any of the values 0-9, a carry of one into the next highest digit position occurring
if a value of 10 or more is required, the remainder being left in the seconds
position, as is normal in any operation in the decimal scale. The next digit;
e.g., the 4 in tens of seconds, may take any of the values 0-5, a one being
carried into the next highest digit position if a value of 6 or more is required,
the remainder being left in the tens of seconds position. The value at which a
digit in a given position requires a one to be carried into the next highest
poSition is called the radix for that digit. Thus in the present example the
radix for the seconds digit is ten and the radix for the tens of seconds digit is
six. Similarly, the radix is ten for the minutes digit, six for the tens of minutes
digit, while the radix for the hoUrs digit is not specified if it is the largest unit
used. These radices are the conversion constants necessary for the operations
in stage (b) paragraph 11·4·1.

The radix conversion instructions in Usercode permit any set of radices to be
used subject to the following restrictions: every radix must be an integer, and
every such integer must be non-zero, and smaller than 32.

Page 95

To illustrate how an infringment of this rule can arise, suppose data in shillings
and pence arc to be reduced tobinary form. To represent the shillings and
pence will in general n'quire foul' digits, the first for the tens of shillings,
the second for the shillings, the third for the tens of pence, and the fourth
for the pence. The radix for the pence digit is ten but since there arc 12
pence in a shilling the radix for the tens of pence digit is one point two. The
radix Jor the shillings digit is ten ;U1d that for the tens of shill ings digit is two
if pounds are to be used. This system of radices is not permissible because
of the occurrence of the non-integral radix one point two. Some other radix
system has to he used r,)r t.his particular prohlcm.

11-4'4 Radix Word. T() enter the radix conversion routine the top word
Nl of the nesting; store must contain the eight six-bit groups forming the
number whose conversion is rt'qui red, (i. c., the binary coded form of the number)
and N2 must contain the cOlTcsponding; eight six-bit radices. Notice that the
radices in N2 must bc in binary. If the conversion is from decimal to binary,
all eight radices in N2 will be the binary equivalent of decimal 10. Decimal 10
will be written in the program as octal 12, which is the usual shorthand way
of writing a binary number, se cure must be taken not to confuse numbers
written in octal :md decimal when preparin~ the program.

The pattern of the eight radices held in N2 is called the Hadix word. The
radix word for a pure decimal number is 1212121212121212(8)' each group
of six bits is equivalent to "ten".

11' 4' 5 Operation of binary coded form to true Binary Conversion.
The executive instruction TOB; ("to binary") is sufficient to convert the eight
binary coded characters in Nl to a binary single length fixed point integer (held
to 47 integral places) in units of the least significant character. A simplified
picture of the way the machine performs this operation will now be given.

The first (most signific:U1t) character is multiplied by the radix of the second
character and the result added to the second character itself. This sum is
then multiplied by the radix of the third character and the result added to
the third character itself, and so on, the results accumulating with every
operation, until after the seventh addition only a binary integer remains which
gives the result in units of the least significant character. The diagram shows
in schematic form how this is done for the conversion to binary from decimal.

Nl

N2
(8)

Multiplication

Addition

Page 96

The nesting store now contains the result as a binary integer in Nl, the words
previously in Nl and N2 having been erasl.'<i. During the execution of this
instruction no checks are made that a character docs not exceed its radix or
that the radix dot'S not exceed :11. The overflow register cannot be set by
this instruction.

To summarise the steps in the process for converting characters to binary
int('gers arc:

(i) Fetch radix word into nesting store.

(il) Fetch character word into nesting store.

(iii) Fetch 1717171717171717(8) mto nesting store.

(iv) Perform the instruction AND; which with Nl as in step (iii) removes the
excess 16 bits.

(v) Pcrform the instruction TOB; which converts characters to binary using
scalc as given in the radix word. The result is a single length fixed point
intcgcr (held to 47 integral places).

11-4-6 Example
If YI contains the character form of 191f2:1lf45 which represents 19hrs. 23mins.
45secs. and it is required to convert this to the true binary in units of seconds,
the instructions required are

vlf = B 12 12 01 06 12 01 06 12:
VI = B 17 17 17 17 17 17 17 17:
vlf; Yl; VI; AND; TOB; =Yl:

V ~ contains the radix word: since the radix of the tens of hours (1) is ten we write
12(8) for that digit: similarly for the units of hours (9). The two /JIS in the character
form are not digits as such but merely indicators of the separation between hours
and minutes, and between minutes and seconds. These two positions require a radix
of I, because when the cumulative multiplication with this radix is performed WI~
require no change - reference to the diagram in 11- 4· 5 will make this clear. So, for
these two "spaces" we write 01. The radices for the tens of minutes (2) and tens of
seconds (4) are both 6, so we write these as 06.

To convert binary results to character form ready for output on to paper tape,
the two stages (a) and (b) of 11- 4-1 have to be obeyed in the reverse order.
For stage (b) Nl must contain the binary number and N2 the radix word which
is obtained in exactly the same manner as before. Then the instruction FRB:
("from binary") does just the reverse of TOB: Its action is to divide the
integer in Nl by the least significant radix and record the remainder as the least
Significant binary coded character of the result. The quotient from this division
is then divided by the next radiX, the remainder Is recorded as the next binary
coded character in the result and so on until all eight character spaces in the
result word are filled.

Page 97

11·4·8 JnsertiOD of excess-I6 bit. For stage (a), to Insert the excess 16-bit
after the Instruction FRB; before output to a paper tape punch presuming the
characters to be In Nl, the follOwing set of Instructions is used:

V2 = B2020202020202020;
V2: OR:

If one of the characters was originally the true binary representation of 5, the
effect of the Instruction OR: on this character and on V2 is:

V2 010000
5 000101

OR 010101

The excess-I6 bit has now been Inserted Into this and Into all the other characters
originally In Nl, Nt now containing these eight characters In the form required
for output to p![J>er tape.

11·4·9 Example. If YI contains the single length fixed point Integer 69825(10)
held to 47 Integral places, which represents 69825 seconds, and it is required
to convert this to the character form of hours minutes and seconds In the format
h h J1 m m J1 s s, the instructions required are .

vJ1 = B 1212 010612010612;
VI = B2020202020202020:

vJ1: YI: FRB: VI: OR: =Yl:

11· 5 Exercises - Setl
1. Form the double-length sum In Y6, Y7 of 32a+16b+8c+4d+2e+f
2(2(2(2(2(a)+b)+c)+d)+e)+f. Where a, b, c, d, e, f are single-length fixed point
Integers stored In YO, YI, Y2, Y3, Y4, Y5 respectively.

2. The single length fixed point Integers
xo' Xl' X2' , x31 are stored in YAO-YA31 and the single length Integers
YO, YI, Y2' , Y3I are stored In YBO-:YBI.

Find (YO - XO)+(YI - XO)+· ... +(Y3I - x31) and leave your answer as a single
length Integer in Nl. Hint Xo may be negative and so (yo - XO) may exceed
single length capacity.

3. NI and N2 contain two single length fixed point integers. If they are equal
set M5 to contain zero: if (NI) > (N2) set M5 to contain +1; otherwise set M5
to contain -I. The original NI and N2 are not to be lost.

4. NI and N2 each contain a binary pattern. Write the instructions (which are
to include 'J\ND' and 'NEV') to form the "OR" of the two patterns.

5. NI COIltains a binary pattern. If there are an eve IlWlDer of 1lOD-Hl'G bits
• tbW pattefa make the COUlltel' of QI contam 1; otherwise make it contain O.
(Do DOt use any jump lnStrucUOll8).

6. Write down the contents of Nl in octal if it contains the decimal integer
~~~:l27(j8 

(a) in l'Iuu'acter form 

(b) in binary coded form 

(c) in trul' bin:u·y. 

7. Nl contains the eight decimal digits l2~l3~l4 in binary coded form, representing 
£12,01:1/14/011. Convel·t this pattern to binary shillings, using an appropriate 
radix. 

8. N 1 contains the eight decimal digits 24030015 in character form, representing 
24hrs. :lUmins. l5secs. Convert this to binary seconds, using an appropriate 
radix. 

9. Nl contains a binary integer. Convert it to binary coded form. 
What is the largest permissible answer expressed as the octal representation 
of contents of Nl ? 

10. Nleontains a binary integer representing a number of pints. 
Convert it t.> gallons, quarts, and pints in character form in the format 
GGGG~Q~P 

Where GGGG is the number of gallons 
Q is the number of quarts 
P is the number of pints 
o is the digit 0 used for spacing. 

Exercises - Set2 

1. Repeat question 10 of set 1 using the format GGGGuQuP where w 
represents a space. 

2. If Nl contains a single length fixed point integer, what will it contain after 
the instructions; 

(i) NOT; NEG; 
(ii) NEG; NOT: 

3. What is the difference between vl1 
V~ 

P 12345678; 
B~I~2~3~4~5~6~71~; 

Page 99 





12· OUTPUT VIA OUT 8 

12· 1 General Principles 
Allt'nlion is no\\' lUl'fWd lo tiw pl'ocess whereby the contents of an area of main 
slOl'c may hc oUlput to a pcripheral device, 

Thcl'e al'C l\\'o main mcthods of outputting results: 

Thc first is lo cause the data to be transferred directly to the buffer of the 
device concerned when it will be instantly printed. punched, etc, This method 
called ON-LINE, can result in hold-ups if, for instance, the computer is dealing 
\Vitil more than one program simultmlCously; for if there is only one line printer 
it can only be allocated to one program at a timc so that another program requiring 
it will have to wait, (This ON -LINE method of outputting is dealt with in Section 17), 

Thc second process, known as OFF -LINE, obviate such hold-ups, This method 
causes data which is to be output, to be copiedonto magnetic tape, This tape may 
tllen bc removed h'om the computer for subsequent processing elsewhere, 

A system called OUTS combines the advantages of ON -LINE and OFF -LINE 
outputting. The principle is, that at the discretion of the operator, data to be 
output may be either 

(i) dealt with immediately ON -LINE or 
(ii) copied onto magnetic tape for OFF-LINE processing, or 

(iii) copied onto a magnetic tape, which need not be removed from the computer, 
and dealt with pseudo ON -LINE later, 

12·2 OUTS 
A program requests Director to output a block of data by the instruction OUT; with 
the integer 8 in Nl, and by having previously specified the two folloing pieces of 
information, 

12' 2·1 Stream No. The first word of the block is to contain a "stream number" , 
So that if the actual data to be printtld say is in YI-Y20, then the word immediately 
preceding this area, in this case YO, mlist contain a "stream number", The stream 
number indicates to Director the type of unit for which the block is eventually 
destined, The programmer may choose anyone of the eight stream in each group 
of streams he wishes, 

Stream No. (Octal) 
00 (only one stream 

in this group) 
10 - 17 
30 - 37 
50 - 57 
70 - 77 

Destination Unit 
On-line flexowriter 

8-hole punch 
high speed printer 
5-hole punch 
high speed printer or 8-hole punch 

12-2-2 Output Block. Director must also be told the location of the block in 
the store. This is done by placing in N2, before OUT8 is performed, a 

Page 101 



Q-store typew()l'd with the incrcment containing the low core acl<ln'ss (i. P. , the 
address of the sin'am number). and the modifier containing the high ('or<' 

address (i.e., the address of lhe last word o[dat.a). The vount,,!, sh"uld h<' 
sel to zero, unless stream 00(8) is required to type a query, wl1<''' IJI) or thl' 
counter must bc 1. More will be said about typewriter queries in S,'diol1 17. 

12·3 Director's Actions 
When Director obeys OUT8 it writes the block on to thc appropriate device, 
which it will previously have allocated to itself for the purpose. However, 
it does not directly copy the first word of lhe block, which contains the stream 
number: 
BEFORE OUTPUTTING THE BLOCK IT OVERWRITES TillS WORD IN MAIN 
STORE WITH ANOTIIEH WORD FOn USE BY TilE SYSTEM. 
The programmer must always remember this when printing out the same area 
of store if necessary on the second and subsequent occasions - the stream 
number must be put into lhe first word every time OUT8 is to be obeyed. 

12·4 Rules for various stream numbers 

12'4'1. Stream 00(8)' 
(i) Output stream 00(8) will cause the data to be sent direct to the flexowriter. 

(ii) The output on the flexowriter must be a single line and may NOTinc1ude 
CRLF or Tab characters. 

(iii) If the Qutput is a message, as opposed to a query, it may not inc1udea 
semicolon. 

(iv)lf the output is a query, a semicolon must occur as the least Significant 
character of one of the words, other than the first word (stream number word) 
or the last word. The semicolon may occur nowhere else. The reason for 
this will be explained latcr. 

(v) Only data up to 'the first end message, 75 (8)' if any, in the block will be 
output. 

12·4-2 
(i) 
not. 

Streams other than 00(8)' 
Operator action will decide whether output will be dealt with direct or 

(ii) No data after the first end message, 75(8)' if any ,in the block will be 
output. 

12- 4- 3 Additional rules for using streams 30-37(8) 
(i) Streams 30-37(8) are to be used for data eventually to be printed on 
the high speed printer. Since this printer does not possess the ability to print 
case shift characters a different code is used for which see (17· n- 2). 

Page 102 



(ii) The last character of the block must be either 02(8) (line shift) 03(8) 
(page change). No chm'acter other than the last of the block may be 02 or 03, 

12'4·4 Additional rules for using streams 70-77(8) 
(i) Vata for these streams will cause output to be sent either to the high 
speed printer, or 8-hole punch if the former is not available. 

(ii) Sinee output may \>e to printer or puneh it is essential that only characters 
common to both Paper Tape and Printer Codes are used: these are: 

Digits 0 - 9 
Alphabet (capitals) 
Symbols /; + - 0 10 space 

(iii) The last character of the block, and only the last, must be 02(8) 
N. B, 03(8) is not possible as there is no page change equivalent on paper tape 
equipment. 

12'5 Standard Plug Board 
What has been said above is for the Line Printer with standard wiring, This 
can be varied by changing the plugging of a Plugboard. Full details are given 
in the "Line Printer 1040 Users Manual". 

12·6 Punched Tape 
Paper tape is explained fully in Section 17; it is sufficient here, merely to state 
that along a punched paper tape is a series of very small holes (called sprocket 
holes) and whenever one of these occurs (i. e., every 1/10th inch), a pattern 
of larger holes, based on the Character code is punched across the width of 
the paper. This is then called a Character. 

If no larger holes are punched where a sprocket hole exists then this is ealled 
a "gap" of one character length. 

... 0 0 
C"l 00 00 

"" 0 0 .... 0 0 _ Gap of one character. 
r:I 0 0 

o 0 00 

~ 0 0 
0 0 

Page 103 



12· 6·1 Gaps output in Punch Streams. In OI'<I('r to allow !-:aps to be output 
on punch streams a spccial 2 word block is Ufwd. 

1 st word is stream number 
2nd word is a Q-type wonI409!:i/-1/n where n is an inte!-:er. (O",n< r;12, if 

n< 0 or n :'512, n 120 is substitutl'd). 

With these two words as the block a ~IP of n characters will be punched. (The 
pUllched version of a character occupies approximately 1/ J Oth inch). If this 
block is used for printer streams, a pa!{e ch1m!{e wiII be output and thus it may 
be used for thc printer/S-hole punch common streams, 70-77. The 2nd word 
will not be chan!{cd when this block is output. and is not output at all if the 
stream is being output direct. 

12· 7 Examples 
1. If the deelaration Vl/4 '" PI5S) SORT*ROUTINE*PRINCIPLE*I8B[C); 
which is intended to be used as a heading for subsequcnt output to the high 
speed printer is made, the following instructions would cause this heading 
eventually to be printed - the stream number chosen for the output of all data 
to this printer being, say, 35(8)' Q5 is assuml.>d to contain ~/AYPJf/AYP4; 

SET B35; = ypif 

VI; =YPI; V2; =YP2; V3; =YP3; V4; =YP4; 

Q5; SET8; OUT; 

Note that after the OUT8 has been performed N2('Q5) and Nl(=8) have been erased 
from the nesting store and that YP~ does not contain 35(8)' Also notice that the 
last character of the block, i. e., the C of I C) is cntered as 02(8) in D41 -D47 
of YP4. - -

(Although possible, it is generally not wise to print from the V -store area). 

2. Assume (i) YR43 - YR48 contain six words, each in the character form 
(line printer) of dddddu:Juwhere the d's arc decimal digits, and that, 

(ii) it is required to print these six numbers on one line of the high speed 
printer, and that, 

(iii) the programmer is using stream 3:3(8) for this printer. 

A. If it is certain that YR42 and YR49 do not contain useful information required 
later in the program the process would be: 

(i) Declare, say, 

Page 104 

V8 
V9 
VIO 

Q 0/ A YR42/ A YR49; 
B33; 
P I mC]; 



(ii) :Uld usc the instructions V9; ~YR42; VIO; =YR49; 
VB; SETS; OUT: 

B. If the contents of YH42 and YR49 are not to be lost the process would be: 

(i) Dt'clare, say, VS c Q 0/AYPO/AYP7; 
V9 c' n:13; 

VIO~ P 17DC); 

(ii) :Uld use the instructions V9; ooYPO; YR43; 
=YPl; YH44; =YP2; 
YR45; =YP3; YR46; =YP4; 
YR47; =YP5; YR4S; =YP6; 
VIO; =YP7; VS; SET S; OUT; 

:l. Assume the same word in YR43-YR4S as in Example 2, and that it is required 
to print the six numbers, one per line, on the high speed printer, and that stream 
37 (S) is being used; the process would be:-

(i) Declare 

(ii) and use the instructions 

V9 = Q~/AYP~/AYP2; 
Vl~= B37; 
Vll = PI 7DC); 
V12 = Q6/1/1; 

V12; =Q9; Vll; =YP2; 
1; Vl~; =YP~; YR43M9Q; =YPl; 
V9; SETS; OUT; JIC9NZ; 

4. Assume the same as in Example 3 except that the output is to be to the 8-hole 
paper tape punch using stream 16(S) and that instead of each word being printed 
as in Example 3 they are each to be followed by ABCDEFG and 02(S) 

The last item punched is to be followed by a gap of 9 inches. 

The declarations would be 

and the instructions: 
VZl; =Q9; V22; =YP2; 

VIS 
V19 
V20 
V21 
V22 
V23 

QO/AYPO/AYP2; 
QO/AYPO/AYPl; 
B16; 
Q6/1/0; 
PABCDEFGI C) ; 
Q 4095/-1/90;-

1; V20; =YPO; YR43M9Q; =YPl; VIS; SETS; OUT; JIC9NZ; 
V20; =YPO; V23; =YPl; V19; SETS; OUT; 

Page 105 



12·8 Exercises - Set! 
1. Declare the V -stores and write the instructions necessary to output to the 
high speed printer via OUT8. the words of data In YA47 and YR3t. Both words 
are to be on the same line of the printer page with sixteen spaces between them. The 
contents of the other YA and YR stores are not to be mutilated. YP stores are at 
the programmer t s disposal for printing. 

2. Fifty items each containing 16 alphanumeric characters are stored in 
YAI-YAI00. Declare the V-stores and write the instructions necessary to output 
these items to the 8-hole punch via OUTS. Each item is to be preceded by Case 
Normal. CRLF. and 6 "dummies". The paper tape is to fltart with a 12 inch· 
gap before the first case Normal character. and end with a 12 inch gap. 

Exercises - Set2 
1. What are the effects of the following instructions and declarations? 

vII 9; 
VI = P[P7D); 
V2 = QTJ/A~/AVI; 

V2;SET8;OUT; 

2. What are the effects of the following Instructions and declarations? 

Page 106 

V~ P[7S)/; 
VI = B0753444677003137; 
V2 = B211.,1I_11; 

V2;SETBllI;OUT; 



13- JUMPS 

13-1 Jlunp Instructions 
We have dealt with jumps depending on the contents in Section 10-4, other jump 
instructions are explained below. 

13-1-1 Arithmetic Jumps. It is often necessary to take one of two possible 
courses of action depending on the result of an arithmetic operation. KDF 9 has 
a set of suitable jump instructions for this purpose, all of which look at the 
contents of NI and act according to the value found there. Since Nl is looked at, 
the computer follows normal practice and erases the contents of Nl after 
inspecting it, whether or note the jump actually takes place. Should the contents 
of Nl be required for subsequent use, a eopy .should be made before the jump 
instruction is obeyed. 

The six alternative instructions are:-

Jr = Z; 

Jr I Z; 

Jr > Z; 

Jr .. Z; 

Jr < Z; 

Jr " Z; 

Jump to the instruction labelled r if the content of Nl is identically 
zero, otherwise proceed to the next instruction in sequence. 

Jump to the instruction labelled r if the content of Nl is not identi
cally zero, otherwise proceed to the next instruction in sequence. 

Jump to the instruction labelled r if the content of Nl is definitely 
greater than zero (1. e., if DO is zero and at least one other digit 
is non-zero), otherwise proceed to the next instruction in sequence. 

Jump to the instruction labelled r if the content of Nl is greater 
than or equal to zero (I.e., if DO = zero), otherwise proceed to 
the next instruction in sequence. 

Jump to the instruction labelled r if the content of Nl is definitely 
less than zero (I.e .• if DO is a "ONE"), otherwise proceed to 
the next instruction in sequence. 

Jump to the instruction labelled r if the content of Nl is less than 
or equal to zero (1. e., if DO is a "ONE" or all digits are zero), 
otherwise proceed to the next instruction in sequence. 

Note: The composite symbols " and .. are obtained on a fiexowriter by underline 
followed by the required symbol. 

13-1-2 CompariBOD Jumps. Thcse are two KDF 9 instructions which compare 
the contents of Nl and N2 and jump according to whether they are equal or lIot. 
These are non-standard in that, whilst both Nl and N2 are inspected during the 
instruction, only Nl is removed during the execution of the instruction (whether 
or not the jump takes places) leaving in Nl the word which was originally in N2. 
These are the only two instructions that look at a word in the Nesting Store, (N2) 
and do not erase it. 

Page 107 



13 ·1· 2 Comparison Jumps. Thcsc arc two KD F 9 instructions which compare 
the contents of Nl and N2 :md jump according to whcthcr they arc equal or not. 
These are non-standard in that, whilst both Nl and N2 arc inspected during the 
instruction, only N1 is removcd during the execution of the instruction (whether 
or not the jump takes place) leaving in Nl the word which was originally in N2. 
These arc the only two instructions that look at a word in the Nusting Store, 
(N2) :md do not erase it. 

Thc instructions are:-

Jr =; 

J4 F; 

Jump to thc instruction labelled r if the words in Nl and N2 are 
idcntical, otherwise proceed to the ncxt instruction in sequence. 
Only N 1 is erased. 

Jump to the instruction labelled r if the words in Nl and N2 are not 
identical. otherwise proceed to the ncxt instruction in sequence. 
Only Nl is erased. 

13 '1' 3 Overflow Jumps. It has been seen that if numbers get too large 
the overflow register is set but the computer will not stop. lnstructions to 
'jump' depending on the state of the overflow register are prOVided to enable 
the programmer to discover if overflow has occurred. 

The instructions are;-

JrV; 

JrNV; 

VR; 

Jump to instruction labelled r if the overflow registar is set, 
otherwise proceed to the next instruction in sequence. Overflow 
register automatically cleared. 

Jump to instruction labelled r if the overflow register is not set. 
Overflow register is automatically cleared. 

It may be necessary to clear the overflow register other than in 
connection with the above jump instructions, in which casc the 
instruction is:-

Clear overflow register. No other part of the machine is affected. 

13,1·4 Test Register Jumps. The test register is a single digit register 
used to interrogate input/output devices. The various questions that can be 
asked of such a device set the test register if the answer to the question is yes 
(if it is already set, there is no change), but leave it alone if the answer is no. 
Several questions can therefore be asked, the test register being set if anyone 
or more give an answer yes. (The instructions necessary to ask the questions 
will be dealt with under INPUT/OUTPUT). 

The test register can be interrogated by one of the following instructions:-

Page 108 



JrTR: 

JrNTR: 

Jump to the instruction labelled r if the test register is set, 
otherwise continue to the Dext instruction in sequence. This 
instruction clears the test register. 

Jump to the instruction labelled r if the test register is not set, 
otherwise continue to the next instruction in sequence. This 
instructioD clears the test register. 

If necessary the test register can be preset by use of the instruction: 

=TR; 

Jr; 

JPp; 

JLl; 

JrPp; 

JrLl; 

JrPO; 

Set test register if the word in Nl has a "one" in the DO position 
(i. e., if it is negative), otherwise clear the test register. The 
word originally in Nl is erased. 

Jump to the instruction labelled r. As this instruction ALWAYS 
causes a jump, the next instruction must carry a label if it is 
to be obeyed. The label r is usually an integer in the range 1 to 
lOll, but the instruction may if required be replaced by one of 
the following forms:-

Jump to first instruction of subroutine Pp. 

Jump to first instruction of subroutine Ll. 

Jump to instruction labelled r in subroutine Pp. 

Jump to instruction labelled r in subroutine Ll. 

Jump to instruction labelled r in main program. This will appear 
only inside private subroutines. 
(P_ is the label for the main program.) 

13-1-3 Unconditional Jumps (with return address). These jumps are 
intended for use with subroutines. When the jump is obeyed, the word and syllable 
address of the actual jump instruction (the return address) is stored automatically 
in the top cell of the Subroutine Jump Nesting Store, pushing down any addresses 
previously stored there. The subroutine is then entered and obeyed. At the 
conclusion of the subroutine the address stored is used to return to the main 
program. 

It should be noted that each instruction in this group starts JS. The S indicates 
that the return address is to be stored - if this is omitted the jump into the 
subroutine will still take place but the return address will not be available, 
leading to eventual failure when the Jump Nesting Store is empty, and an address 
is required to exit from a subroutine. 

The instructions are:-

Page 109 



JSPp; 

JSLl; 

JSrPp; 

JSrPO; 

JSrLI; 

JSr; 

Store the address of this instruction in the top cell of the subroutine 
jump nesting store, then jump to the first instruction of subroutine 
Pp. 

Store the address of this instruction in the top cell of the subroutine 
Jump nesting store, then jump to the first instruction of subroutine 
Ll. 

Store the address of this instruction in the top cell of the subroutine 
jump nesting store, then jump to the instruction labelled r in 
private subroutine Pp. 

Store the address of this instruction in the top cell of the subroutine 
jump nesting store, then jump to the instruction labelled r in the 
main program. This should appear only in PIUVATE subroutines. 

Store the adc1ress of this instruction in the top cell of the subroutine 
jump nesting store, then jump to the instruction labelled r in the 
library subroutine Ll. This instruction should be used only if the 
operating instructions for the subroutine indicate that label r is a 
recognised entry point. 

Store the address of this instruction in the top cell of the subroutine 
jump nesting store, then jump to the instruction labelled r in the 
current level of program. 

13·1·4 Less used Jump Instructions. The following four instructions are 
intended for use by Director or certain Monitoring programs, which must empty 
the nesting stores, but have no-other means of knowing if such stores are 
empty or not. They have no place in other types of program, as it is always 
possible to predict whether a nesting store will be empty or not at any point in 
a program - if used in a -subroutine the result will probably be disastrous. 

JrEN; 

JrNEN; 

JrEJ; 

JrNEJ; 

Jump to the instruction labelled r if the nesting store is empty 
(1. e., all 16 cells W1occupied). 

Jump to the instruction labelled r if the nesting store is not empty 
(1. e., at least one cell is occupied). 

Jump to the instruction labelled r if the subroutine jump nesting 
store is empty (1. e. , all 16 cells W1occupied). 

Jump t-o the instruction labelled r if the subroutine jump nesting 
store is not empty (1. e., at least one cell is occupied). 

There are two other jump instructions intended for use in passing from one section 
of -a program to another, where the sections are too large to be compiled in one 
sequence. In these circumstances, reference labels cannot be used as they are 
not available to Compiler at the requisite time, so the absolute word location 
is used instead. 

Page 110 



Further, in order to make such a technique possible, Compiler must be directed 
to pUl a particular insh'ul'lion in a prcdeterminl'<i store location. A Compiler 
specification therefore exists for this purpose and is included here. 

JEe; 

JSEe; 

REe; 

Jump to the first syllable of word Ee. 

Store the address of this instruction in the top cell of the subroutine 
jump nesting store, then jump to the first syllable of word Ee. 

A specification to Compiler that the next ins truction is t(J be compiled 
and store in word Ee. Subsequent instructions arc stored in the next 
available space beyond Ee in the normal way. 

13· 2 Examples 
(i) Nl contains a binary number obtained as the result of calculation. If it is 
required to put this into YP~ if the number is positive or zero, or into YN~ if it 
is negative, the method would be; 

DUP; J6>Z; =YN~; J2; 
6; =YP~; 
2' ............. . 

(ii) YD!l l'ontains St'ven spaces .Uld an alphabetic character obtained as the 
l"l'sult of 'Ul input instruction. V19 contains seven spaces and the letter R 
obtained by lhe "-slore declaration V19 = PI 7S) R; If it is required to cause 
the program (i) to jump to reference label 92 should the letter in YB~ be R, 
otherwise (ii) allowing the program to proceed in sequence, in either case 
leaving Nl clear, a method would be 

V19; YB~; J92=; ERASE; ...... . 
92; ERASE; ...... . 

(iii) Many calculations have previously been performed and overflow was not 
checked on the last occasion when it could have been set, and it is now required 
to add the contents of YN6 into YM15 and to set YM15 equal to zero if the overflow 
is set as a result. 

VR; YN6; YM15; +; JINV; ERASE; ZERO; 
1; =YM15; 

(iv) To cause a jump to reference 8 if the Test register is set the instruction 
would be J8TR; 

13· 3 Exercises - Setl 
1. There are 1,024 binary integers stored from Y~ onwards. Store in C 1 the 
number oC positive integers in this set, in C2 the number of zero integers in 
this set, and in C3 the number of negative integers in this set. 

Page 111 



2. Nl contains the integer x. Y~-Y31 contain a set of 32 integers. Store those 
integers greater than x from YA~ onwards, those less than x from YB~ onwards. 
Count the number equal to x and leave this count in Nl. Leave the count of the 
number of integers greater than x in N2, and the number of integers less than x 
in N3. 

13·3 Exercises - Set2 
1. What is the "set" instruction to put 19·125(10) into the top cell of the nesting 
store as a fixed point number held to 40 integral places. 

2. Is it possible via a "set" instruction to cause Nl to contain the Q-format 
0/0/-1; ? 

Page 112 



iNTRODUCTION TO LIBRARY EXTRACTION 

14-1 
Identical sequences of Instructions are sometimes required In many different 
programs and so that the programmer may be relieved of the tedium of writing 
out these sequences and testing them every time they are needed a magnetic tape 
is kept containing all those sequences likely to be used. When a program is 
written requiring one of these sequences called "Subroutines" - it can be extracted 
from the tape ald included in the program by using the appropriate instructions, 
proVided the Pl'>gram Is complIed using the POST system - to be explained later. 

14-1-1 At any point in a Usercode program text the declaration library may 
occur, followl'·.i by a list of library subroutine identifiers in numerical order, 
each subroutine identifier being separated from the next, by a comma, and the 
list terminatcd by a semicolon. The library subroutine Identifier must be of the 
form: one alphabetic character and up to 4 digits, e. g. , 
l.i!n:m:Y L3, L13, 1.14, LI000: (see Section 14-3). 

This has the effect of inserting the appropriate subroutines at the point in the 
program at which the instruction occurs, by copying them from the POST SYSTEM 
TAPE. 

Although this declaration may occur anywhere in the program, it is recommended, 
that it should be placed at the end of the program Immediately prior to FINISH:-

14-1-2 The subroutine having been extracted from the library it is necessary 
to ensure that the subroutine be entered when required, This is achieved by the 
instruction JSLl: which causes a jump to the first instruction of subroutine Ll 
at the same time placing the address of the instruction JSLl: in the top cell of 
the subroutine jump nesting store. 

14-1-3 To leave the subroutine and return to the next instruction after JSU: 
the subroutine ends with the instruction EXIT n: where n is usually 1 or 2. This 
instruction obtains the address in the top cell of the subroutine jump nesting store 
adds n half words and jumps to that address. Since the instruction JSLl: is 3 
syllables (1 word) long then EXIT I: will cause the instruction following JSLl; 
to be obeyed next. The uses of EXIT n for n other than 1 and further reference 
to library subroutines will be dealt with later in Section 23. 

14-2 Examples . . . 
1. A program is in the process of bellig written and is at the stage when Nl 
contains an integer. It is required to process this integer by a method identical 
to subroutine P98 which Is on the POST SYSTEM TAPE and then to store the result 
in Y5. The subroutine P98 requires an integer in Nl on entry, and exits by 
EXIT 1. The instructions necessary are: . 

..•.... ;JSP98::Y5: ...........•... ; 
library P98; FlNISH;-

Page 113 



2. The next instructions to be written in a program arc to cause the present 
contents of N I (which holds an integer number of binary pence) to be converted 
into £. s. d. so that N 1 holds the integer number of binary pounds 

N2 holds the integer number of binary shillings 
and N3 holds the integer number of binary pence. 

The programmer knows that (say) subroutine P43 does this conversion but that P4:1 
itself requires to enter a subroutine number IUB during the process. P4:1 exits 
with EXIT 1: and that YI, Y2, Y3 are then to hold £ s. d. respectively. 

The instructions necessary arc: 

............ ;JSP43;~ Yl;·=Y2;=Y:I; ...... . 

library P43, RIB; 
FINISH;-

14-3 Library calls format recommendation 
Although library LI, LI5, L94: is valid it is recommended that these calls be 
written as 
library LI; 
(LI); 
library L15: 
(L15) : 
library L94; 
(L94); 

The reason for this is that when the Post System causes the Usereode program 
test to be output on the line printer only the word LIBRARY is shown for library LI, 
LI5, L94; whereas byusing the above recommended calls the following would be 
shown:-

LIBRARY 
iLl); 
LIBRARY 
(LIS) ; 
LIBRARY 
(L94); 

14-4 ExerciseS - SeU 
1. Y4 ~ontains a positive (non-zero) binary integer mnl it is required to convert it 
to character form. LIOOO,ll subroutine -to. do this, requires a positive-binary 

-.integer in Nl on" entry "and leaves the character form of the integer in Nt and N2, 
the result being right justified with more significant Zeros, (including zero itself) 
replaced by spaces. Write the instructi1:ms (and the UbrarycnIl message assuming 
the 'POST -system will be used for the program) necessary to usc the subroutine 
ending by pl~ing the more significant half of the result in YPI and the less 
significant half inYP2. Ll.o00 exits with EXIT 1; and uses Q15 and 3 cells of 

Page 114 



the nesting store. 

14'5 Exercises - Set2 
1. Y4 contains a binary Integer (+ve or -ve). Repeat the previous question but 
in addition to using the subroutine place the sign of the Integer (as 35(8) or 
36(8) in D42-D47 of YPI1 with the first seven characters as dummies. 

[Zero Is to be considered as +ve and only one 11 (the least significant) Is to be 
printed if the integer Is zero. ) 

Page 115 





15- THE CONCEPT OF FLOWCHARTING 

15-1 
When !ll'ogl'amming t'xln'ml'ly shol't and simple routines, it is sometimes 
POllS ihll' to wl'ilL' d()\\11 Iht' instruetions immL>(\iately, but genemlly it is 
nt'l'l'ssa ry 10 havl' a schematic pieture of the routine. prepared to assist the 
pl'llgralllIl.ll'I' . This pidul'c kn(l\\l1 as a "l1owehart" depicts the routine in detail 
:ual from it Olll' ('all follow the vat'ious stages easier than by reading a script of 
till' sanw thing. 

A flowcha rl COllllll'i::;es m:UlY differently shaped boxes in each of which is written 
thc al'lion 10 be laken al Ihal stage. Thc boxes u\'c linked together by arrowed 
lim's so Ihal till' ::H"'1Ul'IH't' in which the boxes arc tu be dcalt with is detcrmincd. 

15-2 Cor.ventions for Flowcharts 
There are threl' lYPl'S of hox: 

(i) o 
(ii) 

(iii) <> 

Start, End and Connector, each of which has only 
one exit or entry line. 

Operational. Only one entry and one exit line. 

Decision. Only one entry and two exit lines. 

The first has wriltt'n in it "STAnT" or "FINISH" or "the point of connection". 
The operatiunal box contains a statement of what action is to be performed, 
When Ihere is the possibility of more than one path to be followed depending 
on the valueuf a partieular parametcr a decision box is used wherein is written 
the criterion determining the next box to be obeyed. A connector is used much 
in the same way as "cuntinued on , .. " and "continued frum , .. ". 

The s tatemen ts etc. written in the boxes could be written in normal English but 
the 110wchart will be murc concise if the following abbreviations are used: 

The address of a word is ShO\\l1 as e. g. , AS, or Y9 when the actual address is 
known. Whl~n till' address is kno\\11 to be x words after say AfJ but the value of 
x is variable then the conventiun used is e. g., A[x] . 

The contents of an address are sho\\n by the address enclosed in round braekets, 
e.g., (A[xl). 

Pagc 117 



Symbol 
+ 

x 
/ 
+ 

> 
< 

Meaning 
as in normal arithmetic. 
as in normal arithmetic. 
as in normal arithmetic. 
as in normal arithmetic. 
integcr division. giving an integer 
quotient and remainder. 
"is equal to" (never used in an 'operational' 
box). 
"is not equal to". 
"is greater than". 
"is less than". 
"is greater than or equal to". 
"is less than or cqual to". 
"becomes equal to" (only used in an 
'operational' box). 
"is interchanged with" 
"is compared with". 

Particular attention must be paid to = and :'" 

To emphasize the difference between them consider the situation when the 
addresses A6 and A 7 contain two numbers and it is required to place the sum 
in A8. Then the order would be 

(A8): (A6)+(A7) 

However should it be required to take one path if the contents of A8 equals the 
sum of the contents of A6 and A 7 and a different path otherwise. the decision 
would be 

Notice here that the symbol : has been used to show that a comparison has to be 
made. In such a comparison it is the left hand term which is referred to as in 
the next sample. 

Page 118 



Here, if (A15)< (A2) the upper path is taken otherwise the lower path is to be 
followed. 

It is essential that the exits from a decision box should cover all possible results. 
Had the last example been written as 

then it would be impossible to mow which path to follow when (A15)=(A2). 

Page 119 



15· 3 A Simple Flowchart 
Below Is given the flowchart of the process to print th~ nth. power of x. when 
x and n are on paper tape in character form both being integers greater than 
zero. 

Page 120 

(AI): = true blnnry of (AI) 
(A2): = true binary of (A2) 
(A:!): = I 

(A3) :=character 
form of 

(A3) 
Print (A:!) 



The first box after STAHT 1'1 lIes that the addresses Al and A2 are to contain x 
and n respectivl'iy by reading these values from paper tape. 

This is followed by ch:mging the contents of Al and A2 to contain the binary 
representation of x and n which are in character form. A3 is to 'contain the 
binary integl>r 1. 

Exit from tle next (decision) box every time it is entered is along the F path 
provided th ~ contents of A2 are not zero. A3 is then made to hold its previous 
value multiplied by the contents of AI. The contents of A2 are then reduced 
by 1, and the exit line goes back to just prior to the decision box which is 
again obeypd. This process causes A3 to hold 1, then x, then x X x, then 
xXxXx, etc., until A2 holds zero when A3 holds xn,. By this time A2 will 
contain 11 :md the "00" path will be taken from the decision box. 

A connector box directs us to the bottom of the chart and to the orders to change 
the contents of A3 into character form and print. 

Page 121 





16· PROGRAMMING EXERCISE A 

16·1 
A Usereode program will now be written to generate the integers. I, 2, 3 .... 
up to 50, :Uld print them one per line on the line printer using OUT 8, stream 
no. :l~(8). 

A library subroutine is available, entry to which is by JSLI000. It requires a 
positive (non zero) binary inteser in Nl on entry, and exits by EXIT 1 with Nl 
:md N2 containing the decimal representation in character form of this integer. 
N I is more significant than N2 and the characters are right justified with the 
more significant zeros replaced by spaces, 1. e., octal 00. It is to be understood 
that the program will be compiled on the POST system. The output should be 
headed with a title. 

The flowchart for this routine is as follows: 

Page 123 



N. B. Although library subroutine LIOOO is available for programs run by 
Training Department, Kidsgrove, it is not as yet (February 1966) in the norinal 
KDF 9 library. 

16·2 Solution 
It is recommended that 
(i) programs be written in pencil on alternate lines 

(ii) the finished version is not copied out "for neatness sake" - invariably 
this results in an error, (of course this recommendation has to be tempered 
with common sense. If the program is rewritten great care must be taken not 
to miss the odd ; or 0) 

and that 

(iii) Constant declarations be written on a separate sheet from the instructions. 

(The following should be read in conjunction with the final version at the end of 
this section). 

The first box requires a heading to be printed, which is to be output via OUT 8 
Stream 30(8) so write VO = B30;. Let the heading be INTEGER GENERATION. 
This will require a P-constant; so write V 1/3 = P INTEGER*GENERATION 
[ 5DC 1 ; declaration. To cause this to be printed will require N2 to contain the 
Q'type word 0/AVO/AV3; so set this as V4. The instructions V4; SET8; 
OUT; can now be written - note that this OUTS instruction will cause VO to 
be overwritten. The solution to this question has been written using V-stores 
for output purposes merely to indicate to the reader that such is possible. 
However, in general, output should always be from YA-YZ or Y stores, -
this may mean that a few V-stores will have to be transferred to another area 
for output. 

The next requires 50 to be stored somewhere and it is noticed that this reduces 
by 1 every time round the loop - this suggests it should be kept in the counter 
position of a Q·-store. Similarly the integer 1 needs to be stored and this is 
incremented by 1 every time round the loop - indicating that it could be stored 
in a modifier position with the increment poSition of the same Q-store as 1. 
So put the next constant declaration as V5 = Q 50/1/1; with the instructions 
V5; ~Ql;. 

We now come to the loop. Since re-entry to the loop just before the box n;O 
will be needed it is necessary to give the junction a reference label, say 
reference 1. Exit from the decision n:O is to one of two places this means 
that at least one of the exits also needs a reference. 

Let us call the exit, which goes to FINISH, re.ference 2. So before we write 
the instructions to deal with n:O write the labell, at the beginning of the next 
line. n;O is now dealt with by the instruction J2CIZ; If n -I 0 when the box 
is obeyed no jump to reference 2 will occur so the next instruction in sequence 

Page 124 



will be Ml; to cause Nl to hold the current value of i which is In Ml. 

Library subroutine LIOOO extracts Nl and leaves in Nl and N2 the character 
form. So we needJSLIOOO; Since the largest integer to be printed is 50 we 
see that Nl will always be left as eight spaces by the subroutine, we can 
therefore quite conveniently erase it from the nest - using ERASE; Nesting up 
will have taken place and we now need to cause the new Nl to be printed. Let 
us use YP stores for this printing area - YPO holding stream number, 
YPI the integer in character form, YP2 seven dummies and a CRLF. 
So the next instruction will be =YPl; To get the stream number into YPO we 
need another V store =B30 (remember that VO has been overwritten). So write 
V6 ~B30; and the instructions V6; =YPO; For YP2 to hold [7DC) we need V7 
= [7DC); and the instructions V7; =YP2; BUT it is not necessary to have this 
pair of instructions inside the loop. YP2 does not become overwritten by the 
OUTS instruction (only the first word of the area, the stream-number, is 
overwritten) so why reset YP2every time round the loop? - place it in just 
before the loop. 

The area YPO-YP2 can now be printed, so a V store declaration VS = Q 0/ A YPO/ 
AYP2 is needed with the instructions VS; SETS: OUT: 

All that is required now is to update i and n which Is done by M+I1: DCl; 
To get back to the box n:O we use Jl:. We can now enter reference 2 and end 
the run by ZERO: OUT: . 

The program is now finished apart from entering the library call message library 
LIOOO; and final instruction FINlSH:-. --

Before entel"ing the program for typing, the programmer should check that the 
loop does not "generate" or lose a cell in the nesting store every time round. 
Do this by noting how many cells are filled when I: is encountered first time, 
then pass through the loop adding and subtracting to the count as appropriate for 
the instructions met until you are led back to reference 1. At this point the 
count MUST be the same as it was when 1: was first encountered. 

It is programming etiquette to ensure that the nest is empty when ZERO: OUT: 
is obeyed. We notice that there are no cells filled When J2CIZ: is obeyed 
which means that no cells are filled at reference 2. 

Now have a look through what you have written to ensure that all ; I S are entered 
and that all instructions are valid. 

Page 125 



V~ .. B:l~; 
VI/:l ~ P INTEGEHtGENEHATION I GDC); 
V4 Q ~/AV~/AV:l: _. 

V5 Q 50/1/1; 
V6 B:l~; 
V7 PI 7DC]; 
V8 "Qll/Afl>~/AYP2: 

V4; SET8; OUT: V5; 'QI; V7; 'Yl'2; 
I; J2CIZ; MI; JSLIOOO; EHASE; -YPI; V6; 'YP~; 

V8; SET8; OUT; M+IJ; DCI; JI: 

2; ZERO; OUT; 
library LIOOO; 
FINISH: 

N. B. The reader may now like to improve this programme by using only one 
jump instruction (JICINZ) instead of two (J2CIZ and JI). He should consider 
the implications if ''11'' initially is zero. 

16- 3 Exercise 
The reader is now asked to write a program using JSLIOOO and OUT 8 (Stream 
30(8» to cause a heading to be printed followed by the first 40 integral powers 
of 2, one per line. The flowchart to be used for this is: 

Page 126 



The heading is to be of the format: 
NAME 
blank line 
TITLE 
blank line 

Do not, use V stores for output. 

Figure 9 

Page 127 





17' INPUT/OUTPUT INSTRUCTIONS 

17'1 Basic Requirements 
Most computl'r programs will require at some stage to be supplied with additional 
data, and certainly the vast majority will be expected to produce the results of 
their calculations in some tangiblc form. For these purposes it sct of input! 
"Output instruetions is required. Since no two programs require data in the same 
layout, this foet of instructions must of necessity possess a large degree of 
flexibility. )'or a computer like KDF 9, which can be fitted with up to 16 input! 
output devices, the instructions must further include some provision for 
allocating the appropriate device for a given purpose. 

In normal usage a library of subroutines will be available to perform all the 
necessary input/output operations. This library will contain a generous selec
tion of routines, anyone of which may be further tailored in certain specified 
ways to meet a given requirement. It may be the case, however, that such a 
modified subroutine will be too clumsy and inefficient for the use to which it is 
to be put. Again, it is always possible that a new special purpose input/output 
routine will be required. For these reasons all KDF 9 programmers should know 
how to write input/output routines for themselves. OUT 8 which was dealt with 
earlier, is an example of an output routine which is incorporated in the Director 
program. 

The following presents the basic Usercode instructions concerned with input 
and output, with the rules governing their use, and will enable programmers 
to write this type of routine whenever the need arises. 

To perform any basic input/output operation on KDF 9, three pieces of information 
are needed:-

(a) The nature of the operation, (e. g., reading from paper tape, or output on 
line printer) . 

(b) The particular device to be used, (e. g .• there may be two paper tape readers. 
both will be of type 2 but will have different device numbers). 

(c) A specification of the quantity of data concerned, either as the area of 
main store involved in a transfer or as a simple count. 

Item (a) is known at the time the program is written. and no further comment 
need be made here. Items (b) and (c) are in a different category because they 
may be unlmown until the program is actually run. The input/output device 
that will be used is never known until run time: the programmer, when 
writing his program, will not know which of possibly two devices of the same 
type will be allocated to the program by the Director al run time. 

In certain conditions item (c) is also unlmown until the program is run. for 
instance if variable-length items are involved. 

Page 129 



Therefore items (h) and (e) must be written into the program in such a way that 
they can be adjusted as the program is running by the incorporation of extra 
information. The Q-stores are used for this purpose, each input/output instruc
tion nominating one of the fifteen Q-stores as the location of this extra information. 
It is the responsibility of the programmer by the use of the appropriate instruc
tions within the program, to ensure that the correct information, once it has been 
discovered, is put into the appropriate Q-store before the input/output instruction 
is obeyed. If this is not done the machine will be unable to proceed with the 
operation, since it is into theQ-store that the machine looks for its directions. 

17- 2 Device and Type Numbers 
Each individual input/output device has a permanent Device No. and further, each 
type of device has a type No. 

The programmer then requests use of a device by quoting the Type No., Director 
allocates to the program an appropriate device and then informs the program 
which particular device is involved by leaving its Device No. in the top cell 
of the nesting store. 

This technique facilitates the interchange of programs between different machines 
with different numbers of each type of device. 

17-3 Outs 
Control is transferred to Director by use of the special instruction: 

OUT; 

When this instruction is obeyed, Director extracts the contents of N1 of the nesting 
store and then performs a specific operation depending on the integer found. 
Sometimes, depending on the value of the integer, Director again extracts the 
contents of N.1 (the N2 before OUT; was obeyed) for auxiliary information. The 
integers chosen for use in N1 for direct input/output are 4,5,6, and 10. These 
entries into Director are usually referred to as OUT 4, OUT 5, etc., but it 
should be remembered that the written instruction is OUT; and that the integer 
appears in Nl. OUT 8, in Section 12, is an example of this, where extra 
information was required in N2. 

Integers in N1 other than 4,5,6, and 10 used in connection with the instruction 
OUT; have uses not concerned with input/output, and will not be conSidered here. 

17- 3-1 OutS. This is the request to Director for any of the input/output 
devices, other than the magnetic tape, drum and disc file units, to be allocated 
to the program. Out 5 only causes the device to be reserved to the program, it 
does not cause any transfer of data to occur. One of ,the reasons, for the need 
for a program to claim a device is to prevent mixing of a time sharing machine 
where probably four programs are running concurrently. The transfer of data 
instructions is dealt with later. 

Page 130 



For the OlIT 5 entry to Dircctor, Nl contains the integer 5 (47 integral places) 
and N2 cont:lins an intl'gcr defining the type of input/output device required. 
The integers in N2 (47 integral places) may be any of the following:-

INTEGEH 
(Type No.) 

1 -

2 .. 

3 -
4 -

Device required 

Paper tape pWlch 
Paper tape reader 
High speed on-line printer 
Card reader. 

(This list will be extended as required). 

As an example of this instruction, conSider a program requiring access to a 
paper tape reader. The set of instructions to obtain the appropriate device 
number would be:-

SET 2; SET 5; OUT; 

When control is returned to the program, Director will have placed the appropriate 
device number in N,l as an integer (47 integral places), while the original 
integers 2 and 5 have been removed from the nesting store. 

When a device is allocated to a program, the Director will type a message to the 
Operator stating which device has been allocated (as a record of what is happening 
and also state Which device of that type will be allocated NEXT when the next 
OUT 5 to that type is obeyed. Director keeps a tally of devices of each type 
and allocates them in cyclic order. 

It can happen that a particular program is one of a series of programs always 
obeyed sequentially. If all require just one of a particular type of device, but 
the computer has more than one such device available, it is often advantageous 
if all use the same one, to minimise operator actions in, for example, settin6 
up printers or loading paper tapes. 

This can be achieved by informing Director, whenever a device is claimed, that 
it will eventually be required again. This information is given by adding the 
integer 8 to the integer in N2 specifying the type of device (i. e., putting 11 in 
N2 for a line printer). Director will now NOT deSignate another device as 
next to be allocated. 

It will be noticed that no code number for the on-line typewriter has been given. 
In fact the typewriter always has device number 0, and there is no need for it 
to be claimed by OUT 5 (or deallocated by OUT 6). All prolP'ams have ready 
access to the typewriter, but programmers always use it in extreme modera
tion since it operates at only ten characters per second and is shared by all 
programs. 

Since the device claimed by OUT 5 will subsequently be required to read or write 
and then eventually needs to be deallocated before the program ends, and further 

Page 131 



since these transfer and de-allocation instructions will require the Device No. 
to be in the Counter position of a Q-store it is wise to place it there immediately 
after OUT 5. 

Assume the program uses Q9 for the purpose of data transfer instructions of the 
paper tape reader, then the instructions to claim the device would be 

SET2: SET5: OUT: =C9: 

With large programs it is advisable to keep a copy of the device number in a 
main store word in order to avoid extra programming in case of the counter 
being overwritten in programming error. The instructions may take the form 
SET2; SET5; OUT: DUP; =C9: =YOI; 

17·3·2 Out 6. Tnis is the entry to Director for de-allocating an input/ 
output device. Before a program run is concluded it is always necessary to 
de-allocate all the devices used, otherwise any unfinished input/output transfer 
is liable to be truncated when the concluding entry to Director is made. This 
catastrophic truncation will not occur if the OUT 6 directive is made for each 
device: the program will not conclude until all the de-allocations have been 
completed, which in turn will not occur until all transfers to and from each 
device are concluded. 

OUT 6 requires the nesting store to contain the integer 6 in NI, and in N2 the 
number of the input/output device to be de-allocated. When Director has 
taken the necessary steps, control is returned to the program, the contents of 
NI and N2 having been erased. 

If the device de-allocated is a tape station, Director will type out instructions 
to the operator to unload it. H the device is one of the others, Director will 
type the instructions to unload it and further will inform the operator if it is 
the next one to be used for input (this will occur if no deSignation was made when 
the previous allocation occurred). 

When all the data transfer instructions for a device have been completed and the 
device number is in (say) YOI then the instructions to de-allocate the device 
would be 

YOI: SET6: OUT; 

17·3·3 OUt 4. OUT 4 instructs Director to locate a particular magnetic 
tape, Which must be specified before the QUT instruction is obeyed by putting 
in N2 a quantity known as the tape identifier. This tape identifier is a pattern 
of eight characters which also must appear in the first block of every magnetic 
tape, a different identifier being assigned to every magnetic tape. When 
Director is entered, it locates the device on which is mounted the tape'with 
the stated identifier, and supplies this device number back to the program. 
The device concerned is then allocated to the program and may be used for 
reading from or writing on to magnetic tape. 

Page 132 



This facility makes 'it possible to load maAlletic tapes in adv:Ulce of l'l'quh'l'l\Wnts 
on whatever devices happen to be anlilable, l't'sulting in more l'ffil'il'llt USt' of 
the machine, If the required tape is not discovel'l'd, till' Opel':l~OI' \l'ill bt' 
informed and asked to find the tape and to mount it on :Uly ont' of tht' IUlUSt'd 
magnetic tape stations, Tapes \l'hieh an' to be uscd 1'01' temporary \l'orl,inl,( 
should have a completely zero idcntifier and arc l't'fl'rl'l'd to as "Zl'I'O work 
tapes", If an output tape is requil'l'd for latcl' usc it sltould haH' all idt'lltifil'l' 
written on it by the program at output time, Since each magllctil' tape eanit'S 
its own identifier it should never be possible for tapes intended for one program 
to be claimed by another program" The idl'ntifiel' syst(!tn will avoid costly 
confusions of this sort. 

When control is returned to the main program aftel' entering Di rector, tltt' words 
originally left in Nl and N2 will have been removed and the device number, as 
an integer, will be in N 1. 

!twill not be possible (in the gent'ral case) for the progmtn to allocatt' idt'lltifit'I'S 
to output tapes without operator assist:Ulce, 

To claim the magnetic tape lUlU holding the magnetic tape with identifier 
KEP7DOO I, the form of instructions necessary is 

V2 P KEP7DOOI 
V2;SET4; OUT; DUP; c~C5;=YD7; 

This causes the device number to be placed in C5 and YD7, 

17·3.4 Out 10. Some magnetiC tapes have identifiers of + followed by 15 
characters. To claim one of these N2 will contains the more significant half of 
the identifier andN3 the less significant half. Nl will contain the integer 10. 
Otherwise the principle is as for OUT 4, except that after OUT111. the tape 
serial number is left in N2. 

To claim the device with the magnetic tape whose identifier is +KEDA TAPRESET005 
the form of instructions would be: 

V 7/S = P+KEDA TAPRESET005: 

VS; V7; SETlO; OUT; DUP; =C3; =YD2; (TSN now in Nl) 

Deallocation of magnetic tape units is via OUTG, Instructions for tr:Ulsferdng 
data to and from magnetic tape are dealt with in a later chapter. 

17' 4 Paper Tape 
The majority of KDF 9 installations use I" wide 8 channel tapc. Before use, 
it is a roll of unperforated paper with arrow-heads printed every 7" indicating 
direction of the tape through punch and reader. When punched, a paUcrn of holes 
appears across the width of the paper together with a sprocket hole every 1/10" 
with 1 bits punched holes and 0 bits unpunched. The layout of the channels of 
S hole paper tape is indicated in the example of 8 hole paper tape bi.'low. 

Page 1:1:1 



00000 a a a a Channclll,.,asl sihl1'e;U1lblnary digit o( chara(·terl 
0000 0 0 0 aGO Channel 2 2nd digit of character I 
a 0000 00 00 0 Channel 3 3nl digit of characll'l' 

000,",0000000000000000000(.'0000 0(; 0 'J 000000 00 00 <)0000 (sprocket holes) 
f o 0 0 0 Channel 44th digil of eharacler 

000000 0000 00 Channel 5 Parity bit. 
000 00 a 0 Channel 65th digit of charactet' 

) 
0000 0 OGO Chmrnel 7 6th digit of character 
o a Channel 88th hole bit 

By closely inspecting the above diagram the reader will notice that for each character 
(6 bits in main store) 
(i) the most significant octal digit is held below the sprocket hole line in channels 
7, 6 and 4 

(ii) the least significant octal digit is held above the sprocket hale line in channels 
3, 2, 1 

(iii) there are two extra channels, 5 and 8, which do not form part of the Character 
Code. 

E.g., 
(i) 
(ii) 

Consider the character K, octal 53; this is held on tape as 
101 below the sprocket hole line by holes in channels 7 and 4, and 
011 above the line by holes in chaJIDels 2 and 1. 

The paper tape reader operates at 1,000 characters per second and the paper tape punct 
at 110 characters per second. Paper tape is therefore a slow medium for input/output 
compared with magnetic tape. However, this has certain advantages in use since it is 
possible at any time to stop either of these paper tape devices between two adjacent 
characters. This means that paper tapes do not require gaps between successive groups 
of characters, although it may often be desirable to leave such gaps if only to make a 
tape easier to inspect visually away from the machine. 

The reader is arranged to read 8 channel tapes, but it can be converted to read 7 or 5 
hole tape (each of which had a modified character code) by operating a manual switch 
and chaning a plug on the reader which is wired to re-arrange the input channels to 
appropriate channels. 

Page 134 

} 



17·5 Parity and 6th. Hole 
Although only (i information oits are nt:cessary for the character code (8 hole) 
it is necl'ssary as precautionary mca::;urc tu havc 2 extra Olts on tht: data mt:dia. 
The two bits are the "Pal'ity" mid "8th. hole" bits. Vv1wndata is prepared on the 
Flexowritcr. Paper tape punch, magnetic tape, etc .• tiH:se 2 bits are automatically 
inserted asnect:ssary. When the data is read from the media into the main store 
thl'se 2 oils arl' not trlUlsferred. 

(i) Parity. .\s a protection to ensure that the data medium has not been mutilated 
since being prepan'Ci, the number of bits in a 6-information-bits-group are 
autumatically count.:.'Ci :U1d depl'llt\ing on the numoer 01 oits an extra hits is placed 
in a special position. There are two methods of approach. 
(a) Even Parity. If the number 01 bits in the 6 information bits is odd an extra 
oit is inserted thus making the number of bits now "even". 

(b) Odd Parity. If the number of bits in the 6 inlormation hits is even an extra 
bit is inst:rted thus making the number of bits now "odd". 

The device which reads the data checks that each group of bits (6 information bits 
plus the 2 extra bits) has correct parity, if the group passes the test then the 6 
information bits only are transferred, otherwise a failure is indicated. Paper 
tape works on "even" parity and magnetic tape on "odd" parity. 

If during reading, a character does not pass the Parity test, the Parity Indicator 
(a single bit register) on the device is set and reading automatically and instantly 
ceases and the paper tape does not move on to the next character. With the 
paper tape reader, parity checking is perlormed for 8-hole tape only (but may 
be suppressed if desired by a manual switch). If the reader is switched to 5 or 
7 hole tape, the parity checking is automatically removed. When parity checking 
is oU, the automatic recognition of spaces (gaps on tape) and delete (aU channels) 
is also stopped therefore all characters will be transferred to the main store 
and the program must edit them accordingly. 

(ii) 8th Hole. Blank tape and tape where all bit places are punched are 
ignored. This means that if the space character (octal 00) is to be transferred 
the tape would be blank and so ignored. To overcome this, provision is made 
for another bit, which is used, together with the parity bit, to specify the space 
character. This extra hole is also used for "delete". 

17·6 Fixed and Variable-length Data 
If the program is such that the amount of data to be transferred is fixed in length 
for each run, then it is sufficient merely to specily the area of main store in
volved by quoting the addresses of the first word (called the low core address) 
and of the last word (called the high core address) . 

When theamoimt of data varies from run to run, the low and high core addresses 
quoted are those which will allow the maximum amount of data likely to ever 
occur. The data is prepared finishing with -(Octal 75) called the "end message 

Page 135 



symbol". A special data transfer instruction is then used so that only data up 
to the -is sensed, thereby only filling, generally, part of the main store area 
specified. 

17·7 
PRQq; 

PWQq; 

Page 136 

Paper Tape Instructions 
Causes a block of information to be read (from paper tape mounted 
on the device whose number is in the counter poSition of Q store q) 
and transferred to the region of main store specified by the low 
core address in Iq and the high core address in Mq. Only the six 
information channels are transferred to main store. 

It Is essential than an exact multiple of eight characters to fill 
the main store area is prepared for this instruction. If too 
few are on the tape the paper tape reader will wait for more 
characters so that the transfer may be completed. If too many 
characters are on the tape, only sufficient will be read to fill the 
area involved. Words are filled in from 00 to 047 (left to right). 
As with all input/output instruc~ions the contents of the Q-store 
remain undisturbed. 

Example 
If a declaration in a program is V9 = QO/ A Y6/ A Y7 ; and the first 
instructions are 
V9; =Q3; SET2; SETS; OUT; =C3; PRQ3; 
The effect would be: 

(i) to claim a paper tape reader and place its device number 
in C3; 

(11) to read 16 characters from paper tape and transfer· the 6 
information channels of each to fill Y6 and Y7. 

If during the read a character is read which does not pass the 
Parity test an indication is set in the reading device, and the read 
ceases at that character until the error is dealt with. 

Causes a block of information to be punched on paper tape by the 
device whose nuinber is in the counter poSitions of Q-store q. 
The information punched is that region of main store specified 
by the low core address in Iq and the high core address in Mq. 
In addition to the six information channels the punch will insert 
the parity and 8th~ hole bits. as necessary . Because the parity 
bit is automatically inserted no parity indicator exists in the device. 
No gap is left when punching ceases. Words are punched from 00 
to 047 (left to right). 



PREQq; 

PWEQq; 

PRCQq; 

Example 
The instructions to punch the contents of Y5 where the device number 
is in C12 would be SETAY5;DUP;=I12;=M12;PWQ12; The device 
must have been claimed earlier in the program for C 12 to hold the 
device number. 

This is the same as PRQq; except that if an end message symbol 
is transferred before the specified area of main store is filled the 
transfer ceases. The - is transferred and if it is not the last chara
ter of a word, the characters in the word wil1 be placed "left 
justified" and padded out with 0' s on the right. Other words in the 
specified area will be left as they were before the transfer. 

Since the reading will cease when the specified area is filled (if 
not previously completed by the transfer of an end message) the 
programmer should ensure that the speCified area and the data 
shOuld be of such a size that the end message is always read. 

Note: Because 75(8) is read as the end message symbol it is essen
tial that only data in character form be transferred when using 
this instruction. 

This is the same as PWQq; except that the transfer ends when either 
the last word of the area or an end message character i.s punched. 
See the note at the end of PREQq; 

This is a special instruction for reading 8 hole tape in which all 
8 channels contain information for the main store. All 8 bits are 
transferred to the least Significant end of the appropriate main 
store word, the remainder of the word being filled out with zeros. 
One character from the paper tape therefore occupies one complete 
word of main store. The transfer ends when the number of main 
store words specified by the Q-store are filled. 

The layout of digits in the main store word is:-

DO-39 Zeros 
D40 Channel 8 8th. hole 
D41 Channel 5 Parity 
D42 Channel 7 
D43 Channel 6 
D44 Channel 4 
D45 Channel 3 
D46 Channel 2 
D47 Channel 1 

There Is no parity checking with this instruction: 
all characters including' delete' and 'gap' are transferred to the 
main store. 

Page 137 



PRCEQq; As for PRCQq; but stopping if an End Message Character is trans
ferred. For this purpose End Message is taken as any character 
having the configuration 75(8) in the normal information channels 
5 and 8 are disregarded. 

PWCQq; This is the exactly inverse instruction to PRCQq; the punching of 
8th. hole and parity depend on the contents of D40 and D41. DO-D39 
are ignored. 

PWCEQq; As for PWCQq; but stopping on octal 75. 

PGAPQq: This instruction causes a gap of n blank characters to be punched on 
the tape by the device quoted in Cq. Only the sprocket hole will be 
punched in each character poSition. The intcger n defines the number 
of sprocket holes punched and is quoted in Mq, (10 sprocket holes to 
the inch). The increment position of Qq is not inspected by this 
instruction and may contain any data. 

It is wise to begin and end all tapes from the paper tape punch with 
a gap of about 12 inches. This ensures that the characters punched 
are well clear of the punching mechanism when the operator tears 
the tape off. The form of instruction for this would be (assuming C8 
contains the device number) 

SET120;=M8;PGAPQ8; 

The parity indicator cannot be set by this instruction. 

17·8 Chl:lCldng facUities on Paper Tape 
After either of the instructions PRQq:PREQq; the Parity Indicator on the device 
used should be inspected to ensure that the transfer was successful. ThIs 
inspection takes the form of the instruction PARQq; where Cq contains the 
device number; Iq and Mq are not needed and may contain any data. 

The instruction PARQq; causes the Test Register to be set if the Parity Indicator 
is set. The Parity Indicator is then automatically cleared. The state of the 
Test Register will not change if it was set before the PARQq; instruction, 
irrespective of the original statp of the Parity Indicator. 

This means that by correct use of PARQq; and JrTR; (normally in a pair, as 
PARQq;JrTR;) the program can, depending on the original state of the Parity 
Indicator, either continue in sequence or jump to "failure routine". 

It is to be emphasised that each device has its own Parity Indicator but that there 
is only one Test Register in the machine. Also PARQq; clears the former and 
JrTR; clears the latter. 

The full test for parity, then, involves transferring the state of the indicator to 
the Test Register and then jumping to a reference label if the Test Register is 
set. 

Page 138 



Since the reader cannot be used with the Parity Indicator set it is essential that 
PARQq; be applied before thc next read instruction is reached, but to save com
puter time, as will be appreciatcd later, the test should be left until as late as 
possible. However once PAHQq; has been entered, the instruction JrTR: should 
follow immediately. 

We shall now consider the paper tape instructions of the example program in 
Section 6·2. 

The instructions VO;~~l; cause 11 and M1 to hold addresses of YDO andYP99 
respectively, and SET2;SET5;OUT;~Cl; claims a paper tape reader for the 
program and enters its device number in C 1. The instruction PREQ1; causes 
the data to be read (up to end message) into the area YDO to YDS9. It will 
be noted that the specification of the program implies that there will never be 
more than 99 words of data followed by (CN) (CRLF)-; so that no more than 
100 words neL>d be reserved for this transfer, the end message will always 
exist in the area after the read. Since it takes time to actually read the tape 
there is no reason why processing of data outside the scope of the data read 
should not continue hence the use of the following instructions up to and including 
=YPO: 

No more work independent of the input data can now be performed so we need to 
do the PARQl; to ensure the read was successful. Should the read still be in 
progress when this instruction is encountered it will wait until the transfer is 
complete and then perform the parity test. Reference 101 is a failure routine 
to whieh the program jumps if PARQ1; has caused the test register to be set. 

The instructions Cl:SET6:0UT; now deallocate the reader from the program as 
it will not be required again for reading purposes. (Had a further read been 
required the deallocating would have been left until after it.) The program then 
proceeds to process that data which is now in the main store. 

17' 9 Protective Interlocks and Lockouts 
It can often happen that an input/output device can be called upon to perform an 
operation before it has completed a preceding one. If this happens, an auto
matic interrupt into Director will occur before the second operation is initiated. 
Director will return control to the program to perform the second operation as 
soon as the device ceases to be busy. Thus no harm will come to the program. 

It is also very easy for a program to try to transfer information out of or into a 
main store word whilst an input/output deVice is referring to an area including 
the same word. This will similarly cause an automatic interrupt into Director 
only returning when the main store word is once again available for use. This 
is achieved by KDF 9 keeping a "lockout store" which notes all words currently 
involved in input/output transfers, and this is referred to before any transfer 
from or to the main store is allowed. 

Since it would require a large amount of storage to check each word independenUy, 
the lockouts only go in steps of 32 words, the bottom five bits of any address not 

Page 139 



bcing inspccted for lockout purposes. It follows for this that, to avoid unnecessary 
lockouts, the program shouid keep the areas Involvcd with input/output operations 
in separate groups of 32 words. Compiler wlll always guarantec that the address 
of YO is divisible by :12 exacUy, so an address can be checked to sec what lockouts 
are produced. For example, if we ask to read a word to Y9:1 and also try to 
transfer Y64 whilst the read is bcing performed, we wlll be temporarily locked 
out, because 64 and 9:1 both have the same binary configuration, ignoring the 
bottom 5 digits. 

It is now possible to give a brief idea why V2:1 and V55 etc. arc quoted in the 
heading sheet, and thc "gap" arranged to terminate at the end of a line as 
requested in Section 6' 7. If an instruction requires a periphcral transfer of 
data in the same block of 32 words as the instruction, the block wlll bccome 
locked out and so it will not be possible to perform the next instruction until 
the restriction is removed. This is knoWn as being "locked out of your own 
program". 

17,10 The On-Line Typewriter 
For the purpose of completeness the actual typewriter instructions are given. 
However, it is strongly recommended that TWQq; and TWEQq; are not used -
the corresponding OUT8, using stream number 00(8) should be used instead -
this is especially so when the program is to be run on a time sharing machine. 

17,10,1 Principles of Operation. The on-line typewriter is the only 
device on KDF 9 which Is shared by all programs, including Director, and 
this fact should be remembered at all times. It is possible for the program to 
use the typewriter in two successive instructions and yet for Director to use it 
in between, so that information intended for presentation on the typewriter in 
two consecutive lines is split up by extraneous material inserted by Director. 

As the typewriter operates at only 10 characters per second programmers are 
advised to restrict their use of Uto the absolute minimum. It is suitable only 
for short messages to the operator. 

The on-line typewriter is equipped with a station for reading edge punched cards 
or paper tape, and also with a station for perforating edge-punched cards or 
paper tape. Information transferred from the computer to the typewriter will 
always appear on the typed copy and will also appear in punched form if the 
punch is switched on. Information may be transferred from the typewriter to 
the machine either from the manual keys or from paper tape or edge-punched 
cards via the reading station. It should be remembered however, that a typing 
error at the keys cannot be corrected. For this reason cards or paper tape are 
preferable when using the typewriter as an input device, as they can be checked 
for accuracy beforehand. Whichever of these means is employed, the typed 
copy is always a complete record of everything that has gone through the 
typewriter in either direction. 

17- 10, 2 ; Typewriter Control II:Istructions. The typewriter input and output 
instructions are very simUar to those for paper tape, so that only a brief explanation 

Page 140 



need be given here. The Instructions are:-

TWQq; Write a fixed-length block from tbe main store to the t~writer. 

TWEQq; Write a variable-length block from the main store to the typewriter. 

TRQq; Read a fixed-length block from the typewriter to the main store. 

TREQq; Read a variable-length block from the typewriter to the main store. 

The Cq in each case must contain zero which is the device number of the type
writer. There is one special facility available when writing to the typewriter. 
When using either of the instructions TWQq; or TWEQq;, if one of the characters 
transferred is a semi-colon then writing will immediately stop, and the remainder 
of the instruction will be treated as a read instruction. This will now be ampli
fied for each instruction in turn. 

To. use TWQq; an area of main store has to be specified in the Q-store. If a 
semicolon appears within this area, then as soon as it has been written to the 
typewriter the transfer will be truncated, and the remainder of the specified 
block in the main store may be filled with information supplied from the 
typewriter. This means that the part of the specified area following the semi
colon must either be empty or contain redundant information. In particular, 
any cha.racter spaces following the semicolon In the same word MUST be empty, 
but any succeeding wo.rd will be cleared when the first character is transferred 
into it from the typewriter. In general, therefore, to reduce the organisational 
problems, the semicolon will be the.1ast character In a word. Care must be 
taken to see that the block has been precisely filled when all the required informa
tion has been read in. If it is attempted to read In too much, the excess infor
mation will be lost. If too little, then the machine will wait until the block is 
properly filled from the typewriter instead of continuing with the program. 

The situation is simpler with the instruction TWEQq;. If a semicolon is typed 
before the end message character is reached, then Information may be read into 
the remainder of the block until an· end message character is transferred. In 
this case it does not matter if the main store region specified In the Q -store. is 
not entirely filled, although, of course, information will still be lost if the 
attempt is made to read in too much. 

It is recommended that this s.emicolon technique be used only with the instruc
tion TWEQq;. This facility allows the program to ask a question and for the 
operator to supply the answer via the typewriter all in one instruction, so that 
no interference from any other program can occur. The question and its 
answer· will appear on. the same line of the typed copy. This facility is used 
extensively by Director and may also be used by programmers with profit, but 
use of the Typewriter should be kept to a minimum due to its slow operating 
speed. . 

Page 141 



Programmers are asked to begin any transfer to the typewriter (exoept those 
via OUTS) with carriage return-line feed and case normal characters. 

Use of the TAB character is reserved for Director so that on the log sheet the 
comments from Director and the control program will appear In their appro
priate columns. 

There is no parity checkIng available on the typewriter. 

Example 
A program Inspects the contents of Y7 and performs a certain routine depending 
on whether the contents are YES. - or NO. - which is the operator' s type.
writer reply to the question, "Is there a spare work tape available?" The 
Instructions necessary to arrange for Y7 to be set up are:-

VI = Q 0/AYS/AY7; 
V2/3 = P SPARE*WORK*TAPE [Q); 
Vl;=Q9; V2;=YS; V3;=Y6; TWEQ9; --

The High Speed Printer 

17-11-1 Mode of Operation on-line. The high speed printer for KDF 9 is 
essentially a device for printing LINES of information at a speed of about 1000 
lines per minute, where the maximum size of a line is 160 characters. 

When a printer instruction is initiated, binary digits from the main store area 
involved are transferred to the printer's control electronics box in groups of 
6 (1. e., an octal pair) at a time.. These are Inspected and if they agree with 
the "Printer Code" in Section 17-11-2 a marker is set in a matrix. This 
matrix has 160 columns and a row for each character. For the jth octal pal r 
Inspected,the marker is placed in the position defined by the jth column and 
the row determined by the octal pair. 

Should an octal pair not fit into the code it will be completely ignored. The 
matrix is filled up (from the first column) until an octal pair, being one of the 
CONTROL SYMBOLS is encountered. Two such control symbols are generally 
used for the printer:-

(a) Line Shift 02(S)' to advance the paper by one line only. 

(b) Page Change, 03(S), to advance the paper to the first line of the next page. 

The control symbol causes 

(1) the current contents of the matrix to be printed, 

(ti) the matrix to be cleared, and 

(iii) the paper to be moved into position ready for the next print instruction. 

Page 142 



It is to be noticed that no print takes place until a control symbol is reached; 
which implies that the last octal pair of any transfer must be a control symbol. 
This explains why in OUT8 when using stream 30-37 the last character of 
the block mllst be either 02(8) or 03(8)' 

The state of the matrix after a word holding 50 45 41 44 50 51 47 50(8) 
has been transferred to it is as follows. 

Octal 1 2 3 4 5 6 7 8 9 10 11 12 13 - -
41 A 1 

42 B 

43 C 

44 D 1 

45 E 1 

46 F 

47 G 1 

50 H 1 1 1 

51 I 1 

52 J 

160 

If the first character of the next word which is also transferred, is 02(8) or 03(8) 
then the method of printing from the matrix is 

(i) all the A's are printed, in this case only one A in the 3rd character 
position from the left of the paper, and the marker cleared. 

(ii) then the B' s. C' s, etc., as for the A' s 

(iii) H's would be printed in the 1st, 5th, and 8th positions 

(Iv) When all the markers are cleared from the matrix, then the paper moves 
either to the next line or the beginning of the next page. 

The mechanism of printing is that the character hammers agreeing with the 
matrix column number strike the paper when the rotating print roller has the 
appropriate character in position. 

Page 143 



The mechanism of paper motion is such that after printing the control symbol 
causes the paper to start moving, and halting control is transferred to a photo 
electric cell assembly. On the side of the printer is a set of rollers holding 
a loop of paper tape in which is punched a hole for every line position of the 
print paper and an extra hole for the position of the beginniilg of every page. 
The paper tape loop moves synchronously with the print paper. 

If the control symbol initiating paper motion had been 02(8) (line shift) the 
motion would stop when light reaches the appropriate photo electric cell 
through a hole in the paper tape loop. Had the control symbol been 03(8) 
(page change) print paper motion would stop when light reaches the two appro
priate cells. To ensure that printing will not continue right up to the perforation 
between two pages there is no line shift hole punched in the loop for six line 
poSitions either side of the position where a double (page change) punching is 
made. This causes an automatic page change if the printing Is within six lines 
of the bottom of the page, even though the control symbol had only been for a 

line shift. 

Page 144 



The KDF 9 Printer Code. For the purposes of this chapter the 
reader should only refer to the column "on-line". 

Octal Printer Octal Printer 
pair 

On-line Off-line 
pair 

On-line Off-line 

00 Space Space 40 Not Used Selection 
01 Not Used Selection 41 A A 
02 LS LS 42 B B 
03 PC PC 43 C C 
04 Not Used Horizontal 44 D D 

Tab 
05 Not Used Selection 45 E E 
06 % % 46 F F 
07 I I 47 G G 
10 : : 50 H H 
11 = = 51 I I 
12 ( ( 52 J J 
13 ) ) 53 K K 
14 £ £ 54 L L 
15 * * 55 M M 
16 I , 56 N N 
17 / / 57 0 0 
20 0 0 60 P P 
21 1 1 61 Q Q 
22 2 2 62 R R 
23 3 3 63 S S 
24 4 4 64 T T 
25 5 5 65 U U 
26 6 6 66 V V 
27 7 7 67 W W 
30 8 8 70 X X 
31 9 9 71 Y Y 
32 Not Used Selection 72 Z Z 
33 10 10 73 Not Used End File 
34 ; ; 74 Not Used End Data 
35 + + 75 End Message End Message 
36 -(minus) -(minus) 76 Start Message Start Message 
37 0 0 Ignored Ignored 

17 ·12 High Speed Line Printer Instructions 
The printer is a type 3 device and must be claimed by the program before it can 
be used for printing. The claiming would take the form 

SET3;SET5;OUT;=C1 

I 

The instruction to initiate a printer operation is LPQq; with the printer device 
number in the counter position, and the low core and high core addresses of the area 

Page 145 



of main store to be transferred in the increment and modifier positions 
respectively. As with most input/output instructions the Q-store and main store 
are not changed· after the transfer. 

A test of Parity is necessary before the next LPQq; is attempted. 

After the last LPQq; and UsPARQq; JrTR; the device must be deallocated by 
instructions of the form 

G1 ;SET6;OUT; 

Example 
If Y20 contains 

1421240021316300(8) 

and Y21, 77 77 77 77 77 77 77 02(8) 

and Q5 Device No. of LP/AY20/AY21: 
then the instruction LPQ5; would cause 

£14 19s 

to be printed. 

Should it be required to print other than from the left margin of the paper it will 
be necessary to ensure. that sufficient "spaces" 00(8). precede the printable 
characters. 

In each print operation a whole number of 8 character words are transferred, 
where by 'character' is meant ANY octal pair. Should the area to be printed 
contain redundant character positions, they should be padded out with dUriimies. 
77 (8)' This together with the requirement that 02{or 03) should be the last 
character of the block explains why Vv '" P [7DC) ; is found as a V -store declaration 
in almost every program. 

Generally, line printers are. set and loaded with paper allowing only lines of 120 
characters Width, and if possible programs should be written accordingly. If. 
however. it is essential that the program be so written that 160 character wide 
paper be used, a message to this. effect should be passed to the operator when 
the program is run. Similarly paper of only 80 characters wide is available 
but not generally used at all installations. 

The instruction LPQq; baSically only allows transfers of fixed length but this can 
be varied to allow a transfer to end message only by variation to the standard 
plug board - (see Section 12·5). For a more detailed explanation of the Line 
Printer the reader is referred to "1040 High Speed Line Printer Manual". 

Page 146 



17·13 Exercise - SET 1 (Do not use OUTS for these questions) 
1. Write the necessary constant declarations and instructions to claim the paper 
tape reader; read a block of data to end message into YDO - YD1000; read a second 
block fixed length (no end message) into YP53-YP57; and then deallocate the 
reader. Parity tests must be performed and in the event of Parity failure the 
message PARITY P. T. R. is to be typed on the typewriter, and the routine 
abandoned. 

2. Claim a line printer and call for three page changes (the pages to be left 
blank). Eventually deallocate the device. In the event of Parity punch, on paper 
tape, characters such that when later fed through a typewriter it would type 
XXYy. Precede and end with 6" of blank tape. 

3. Claim a line printer; call for a page change; print out the contents of YR7 
(which are in printer character code) on the first line of that page; leave a 
blank line and then print out the same data again. Eventually deallocate. 
Arrange for a suitable message to be typed on the typewriter in the event of 
Parity. The contents of YR8 must not be destroyed. 

4. A block of data is in 1"D5-YD9 in paper tape character code; the last 
character in each word is 75(8). Do all that is necessary to cause the contents 
of the area to be punched on paper tape with a gap of 4 inches before each group 
of 8 characters punched and 6 inches at the end. 

5. Arrange for the question "Is it Monday" to be typed on the on-line typewriter 
allowing for an 'operator reply Y. - or N. -

6. Claim the magnetic tape with identifier +KESUBLB.50-1470 and puts its 
device number in Q1. 

Exercise - SET 2 
1. A paper tape contains the characters 
07 77 77 77 00 32 53 77 32 44 32 46 00 32 31 77 02(8\ 
which are then read into Y1 and Y2. The instruction LPQ5; is then obeyed with 
Q5 holding Device No. of L.P/AY1/AY2. What is printed on the line printer 
and what would be typed if the paper tape were fed through an off-line typewriter? 

2. A program contains the following declaration and instructions; what is 
printed on the line printer? 

VO = Q 0/AYP3/AYP3; 
VO;=Q1;SET3;DUP;SET2;+;OUT;DUP;=C1;=YD3; 
SET-l ;SETB3675;-;=YP3 ;LPQ3 ;PARQ3;Jl TR; ....... . 

3. Write a program body to:-
Read 8 words from paper tape (these contain only decimal digits and alphabetic 
characters) . 

Page 147 



Via OUT8 Stream 36(8) print heading (Name) at the top of a new page, leave 2 
lines and then print the 8 words read in, at 2 words per alternate line with 
reasonable spacing between each word. 

In the event of any parity failure, type the word "Parity" on the on-line 
typewriter via OUT8 and terminate the program. 

Page 148 



IS- DOUBL~ AND HALF LENGTH 

IS-I The NEXT Facility 
Section 4- 1 Indicates that two words of KDF 9 may be assumed to be the two 
halves of a double-length word of 96 bits. It is a wise precaution that these 
two words should be in juxtaposition when in the main store with the lower 
addt'essed word containing the more significant half. Any operation i.n the 
At'ithmetic Unit involving double length working requires the more significant 
half to bc in Nl and the lower half in N2 (or in N3 and N4 respectively). 

When fetching and storing double-length numbers to and from the nesting store 
by Direct (modified or unmodified) addressing no complication arises provided 
it is remembercd that in fctching to thc ncst the lower half is brought BEFORE 
the upper half and that in storing to maihstore the uppcr half goes before the 
lower half. 

Difficulty could arise in dealing with such numbers if access to them is by 
Indircct (modified) addreSSing. To overcome the problem a special facility 
has been provided in USCI' code in which the more Significant half of a double
lcngth number is indirectly addresscd in the ordinary way and the same instruc
tion written followed by an N (before the ;) to provide easy access to the NEXT 
word being the lower half. The N has the effect of increasing the calculated 
address by 1. 

To illustrate with an example, suppose that 

Q4 contains ?/?/base address 

Q5 contains n/2/0. 

Then to fetch into the nesting store the double-length number whose more sig
nificant word Is stored at the address given in M4 and whosc lower half is stored 
at the next main store address, the two instructions, assuming the Q updating 
facility is required, would be:-

M4M5N;M4M5Q; 

The two corresponding instructions for storing from the nesting store would be: 

=M4M5; = M4M5QN; 

Note the·difference in the positioning of Q and N in these two sets of instructions, 
and that 15 requires to be set at 2 if the Q updating facility is used. Because 
the Q was included in both sets of instructions, Q5 has now been updated ready 
to fetch or store the next double-length number in sequence. 

It must also be emphasised that the NEXT facility cannot be used with direct 
addressing: YOM6N; is not valid, YIM6 would have to be used. 

Page 149 



18·2 Half-Length Fetch and Store 
HaU-Iength numbers in KDF 9 cannot be transferred between the main store 
and the nesting store using the direct forms of the fetch and store instructions. 
This is only possible using the indirect forms together wiih the facilities about 
to be described. 

Half-length numbers are used to economise in main store space If half or less 
of the full 14 decimal digit precision is sufficient for the problem in hand, so 
that two such numbers may be stored in one main store word. Since it is not 
worthwhile to build haU-Iength arithmetic facilities into the machine, and 
since the nesting store in consequence is capable of holding only full-length 
words, a haU -longth number must be C'xp:mded to full-length form if it is 
fctched to thc ncsting store, and a full-lcngth numbcr must bc contracted to 
half -length form if it is transfcrrcd from the nesting store into haU of a main 
store word. 

The way in which this is done is very simple. The half-length fetch and store 
instructions use the label II to distinguish them fron the standard forms of 
fetch and store. 

The instructions are: 

MkMqH; 
=MkMqH; 

HaU-Iength fetch. 
HaU-Iength store. 

A half-length fetch instruction selects the required 24 bits from the main store 
word and puts them into the more significant haU of the top cell Nl of the nesting 
store, the remainder of NI (D24 - 47) being filled out with zeros. A haU-Iength 
store instruction selects the top 24 bitA of Nl (DO - D23) without rounding off, 
and stores them in the specified half-word in the main store, finally erasing the 
whole of NI in the usual way. 

When a half-length fetch or store instruction is obeyed the transfer address is 
calculated as follows: 

A copy of the integer in Mq is divided by 2 and the integer quotient added to a 
copy of the integer in Mk. The result determines the E address of the word 
to be accessed. When Mq was divided by 2, if the remainder were 0 then the 
upper haU of the E address would be accessed, if the remainder were 1 then the 
lower haU would be accessed. 

N.B. The contents of Mq must always be positive in this context. 

If now the reader refers to the latter half of section 7·5 the reason for calculating 
haU -length addresses in the manner shown will be clear. 

In neither case of a haU-Iength store is the other half of the "main store word 
disturbed but the whole of the top cell of the nesting store is erased. 

Page 150 



18·3 Q. Hand N FacUlties 
The three facilities Q for Q store updating 

H for Halflength addressing 
N for Next word addressing 

may be used singly, in pairs or all together as the need arises, but when so 
used they must be in the order Q H N. 

Points to note are: 
(a) even if Q is used with II and for N it still performs the operation explained 
previously - viz. a copy of the increment is added to the modifier ,md the 
counter decreases by 1 AFTER the main store has been accessed. 

(b) the Q refers to the Q store q; the Q store k does not alter. 

(0) HalHellgth fetches ,md stores are to and from the top 24 bits of NI in the 
nesting store - during fetches the bottom 24 bits of NI are made zero and during 
stores they are erased with the top 24 bits. 

(d) when Hand N arc used together the N still performs the previously ex
plained operation - viz. ONE WHOLE WORD is added to the address calculated 
without the N. 

(e) If a consecutive sequcnce of half-length words are accessed using QH the 
increment of Qq must be 1. 

(f) If a consecutive sequence of upper (or lower) halflength words are accessed 
using QH the increment of Qq must be 2. 

(g) When working double-length, integers should normally be held to 94 integral 
places. 

(h) When working half length, integers should normally be held to 23 integral 
places. 

18· 4 Examples 
1. YO, YI; Y2, Y3; ; Y90, Y91; contain 46 double length words in pairs. 
Write a loop to place copies of the more significant words of the pairs into 
YNO - YN45 and the lower words in YLO - YL46. 

VO = Q46/2/0; 
VI = QA/I/j, 
VO;=QI ;Vl ;=Q2; 
1; YlMl ;YOMIQ;=YNOM2;=YLOM2Q;JICINZ; 

(N.B. The NEXT facility is not used with DIRECT addressing). 

2. Repeat the above example with the variation that the 46 double length words 
are in the 92 storage locations commencing at that address which is in M4. 

Page 151 





19- MULTIPLICATION AND DIVISION 

19 - 1 Mllltiplication 
19-1-1 Theory of Multiplication Since KDF 9 has a fixed word-length 
of 48 bits, the system of multiplication used is also fixed length. 

The rules are precisely the same as for decimal multiplication (except of 
course, that binary is used in place of decimal) but it should be remembered 
that decimal multiplication, as it is commonly understood. is generally not 
performed fixed-length. 

Consider two examples: 

99 15 
97 E 

8910 150 
693 45 

9603 195 

These two multiplications have been carried out in the commonly accepted 
manner, but it should be noted that in the case of the first a four digit answer 
hilS resulted, whereas the second has provided only a three-digit answer. This 
is because the workings were not performed in fixed-length. To calculate the 
examples in fixed-length the procedure is as follows: 

99 

~ 
8910 

693 

9603 

record 0; carty 0 
9x9=81;+O ;=81 ; record 1; carry 8 
9X9=81;=89;record 9; carry 8 
No more digits so record the carry 

7x9=63;record 3;carry ~ 
7X9=63;+6=69; record 9; carry 6 
no more digits so record the carry 

15 
13 

0150 record 0; carry 0 
lX5=5;+0;=5 
record 5; carry 0 

lXl=I;+O;=1 
record 1; carry 0 
no more digits so 
record this carry 

045 3X5=15; record 5; 
carry 1 

0195 

3Xl=3;+1=4; record 4 
carry 0 
No more digits so record 
carry 

A closer look at these examples reveals several rules of mult'plications, which 
apply irrespective ofthe scale used (i. e., decimal. binary, octal. etc.) 

Page 153 



Rule 1. If two similarly fixed length numbers are multiplied together, the 
result has twice the number of digits of the original length (I.e., it becomes 
double length). In our example, 2.numbers each of 2 digits generate a 4 digit 
result. 

Rule 2. The number of integral places in the result is always equal to the sum 
of the number of integral places of the two operands. This can be verified by 
inserting decimal pOints in the examples. 

99'X97 = 9603 2+2 gives 4. integral places 
9'9x97 = 9·603 1+0 gives 1 integral place 

15·xI3· = 0195· 2+2 gives 4 integral places 
. l$x· 13 = ·0195 0+0 gives 0 integral places 

Rule 3. If a single-length result is required half the digits in the product will 
be lost in changing from double to single-length. 

In general all digits are Significant (because a good programmer sees to this to 
reduce errors as far as possible) and therefore if contraction of the answer 
from double to single is required, the least significant digits are the ones to be 
removed,those retained being rounded off as necessary . The rounding off 
rule is simple - if the digits removed are less than half of one unit in the least 
significant digit position of· the most significant half, no rounding occurs. 

Otherwise, one unit is added to the part kept. 

9·9x·97 = 9·603 ·003 is less than ,05 therefore no rounding. Result = 9·6 
• 15x'13 = • 0195 • 0095 is not less than • 005 therefore round off. Result = • 02 

KDF 9 will give results like this if required. 

Note that the number of integral places is not changed by this rounding and 
truncation. 

In calculations involving integers only, however the result will be single-length 
(in general) and will also be an integer. In this case, the more Significant 
half is the half to be removed. Note that this procedure reduces the number of 
integral places. 

e.g., 15x03 gives 0045 (4 integral places) removing the more significant 
half gives 45 (now with 2 integral places). 

19· 1· 2 Multiplication on KDF 9 The basic principle in multiplication 
on KDF 9is that if a number A held to p integral places is multiplied by B 
held to qintegral places the result is AXB held to (p+q) integral places. 

The instructions needed in multiplication are:-

Page 154 



XD; Multiply. giving double-length result in Nl. N2. 

x· . 

CONT; 

Multiplies A (to p integral places) in N2 by B (to q integral 
places) in Nl to give the result AxB held to (p+q) integral places 
in Nl+N2 (Nl more significant than N2). The original single 
length numbers in I'll and N2 are erased. 

The Overflow register can be set only if the original numbers are 
both negative and of maximum size. 

Multiply giving single-Ieng~h rounded-off result inNl. 

As for XD but then removes the contents of the less significant. half 
of the answer in N2 and rounds Nl if necessary. The result in Nl 
is still held to (p+q) integral places. 

The original single-length numbers in Nl and N2 are erased. 

Overflow is set as for XD; 

An abbreviation for contract. Takes a double-length number in 
Nl and N2 and replaces it by a single-length number obtained by 
removing the MORE significant half. 

The result has 47 integral places less than the original double
length number. Overflow is set if the more significant half was 
NOT all zeros for all ones - this indicates that the number is too 
large to be held in a single length register 

This instruction is used in multiplying small integers in the sequence 
XD; CONT; and gives the product AXB. held to (p+q - 47) integral places. 

18'2 Division 
18·2,1 Theory of Division As in multiplication • the operands and the 
result of diviSion in the machine are fixed-length; it is therefore simple to 
explain the theory of division if we start without knowledge of fixed length 
multiplication. 

In fixed-length working we know that A (held to p integral places) XB (to q in
tegral places) is AB (to p+q integral places). 

It is therefore clear that 

AB (to p+q integral places) divided by B (to q integral places) is A (to p integral 
places). or expressed in another way: 

A (to r integral places) divided by B (to s integral places) is AlB (to r-s 
integral places). 

The reader will now see why in Section 3· 5·1 it was stated that the computer 
COD8tders .thepoint to be between DO & 01. In multiplication 0+0 integral 
places still leaves the point between DO & 01, in. division 0-0 integral places 
still leaves it In the same place. 

Page 155 



CaL\tlOll! this last statement about division requires a little mOl'e thought. 

Consider '01(2) ... '001(2) = ('25(10) .. '125(10» 

the answer of which is 10(2) = (2(10» 

But it is NOT possible to hold 10(2) to 0 integral places - what has gone wrong? 

The numerator was larger than. the denominator. Refer back to the multiplication 
A (to p) x B(to q) :AB(to p-q) . 

Because the computer coosiders bpth multiplicands to be held to 0 Integral 
places A and B were considered factional so that AxB must. be less than either 
A or B. This implies in dh·islon. so far as the computer is concerned (with 
the point being between DO&Dl). that the numerator must be numerically less 
than the denominator. 

This restriction is no, so serious as it may first appear. 

The programmer does not consider the numerator and denominator to be held 
to zero Integral places; all he needs to worry about is "can the result of the 
dh·ision.be held to the number of places gh'en":- if the answer can be so held 
then the numerator (as considered by the computer) must have been numerically 
less than the denominator, 

Consider 105 (to 1.7 integral places) +102 ( to i places) 

the result is 105 
li)2 

(to 1 i - iintegral places) 

103 (to 10 places) 

Let us see what these numbers. look like in the machine, 

105 
OIt·Dl ro 1 1 000 011 010 100 

Dl j , 

000 ·000 .. , ....... 
Dj· 

102 II! 1 001 ootl) 000 000 ..•...... 

103 In UI !!I!! 
Dl~ 
II!! Ii 000 ..••... , • 

Although in fact 105 is greater than 111. th~' pattern in the word looks smaller 
to the computer so that a valid result is possible, 

TO$ummarise: Pro\'ided the result can be held to the caleulatednu.mber of 
integral places. dh'ision will proceed correctly; 

The question may DOW be asked: "SuppOse the quotient can not be held to the 
calculated number of integral places?" 

Page 156 



When a program is being written the maximum absolute magnitude of the 
numerator is known, as is the minimum absolute magnitude of the denom
inator. Dividing these will give the largest possible absolute quotient and 
hence the maximum number of integral places necessary for it. The pro
grammer then only needs to ensure that the numerator and denominator are 
held so that 
A A B (p) leads to B (p-q) where (p-q) is the maximum \Oalue necessary to hold 

all quotients. 

19·2·2 
are:-

Division on KDF 9 The actual division instructions on KDF 9 

... ; Divides the single length numerator in N2 (held to p integral places) 
by the single length denominator in Nl (held to q integral places) and 
gives the rounded single length result in Nl (held to p-q integr~l 
places). The original contents of Nl and N2 are erased. Overflow 
is set if the denominator is 0, or if the result requires more than 
p-q integral places (i.e. if the pattern in N2 "looked" larger to the 
machine than that in Nl). 

+D; Divides the double length numerator in N2 and N3 (held to p integral 
places) by the single length denominator in Nl (held to q integral 
places) and gives a single-length rOWlded result in Nl (held to p-q 
integral places). The original contents of Nl, 2,3 are erased. Over
flow is set if Nl=O or if result requires more than p-q integral places. 

When working with integers (single-length) the values of p and q will be 
47 from which it may be thought that such a problem as 32'5 would 
not be possible on the machine because 6· 4 requires 3 integral places 
at least. This difficulty is easily overcome but requires a knowledge 
of "shifting" which is dealt with later. 

+1; Divides a siDlle-lengtb INTEGER A (47 integral places) in N2 by a 
single-length INTEGER B in Nl, giving an INTEGER quotient in N2 
and a remainder in Nl. TIle remaiDder W1lJ. be 01 the eame eip as 
the ...... In •• 01' aDd of smaller magnitude. 
e.g., (+16)+1(-3) gives -6 as quotient 

-2 as remainder. 

Overflow is set if B=O. 

N • B. No shifting of operands is necessary with + I; the method used 
ensures that the result is always valid unless B=O. This instrUctioD 
uses an extra ceU of the neeting store for the calculation whict- the 
programmer must allow for. 

Page 167 



i9·3 Examples 
1. Find the product of the two fixed point integers in Y6 and Y7 and place the 
result, held to 47 integral places, into Y8. 

Y6:Y7:XD:CONT:JI6V:=Y8: 

Y6 and Y7 have p=47, therefore the prodl!ct will have p = 47+47 = 94. Assume 
Y6 holds 2 and Y7 holds 3, the product is 6, which held to 94 integral places 
is 91 zeros followed by 110. This means that double length multiplication is 
required, Had the instruction x; been used, only the 47 most Significant bits 
(ignoring sign digit) would have been retained, thus giving a zero result. 

XD: has given us a double length result, but it may be that the integer held 
to 94 places is so small that the more significant half.is all zeros (for positive 
numbers) or all ones (for negative numbers). Let us then follow the multi
plication instruction with CONT: which will reduce the result by 47 integral 
places. The purpose of the instruction JI6V: is to cause the routine at ref
erance 16 to be followed if the contraction caused the overflow register to be 
set. 

2. Y43 contains a fixed point number held to 4 integral places and Y44 another 
one held to 13 integral places. Place their product in Y45, stating the value 
of p for Y45. The precision essential at this stage of the imaginary program is 
at least 20 binary fractional places. 

Y43:Y44:X:=Y45;(Y45 now has p of 17); 

The reason for the statement about precision is made clear by the following 
example. 

3. YI00 and YI0l contain fixed point numbers held to 23 integral places. 
Obtain their product. Before we know whether to use XD: only ( and so hold the 
answer double length to 46 integral places), or XD:CONT: or 

x: 
We need to mow what is required from the result. 

If only the integral part of the answer is significant to the problem then x; 
would be sufficient. The same applies if the result is necessary only to the 
nearest t. The answer would of course be held to 46 integral places. 

If the whole of the answer must be retained, if it is known from the nature of 
the problem being programmed that the product will always be of less magni
tude than !-the instruction xD;CONT; .would Suffice. In this case the result 
in Nl would be held to -1 integral places. The contraction is possible because 
the more significant 47 bits (ignoring Sign digits) will never contain any 
Significant information. 

Page 158 



1I0wever. If the whole answer must be retained and If the result could have 
greater magnitude than i the only possible instruction is XD; 

It may be possible from the nature of the problem to "shift" (and so alter the 
number of integral places of) the result after the appropriate multiplication 
instruction, but this is beyond the scope of instructions dealt with so far. 

4. YP8, YP9 contain two integers (p=47). 
Place the integral quotient of (YP8)+(YP9) in YRI and the integral remainder 
in YR2. 

YP8;YP9;+I;=YR2;YRl; 

Ii. YR3 contains a fixed point number to 18 integral places and YR4 another 
to 15 integral places. The numbers are such that the quotient (YR3)+(YR4) will 
always be in the range 1~~-1. 
Place this quotient in YS2, stating the number of integral places it is being held 
to. 

YR3;YR4;+;=YS2;(yS2 has p of 3); 

6. YN9&10 contain a double length fixed point number to 49 integral places 
and YDll a single length fixed point number to 2 integral places. 
The integral part (rounded) only is required, and this is to be placed in Y8. 

YNI0;YN9;YDll;+D;=Y8; 

Had it also been required to keep as much of the fractional part as possible it 
would have been necessary to determine the maxinium magnitude of the quot
ient possible and, before the ilistruction YDll; to "shift" the double length 
numerator an appropriate number of places. 

19-4 Exerellies - SET 1 
1. Find the double length sum of the squares of the single-length integers 
in YO-Y63. 
Leave your answer in Nl,N2. 

2. Two half length integers are stored in YO. 
Find their product as a single length number in Nl, ali.d state the number of 
integral places in your answer. 

3. YO contains a decimal integer as 8 numeric characters representing a 
number of pounds. Convert the contents of YO to single length binary pence. 

4. There are 64 single length binary integers stored frem YO onwards. Find 
their average to the nearest integer, leaving your answer in Nl. 
IUNT: The sum may exceed single length. 

Page 159 



5. Nl contains a number of binary pence. 
Convert this to f.s.d. using +1; and store the pounds in YO, the shillings in 
Yl. and the pence in Y2. 

6. If NI and N2 contain fixed point numbers specified below and the instruc
tion +; is obeyed. Which divisions will give a valid answer? 

a) NI contains 19 
N2" 128 

b) NI " 17·785 
N2 " 1'9 

12 
c) NI " 2 

10 
N2 " 2 

~ NI " -1 
N2 " 1 

Exercise - SET 2 

to 5 integral places. 
" 8 

" 5 " " 
5 " 

" 13 " 
11 

" 47 " " 
" 47 " " 

1. What will be the output from the following program body assuming it is com
piled on the POST system? 

2. How would you have written the constant declarations VO to V7? 

3. What is the effect of the asterisks before 1; and JICINZ;? 

Page 160 



VO -13 

VI B7777777777777775: 

V2 P 17D18: 

V3 B3: 

V4 B15; 

V5 P L7DEM1: 

V6 6,5/46: 

V7 P 17SP1: 

V8 Q 4/2/AVO: 

V9 P L7DC1; 

V10 Q 2/1/AYP4; 

Vll Q 4/1/AYP1: 

V12 Q O/AYPO/AYP6: 

V8;=Ql:V9:=YP6:ZERO:=YP3: 

*1: MOM1:MOMIQN:+I:*JICINZ: 
V10:=Ql:Vl1:=Q2: 

2; DUP:J3<Z:8ETB35: 

4: =MOM1: JSL1000; ERASE:=MOM1N:M1TOQ3:M2TOQ1:M3TOQ2; 
DC1:J2C1NZ: 
8ETB30:=YPO:V12:8ET8;OUT:DC2:8ET2:=C1:J2C2NZ: 
ZERO:OUT: 

3: NEG:8ETB36:J4: 
~ L1000: 
FINISH: 

Page 161 





20· FURTHER ARITHMETIC INSTRUCTIONS 

20·1 Shift JnstructiOll8 
20·1·1 General RIlles for Shift InStruCtiOllS KDF 9 has a variety of shift 
instructions designed for use in various circumstances. All operate by taking 
a pattern of digits (either single-or double-length) and moving them either to 
the left or to the right. 

If the pattern rtlpresents a fixed point number, shifting it one place to the left 
in a binary register can be interpreted to have one of two effects:-

(~ to multiply the value by two, without changing the number of integral 
places, 

(b) to reduce the number of integral places by one, but leave the value un
changed. 

Consider this example in an 8-bit register. 

00110100 represents 3! to 3 integral places (not counting the Sign at the 
top end). 

01101000 represents either 6~ to 3 integral places or 3t to 2 integral 
places. 

Since a shift to the left can be interpreted as increasing the value of the num
ber by a factor of 2 for each place shifted, a shift of n places to the left in
creases the value by 2+n. Similarly a shift to the right "increases" the value 
by 2-n , which being a fraction, actually decreases the value. KDF 9 will 
interpret a shift in accordance with its sign; a positive value shifts to the left 
and a negative value shifts to the right, so to speak of a shift of "minus five" 
implies shifting the word 5 places to the right, sometimes referred to as 
"shift down 5". 

It is further necessary to arrange a shift instruction in which the amount and/or 
direction of the shift can be varied as the program is operating, depending on 
data or conditions.. To allow for this possibility, KDF 9 offers two methods of 
specifying the amount of shift:-

(~ by inserting the required fixed amount as a signed number included within 
the instruction - for this case the amount of the shift must be between -64 and 
+63, 

(b) by directing the shift instruction to look at a designated Q store, and shift 
the amount given in the Counter location of that Q store. The amount of shift in 
this case is limited to the range -128 to +127, any attempt to go outside this 
range producing incorrect results with no warning. 

N. B . In either case a shift of zero places is allowed and will leave the operand 
completely unchanged. 

Page 163 



30-1-a ArttJunetlc Shifts Arithmetic Shifts are designed to deal with 
NUMBERS only, and ther~ore need to recognise the presence of a sign digit, 
preserving the sign during shift down and setting overflow if the register 
capacity is exceeded during shift up Rounding off is also performed during 
shift down of single-length numbers but not for double-length numbers Any 
vacant digit poSitions created during shift up are filled with zero digits. The 
available instructions are:-

SHACq; 

SHADCq; 

Shift the NUMBER in NI an amount ;t n. Set overflow if reg! 
ister capacity is exceeded. 

Shift the NUMBER in Nl an amount given by the counter of 
Qq. Set overflow if the register capacity is exceeded. 

Shift the NUMBErt In NI, N2 an amount ;tn. Set overflow if 
register capacity is exceeded. Remember that the DO digit 
of N2 is DOt part of a double-length number - digit DI of N2 
comes immediately below D47 of Nl in order of significance 
and digits are shifted accordingly, by-passing the DO digit 
of N2. For example, SHAD-47; will shift the word in NI 
completely into N2, leaving Nl as 48 copies of the sign 
digit of the original number, with a zero digit in DO of N2. 

Shift the NUMBER in NI, N2 an amount given by the counter 
position of Qq. Other rules as for SHAD:!:D; 

30-1-3 Logical ShIfts A logical shift is designed to operate on PATTERNS 
of digits. There is no provision for rounding off, overflow, preservation of 
signs, or, indeed, recognition of the existence of sign digits. Any word is 
presumed to contain 48 digits of all equal importance. Any digits shifted off 
either end of the register are lost without trace; any vacant space produced 
by the shift is filled·out with zero digits. For double-length logical shifts, 
the register is presumed to have 96 bits all of equal Significance, with DO of 
N2 coming immediately below D47 of Nl in the order of Significance. 

The k>gical shift instructions are:-

SHL:!:D; Shift the PATT~RN in NI an amount ;tn. 

SHLCq; 

SHLDCq; 

Page 1M 

Shift the PATTERN in Nl an amount given by the counter 
of Qq. . 

Shift the PATTERN in MI, N2 an amount ;tn. 

N .B. SHLD-48; will shift the pattern from Nl into N2 
leaving NI set as all zeros. This should be compared 
with the example for·SHAD-47; above. 

Shift the PATTERN in NI, N2 an amount given by the counter 
of Qq. 



20·1' 4 Cyclic ShUts A cyclic shift (which is allowed only single-Iength)
will move digits in Nl in a cyclic manner any digit spilling off one end of the 
register will reappear to fill the space generated at the other end. The amount 
of shift is limited to the range -48 to +48; a shift outside this range will give 
incorrect results, but in any case is illogical for a cyclic shift. 

The two instructions involved are:-

SHC;:n; 

SHCCq; 

Shift the PATTERN in Nl an amount.:t. n in a cyclic manner. 

Shift the PATTERN in NI an amoutn given by the counter of 
Qq, in a cyclic manner. 

20' 2 Fixed-Point Accumulative Multiplication 
It is often required to form a sum of products (i. e., to evaluate a formula 
of the kind a. b + c.d + e.f + ... ). If this is done and the data are kept to a 
minimum number of integral places, the sum will (in the worst case) exceed 
capacity on the first addition and, therefore, will require a shift down to 
remain within capacity. (A shift of n is suitable for m additions if m < 2n -
this can easily be verified by taking an example). 

The set of instructions xD; SHAD-n; +D; would form the basis of a loop to per
form this operation. This takes 4 syllables of instructions - KDF 9 provides 
a single two-syllable instruction to perform the same operations (performed 
effectively by obeying the three instructions above in a single sequence). Such 
a reduction in space can often prove valuable, as will be seen in a later 
section. 

The instructions involved are written:-

X+;:n; 

X+Cq; 

Take two single-length numbers in NI and N2. multiply them 
together to form a double-length product, shift this product 
.:t. n places (n = 0 is allowed, in which case the instruction 
would be written x +;) and then add the shifted product to the 
double-length sum previously stored in N3. N4. Set over
flow if final result or any intermediate result exceeds cap
acity. 

As above, but the amount of shift is given in the counter 
position of Qq. 

Multtple-leagtll DtYiMoa 
A lesser used arithmetic instruction is: 

+R This is designed for the case where an n-Iength number (i. e., 
a number stretching over n words) is to be divided by a single
length number to give an (n-I) length quotient. The process is 
to divide the top two word of the denominator. to give the top 
word 01. the quotient, and leave a remainder which can be com-

Page 165 



bined with the third word of the numerator ready for the next stage of division. 
This instruction leaves the remainder in exactly the required form for this 
operation. 

The rules are:-

Divide the double-length number in N2, 3 by the single-length number in N1, 
leaving the single-length quotient in N1 (just as for + 0) and the remainder in 
N2. The value of the remainder will satisfy the following conditions, where 
a is the denominator: 

<a» if a> 0 then O"f r. 2-(p-47)< a.2-Q 

(b) if a < 0 then a.2-Q "f r. 2 -(p-47) < O. 

20' 4·1 FloatiJIg Point Section 3· 5'1 showed how any number can be 
expressed as 

n = ( -s+f)x2P 

and that when working in fixed point the main store word only contains the s and 
f, with the p being recorded in the programmer's workbook. 

The reader, by now, will have realised the tedium of having to perform cer
tain arithmetic operations entailing the manipulation of the integral places 
of the operands. This is overcome by the use of "floating point" . 

Section 3· 7 showed that in "floating point" the value of p is recorded in the digit 
pOSitions 01 to 08. This means that f is contained to a precision of only 39 
binary digits, as opposed to 47 in fixed point. This restriction in general 
causes no hardship. In fact the use of floating point has the advantage that the 
value ofp can range from -128 to +127 thus allowing numbers from (:!) 2-128 
to !.2+127 without worry of overflow. 

Because IIp'' is automatically dealt with in floating point the method is easier 
to program, but in general, arithmetic operations in in floating point take 
about 2! times as long to perform as their fixed point counterpart. This means 
that programs which are only to be run a few times and are of a scientific 
nature are written in floating poilU whereas those to be run often, usually of 
a commercial nature, work in fixed point. 

When the precision of 39 bits for f is not sufficient double-length floating point 
is used. In this case 

<a) the sign digit of the number is 00 of the more Significant word. 

(b) the fraction f has 78 bits, the more Significant 39 bits being in 09-047 
of the first word as before and the less Significant 39 bits follOWing on in 
09-047 of the second word. 

Page 166 



(0) a form of the value of p is, as In single length, placed In DI-D8 of the 
first word. 

(~ DO of the second word is ALWAYS zero. 

(e) DI-D8 of the second word is the same as DI-D8 of the first word reduced 
by 39. 

If the value of p of the double-length number is less than 40, it is impossible to 
assign a characteristic to the less significant half; the complete less signifi
cant half is set to zero in this case. 

D8 D9 " D47 

p 1 first 39 bits of f 1 o p-39 [ continuation of f 

DO Dl D8D9 

In double length STANDARD floating point the same principle applies as in 
single length, viz., the value of 1 is made as small as possible thereby 
DO " D9 of the more significant word are opposite digits. 

D47 

20· ,. 2 Overflow with Floa&tDg. Point Numbers Overflow can still occur with 
floating-pomt numbers, but only wilen the CHARACTERISTIC exceeds 8 bit 

. capacity, thus allowing a range of about 10 -38 to 10+38. Note that In certain 
cases overflow can be set during the execution of an instruction when theor
etically the result is within the range, but this can happen only if the correct 
value of p should be +127. 

The concept of underflow also arises In floating numbers. If the p becomes less 
than -128, either In the result or during execution of the instruction, the result 
Is set to zero, as the true result is too close to zero to be expressed in stand
ard form. No Indication of this occurrence is given to the programmer. 

20- 6 BIDcle-Leagth FloatiDg-PolDt 0perati0D8 
In these operations all numbers mut be in standard Floating form: all numeric 
results will be In standard floating form. 

20- 6-1 FloatlDg-PolDt Add/Subtract 
+F; Add Nl and N20 giving rounded result in Nl. 

-F; Subtract Nl from N2. giving rounded result In NI. 

NEGF; Change sign of Nl (performed by subtracting Nl from zero). 

ABSF; Find absolute value of Nl irrespective of sign. Performs NEGF; 
if Nl is negative, otherwise no action. 

Page 167 



MAXF; 

SIGNF; 

Rearrange NI and N2 such that the algebraically larger is in NI, 
the other in N2. U N2 - NI would yield a negative answer, they 
are already arranged; if the result would be positive or zero, 
they are reversed and OVERFLOW set to indicate reversal. 

Compares the two numbers in NI and N2 and sets an indicator 
word in NI to indicate which is larger. NI will contain:-

(a) All zero if N2 = NI. 

(b) DO - 46 zero and D47 'one' if N2 larger than Nl. 

(c) All 'ones' if N2 less than Nl. 

[This indicator is NOT a floating number) . 
Overflow can never be set by this instruction. 

ROUNDHF; Rounds a single-length floating number in NI to halfle:lgth (ready 
for half-length store). The instruction effectively adds one to the 
D23 digit if the D24 digit is a 'one'. Since the complete word may 
now be shifted (to put the result in standard form), the state of 
D24 -47 is undefined at the end of this instruction. 

20· 5· 2 Single-Length Floating Multiply/Divide 
XF; Multiply NI and N2 together, giving a rounded single-length 

floatin result in NI. 

+F; Divide N2 by NI, giving a rounded single-length quotient in Nl. 

20·5· 3 Non-Standard Floating Numbers if p is not the minimum possible 
for the number then the number is in non-standard form. 

STAND; is the KDF 9 instruction designed to take a number in non-standard 
form andput it into standard form. 

No other KDF 9 floating-point instruction is guaranteed to work correctly on 
non-standard data. 

20· 5· 4 Double-Length Floating Point Operations 
The double -length floating instructions are:-

+DF; 

-DF; 

NEGDF; 

PageJ.68 

Add NI, N2 to N3, N4 giving unrounded double-length result in 
Nl,N2. 

Subtract NI, N2 from N3, N4 giving unrounded double-length re
sult in Nl,N2. 

Change sign of double-length number in NI,N2 by subtracting. it 
from zero. 



)(J)F; Multiply the SINGLE-length numbers in NI and N2 together to 
give unrounded DOUBLE-length result in NI,N2. 

X+F; Multiply the SINGLE-length numbers in NI and N2 together to 
give DOUBLE-length product; then add this product to the DOUBLE
length number previously placed in Na, N4, leaving IUl1"OW1ded 
result in NI,N2~ 

+DF; Divide DOUBLE-length number in N2, N3 by SINGLE-leogth num
ber in NI' giving rounded SINGLE-length quotient in NI. 

BOUNDF; Round off a DOUBLE-length number in NI, N2 to SINGLE-leogth 
in NI' If the D9 digit of N2 is a 'one', a 'one' is added to the 
D47 digit of NI and the result standardised if necessary. 

ao.a·a Conversions Between Flxed-and Floating-PoiDt 
FLOAT; Take a single-length fixed-point number (expressed to p integral 

places) in N2 together with the integer p in NI: from these the 
corresponding floating-point number is generated in NI. 

N.B. the value of p in NI may not be the algebraic minimum. 
In this case a true STANDARD form result will be placed in NI. 

FLOAT D; Takes a double-length fixed-point number (expressed to p integral 
places) in N2,3 together with the integer p in NI, and produces the 
corresponding double-length floating number in NI, 2. 

FIX; Takes a single:"length floating number in NI and from it produces 
in N2 the fixed-point version of the same number givea to p iD
tegral places. The integer p is left in NI. 

The word in N2 will bave:-

(8) The same sign in DO as the input word. 

(b) The D9-47 digits of the input word, but moved up into the 
DI - 39 positions. 

(c) Zeroe in the D40 - " poeltloDa. 

Bumpl.1 
SET+5; SET+47; FLOAT; (gives 5 in floating blDary); 
The result in NI will be: 

0100000111010000 ••• 0 

I.e., an "ft' of 5/8 with "p" of.3. 

Pap 169 



Example 2 
If Nl is as result above, obey the instruction FIX: result will be: 

Nl 00000 

N2 01010 

0000011 

0000000 

1. e., N2 contains 5 to 3 integral places: 
Nl contains the integer 3. 

20· 6 Conversion of a number other than a pure .1Dteger to character form 
It must be emphasised that the instructions FRB: and TOB: explained in Sec
tion 11 only work with pure integers (held to 47 integral places). When study
ing this the reader may have asked: How are mixed numbers converted to 
character from? The complete solution is not going to be given as this ques
tion forms part of a programming exercise to follow: however a few hints 
are now given. 

Assume a word contains a number n (with integral and fractional parts) in 
binary fixed point held to pintegral places and it is required to print this num
ber on the line printer. The programmer must know how maRY decimal 
fr&ctional places(d) he requires to express the result to. He then wili mul
tiply his number by 10d. (Held to 47 - P integral places.) This will give him 
nXl0d held to 47 integral places. 

He then converts the new number (which is an integer) to character form by 
use of FRB: and insertion of excess 16 bits. This pseudo result is 10d times 
too big. By appropriate shifting, the pattern 37(8) can be inserted in the 
proper position to represent the decimal point. 

20· 7 Examples 
1. YO contains a binary fixed point number to 8 integral places. For purposes 
of a later division it is now necessary to hold the number to 10 integral places 
(in the same address). The instructions necessary are: 

YO;SHA-2=YO: 

Note that a negative shift (viz. moving· the PATTERN to the right) INCREACES 
the number of integral places. 

2. YPI contains a binary fixed point number to 27 integral places. Write the 
instructions to cause the number to be held to the minimum number of integral 
places possible. 

YPl;DUP:SET27:DUP:=Cl:FLOAT:FIX:NEG:=+Cl;ERASE:SHACl:=YPl: 

N. B. (~ The two instructions FLOAT:FIX: are useful when requiring to 
find the minimum value of p because FLOAT always gives the STANDARD 
fioating point. 

(b) The reason for not shifting the FIXED version and placing this back into 
YPI is that the FLOAT only has 30 bits for f and therefore so has the FIXED 
version. 

Page 170 



20· 8 Exerci.e. - Sets 1 • 2 
1. YO to Y59 contain a set of binary fractions (fixed point) each to zero integral 
places. Write the instructions to leave the double-length sum of the double
length-squares (shifted to avoid overflow) in Nl and N2. How many integral 
places are there in your answer. 

2. The number (A) in N2 lies in the range 9 - 30, and has 5 integral places. 
The number (B) in Nl lies in the range 18 - 34 and has 6 integral places. 
Write the instructions to divide A by B, giving as precise a result as possible. 

3. Nl contains an octal number as eight octal digi~s in character form. Con
vert it to true binary by shifts. 

4. Nl contains a Q-type parameter in the form nll/ A where there are n num
bers stored from address A onwards (n<O). Write instructions to leave the 
largest number in the set defined by the parameter in Nl, the smallest in N2. 
If n=O. set Nl=N2=0. 

6. The table below shows the conversion from an ordinary decimal number to 
the two component parts for standard floating form inside KDF 9. Fill in the 
missing items (as ordinary decimal numbers). 

Number f P 

2·5 ·625 2 
1·0 

-1·0 
5'25 
·25 

'5875 3 
·8 -3 

6. Given a string of n single length floating point numbers (not necessarily in 
standard form) in Yl - Yn (n is given as an integer in YO) calculate the mean 
value and store it in Y(n+l). 
(The mean is the sum of aU n numbers divided by n.) 

'1. Given the integer n in YO, and a set of n single-length standard floating 
numbers (which may be positive or negative) in Yl - Yn, write the instructions 
necessary to convert these numbers to fixed point expressed to p integral places 
and store the results in Y(n+l) - Y(2n). Store the value of p (which should be 
the minimum possible for the particular set of numbers involved) in Y(2n+l). 

8. 64 binary fixed point integers are stored in YO-Y63. Find their sum (single
length). Convert them to floating point numbers and find their floating point sum. 
Fix this sum and compare it with the original fixed point sum, setting Nl=O if 
the sums are equal, Nl =+1 if the second sums greater, otherwise setting 
Nl=-I. 

Page 171 



8. What iDstrUCtiOD(8) would you U8e to CODtract a double length standard 
floating point number held In Nl and N2 into a 8lngle length 8tandard floating point 
number held ID Nl. 

Page 172 



PROGRAMMING EXERCISE B 

It is proposed to read a list of N names from paper tape. sort them into alIila
betical order. and then print the results on the high speed Une printer. via OUT8 
using stream number 30. 

The data on paper tape which will be supplied is arranged as follows:-

1at Word. Number N of names in character form in least significant 
end of word. 

2Dd-(N+1)at Worda. One name is contained in each word. the eight character 
positions being filled as follows:-

(1 full stop. 7 alIilabetic characters) 

or (1 full stop. 1-6 alphabetic characters. full stops) 

(N+2(Dd Word. End Message character. 

The number N of names will not exceed 31. and the data should be read to EDd 
Message. 

Each of the sorted names (including the full stops) should be printed on a new 
1in6. 

Only the V-store declarations and instructions need be written. i.e. you are not 
expected to prepare a heading sheet for the program. 

The flowchart to be used is as follows. 

BIDta: 

(a) Instructions such as -; look upon N1 and N2 as holdil.r fixed-point numbers 

(b) none of the instructions of the two preceding chapters are necessary. 

(0) Before attempting the program the reader should work through the flowchart 
assuming a value of N = 5 (say) and with the five (say) words of data being the 
numbers 3.2.8.6.4 (say). This will give him an understandq of what the pro
gram is in fact dolng. start as follows:-

N 

5 

A(1] 

3 

A(2] 

2 

A[3] 

8 

A[4] 

6 

A[5] 

4 

k 

1 

1 

2 
3 

Page 17-3 



Fetch N (character form .) 
Convert to binary. 
Store binary value 

NOTE 

A[l). A[2). A(3), .•• A[NJ 
reference the address in which the 
N names to he stored are stored. 

i references starting item in each pass. 

j references smallest item in each pass. L __ I'-_""':===r--' 
k references successive items in each pass. 

Each of the variables i. j. k. should 
be stored in the modifier position of 
a Q-store. 

Page 174 



The reader after writlDg this program aDd referrlDg to the model solutlcm 
should read AppeDdix 5 which Usts the output from the computer relatlDg to 
failure reports etc. 

Pap 175 





22· MAGNETIC TAPE 

22·1 Magnetic Tape Units 
22·1·1 PrillCiples of Magnetic Tape Recording. Use of magnetic tape as 
a recording medium has the one drawback that the tape cannot be visually check
ed after information has been written on to it. Consequently it is very necessary 
that programmers should have clear ideas on the usage of magnetic tape. and 
that they should appreciate the capabilities and the limitations of this method of 
information storage. 

The process of recording information on magnetic tape involves the motion of 
the tape at high speed past a fixed recording head. If the tape is not moving no 
recording is possible. Similarly. the reading of recorded information is not 
possible unless the tape is in motion. An immediate consequence of this tape 
motion is that information on magnetic tape must be recorded in blockB. each 
block separated from the next by a gap. This is the space needed for the tape 
to slow down to rest at the conclusion of one recording and to accelerate to the 
recording speed at the commencement of the next. These gaps will always 
appear on magnetic tape whatever recording method is used. This is in contrast 
to the situation with paper tape. which may be stopped dead after any charac
ter and then restarted without the need for a space in which to build up ·speed. 

When writing to a magnetic tape the length of the block required is defined 
simply by the amount of information being transferred. the tape motion auto
matically ceasing when the transfer is complete and thus leaving a gap on the 
tape as it comes to rest.· . 

However. when a block of information is being read from magnetic tape into an 
area of main store reserved for it. three possibilities atise:-

(a) The reserved area of main store contains the same number of words as 
does the block of information on the magnetic tape. In this case the information 
transfer and the motion of the tape come to an end Simultaneously. 

(b) The main store area is larger than is required for the amount of inform
ation on the tape. so that the gap on the tape is reached before the reserved 
main store area is filled. In this case the tape stops on reaching the gap. and 
the remaining words in the reserved area of main store are left untouched. 

(c) The information on the tape contains more words than does the area of main 
store reserved for it. In this case it would be disastrous to continue transferr
ing to the main store until the gap on the tape is reached. since information 
required for other purposes could be over-written. For this reason the transfer 
will stop the moment the reserved area of main store has been filled. but the 
tape will continue to run until the gap has been reached. and only then will it 
stop. 

These rules may be briefly summarised as follows:-

Page 177 



Information is transferred from magnetic tape to the main store until either 
the reserved main store area is filled or a gap on the tape is reached. In either 
case the transfer of information from tape to the main store ceases. but the tape 
itself will not stop until a gap is reached. 

Thus the format of any magnetic tape will be: block of information; gap; block 
of information; etc. These blocks of information may be of any size. although 
an upper limit will be recommended later. 

22'1·2 Layout of lDformation on Magnetic Tape. Information is recorded 
on magnetic tape at the rate of 40.000 characters per second. and the tape 
itself moves at a nominal speed of 100 inches per second. It should be noted 
that this tape speed is likely to vary for various reasons. so that the packing 
density of 400 characters per inch of tape is nominal only. To enable the machine 
to cope with such variations. when information is recorded on a tape a special 
timing bit is included with each character. When the tape is subsequently read 
the machine uses these timing bits to adjust itself to the rate at which the 
information arrives. This process is entirely automatic and requires no action 
by the programmer. 

The length of the gap between one information block and the next. which depends 
essentially on the inertia of the tape. is of the order of one third of an inch. or 
the equivalent of about 140 characters of information. It will be realised from 
this figure that if only a few characters at a time are written on to the tape. 
then most of the tape will consist of inter-record gaps. Therefore. it is re
commended that for optimum efficiency the information blocks should be large 
enough to give a reasonable packing density on the tape. 

Information is recorded on magnetic tape as a sequence of six bit characters. 
Each 48 bit word from the main store is divided into eight groups each contain
ing six bits. and the word is recorded on to the tape group .by group. starting 
from the more significant end of the word (00 - DS) and finishing at the less 
Significant end (042 - D47). When the tape is subsequently read. the main store 
word is reassembled in its original form from the characters on the tape. so 
that this recording procedure places no restrictions on the nature of the inform
ation to be recorded. 

With each six bit character there is automatically recorded a parity bit. This 
is an extra bit used for checking purposes when the tape is subsequently read. 
The convention governing the value of this parity bit is as follows: 
if the binary pattern for the character contains an even number of 1 's then the 
parity bit also takes the value 1. If the binary pattern for the character con
tains an odd number of l' s the parity bit takes the value 0 (zero). In other words, 
the convention is that the six bit character and the parity bit taken together must 
form a binary pattern containing an odd number of l's. A parity failure on in
put means that the character has been found whose associated binary pattern in 
fact contains an even number of l's. which implies a fault in the reading device, 
a fault in the device which made the recording, or a fault on the tape itself. 

Page 178 



This is one failure which is never the fault of the programmer. unless he 
attempts to read beyond the end of the data on the tape. In this event a block 
which is not a multiple of eight characters may be read (some characters having 
been erased by the previous writi~ operations) which will result in a parity fail 
indication bei~ set. 

If a character with incorreQt parity is found during readiag. the computer will 
complete the ~·ead. skip the tape in the opposite direction and attempt to re-read 
the block. If the failure has now disappeared. the transfer will be completed and 
no indication ~iven to the programmer: if it still perSists. the parity fail indi
cation will be set at completion of the transfer for the programmer to find sub
sequently. 

As an example. suppose that the six bit character to be recorded has the octal 
configuration 12(binary 001 010). The binary pattern for this character contains 
two l' s. so that the channel containi~ the parity bit must contain a 1 to preserve 
the odd parity required. 

Together with these seven bits (six for the character itself and one for the 
parity bit) there is also recorded the timing bit mentioned earlier in this section. 
Therefore eight channels are required on the tape to record all the information 
needed for each item. 

As an additional safeguard. when information is recorded on magnetic tape. 
these eight channels are duplicated side by Side. Le •• once on the left-hand 
side and once on the right-hand side of the tape. Therefore. in its final form 
the tape has sixteen channels recorded alo~ itS surface. This dual recording 
technique is a' means of safeguarding the information to be recorded against 
read failures due to faulty tape. Both copies of the contents of esch digit posi
tion are scanned Simultaneously when the tape is read. and. if either or both of 
these copies give a valid signal for each of the eight channels. a correct char
acter is transferred into the main store. 

lOA parity failure can occur duri~ write. but only as a result of a hardware 
error. All programs should check for this. and if detected. arra~e to re
write the tape using a different tape station" . 

The diagram represents a length of magnetiC tape. Underneath the tape are 
set out the al}ilabetical values of the characters recorded. 

Page 179 



'1:1 Channel Function 
~ 

gq 
16 P II I I III II 111111 III ('0 

.... 15 25 111111 II 1111 II 11111111 1111 0: 
0 

24 14 I II I I I 

13 T 11111111 11111111111.11111 1111111 

12 23 I II I III I I 

11 22 III II I I II I III! 

> 10 21 II II II I 

9 20 1111 I I I III I II 

8 P 
GAP 

II I I III II 111111 III 

7 25 111111 II 1111 II 11111111 1111 
) 6 24 III I I 

5 T 1111111111 II 1111 1111111 111111 II ~ 
4 23 I II I III I I 

3 22 III II I I II I 1111 

~ 2 21 I II II II 

1 20 1111 I I I III I II I I 

Characters LAYOUT OF DATA ON MAGNETIC TAPE 

Diagram of Magnetic Tape Recording 



22 -1- 3 Control of Magnetic Tape. When it is required to begin writing 
information on to magnetic tape, it is necessary to move the tape to a standard 
position at its beginning. Any previous information on the tape is erased when 
the new recording is made, so by starting at the beginning of the tape rather 
than at any other point it can be ensured that no superfluous material will be 
left on the tape near the beginning. This positioning of the tape is accomplished 
by the use of a transparent section in the tape called the "Beginning of Tape 
Window". A J.ight on the tape unit shines on to the tape, and when the window is 
in the right p<isition the light passes through it and falls on to a photocell, which 
then Signals that the tape is positioned at its beginning. It is from this position 
that the recording must always start as it is the only available reference point. 

However, the beginning of tape window has a finite width and cannot be used to 
poSition the tape to an accuracy of better than about an irich. For this reason 
any recording made from the beginning of the tape is automatically preceded by 
running a few inches of tape past the recording head, all previously recorded 
information on this stretch of tape being erased. Then the actual recording 
begins. In this way it is arranged that the 'zero error' in the initial position
ing of the tape shall be no trouble to the programmer. 

Similar protection is necessary to warn the programmer when the end of the 
tape is near, to avert the danger of running off the end of the tape while inform
ation is still being recorded. The protection provided is twofold: 

(a) a warning to the programmer that the end of the tape is approaching, and 

(b) a command to the tape unit causing an immediate shut-down when the end 
of the tape is actually reached. 

The two signals associated with cases (a) and (b) are called respectively the 
"End of Tape Warning" (ETW) and the "PhySical End of Tape" (PET). The 
programmer should check for the ETW signal while information is being written 
on to a tape. Once this signal has been detected no attempt should be made to 
write anything further exceJ:t for a short termination block indicating that the 
tape holds no further information. 

Evidently no such check is necessary when a tape is read, because the inform
ation on the tape will have been terminated short of the end of the tape when it 
was recorded. In fact to test for ETW while reading can be dangerous, because 
in certain marginal cases the signal might not appear while the tape was being 
written but might appear while it is being read, an effect which could mean the 
loss of a block of information at the tail end of the tape. This possibility arises 
because of the configuration of the tape unit. The tape which passes under the 
read/write head is first unwound from a spool on one side, and afterwards 
wound on to a spool on the other side. Between each spool and the read/write 
head there is a bin into which the tape is allowed to spill in controlled quantities 
The test for ETW is made on the tape before it has entered the ingoing bin. It 
is because this bin between the ETW test device and the read/write head cannot 

Page 181 



be guaranteed to hold the saIne length of tape at all times that this discrepancy 
can occur. The test for the beginning of tape window is made at the read/write 
head itself. and so is not subject to this effect. 

The End of Tape Warning is set by a marker on the tape as it enters the bin. 
ETW is cleared by the run reverse level in the tape station or by Beginning of 
Tape. 

Since the movement of tape from the spool into the bin is liable to continue for 
some time after a forward operation has been terminated. ETW may be set at 
any time during this period. A reverse operation obeyed during this period 
would result in ETW being set. but immediately cleared again. 

A programmer should. therefore. either: 

(a) having commenced writing to a tape. refrain from any reverse operation on 
that tape until either ETW is detected or no further writing is requlred. 

or 

(b) ensure that any reverse operations performed either return the tape to 
Beginning of Tape. or cause the tape to move at least 50 feet in the reverse 
direction. This will ensure that the marker is back on the spool and ETW will 
be set again when it next enters the bin during a subsequent forward operation. 

The physical distance between the markers along the tape is fixed. but the. length 
of tape available for recording between the sensing of ETW and PET varies for 
the reason just indicated. The minimum length of useful tape after ETW. in 
the '!Yorst case, is five feet. With a recording density of 400 characters to the 
inch. this means that not more than 3,000 words of main store can be written 
to the tape after ETW has been sensed. For this reason programmers are 
advised in their own interests to limit the size of all their information blocks 
on magnetic tape to 3,000 words or less. This will ensure that the programmer 
can always finish writing his last block before PET. and will enable a short 
termination block to be added to indicate the end of the tape. 

The following User Code instructions refer to the positions of a magnetic tape:-

MBTQq; 
METQq; 
MLBQq; 

MBTQq; sets the test register if the read/write head is over the beginning of 
tape window. This instrllction requires a Q-store in its simplest form with the 
device number in the counter poSition. the increment and modifier being ignored. 

METQq; sets the test register if the end of tape warning signal is present. The 
Q-store contains the device number. as before. 

Page 182 



MLBQq; sets the test register if the last block read was terminated by a last 
block marker. Once again, the Q-store contains only the device number. There 
is a special instruction for writing a block terminated by a last block marker 
which is a special mark written on the tape after all the information in the block -
all forward read and skip instructions look for this marker and the device re
members whether it was present or not in case the program inspects for it. 

22-1-4 Writing Fixed-Leugth Blocka. The simplest way of writing 
information on to magnetic tape is as a series of information blocka each of 
which as a length specified once and for all at the time the program is written. 
There fixed-length blocks may contain information ';.1 any form whatever. In fact, 
binary information, as will be seen in the next section, can be recorded only in 
fixed-length blocks. Note that by fixed-length we mean that this particular 
block always contains a given number of characters irrespective of the data used 
in the problem. The size of any other block on the tape does not apply as we 
are considering only the effect of one instruction that writes one block on the 
tape. 

To write a fixed-length block a·Q-store is needed in the form:-

Qq = device number/lowest main store address/highest main store address. 

The executive instruction MWQq; (Magnetic Tape Write) is then sufficient to 
record the information, starting from the Djl end of the word at the address 
given in the increment position of the Q-store and finishing at the D47 end of the 
word whose address is specified in the modifier, as one block on the tape deSig
nated by the device number in the counter position. Any previous information 
in this area on the tape is erased and a gap is left at the end of the block as the 
tape slows down to rest. 

As an example, suppose it is deSired to write the contents of the main store 
between the words YO and Y8 inclusive on to a magnetic tape. and further suppose 
that the device number to be used is at present in the top cell Nl of the nesting 
store. It will be necessary to declare a Q-store constant to contain the addresses 
of YO and Y8. and then to put it in a Q-store. For the purposes of this example 
the store Ql will be used. Ql will also be required to hold the device number. 
Since the information is to be written on to magnetic tape. the write instructions 
will be preceded by a check for the end of tape warning. The necessary instruc
tions are:-

VI = Q/)/AYfJ/AY8; 
VI; = Ql;=Cl; (Q-store now set up); 
METQl;JITR;MWQl;PARQl; J2TR; 

The instruction JITR; transfers control to the end of tape routine. presumed to 
carry the label 1. if the test for ETW sets the test register. Similarly. J2TR; 
transfers control to a routine. presumed to carry the label 2. for dealing with 
parity failures if they arise whilst the tape is being written. 

Page 183 



It was mentioned in Para.22-1-3 that it is often necessary to record a block 
followed by a last block marker. The instruction for this is MLWQq; (Mag
netic tape Last block Write). which has the same effect as the instruction 
MWQq; with the addition of the last block marker immediately following the 
information block. 

22-1-6 Reading Fixed-Length Blocks from Magnetic Tape_ There Is a 
similar set of instructions for reading magnetic tape. As indicated in Para. 
I-I however. the read operations are rather more complex. When reading an 
information block of a given size. the destination area of the main store can be:-, 

(a) exactly the right size; 

(b) too large; 

(0) too small; 

"Note that if the block does not contain a multiple of eight characters the final 
(Incomplete) word will NOT be transferred to the store under any circumstances." 

All three possibilities have to be considered. The rules for reading blocks from 
magnetic tape are quite simple. Reading continues either until the allocated 
area of main store has been filled. or until the end of the block on tape has 
been reached. whichever is the earlier. In case (b) above the surplus main 
store words are left unchanged. Any words remaining on tape after the main 
store area has been filled (case (c» will not be transferred to the main store. 
but the tape will continue to run past the reading head until the gap at the end of 
the block is reached. 

Since it is possible to read a magnetic tape in either the forward or the back
ward direction. the read Instruction to be given here will contain the extra 
letter F to indicate a 'forward' read. Reverse reading will be considered in a 
subsequent paragraph. The forward read instruction is MFRQq;. It requires 
a Q-store in precisely the same format as that used for the write instruction. 
I.e .• containing the device number and the two limits of the main store to be 
filled from the tape. The normal sequence of instructions for reading a block 
of information from magnetic tape is:-

MFRQq; PARQq; JrTR; 

MFRQq; is the magnetic forward read instruction. PARQq; is the parity 
check. and JrTR; transfers control to reference label r if the parity check 
set the test register. It should be realised that computations may be perform
ed while this read instruction Is being executed. provided they do not con-
cern any part of the main store area Involved in the transfer. This is done 
simply by inserting the Instructions to be executed between the read instruction 
and the parity check. In fact this is true not only for the read instruction 
quoted here. but for any transfer instruction. Once the parity instruction is 
reached. the machine wlll wait if necessary until the transfer is complete so 

Page 184 



that the parity check can be performed on the complete block. 

If a block is read which is followed by a last block marker, an indicator is set 
in the tape unit which may be interrogated by use of the following instructions:-

MLBQq; JrTR; 

MLBQq; (Magnetic Last Block) transfers the last block indicator from tht· Lape 
to the test register. JrTR; is the jump instruction which transfers control to 
reference label r if the test register is set, i. e. if the block was in fact 
followed by a last block marker. 
N. B. The last block marker indicator is automatically cleared as soon as the 
tape is moved again so that MLBQq; must be used before any subsequent 
write, read etc. instruction. 

It is important to remember that the instruction JrTR- always clears the test 
register. 

The instructions introduced for reading or writing fixed-length blocks may be 
briefly summarised thus:-

MWQq; Write block of information on to tape. 

MLWQq; Write block of information on to tape followed by a last block marker. 

MFRQq; Read block of information from tape in the forward direction. Set 
tape unit indicator if block is followed by a last block marker. 

MLBQq; Transfers contents of tape unit indicator to test register, clearing 
the indicator. 

JrTR; Jumps to reference label r if the test register is set, clearing the 
test register. 

22'1'6 Writing Variable~Length Blocks on Magnetic Tape. It is some-
times iDConvenient to write information to magnetic tape in fixed-length blocks. 
Facilities are, therefore, provided for writing variable-length blocks by use of 
a specified control symbol. The symbol used for this purpose is the 'end 
message character'- (octal 75). This character may be used with complete 
safety if the rest of the block in which it appears contains information entirely 
in character form, Since no oonfusion can possibly arise between any of the 
preceding characters and the end message character itself. However, should 
the preceding portion of the block contain binary information (as opposed to 
the binary equivalent of character information), then there can be no guarantee 
that all the binary items shall have patterns distinct from the binary pattern 
for the end message character. If duplications of this sort are present then 
each one will be intepreted as an end message character. Since it is vital to 
avoid confusions of this sort it must be made a strict rule that the end message 

Page 185 



character should be used only for blocks containing information in character 
form. Binary information must be recorded in fixed-length blocks as described 
in the last paragraph. 

The end message character on magnetic tape is designed for use when several 
main store areas of differing sizes. all containing information in character form. 
are to be written on to magnetic tape. For this purpose each block in the store 
should be terminated with a word containing an end message character. It has 
to be assumed that there is a maximwn block size. and further that this 
maximum size is known to the programmer. The blocks of information must 
be stored in the main store as though each of them has this maximwn size. i.e. 
assigning storage space for each block equal to the storage space needed for the 
block of maximum size. In general each such storage space will be only par
tially filled with information. To write each of these blocks on to the tape a Q
store must be set up to contain the device number and the addresses defining the 
size of the maximum space that the block can occupy in the main store. 

Then the executive instruction MWEQq; will cause the contents of the space 
aSSigned to be written on to magnetic tape as a variable-length block. Writing 
will cease either:-

(a) When a word containing an end message character is written on to the tape. 
or 

(b) when the highest address of the specified area of core has been written. 
This occurs when an end message character has not been discovered. 

In case (a) this instruction writes a variable numb(,l" of words as determined by 
the position of the end message character. In case (b) it writes a fixed-length 
block. In either case the block on tape will contain an integral number of words. 
as writing will cease at the end of the word containing the end message character. 

The instruction MLWEQq; writes a variable-length block on to tape in just the 
same way as the previous instruction. but followed by a last block marker. 

22-1-7 Reading Variable-Leq;th Blocks from Magnetic Tape. A facility 
exists for reading variable-length blocks from magnetic tape. However. It 
should be pointed out that if the blocks were originally written in the way out
lined above. then each will be followed. after the end message character. by a 
gap on the tape. Since reading will always cease when a gap is reached. it will 
not be necessary to use the end message character at all for this prupose. 
Nevertheless. since it may be of occasional use. the instruction MFREQq; 
(Magnetic Forward Read to End of message) has been provided which reads a 
block of information into the area of main store specified by the contents of the 
Q-store. ceasing:-

(a) when the end of the block on tape is reached. or 

Page 186 



(b) when the designated area of main store is filled. or 

(c) when a word containing an end message character has been transferred. 

The last block indicator will be set if a last block marker is discovered. This 
instruction can be used to read the first few words of a block. ignoring the 
remainder of the block. If an end message character has been included in the 
right place. But in this case it should be remembered that although nothing 
after the wO)'d containing the end message character will be read into the main 
store. the tape will continue to move until the next gap is reached. 

The instructions introduced for reading or writing variable-length will now be 
briefly summarised:-

MWEQq; Magnetic write to end message character. 

MLWEQq; Magnetic write to end message character and terminate with last 
block marker. 

MFREQq; MagnetiC forward read to end message character. 

22-1-8 Reverse Reading from Magnetic Tape_ It is possible to read 
information from magnetic tape with the tape moving in the reverse direction 
'(but it is not possible to write in the reverse direction). The instructions are 
Similar to the forward read instructions given above. but contain the letter B 
(for 'backwards') in place of the letter F. 

"Note that a backwards read instruction attempted on a tape positioned at the 
Beginning of Tape window will cause a failure (L. I. V .); the program should 
check for BT before a reverse read If such a condition is likely to arise" . 

When information is written on to tape. the first word on the tape comes from, 
the lowest main store address specified. and 'the last word written on to the tape 
in the given block comes from the highest specified main store address. When 
the same block is read from the tape in the reverse direction. the first word 
encountered (which was the last one written) will go into the lowest deSignated 
main store address. and the last word encountered (which was the first one 
written) will go into the highest designated main store address. the intervening 
store area being filled from the bottom end. It is clear that the order of words 
in the main store has been reversed. This is a vital point to remember. Note. 
however. that the contents of each word are not changed in any way. 

As an example. suppose that YO contains the characters A. B. C. D. E. F. G. 
and H. and that Y1 contains the characters 1. 2. 3. 4. 5. 6. 7 and 8. and that 
the following two instructions are obeyed: 

MWQq; MBRQq; 

where Qq contains device number/AYO/AYl. The first instruction. MWQq;. 

Page 187 



writes the two words on to the tape and MBRQq; reads them back with the tape 
moving in the reverse direction. The end result is that YO contains 1, 2, 3, 4, 
6, 6, 7, 8, which was the last word written on the tape, and Yl contains A, B, 
C, D, E. F, 0, H, so that the order of the words in the main store has been 
reversed. 

The two possible reverse read instructions are:-

MBRQq; Magnetic backward read. 

MBREQq; Magnetic backward read to end message symbol. 

22-1-9 PositlODlDg of Magnetic Tape. It Is sometimes necessary to re-
position a magnetic tape without transferring information to the main store. For 
this purpose two skip instructions are provided in User Code, written MFSKQq; 
or MBSKQq;. For either of these instructions the Q-store Is required with the 
device number in the counter position and a positive integer count not equal to 
zero in the modifier position. It must be emIitasized that an attempt to use a 
zero or negative count with these skip instructions will not work. A zero count 
is interpreted as a count of 32,768. 

The actual purpose of this count is to specify the number of blocks to be skipped. 
When a skip is performed in either direction information is read from the tape 
Into the buffer but is not transferred to the main store. A copy of the Integer' 
In the modifier position Is put into a special count indicator. Every time a gap 
Is encountered 1 is subtracted from the count, and when the count Is reduced to 
zero the operation will cease. Note that the integer in the modifier does not 
change. As for all magnetic read instructions. a perity check is performed on 
all characters read, and on completion of the skip an indication is. given if a 
parity failure has been discovered. 

A parity fail indication will be given if any block skipped contains other than a 
multiple of eight characters. 

A failure entry to Director (LIV) will occur if a backward skip is initiated on 
a tape positioned at the ~egblJling of Tape window. 

If during the execution of a forward skip instruction a last block marker is 
encountered, or if during a reverse skip the beginning of tape window is reached., 
then the skip operation is immediately terminated since there can be no point 
in skipping beyond either of these marks. Note that there is always an extra 
long gap on the tape between the beginning of tape window and the first block. 
Therefore, when skipping backwards the tape may be stopped Just in front of 
the first block and yet well short of the beginning of tape window. 

As an example, suppose that n blocks have just been written on to a fresh tape 
and that it is required to check that the tape is correct before proceeding. It 
is assumed that Q1 has already been set up with the device number In the 
counter position and the count n in the modifier position. The appropriate 

Page 188 



instructions are:-

MBSKQ1; PARQl; JITR; MBTQ1; J2TR; SET+l; =M1; MBSKQ1; PARQ1; 
Jl TR- MBTQl; J3NTR; 

These instructions perform the following operations:-

(a) MBSKQl; skips back n blocks. If there really are n blocks on the tape 
then the read head on the input device will be positioned Just in frODt <X the first 
block. not yet having reached the beginning of tape window. This is because the 
tap between the BT and the first block is about seven inches long. but the tape 
stops as soon as the beginning of the gap is sensed. 

(b) PARQ1; sets the test register if a parity failure has occured. 

(c) MBTQ1; sets the test register if the beginning of tape has been sensed; 
this would occur if fewer than n blocks were present on the tape. J2TR; jumps 
to reference 2 if the tape is at BT. This prevents a possible failure on back
ward skips if the number of blocks found is too few. 

(d) The instructions SET+l; =Ml; reset Q1 ready for a further backward Skip 
of one block. and MBSKQ1; performs this skip. If the tape is correct this 
operation will position the tape at the beginning of Tape window. 

(e) PARQ1; 
second skip. 

sets the test register if a parity failure is detected during this 

(f) Jl TR; jumps to reference 1 if test register has been set by any of the 
faults in (b) or (a) and also clears the test register. 

(g) MBTQl; sets the test register if the tape is positioned at the beginning 
of tape window. as it will be if the tape has the correct number of blocks n. 
J3NTR; jumps to reference 3 if the test register has not been set. otherwise 
it clears the test register. This jump will be made if there are too many blocks 
on the tape. 

If no parity failures have been found and if the tape contains the correct number 
of blocks n. the program will proceed to the instructions immediately following. 

If it is required to ensure that a tape is positioned at the beginning of tape. the 
instruction MRWDQq; will do this (requiring only the device number in the 
counter at Qq). The tape will start to rewind and will continue to do so until the 
BT window is sensed and will then stop. There is no need to check for beginning 
of tape - it will not stop until this point is reached. As the tape is not inspected 
during rewind. the instruction cannot give rise to a parity fail indication. 

When a tape station is claimed for use by a program there is no need to use 
MRWDQq; as Director always leaves the tape positioned at BT after allocating 
it to the program. 

Page 189 



Note that the modifier of Qq must be positive or zero when a rewind instruction 
is obeyed. If a rewind instruction is given with the tape at BT, the instruction 
will immediately terminate as the desired condition exists (this is the only 
reverse tape instruction that can be obeyed from BT): if the tape is not at BT, 
it will move in the reverse direction until BT is reached. 

22'1'10 Tape Labels. The first block on any magnetic tape must contain 
a statement known as the tape label. The tape label contains a minimum of 
two words and a maximum of 16 words. The first word contains the physical 
number of the spool and must be retained on the tape at all times. The second 
(or second and third) word contains what is known as the tape identifier which is 
of either 8 or 16 characters (known as 1 or 2 word identifiers). For 2 word 
identifiers the first character of the 16 must be "+". The remaining 13 or 14 
words of the label are entirely at the disposal of the programmer. For instance, 
they may describe in words the present contents of the tape. 

22 '1'11 Claiming Tape Units. The reader is asked to revise sections 
17'3'3 and 4. 

22'2 Examples 
1. Write the contents of YPO to YP63 immediately after the tape label block 
of the magnetic tape with the identifier KAXZ 1274. Claim the device but do not 
deallocate 

VO Q O/AYPO/AYP63; 
VI P KAXZ1274; 
V2 Q {)f()/I; 

V();=Ql;V2;=Q5;V1;SET4;OUT;=Cl;CIT0Q5;MFSKQ5;PARQ1;J5TR;MWQl; 
PARQl ;Jl TR; 

It will be seen here that no test MBTQq;METQq; has been made: this is 
because the tape must be at BT since it has only just been claimed and Director 
always leaves the tape at BT when allocating. If METQq; should cause the 
indicator to be set it would mean that the tape would only be about a foot or so 
long which is unreasonable to check for at this pOint. Reference 1 is a routine 
if parity is sensed in 1st block. Reference 5 is a routine to be obeyed if parity 
is sensed in label block. 

2. Follow on example 1 writing a further 10 blocks each of 2000 words from 
Y2001-Y4000, .•• , Y200, 001-Y22, 000. Finish up with a last block marker and 
dealloc ate. 

V2 = Q O/A Yl/A Y2000; 

V2;=Q2;CITOQ2;SET9;=C3; 

Page 190 



4, METQ2,J2TR;SET2000;DUP;=+I2;=+M2,MWQ2;PARQ2,J3TR;DC3; 
J4C3NZ,METQ2,J2TR,MLWQ2;PARQl;J3TR; 
Cl;SET6;OUT; 

2; (Routine if end of tape is sensed); 

3; (Routine if parity is sensed in last 10 blocks) 

The reader is asked to note that the parity test should be left until just before 
the next write is performed, thus saving time. It is normal to check that the 
tape has been correctly written; this is shown in the next example. 

3. Claim the magnetic tape unit with the tape which has identifier 
+KARSTUXZ3IABC36, write onto the tape immediately after the label block 
the contents of Yl - YI000 as one block, with a last block marker. Check 
that the tape has been written correctly and deallocate the device. 

VO/l - P+KARSTUXZ3IABC36; 
V2 = Q 0/AYl/AYI000; 
V3 = Q 0/0/1; 

V2;=Ql;Vl;VO;SETI0;OUT;=Cl ;ERASE ;V3 ;=Q2 ;Cl TOQ2;MFSKQ2;PARQ2;Jl TR;ML\ 
SETl;=+M2;PARQl;JlTR; 
MBSKQ2;PARQl;JlTR;MBTQ2;J2TR;SETl;=M2; 
MBSKQ2;PARQ2;JITR;MBTQ2; 
J3NTR;C2;SET6;OUT; 
1; (Parity failure routhJe); 
2; (Routine for too few blocks written); 
3; (Routine for too JDall3' blocks written); 
N.B. Above are the two instructions MBSK~; and PARQ!;. provided the 
device number in Ql is the same as that in Q2 this is quite valid. 

4. Claim the magnetic tape with identifier ABCD1234. read the first block 
after the label block into YAO-YA63. (The block is known to contain only 64 
words.) Deallocate after use. 

VO PABCD1234; 
VI Q 0/AYAO/AYA63; 
V2 Q 0/0/1; 

Vl;=Ql;VO;SET4;OUT;=Cl;V2;=Q2;C4T0Q2;MFSKQ2;PARQ2;JITR;MFRQI; 
PARQl;JITR;Cl;SET6;OUT; 

22'3 Eurol8es - Set 1 
In these examples all units should be claimed and de-allocated where appropriate, 
all relevant checks should be made. If a parity failure is detected the tape 
should be de-allocated. If there is not enough tape available for writing the 
full block required write a 1 word block of zero terminated with a last block 
marker aDd then terminate. 

Page 191 



1. The three words YG-Y2 contain the following in character form:-

YO THE..£AT"-I 
Yl SIT&...DNL..I 
Y2 THEuMAT ..... 

Give the instructions to write these three words to Magnetic tape (device 
number in Cl) - and then read them reverse into YBG-YB2,. Show the contents 
of YBG-YB2 at the end of the operation. 

Assume the tape is positioned just after the label block and ready for writing. 

2. Position the tape with identifier ABCD1234 in the gap between the 3rd and 
4th block of information. Do not count the label block as a block of information. 

3. Write the contents of YO - YIOOO to a magnetic tape labeled ABCD1235 as 
a simple block immediately following the label block, then check that the block 
contains no parity and that one and only one block was written. 

Exercises - Set 2 
1. Copy the magnetic tape with identifier KEEMOOOO outs tape with identifier 
KEDJ9999 reading and writing blocks to end message. The maximum size of 
a block is 1024 words. Stops when a block with a last block marker has been 
copied (with a last block marker). Check that the new tape has been correctly 
written before de-allocating. A system of double buffering is expected to be 
used. I.e •• this program should be so wirtten that whilst one tape Is being 
written onto, a simultaneous read from the other should be taking place. 

Page 192 



2S· SUBROUTINES AND USES OF SJ'NS 

23·1 .FwlCtioDB of a Subroutiue 
A subroutine is a self-contained set of instructions which, when presented 
with data in pre-defined storage locations, performs a particular operation 
using that data, and leaves results again in pre-defined locations. Note that 
particular subroutines can exist that either require no data, or give no results, 
or both. 

The question arises as to why subroutines are used at all. The reasons for the 
use of subroutines are:-

(a) Where the program involves the use of certain sequences of instructions 
more than once - often many times - the use of subroutiues covering such 
sequences relieves the programmer of the tedium of writing them all out in 
full each time they are needed. A private subroutine is the ideal way of 
achieving this. 

(b) Certain sets of instructions, particularly those covering established 
mathematical procedures, have already been previously established and 
registered in a subroutine library for future use. It is obviously preferable 
to accept the rules for existing routines of this nature rather than to formulate, 
write, and test, a different set of instructions to achieve the same end. 

The grOwing library of KDF9 subroutines is available to all users of the 
machine who are invited to add to it any new routines of general interest they 
have developed, or any useful alternatives to existing routines. In this way 
the library will continue to grow in scope and capacity to the benefit of all. 

The method of extracting library subroutines from magnetic tape when com
piling with the POST system has already been explained. When this method 
is not used the subroutine must be written in full at the end of the main pro
gram, and the rules for this now follow. 

2S·2 Rules for Writq SubroutiD8s 
23·2·1 BeginDiDg of a SubroutiDe. The start of a subroutine on a User 
Code tape is detected by Compiler from the label which MUST be the first thing 
the appears. Once the label has been found the list of reference labels held by 
Compiler is restarted, thus allowing any subroutine to commence using labels 
from 1 onwards up to 255 for jumps etc., without confusion. Similarly the 
list of constants is restarted so that the first constant used by the subroutine 
will be called VO. The subroutine label will be of the form:-

(a) A letter (L for library subroutines, P for private subroutines. 

(b) The subroutine number (numbers above 1000 will be used ooly for special 
purposes. 

Page 193 



(0) The letter V followed by a number v where the subroutine requires space 
for constants from VO to Vv inclusive (if no constants are required this item 
will be omitted). 

(d) The semi-colon ending the label. 

Once the label has been detected all that follows is interpreted as part of the 
subroutine until either another subroutine label is encountered, or until the 
FINISH; label appears on the input tape (it follows from this that subroutines 
must appear after the main program). 

23·2·2 Use of Stores by Subroutines. Any data required by subroutines 
should be obtained from the hesting store (and removed during the operation 
of the subroutine) and any result put into the nesting store - this makes the 
routine look as much like the built-in computer operations as possible. If 
larger amounts of data are required, the data in the nesting store should be 
addresses telling the subroutine where the rest of the data are stored or where 
the results are to be placed. 

Q stores should be used from Q15 downwards to avoid conflict with the main 
program using them from Ql upwards. 

V constants may be used as required, numbered ·from VO upwards, without risk 
of conflict with Similarly numbered constants in other places. 

W stores may be used for storage space if required, but the subroutine should 
not expect to find any particular patterns in the W stores on entry. This rule 
removes any obligations for a subroutine to clear any W stores used on exit. 

Reference by a subroutine- to the main store using DIRECT addressing should 
be avoided at all times (except for V constants and W stores), as this would 
seriously impede the usefulness of a subroutine. INDmECT addressing by a 
basic address provided in the nesting store at entry is a far more useful and 
flexible technique if main store areas are involved. 

Exit from a Subroutine. At the conclusion of a subroutine it is 
necessary to return to the main program at a point immediately following the 
point from which is was left to enter the subroutine. This makes the jump to 
subroutine instruction look just like a rather powerful machine instruction. 

To perform the necessary jump back to the main program we use the address 
put into the jump nesting store on entry to the subroutine (this tells us the 
point at which we left the main program) and a numerical value irxiicating the 
displacement beyond this point (measured in HALF-WORDS, this being the mos~ 
general unit for this application, as a jump instruction takes one half-word). 
A single instruction, which may be written E>..'T II; where n represents a num
erical value in units of half-words, will perform this fWlCtion. The usual 
form is EXIT 1; to return to the main program at the instruction foIlo\\ing the 

Page 194 



jump to subroutine instruction. For example. the sequence of instructions :.-

Y6: JSP4: =Y7: 

will perform the following actions:-

Y6: fetch a word from Y6 to Nl. 

JSP4; store the address of TIDS INSTRUCTION in the top cell of the jump 
nesting storoe: then enters subroutine P4 at its first instruction and obey its 
instructions. terminating with 

EXIT I; fet::h the address from the top cell of the jump nesting store, add to 
it 1 half-word (i.e., 3 syllableEt and then jump to the resulting address. In 
this example, the address stored in the jump nesting store is that of the 
instruction JSP4; which occupies 3 syllables. Adding one half-word (i.e., 
3 syllables) to this address gives the address of the next instruction (=Y7'~ so 
that is the instruction to be obeyed after the exit jump. 

=Y7: store the result from the subroutine. 

This illustrates how a subroutine can be obeyed at any point in a program by 
writing just one instruction. 

23'2'4 Subroutines with two eldts. On occasions, subroutines may 
require alternative exits, one for the normal case and a second to indicate a 
failure or some other unusual occurrence. The exit instruction can de!ll with 
this; EXIT 1 is used for the UNUSUAL case and EXIT 2 for the normal case. 
It is not advisable to provide more than two exits as the use of such a sub-
routine becomes involved. The subroutine is then obeyed by a sequence such as:-

Y8; JSP9; J3; =Y9; 

Broken down into steps this becomes: 

JSP9; Enter subroutine storing address of THIS INSTRUCTION 

For NORMAL subroutine exit. 

EXIT 2; Jump to point 2 half words beyond address stored; this takes us to 
=Y9; and the following sequence of instructions. 

For FAILURE subroutine exit •• 

EXIT 1; takes us to J3: which j1!mps out of the sequence to a routine for 
dealing with the failure. 

Page 195 



23·2·1 Ua. 01 Overflow aDd Teat Regl8ter ID MrclUtfDea. Any sub-
routine must ensure that, on exit, the states of the overflow and test register 
are precisely the same as they were on entry. 

The sequence ZERO; DUP; MAX; ERASE; ERASE; will set the overflow register. 
SET-l;=TR; will set the test register. 
VR; clears the overflow register and ZERO;=TR; clears the test register. 

23·3 CODtrol of Subroutllle Jump Nesti. Store 
23·3·1 Gell8ral Uses 01 SJNS. When subroutines are used as described 
above, the Jump Nesting Store will look after itself, removing each return 
address as it is used. The only point to remember is that not more than 
foruteen return addresses should be in the store at any time - this allows one 
space for a program-testing subro\:tine to use and one for use during interrupts 
into Director. Since this allows 14th order subroutines, it is not a serious 
limitation. 

It can sometimes happen that a return address may exist, but not be required, 
or an extra address be desired. Instructions therefore exist to remove or tn
sert addresses by transferring to or from the top cell Nl 01 the nesting store. 
Such an address when in Nl is of the form: 

DO - 31: 
D32 - 34: 
D35-47: 

Zeros (ignored when transferring to SJNS). 
Syllable number (in rauge 0 - 5). 
Word address (in range 0 - 8191). 

The two instructions involved are:-

LINK; 
into Nl .• 

Fetch address from top cell of the subroutine jump nesting store 

=LINK; Transfer address from Nl into top cell of the subroutine Jump 
nesting store (ignoring digits DO - 31 of Nl). 

Page 196 



Compute 

Set Switch 
to AAI 

1; Compute 

SET AR1; 
=Y6; 

Compute 

Y6;=LINK; 
EXIT; 

Compute 

Set Switch 
to AA2 

2; Compute 

Use of the Subroutine Jump Nesting Store for Switches. 

SET AR2; 
=Y6; 

Page 197 



28·8·2 U88 of SJNB for SwItches. It often happens that a decision made 
at one point in a program controls the route that the program will follow at a 
later stage. To avoid having to make the decision twice, a switch can be set 
after the first .decision has been made, and used later to direct the program 
aloug the desired path. 

The diagram illustrates the logic to be followed. Two steps are considered 
here: 

(a) setting the switch. 

(b) branching according to switch setting. Each branch needs a reference 
label; in the example 1 and 2 are chosen. 

The instructions for setting the switch on the left-hand branch are: 

SET ARl; Puts word and syllable address of the instruction labelled 1 into Nt. 

=Y6; Stores the address in a Imown position. Any location will do - Y6 
is an arbitrary choice. 

For the right-hand branch we have:-

SET AR2: Different address this time •••• 

=Y6: •••• but stored in SAME location. 

To branch on the setting of the switch we use:-

Y6; Fetch address back to Nl. 

=LINK; Send it to the jump nesting store, 

EXIT; and jump to it (Note: this is EXIT n with n = 0). 

23·3·3 Us. of SJNS for Trees. It is sometimes necessary to jump to one 
of a number of points, depending on the value of an iDteger(either computed or 
provided as data). An example nUgbt be an electricity billing program, where 
the cost is computed in differing ways according to the particular tariff employed • 
ThlB would be done by a series of tests, but above a small number this becomes 
time consuming. An alternative means is provided by a variation on the EXIT 
instruction which, being similar in form to an ordinary jump instruction, has 
space to keep an address with the instruCtion. . 

Page 198 



Consider these instructions:-

yO; 
*10; 

=LINK; 
J100; 

*J101; 
*J102; 

EXIT ARlO; •••••••••• 

Reference 100 is assumed to be the first instruction of the routine for tariff 
zero, 101 for tariff one, and 102 for tariff two. The effect of the instructions 
is thus:-

YO; Fetch tariff number to N1. 

=LINK; Send tariff number to S.JNS (as word address 0, 10r,2). 

EXIT ARlO; The address in this jump is that of the asteriskecl instruction 
labelled 10. The address in the jump nestiDg store is either 0, 1 or 2 with 
syllable equal to zero. The jump is, therefore, to refereuce 10 for tariff 
zero, one word beyond if tariff one, or two words beyond if tariff two. In these 
three locations (all asterisked to ensure they are in seperate words) are jumps 
to the start of the appropriate routines - these may be rmywhere. 

23 0 ' Ezamp1ea 
1. Write a subroutine to convert a set of n single-length positive iDtegers 
from true binary to decimal character form, storing the results in the main store 
words from which the data was obtained. Assume that on entry the top cell of 
the nestil~ store contains a parameter in Q store format nil/address, where 
n is the number of words to be converted and the address is the starting address 
of the data. Exit 1 if one of the single-length fixed point numbers is too large 
to be expressed in 8 characters. (there is no Deed to reset the original data 
in this case). Exit 2 is to be normal exit. 

2. P3V1; 
VO = B 1212121212121212; 
VI = B· 2020202020202020; 
=Q15;JIC 15Z;Vl; VO; 

2; DUPD;Mf/)MI5; 
FRB; OR;J3V;=Mf/)MI5Q;J2CI5NZ; 
ERASE;ERASE; 

1; EXIT 2; 
3; ERASE;ERASE; 

ERASE;EXIT1; 

23 0 5 EuroI8es - Set 1 
1. Write a subroutine to claim a magnetic tape from Director and leave 

(a) the device number in Nl 

(b) the tape positioned in the gap following the label block. 

Page 199 



Use the contents of NI as the identifier for the tape. 

Use a failure exit if a parity failure occurs. 

2. A set of true binary integers each less than 109 are stored in consecutive 
words of the main store. Write a subroutine to set the top 3 cells of the nesting 
store to contain: 

Nl: the total of all the members. 
N2: the largest number in the set. 
N3: the smallest number in the set. 

At entry NI contains n/l/A where n is the number of integers in the set. A is 
the first. The n words of data are known to be correct and n is known to be 
greater than zero. 

3. Transfer control to Reference 3 in a program if NI is zero; transfer control 
to I word beyond reference 3 if NI is non-zero. 
Preserve the contents of NI in either case. Do not assume an asterisk on 
Reference 3. 

ElII8robses - Set 2 
1. Write a subroutine to interchange the Dr bit and Ds bit in a binary pattern 
in Nl where r is stored as an integer in N2 and s in N3. 

Page 200 



24· ADVANCE CONTROL 

24·1·1 Operation of the CoDtrol UDlt. There are two classes into Which 
computational instructions may fit:-

(a) fetching or storing words in the main store, aDd 

(b) performing arithmetic operations. 

If each instruction were obeyed to completion before control moved onto the 
next instruction, we would find that at anyone instant either the main store or 
the arithmetic unit would be in use, but not both. This would be inefficient as 
it would imply that one or the other must be idle. 

The advance control feature of KDF 9 is designed to reduce this inefficiency by 
allowing operatiOns to proceed in both parts at once, but in such a way as to 
completely safeguard the programmer from error due to this dual working and 
without imposing any extra restriction on him at all. 

The system used requires a Control Unit in two parts:-

(a) one to look after the maiD store and its associated parts, 

(b) the other to look after the arithmetic unit aDd the nesting store. 

There is a two-word (12 syllable) instruction buffer in the control unit which is 
a temporary transit camp for instructions obtained in sequence from the pro
gram area of the main store. From the programmer's point of view the instruc
tions are brought into this buffer at the right-haDd end and are gradually 
shifted along to the left as aDd when control has finished with the instruction at 
the extreme left. Since instructions may be one, two or three syllables (8. 16. 
24 bits) long it will be seen that the number of syllables bro~ht onto the right 
hand end may be less than is sufficient for a complete instruction. This may 
be clearer if the sequence 

+;=Y6;-; ZERO;DUP;AND; NOT;=Y5;Y7; ZERO; 

is considered. 

At one instant the 12 syllables + to =Y5 will be in the buffer, but when + is 
completed it (1 syllable) will be pushed off the left-hand end and the first 
syllable of Y7 will be brought into the vacancy created by the shift. This will 
not affect the programmer because when =Y6 is dealt with, the final 2 syllables 
of Y7 will be brought in and so the complete instruction (Y7) will be re-united. 

This picture of instructions at the left hand end of the buffer being performed 
one at a time is not exactly what happens. In fact, each instruction passes to 
the maiD store part of control and then any which are purely arithmetie are 
passed onto the arithmetic part of control, each part taking the necessary 
actions. If the maiD store part of control senses that the instruction is purely 

Page 201 



arithmetic it starts to look at the next instruction leaving arithmetics to deal 
with the previous instruction when it is free to do so. Heme it is possible for 
arithmetic control to be obeying the first syllable of the buffer with main store 
control having moved right up to the last syllable of the buffer. 

24·1·2 Maln Store Buffers. There is one point at which the activities of 
the two parts meet - when information passes to or from the nesting store. In 
cases of this kind main store control will obtain the word fro;m its storage 
location, but arithmetic control will put it into the nesting store. 

The hand-over is effected by interposing a set of buffers between the two parts. 
Any word from the main store is sent to one of two "fetch buffers" by main 
store control and waits there until arithmetic control is ready for it (since the 
buffers are used alternately, both sides know which to use next). 

Any word sent out of the nesting store goes to a single "store buffer", where it 
waits for main store control to deal with it. Another problem arises here: 
main store control has finished with such an instruction before arithmetic control 
starts, but the result is not available until both have dealt with it. This is 
overcome by main store control placing the address into which the result will 
go into a f<iurth private register before allowing arithmetic control to deal with 
this instruction: when arithmetic control has placed the result in the store 
buffer it signals main store control that the result is available and leaves main 
store control to store it (at some later date) into the location specified by the 
fourt.1!. register. 

By this means both parts can be kept busy for a greater portion of the time, 
resulting in a reduction of the total elapsed time to perform a given Job. 

24·1·3 Programming for Advance Control. The Advance Control 
feature does NOT put any restriction on the programmer whatsoever - he can 
obey instructions in any order he likes and KDF9 will act aCcordingly. However. 
it does offer the chance for the programmer to save time by giving AdvaDCe 
Control as much scope as possible. In general this is done simply by keeping 
referemes to locations outside the nesting store as far apart as possible by 
fitting the arithmetic instructions between them. 

For example, to add together the 6 floating numbers in YO to Y5 we have two 
alternatives :-

(I) YO; Yl; Y2; Y3; Y4; Y5; +F; +F; +F; +F; +F; 

(b) YO; Yl; +F; Y2; +F; Y3; +F; Y4; +F; Y5; +F; 

Both arrive at the same result but take differing times. The first works on the 
main store only until all six operands are in the nestill&' store then leaves all 
elICept the arithmetic side idle whilst the numbers are added. The total time 
Is thus the sum of the individual times. The second solution spreads the load 
as best it can: as soon as the arithmetic unit can start, it does so, and whilst 

Page 202 



it computes the first sum. main store control is fetchi~ the next nlUllber. As 
the times for noati~ add and main store fetch are roughly equal. the second 
solution could be up to 35% faster than the first. 

Because of the dual worki~s inherent in the Advance Control feature. it is 
difficult to specify how 10Dg an instruction will take to be obeyed without 
studyiDg its context - for this reason no attempt has been made to quote times 
for instructions when they have been introduced in earlier sections. 

24 0 2 Short Loops 
24.2 0 1 Theory of Short Loops. We have seen earlier that several 
instructions (12 syllables) can be stored in the instruction buffer, and that as 
the leadiDg instructions are completed they are shifted out of the buffer. When 
a jump is encountered the whole of the buffer has to be cleared and re-filled 
from the appropriate part of main store. In the case of a loop of instructions 
which is so short that they all fit into the instruction buffer at one time it is 
time-wasting to force the control Wiit continually to fetch the same two words 
of instructions every time round the loop. To prevent this continual fetching, 
a special jump instruction is used: 

JrCqNZS; 

The actual operation of this instruction is to jump to the first syllable of the 
word preoedq the word in which the jump instruotiOll 1s stored - hence an 
address is not required in the machine code instruction and therefore this jump 
instruction occupies only TWO syllables as opposed to 3 for all the other jump 
instructions • 

Both syllables of JrCqNZS must be stored in the same word. Note that 
JrCqNZS; has the same operation as JrCqNZ; except that the jump is to the 
first syllable of the preceeding word. The effect in the instruction buffer of 
JrCqNZS; is that the first time it is encountered the previous word is placed 
into the first word and the follo~ word (that containing JrCqNSZ;) into the 
second word of the two-word instruction buffer. The instruction buffer is not 
now cleared until Cq is zero. 

The reader should now re-read para 6·2·1·3 concerning the "asterisk". 

Since the machine code version of JrCqNZS; does NOT contain the address of 
reference r as a jump address it must be remembered that any jump instruction 
(other than JrCqNZS itself) that is obeyed during a short loop and that causes a 
jump to take place will remove the indication that a sholi loop is in progress. 
Such a jump MUST upset the contents of the instruction buffer and. consequently 
the short x loop. 

240202 WritIDg Short Loops 
(a) Remember that the instruction buffer holds 12 syllables, and that 
JrCqNZS; is only 2 syllables. 

Page 203 



(b) The whole of JrCqNZS: must be in the last 6 syllables of the buffer. 

(0) To ensure that reference r is at the beginning of a word, precede it by an 
asterisk. 

(d) Any unfilled syllable(s) occuring when an asterisk is employed is filled 
with the 1 syllable instruction DUMMY: 

(e) If an.ordinary loop using JrCqNZ: has been written which has (or could 
be reduced to have) 13 syllables or less then by using JrCqNZS: it can be 
made into 12 syllables and eventually by inserting an appropriate asterisk 
a short loop may be formed. 

(f) Appendix 4 lists the syllable count of instructions. 

Some examples are:-

Example 1 
I: YOMl: Y64Ml: xD: CONTi =YI28MIQ: J lC INZ: (14 syllables). 

Either leave alone or replace by a more economical form such as:-

1; M2Ml: Y64Ml: xD: CONT:=YI28MIQ: JIC INZ: Now 13 syllables, 
so use JICINZS: resulting in 

*1: M2Ml: Y64Ml: xD: CONTi =Yl28MIQ: JIC INZS; 

Example 2 
2: MOMIQ: MOM2Q; x+F; J2C INZ; (8 syllables) becomes 

*2: MOMIQ; MO:h-I2Q: x+F: *J2C INZS; (this will be discussed further in 
next paragraph. as it can be rewritten to give faster computation). 

24·2·3 Effect of Acivame Control In Short Loops. Let us consider just 
what happens when the short loop of the last example is obeyed. 

The two instruction words are laid out:-

Word 1 Word 2 
Syllable No. I ' I 1 I 2 I 3 1 4 I~ I 1 I 2 

Main store control obeys the two fetch instructions. with arithmetic control 
waiting for main store control. 

Syllable 4 & 5 are inspected and immediately Ignored by main store control as 
they are purely arithmetic instructions. 

Page 204 



Arithmetic control starts obeyiDg syllable 4 whilst main store control continue" 
into syllable 0 of word 2. The jump instruction is obeyed quicker than x+F so 
main store control tries to obey syllable 0 aDd 1 of word 1 but caDDOt do so yet 
because arithmetic control is still in that word on tile previOUS loop (this pre
caution prevents main store control from "lappiDg" arithmetic control). 
Therefore main store control waits until arit}lmetic control bas finished with 

(a) x+F aDd 

(b) inspected DUMMY, and finally left WORD 1. 

If the layout of the instructions had been 

MOMIQ MOM2Q DUMMY x+F J2CINZB 

then at the point in the loop when main store control enters word 2 the 
arithmetic control would have just finished checkiDg that DUMMY does not have 
to be obeyed aDd starts on x+F. This means that main store control can start 
obeying MOMIQ as soon as arithmetic control has taken what information it 
needs from the x+ F instruction. 

In the previous layout with x+F followed by DUMMY, arithmetic control would 
not allow main store control to reenter Word 1 until it (A.C.) had finished x+F 
aDd inspected the DUMMY, and hence the main store control would be need
lessly held up until A~C. had checked DUMMY. However in the second layout 
the DUMMY is inspected by A.C. whilst M.B.C. is busy. 

Basically the rules for o{timisation of a short loop are as follows. 

(a) If it is possible, arrange the short loop so that one aDd only one arithmetic 
instruction occurs in the first word together with main control instructions. 

(b) The arithmetic instruction of (a) must occupy the last syllable of the first 
word (or last two in the case of a two syllable arithmetic instructions). To 
achieve this, pad out with dummies if necessary. 

(0) Employ the Q facWty only once in the loop, if this is possible. 

24·8 ElIi8roisee • let 1 
Use a short loop in your solutions to the followiDg eJlDercises. 

1. 64 siDgle-leDgth fioatiDg point numbers are stored from WO onwards. Find 
the sum of their squares as a double-leDgth fioatiDg poiDt number leaviDg the 
answer in Nl, N2. 

Page 205 



1. 128 lDtegers are stored In YO - Y127. FIDd. the sum of the IlUIDbers 
leaviDg It 1D Nl; the largest number 1D the set. leaviug It 1D N2; the smallest 
number In the set. leavi. it 1D N3. 

Page 206 



•• PROOBAllMlNO EXERCIBE C 

It Is propoeed to geDerate a sequlllce of 48 numbers according to the followiDg rule: 

"The nth number iD the sequence Is obtaiDed by addiDg together the two previous 
terms of the sequence. I.e., by adding the (I1-2)nd and (I1-1)st terms. (UsiDg 
zero to iDltiallse the procedure the first terms of the sequence are 

I, I, 2, 3, 5, 8, 13, - - - - )" 

WheD all the numbers have been geDerated they should be writteD as a siDgte block· 
to magnetic tape. This block should then be read backwards from the tape, and 
the ratio for each pair of successive terms calculated from these numbers. 
Each term of the glVeD series, together with the corresponding ratio, should be 
arranged to be priDted via OUT8 usiDg stream number 30. 

Hot.ee 
1. In calculatiDg the ratio the larger number should be made the numerator, and 
the smaller the cleDomiDator. The ratio should be calculated to 13 decimal places. 

2. A library subroutiDe will be provided to convert biDary numbers to the 
character8 required for output on the priDter, it is LIOOO and has the followiDg 
speclflcatiClll: .,. 

(1) At _try iDto Ll000 there must be a P081tive bliaarJ iDtepr ill N1. 

(11) At exit from LI000 Nl and H2 wUl contain a double l_gth word, N1 being 
the more 8igDificant half and N2 the les8 8ignificant half. The double length word 
is the decimal character form of the binary iDteger. It is at the least 8ignificant 
eDd of the double length word with any more 8ignificant zeros replaced by spaces 
(Octal 00). 

3. The tape to be used is a WORK tape (I.e., with icleDtlfler 00000000). 

4. The format of the output should be:-

N R 
1 
1 1·0000000000000 
2 2'0000000000000 
3 l' 5000000000000 
5 1'6666666686667 

Page 207 



KDF 9 PROGRAMMING COURSE - EXERCISE C 

Yes 

Page 208 



y 
Check that tape is 
correctly written 

I 

Deallocate magnetic 
tape. 

I 
Convert (AlII) to 
characters and print 

1 

Set i = 1 

Has 
loop been per-
formed 47 

times? 

No 

Convert (AI i+ll) to 
characters. 

I 
Convert N.B. (Rli+ll)= 
(RI i+ll) to characters (AI iH) )+(AI il) 

I 
Print (AI i+ll). 

(RII+1» 

I 

Set i = i+1 

e 
AlII. AI 2) ••.• A(48) reference the 48 numbers to be calculated. 
R(2). R(3) •.•• R( 481 reference the 47 ratios to be calculated. 

Yes 

Page 209 





26' THE DIRECTOR 

26· 1 Basic Functions of Director 
The KDF 9 System has been designed to provide 

(i) a wide variety of instructions for a programmer to use as he wishes, 

(ii) a selection of protective interlocks to interrupt an object program 
automatically if there is any reason why it should be held up, and 

(iii) a special instruction to allow assistance to be given to the object program 
as and when required. 

The first requirement is met by the USERCODE; the other two are provided by a 
control program, known as Director. 

The computer itself organises entry to the Director program from the object 
program as required - this is referred to as "an INTERRUPT into Director". 
On such an interrupt sufficient information is available to enable Director to 
ascertain why it has been entered and also to allow the object program to be re
entered at the appropriate place when the reason for interrupt has been dealt with 
by Director. 

There are two kinds of KDF 9 system: one has the facility for the Director to 
call in one object program to be run: the other has a special Director program 
which can call in up to four object programs which are 

(i) placed in areas of the main store determined by operator action 

and 

(ii) run on a time sharing basis -

(this system requires the computer to have three extra sets of Nesting Stores, 
Q-stores, etc.) - part of one program is run until it is held up temporarily for 
some reason, when the next object program in priority is run until that is 
temporarily held up: this process of priority running applies to the four programs. 

To allow enhancements to the facilities of Director the sizes of different versions 
of Director vary. Therefore it is not possible for a programmer to say exactly 
at which word in the main store his program starts. Any difficulties of this 
type are, however, avoided by combined action between Director and the 
electronics of the computer: the Director places in a special register the actual 
address of the first word of the main store allocated to the programmer and any 
reference to the main store by the program is automatically increased by this 
amount, thus enabling the programmer to assume his program starts at word 
zero (EO) irrespective of this size of the Director currently in use. 

Only Director need therefore know how big it itselfis. :rhe contents of this 
special register are automatically set to zero whenever the Director is entered 

Page 211 



(its word zero is always word zero of the main store) to ensure it gets its 
addresses right: at the same time, restrictions on the use of certain instructions 
are Ufted enabling the control routine to obtain access to registers inaccessible 
to an object program. These restrictions are reset as control is transferred 
back to the object program. There is no mention of these restricted instructions 
in this manual as they are only of interest to authors of control routines. 

Director, is a program that can be read into the main store from paper tape very 
easily and, therefore, can be changed at very short notice, simply by reading 
a different paper tape. The facilities to be described in this manual represent 
those catered for in the current version of the Non-Time Sharing Director 
(October 1965) program. 

26' 2 Entries to Director 
An entry to Director can be made for various reasons, some at the request of the 
program, some caused by program hold-up or failure, and the rest by Director 
itself in conjunction with the hardware of the computer. Let us consider the 
classes separately: this manual describes only those aspects of interest to the 
programmer and makes no attempt to describe the precise mechanism involved -
the causes of each entry to Director and its resulting effect on the program are 
all that is of interest to a programmer. 

26' 2' 1 Programmed Entries to Director. There are two instructions 
available to the programmer to call for entry to Director:-

INTQq; 

OUT; 

OUT 0 

Page 212 

Interrupt if the device whose number is given in the counter position 
of Qq is busy. This is intended only for time-sharing machines: 
Director will return control to this program when ANY device used 
by this program becomes available, resuming at the instruction 
FOLLOWING INTQq;. 

An unconditional entry to Director, to enable the program to utilise 
any special facilities built into Director. 

The facility required is selected by a code number placed in the 
top cell of the nesting store before obeying OUT; Director will 
then perform the selected function, using if necessary, auxiliary 
parameters placed in'the second c ell of the nesting store. 

On completion of the function, Director will return control to 
the program at the instruction following OUT; unless the particular 
function decrees otherwise. 

The various functions are known (using the code number as reference) 
as OUT 0, OUT I, etc. [Note the INSTRUCTION is still OUT;). 
The actions are:-

called by obeying OUT; with zero in the top cell of the nesting store, 
or with the nesting store empty. Ends program at this point: 



OUT 1 

OUT 2 

OUT 3 

deallocates any peripheral devices (any transfer actually In progress 
is stopped immediately mthout warning), then calls for ·next program. 
Both nesting stores are cleared, but other storage locations are 
untouched. Overflow and Test Register will be cleared. 

obey OUT; with N1 ~ 1. Requires program number in N2 and N3. 
Terminates this program (but without deallocating peripherals or 
clearing nesting stores) then enters program whose number was 
given in N2 and N3, entering at the first instruction. Intended for 
calling subsequent sections of a multi-sectioned program. Time 
limit for new program set to time taken by preceding sections plus 
time allowed for this section. Overflow and Test register will be 
cleared. 

obey OUT; with Nl ~ 2. Requires the Time Limit for next program iI 
N2: expects the next program to be already in the main store. Direct< 
ends previous program (as for OUT 0): then starts program in store ~ 
EO. Used in Compilers where the compilation is followed by obeying 
the compiled program. Overflow and Test Register will be cleared. 

obey OUT; with N1 ~ 3. Returns to the next instruction of the progrru 
having put the time taken so far (seconds given to 23 integral places) 
in Nl. 

OUT 4 to OUT 7 see Section 17. The other OUT's will be covered in later Sections. 

26·2·2 Unscheduled Entries to Director. These can occur due to eiiher:-

(a) A program attempting to use a busy input/output device or attempting to refer 
to a locked-out portion of main store. In either case, it serves to prevent a program 
from performing operations until it is safe to do so; control is returned to the progran 
when the reason for the hold-up disappears. 

(b) A program puts too many words into the nesting store or the jump nesting store 
(or tries to remove one more than it has put in). This is catastrophic, and Director 
will tell the operator so, but the opportunity for restarting the program will be offered 

(c) A program attempts to obey an unrecognised instruction (as, for example, if data 
are obeyed as instructions) or attempts a transfer on a device indicating a parity faih 
Again, these are catastrophic and are treated as in (b) above. 

26· 2' 3 Control Entries to Director. These entries are cause solely by 
Director and the computer between them - the program can have no influence over theI 
but they can influence the course of a program. The entries are:-

(a) Typewriter interrupt: the only way the I)perator can influence the course 
of the machine, by pressing the INTERRUPT button on the console typewriter. 
Director will then call for instructions from the operator via the typewriter. 

Page 213 



Cb) Clock interru~. This is caused by a timing device attached to the machine, 
causing this interruption every l' 048576 seconds. Director uses this to count 
how long the program has been in progress on the machine (discounting any time 
used by Director itself) and thus to Inform the operator of the total time used 
by a program, or to Indicate that a program Is lasting longer than It was anticipated. 

(c) End of Director Transfer. A purely internal matter for Director. 

Other reasons for entry to Director will occur on a Time-Sharing KDF 9, but 
these will not influence the programmer. 

It should be remembered that, apart from using one cell of the jump nesting store 
for a return address (this explainS why programmers should never use the full 
set), uy stores required for use by Director will be replaced before return to 
the main program, and, therefore, these periodic excursions into Director w1ll 
have no effect on the course of a program unless a definite reason for interference 
is discovered by Director, in. which case the operator will be informed. 

26· 3 Program Format after Compilation 
Since Director is responsible for the initiallc,ading of the program into KDF 9, 
the layout of programs after compilation is governed by Director requirements. 
A program is generally broken into three distinct blocks called A, B, and C, 
althou~h a program on magnetic tape is likely to have additional parts dictated 
by the needs of magnetic tape storage and operation. The C block is further 
subdivided. 

26·3·1 The Program A block. Each program starts with an A block in a 
standard layout. This block serves to identify the program both Inside and 
outside the machine, using a 12-character alphanumeric reference, and also 
contains (if required) a title of up to 46 charactera. This A block is generated 
by Compiler from Information on the front sheet of the program (called the 
Program heading). 

The precise layout of the A block is:-

1st Word 1st character: 
2nd character: 
3rd character: 

4th character: 

Case Normal (octal 07). 
Carriage return line feed (octal 02) 
One or other of the letters P M or D (octal 60 55 
or 44) 
Carriage return line feed (octal 02) 

5th to 8th characters: First 4 characters of the 12 character program 
reference number. 

2nd Word 1st to 8th characters: Last 8 characters of the 12 character program 
reference number. 

Page 214 



:3 to 8th Word The program title, consisting of a carriage 
return line feed character (octal 02), 46 
alphanumeric characters and an End Message 
symbol (octal 75) at the end. 

Note that all characters appearing in the A block should be NORMAL CASE charac';' 
ters. The A block is used only to find the program for insertion into the machine 
at run time - it is not aVailable to the program during running. 

2S·3·2 The Program B Block. The B block is generated by compiler from 
information contained in the program heading sheet, and is always 8 words long. 
The B block is read into words EO to E7 of the program space, but parts of it 
(which are of use only to Director) are subsequently overwritten by Director 
with Information available only at run time. We therefore have the two states 
of the B block - the appearance on tape and the appearance in the main store. 

(a) B block on tape 

word 1 

word 2 

word 3 

word 4 

word 5 

wordS 

word 7 

word 8 

Jump to first instruction Blank 
of program 

Time limit in seconds Total storage required 

Copy of first word of A block 

Copy of second word of A block 

Restart Jump 1 to 
Restart Jump 2 

failure routine 

Spare word - left blank 

Spare word - left blank 

Marker to indicate First address of first 
there is more than C block 
one C block 

Page 215 



(b) B block In Main Store at Run Time. 

Initial Jump as before Blank EO 

EI 

E2 

E3 

E4 

E5 

Time limit in seconds Total storage required 

E6 

E7 

Copy of first word of A block 

Copy of second word of A block 

Restart Jump 1.as before Restart Jump 2 

Device number of tape unit from which program 
was read if appropriate 

Spare word - left blank 

Today's date DD/MM/YY 

The total storage in the less significant half of word 2 on tape may be left 
blank - in this case Director will insert the maximum value for the particular 
machine on which the program is running ( this MUST be followed In if a Time
Sharing machine is used). 

The word in word 8 is in Q -store format and is used by Director to load the 
C blocks. The counter position is zero if there is only one C block following 
and non-zero otherwise. The Increment position gives the address for the 
first block, so Director knows where to put the block. These addresses are 
relative to EO, so Director will add the appropriate correction for the absolute 
location of EO. 

If the program is read from magnetic tape, the identifier of that tape will be 
inserted In E5 - this enables a program to claim that tape if it Intends to 
read from it without Director assistance. 

The word in E7 is replaced by today's date by Director, for use by any program 
re-4uirlng it. The format is:-

2 decimal characters for the day of the month. 
I separator character. 
2 decimal characters for the month of the year. 
1 separator character. 
2 decimal characters for the year. 

Page 216 



26-3-3 The Program C Blocks. The program proper is contained in one 
or more C blocks, depending on the length of the program. Each C block con
tains an integral number of words of instructions; each C block except the 
last is followed by a filler word of similar format to WORD 8 of the B block. 
The B block tells Director where to put the first C block and each C block 
defines the locations for its successor. The diagram below shows how the 
filler word is removed by the follOwing block. 

First C block 

Second C block 

Third C block 

F 

F 

When Director finds a filler word with zero counter, it knows there is only one 
more block to load, so no filler is needed after the last block. 

26·3'4 Loading of Program Ready for Running. When Director is ready 
for a new program (i. e. , when first read in, or when any program finishes) , 
a read is called from paper tape. Director will read (to End Message) at least 
2 words (with maximum of 8 words) and expect the first two words read in to be 
in the format of the first two words of the A block of a program. This defines 
the program to be obeyed next - the third character of the first word (PM or D) 
defines whether it is on paper tape, magnetic tape or the drum. If it is on 
magnetic tape, Director will search the program tape (asking which it is if 
it is not already defined) to find a program having precisely the same two 
words in the A block as those read from paper tape. 

When the program is located, reading can commence, as the next block - be it 
on paper, magnetic tape or drum - is the B block for the program, followed 
by the C blocks. After loading the last C block, Director jumps to the first 
syllable of EO. The jump instruction placed here by Compiler will then go 
to the first instruction of the program, which is after the constants for the 
program. This double jump is necessary since Director has no means of 
telling how many constants there are, and therefore cannot find the first instruc
tion without assistance from Compiler. 

26-4 Typewriter Interruptions 
These are provided solely for use by the operator to control the machine. A 
detailed account for each appear in KDF 9 Instructions to Operators, but the 
brief details are given below. When the operator presses the button labelled 
INTERRUPT on the console typewriter, Director will type out a message (using 
TWEQq:) which begins; 

Page 217 



Case Normal 
Carriage Return Line feed 
Tab. 
INT; 

This tells the operator that the interrupt has started, but the semio.colon wUl 
change the instruction to a READ from this point onwards. The operator then 
types an alphabetical letter to define the particular request, followed by any 
additional information required, finishing up with full stop, and message (octal 
37, 75). A few of the various actions available, listed under the appropriate 
alphabetical letters, are:-

A. End Program 

B. Read 8 octal digits to least Significant half of EO. These will be punched 
in the character code as S six-bit characters, compressed by Director into 24 
binary digits. This word can be used to control the action of the program 
subsequently. 

E. Define Program Tape. Used to tell Director which tape to use when loading 
programs. 

F. Dummy - in case INTERRUPT pressed in error 

G. Check states of input/output devices. Gives the operator a list of the current 
states of all input/output devices including tape identifiers. 

H. Used by the operator to obtain list of all magnetic tapes required by Director, 
either for an outstanding OUT 4 request or for Director use. 

I. Restart. Enables the program to be restarted by obeying one or other of 
the jump instructions in E4. TI NT EO causes a jump to E4 upper half; TINT 11 
causes a jump to E410wer half. 

J. For control of Director pseudo-off line activities, used mainly in connection 
with OUT 8. 

L. Used to change the type number of particular device. 

M. Used to obtain a "Post Mortem" punch-out of certain main store words. 

26'5 
For more detailed information concerning Director the reader is referred to 
Section 10 of the Service Routine Library Manual. 

Page2lS 



26- 6 Typewriter Log 

26- 6·1 Non Time SharlDg_ The on-llDe console typewriter Is used by the 
Director program 

(i) to inform the operator to perform certain actions, e.g., load a particular 
magnetic tape, 

(Ii) to request the operator to perform certain actions, e.g., load a particular 
magnetic tape, 

(Ui) to ask the operator certalD questions e.g., what to do If an object program 
faUs. 

The complete 11st of messages which the Director can cause .to be typed Is 
listed in Section 10 of the Service RoutlJi.e Library Manual: a few typical examples 
are lieted here in the form of part of a normal log sheet. 

N10 22/10 1604 

N 10 M KES000602UP1 

02A01-

FAILS 72 

LINK-10010e 

SJNS- CLEARED 

N1- 000000000000037 

REACT;A'-

KES000602UP1 ENDS7 

N 10 RAN/EL/000M20S/001M24S 

N10 22/10 1606 

These are: 

(I) The date followed by time. 

(11) Identifier of program belDg run. 

(Ui) Device number 01 (type number 02) has been allocated to program. 

(tv) The program falls, code of failure being 72. 

Page 219 



(v) Program failed at word 106(8) syllable 1. 

(vi) 8JNS was empty. 

(vii) The contents of N1 were as shown. 

(viii) Because of failure, Director program types REACT; to which operator 
replies A. - indicating that program is to be terminated. 

(be) Program identifier followed by reason for ending. 

(x) Run and elapse times for the program signifying time program in control 
and normal clock time rcspectively. 

26·0·2 Time Sharing. On a time sharing machine the log is similar but 
with main difference that the log paper is wider and has five columns. 

Column 1 is for messages, etc. from Director and the other four columns are 
used one for each level of program being run. 

For further details of Director the reader is referred to Section 10. of the 
Service Routine Library Manual. 

Page 220 



17- TIIB VIP CODB COIIPJLIR 

17·1 The U ... Code BudblI8beet 
All User Code procrams except those to b8 processed by POST,will· start with a 
headiDg sheet which conta~s iDformation . necessary for COmpUer. Some of thi8 
iDformation i8 maildatory. but 80me i8 included oniy if required by the particular 

.. program involved. The two classes are therefore li8ted separately below. 

For the purpo8e of the8e lists 8everal abbre?iatioD8 are ueed:-

. (a) CR-LF to mean Carriage Return and Line Feed (the octal character 02». 

(b) <linSigned integer> to mean any positive whole nuinber expressed in decimal 
(8pacesbefore or between digits to be ignored). 

(0) dette1'> to mean any alphabetic letter excluding lor O. 

17·1·1 Mandatory llema CIa BudIDI8beet 
Case Normal and CR-LF desirable for playback: ignored by Com

pUer. 

PorM 

ca-LF 

Twelve. character identifier 

CR-LF 

Up to 46 printable or non-printable 
character. for title 

End. Message to·terlJ1inate headings 

ST <unsigned integer> 

TL <WlSigned integer> 

the first printable character on the tape. 

all characters up to this are ignored. 

any non -printabies before .the first are 
ig!lored. After the first, the succeeding 
11 are taken. . 

any 1'ed!mdant characters before thi8are 
ignored. 

these are reproduced unchanged but end 
message replaced by space if found. 

last character· of block ·made into End 
Message, whatever the length of the title. 

number of wOl"d of storage required. 
. (Includes instr\1Ction and data space). 

time limit for machine code program, 
given in seconds • 

. Insert here any options required in the order llsted below. 

PROG; PROa; orP~RAM; or PROGRAMME; 
are alternatives ill this.position. 

Page 221 



27·1· 2 OptlonRl Items on Heading Sheets 
START < unsigned integer:> ; program origin relocated at this address 

in place of zero. 

YO=E < unsigned intcgel'> ; 

v < unsigned integer:> ; 

W < unsigned integer:> ; 

Y < letter,. <unsigned Integer:> ; 

REST ART; <:restart sequences> ; 

the address flf YO is to be that stated 
(rounded lip to multiple of 32). 

space to be left for constants up to this 
limit. 
(N.B.) V3; implies space for FOUR con
stants numhered 0,1,2,3). 

space to be left for W stores up to this 
limit (sec note on V stores). 

the letter defines the sub-class of data 
storage: the unsigned integer defines the 
upper limit of the sub-class. This Item is 
repeated for all sub-classes required, and 
the order for such repetitions is immaterial. 

the restart sequences CM be any valid User 
Code instructions up to maximum of 6 syll
ables. These will be stored In E4 of B-block 

Example of ileadlDg Sheet PrlDt-out (Note: CR-LF implied by new line 
starting). 

P 

KE123456/123 

SAMPLE HEADING SHEET 

ST3456; 

TL180; 

START256; 

YO=E1536 

V15; 

W2; 

YZ14; 

YA29; 

RESTART; J5; J23; 

PROGRAM; 

Page 222 



2'1'1'3 Below Is shown a reduced-size reproduction eI. a HeadIDlSheet. 
Such a sheet should be completed and submitted for puilchlDg with the useroocle 
body when the normal paper tape compiler Is to be used. 

HeADING SHEIT ItDl' , USER CODE PIIOGIAM 

ELDOWRlTIIR INlTRUC'nONS 

I. Dep .... cu. 80l'1li&1 keJ foU_ed bJ CRLF -J. 

I. "..,. pullCh OIIIJ Iho .. cheracler. conta1ud wllhla _. 
bel_ lhe .arpa ·Uu, below. 

I. EDd _ ~ w_. Iut box I. jDlned 10 the R. H. _r~. 
U.wUhCRLP. 

4. Por .. puoeh end m •••••• f for ~ punch 8pace. 

•• Punch .pa •• for 'IIJ box len bl ..... 

h 
P • Source prolram on paper tape. 
.. • Source prolram. on ma,Mtic tape . 

I I Pro .... m Ide.llfl.aU. 

I I I I I I I I I I I I III I II I I 'nile 

Tiu.IIIIIIIIIIITl I I I .. I 

ToIo18to ..... Time Umil 

'1,1 I I I I III~I'ILI I I I lId 

'I~I~I=I~ • I I r r ; I apecll)- Y .to .. doI_. 
vI I I I I I ;1~lwl I I I I I;J apedl)-loto1V ..... eto .... 

ape.11)- YA Ih ...... '" YZ .tora •• requi .... meDIe. 

, " I I' I Tlr~I' .. 1 I I TllllwlYTcT I I I I III 

' .. I I w, • II .. , , I I I 

, . , w , M I II .. , , I I I 

'I-I I I I .. , LI I I III .. ., . I • II 

'I.N I .. , pi Id"h. I II 

·'11 I I I 111~hr.TT1T T111 .. 1,1,T I II 

'Iv I I II ... , V I 111 .. I,lwl II 

'Ia I III~ , , IT TTIT .. T,T_T I III 

11I1.lft"II' ; .. ,I I I ... ,I I I 1111 

P.I 0 Oil " . II ,.. .. 
. Page 228 



27-2 Layout ~ Store .byCompUer 
The various parts of a KDF 9 program will be stored In the following order. 
Any Item preceded by an asterisk'" is optional - if none is asked for. none 
will be allocated. Word locations cannot In general be given - they depend on 
the size of each section. . 

Words EO - E7. 

Page 224 

B block. 
"'Main Program Constants. 
Main Program Instructions. 

'" First Subroutine Constants. 
"'First Subroutine Instructions. 

"'Last Subroutine Constants. 
"'Last Subroutine Instructions. 
Unused space of from 0 to 31 words 
(Increased if YO specified). 

"'W stores 
"'YA stores. 
*YB stores. 

"'YZ stores. 
YOALWAYS stored in a word whIch Is a multiple 
of 32 
Y stores- all remaining space available as Y stores. 



28- OPERATING INSTRUCTIONS 

28- 1 Presentation 
When a programmer has written his program body and headlng sheet and had it 
punched on paper tape his next step is to prepare a llst of instructions to inform 
the operator on certain pOints. 

Each KDF 9 establishment will have its own documentation system for the 
orderly presentation of Operating Instructions, and programmers should 
famtliarlze themselves with whatever system is being followed at their 
particular Inst lllation. 

A typical example of the way data should be submitted for processing on 
KDF 9 is described In the paragraphs which follow. The format described 
is that in use at the Kldsgrove Bureau of English Electric Computers Ltd. 

28·2 Format 
Operatlng instructions should be presented in the format shown overleaf. 
Sequentially numbered Continuation Sheets quoting the Job Number and 
Identifier should be used as necessary. 

Page 225 



KDY 9 PROGRAM TESTING INSTRUCTIONS I Pye I 1 loti I 
Job No ................................. Date ..................................... 
Identlfltlr ........................••.•. , . Programmer .........•.•.•.•......•...... 

Eat. £1. time .......•...••...••....••... Phone extenilion ... '.' . , .....••....•....•.. 

I Aeourate atorage, no. or worda I 1 OUTS ? Yea No 

Stream number 
Magnetlo tape unltll. model 1081 Device type 

MBI!~netic taoe unite, ampex Tape edit only? Yell No 

Maximum no. of tape unltll required Printer output to magnetlo 
Yes No at one time taJIII? 

Printer. on-line. 120 ehars/llne Readera, Daper tape 1 2 

PrInter. on-line. 160 ehara/llne Punehell. Daoar tape IS-holel 1 \I 

Readera. oard Punohee. D80ar taoa la-bolel 1 II 

Ullereode T WKAlgol r Alphaoode Matrix I Fortran I Poet no •• 

Step 
No. 

ElIpI!otec:l :rtlonil and 
monitor I leatlon Operator aoUona 

SerIal no. field 00111 •• 
Cootlnued on _lit aheet Yea/No (puncb oarda only) 

Failure &OtIOD 

REACT STORES PRINT WOES LIV, PM, 

Operator comment. 

'SIgnature. , , , " , , .. , , • , . , .. , • , 

Page 226. 



KDF 9 PROGRAM TESTING INSTRUCTIONS 
(CONTINUED) 

Step 
No. 

Expected actions and 
nlonitor indication 

jpage 

Operator actions 

Continued over Yes/No 

Page 227 



28'3 Magnetic Tape 
If magnetic tape is required the following schedule must also be completed: 

J 
i .. 

~ j 
~ ~ S 

It 1Wi d .. 

i. Q ~ 

!If 
Hi: 

·i 
.~ 

I 
j 

1 
.I • 

!I 

II 
j~ 
I': .. ! 

II • 0 .. ::l .. • .. • .. .. .. • .. • to ... ... ... ... ... ... ... 

Page 228 



28· 4 Operating InStruCtiODS 

1. Operator actions should be numbered and written on separate lines. 

2. Where several operating sheets are used, they should be stapled together 
as well as being numbered. This avoids the possibility of instructions being 
obeyed out of sequence. 

3. Tape schedules are best left separate from operating sheets, (i. e., not 
stapled) for Tape Library use. 

4. Where a previous "WRITE IDENTIFIERS' (See section 29) is required, 
this should be filled in as the first sheet of the operating instructions. 

6. Subsidiary programs such as 'TAPE EDIT' (See section 29) should also 
have their instructions on a separate sheet. 

6. The Application number on Tape Schedules should be filled in correctly, 
as it is this number and not always the Job Number of the run being processed 
that the tapes are filed under. 

28.6 Restarts (TINT 10, TINT 11, and REACT B) 
1. An odd or even restart, (TINT 11 or TINT 10 respectively - see Section 
26'4) is useful for failure routines such as 'STORES PRINT', or for private 
failure routines. OUT 1 can be used to advantage here, because with the 
time-sharing director, programs such as 'STORES PRINT' cannot always be 
performed successfully. 

2. Ll, L83, and L64 are useful diagnostic routines, and are available on the 
Ninemaster tape. (See section 29). 

3. If the program fails, provision should be made to relabel back to zero any 
zero tapes used by the program, by means of il restart. 

28·6 Use of Work Tapes 
1. Zero worktapes should be relabelled with a unique identifier when used by 
a program. This avoids the possibility of the wrong tape being used for the 
second section of a program. 

2. Tapes which have been relabelled in this manner should be zero on dealloca
tion. 

3. Time is charged for manually rewriting zero tapes which have been over
written, and not relabelled to zero or deallocation. 

4. If a tape for OUT 8 output is required, this should be entered and started 
as such in the Worktape requirements section. 

Page 229 



28· ., Flexowrtter 
1. The on-line flexowriter should be used at a minimum, and then In OUTS 
Stream 0 (So that the printout will appear in the corrcct column on the monitor 
log during time-sharing). 

2. The flexowrlter should not he used to any largc extent as an edge-punched 
card reading device. The paper tape reader is designed much better for paper 
tape input, and Is 100 times ns fast. 

28· 8 Use of OUT5 nnd OUTS 
1. Time-sharing operates much more efficiently with programs which deall
ocate their peripherals as soon ns they are finished with. These devices be
come free for use by other progrnms. 

2. Peripherals should be claimed when and where needed. This helps espec
ially with programs which use several magnetic tapes, and which take a cer
tain amount of time to load. 

3. The generally- uscd practice (If claiming all devices at the beginning of the 
program and deallocating them all at the end limits time-sharing considerably. 

4. If programa· did follow the rccommended procedure. thc possibility of using 
more levels of time-sharing shows itself, and this makcs for a better turn-over 
of work. 

28·9 Paper Tape 
1. Paper tape reels should be numbered or lettered in sequenc. 

2. Where there are two or more runs in the same box with their own sets of 
paper tapes, these paper tapes should be clearly differentiated. It does some
times happen that there are two tapes labelled the same, or so similar that it 
can cause errors. 

3. Particular attention should be given to splices. Splices which cause a jam 
in the reader are a regular occurrence and account for considerable wasted 
time. 

4. Call tapes (I.e., the first 16 characters of an A block followed by-i when 
provided should have a definite amendment number and store module size. Time 
can be wasted searching for non-existent programs on magnetic tape. 

28·10 OUTS 
1. The 'END DATA' character should not be output to the OUTS tape. This 
character is written by a TINT J.- when the OUTS tape is deallocated and it 
is the terminating character on the tape. Off-line operators only print as far 
as an ED. 

2. Direct Printer Output (I. e., not via OUT S) should commence with a Page 
Change and Title. 

Page 230 



3. A Heading (followed by Page change if printout is required separate) is 
very useful to Off-Line Services. 

28·11 Time Sharing and Store Limits 
1. Storage requirements should be kept to a minimum whilst program testing 
so that programs can be time-shared. 

2. Any program, which uses more than 16000 words of store cannot be effic
Iently time sh ired, and because time-sharing is used continually in the Bureau, 
this may mear. that these programs have to wait until they can be fitted in. 

3. A Time-s;'laring mlc reverts to a NON-Time-8harlng mlc when programs 
using 24,000 words of store are rull. 

4. In general, the storage requirements of programs using up to 14,000 words 
are most suitably fulfilled. 

6. The more extensive use of magnetic tape as a data working medium should be 
explored as an alternative to using the bulk of the core store. 

6. The limiting factor on a mlc with 8 tape stations and 32K of store is not by 
any ineans the number of tap g,ations. 

7. Generally the programs which use 24,000 words of store or more are 
those which do not make full use of magnetic t'apes. 

8. A Precise statement of storage (i.e., not to nearest 100 words etc.) could 
mean difference between the job being run early or not. 

26'12 Time Limits on Programs 
1. An E sUmated Elapsed time statement is especially important to an operator, 
in order that jobs can be arranged for time-sharing. Any prev.ous run of the 
program should give an idea for an estimate. 

2. F'or the case where the program goes into a loop etc., and the time limit 
within the program does not cause the run to terminate itself, a statement of 
the number of minutes after which the program must be terminated (manually) 
Is of particular use to an operator. 

3. During program testing, realistic time limits are advisable. An undetect
able loop or reams of incorrect output could be avoided by a good time limit. 

Page 231 





29- SOFTWARE 

29-1 Ninemaster 
The magnetic tapes containing standard programs and subroutines which are of 
general use are called the NINEMASTER Library Tapes, and are made avail
able to all KDF 9 users. 

At present there are two tapes to the series, one containing the routines in 
machine code and the other in normal programming text (viz., Usercode, 
Algol or Fortran). 

The 4 volumes of the Service Routine Library Manual cover the details of Nine
master, listing its contents in Section 4. Section 3 is a cross reference indi
cating where the specification of each routine can be found. 

29- 2 Normal Usage 
It is normal practise for the Ninemaster tapes to be kept as Master tapes and for 
each department to have its own Library ape which will contain copies of rou
tines from Ninemaster which are likely to be of use. 

The "library extraction" system used in "POST" (section 30) Is ideal for incor
porating routines from a Library tape into a program. 

29- 3 Service Routine Llbra~ Manual 
The reader is recommended to read the manual in the following order: 

(a) The titles of all routines listed in Section 3. 

(b) Library subroutine L89 (to be found in Section 16) - merely read through 
this write up, to gain an idea of the content of a subroutine specification. 

(c) Section 1- 2· 2 which shows the format of each specification in the manual. 
(Attention must be paid to the storage requirements e.g., Q stores and W stores 
used by each routine, and the main program must be written to take account of 
these.) 

(d) A detailed reading of the routines likely to be of use to the student. (I.e., 
commercial or seientific, etc., routines.) 

29-4 Exerolae 
The student is now asked to prepare a flowchart and write the program to the 
following specification. 

It is proposed to compute the solutions to the equations 

l+e cos 6 
R 

_1 __ 

X Rcos 6 

Y R sin 6 

Page 233 



for all values of 

( -1, O<e< l' 0 in 0'1 steps 
( 
( 0·~9 ~90· in 10 steps 

The output is to be on the line-printer allowing a 120 character width of paper 
and of the following format: 

NAME HEADING THETA (DEGREES) 

E 0 10 90 

-4·0 R 
X 
Y 

-3·9 R 
X 
Y 

+4·0 R 
X 
Y 

The output need only specify actual valves which lie between ,UO. Routines 
in the following list should be used LI0, L59, Lll. 

N. B. LI000 is NOT on Ninemaster. A solution to this exercise is not given 
at the end of this manual. 

Page 234 



30· AN INTRODUCTION TO POST 

30·1 Pr1Dolple 
The purpose of the POST system i8 to provide a means for assembling comp
iling and amending batches of programs on magnetic tape. The system requires, 
at minimum. three magnetic tape units to hold 

(a) the old text tape - that currently containing source programs. 

(b) the new text tape - which received updated source programs from the old 
text tape. 

(c) the binary tape - which receives the compiled binary programs of the new 
text tape. 

The procedure is to supply. on paper tape, a number of programs anll/or 
corrections and certain Directives specifying. among other things. the action 
to be taken by the machine. The machine then enters an Assembly Phase when 
new programs (from paper tape). old programs (from old text tape) and amend
ed old programs (from old text tape - corrected as per paper tape) are written 
onto the new text tape. Next comes the Translation Phase when specified pro
grams on the new text tape are compiled and written onto the binary tape. This 
tape is now ready for the programs to be called down for running. 

30·2 Postmas.ter Directives 
Control of POST is by means of Directives contained on the input paper tape. 

The format of .these Directives is as follows;-

(a) ASSEMBLE ;FROM <ident> ; 
ONTQ<ident> EX <ident>; 
P;L;8;5; -
followed by "Assembly Phase Messagt's". (see section 30· 3) 

(b) TRANSLATE ;FROM <ident >; 
ONTO <ident >EX <ident >; 
Md; 
P;L;8;5;-
followed by "Translate Phase Messages". (see section 30· 5) 

(c) END POST-

Notes: 

Block .(a) is mandatory whenever correction or establishment is required. 

Block (b) is mandatory whenever campilation is required. 

Blocks (a) and (b) when used, must be followed by appropriate Phase Messages. 

Page 235 



Blocks (a) and (b) may be repeated as often as required and appear in any order. 

Block (c) the directive to terminate the run and deallocate all peripherals Is 
mandatory. 

P;L;8;5; - indicates that an off-line Printer 
an on-line Printer 
an 8-hole Punch 
a 5-hole Punch 

will be required (not all four are mandatory, but at least one must be quoted, 
those required are to be placed in order preference. 

FROM < ident > ; 

ONTOddent> 

EX<ident>; 

<ident> 

Md; 

specifies the label of the magnetic tape to be input for 
the run (old text tape). 

specifies the label to be written to the output tape. (new 
text tape for assembly phase, binary tape for translate 
phase). 

an optional - specifies the present label of the tape to be 
used for output. If this parameter is omitted a work tape 
is used. 

is any 8 or 16 character tape label as in Section 22' 2 of 
the Service Routine Library Manual. 

indicates number of magnetic tape units available to the 
system. "d" must be 3,4 or 5. This count does not 
include the off-line printer tape. If off-line printing is 
requested, the label +POSTOFF is written to a zero work 
tape which is used for this purpose. 

30.8 Assembly Phase Messages 
(8) = ESTABLISH program identifier; 

program title; 

ofp 5,8, L; -
followed by a source program 

Notes: = ESTABLISH indicates that the following source program is to be established 
on magnetic tape from paper tape. 

ofp 5,8, L- indicates 5-hole. 8-hole punch and line printer. These should 
appear in order of preference. At least one device must be specified. 

= indicates end of source program. (- and underline must be in case normal) 

Page 236 



(b) = CORRECT program identifier; 
RENAME new identifier; 

new title; 
olp 5,8,L;-
followed by "Correction texts", (see section 30· 4). 

NOte8: 
- CORRECT indicates that the sOLlrceprogram on the exi8ting tape i8 to be 
corrected, 
RENAME is optional, indicating the new identifier and title to be given to the 
amended program. 

Whenever a program is amended by a "CORRECTION" the POST 8Y8tem aLlto
matically Llpdates the amendment nLlmber of the program's identifier. The 
8th and 9th characters of the 12 character program identifier are the amendment 
nLlmber which ShOLlld be 00 when the program is originally established. 

(c) :: DELETE program identifier -
An optional - indicates that the program is NOT to be copied to the new text 
tape. 

(If) :: TRANSFER program identifier-
An optional - indicates that the program is to be copied. 

(e) = COPY REST -
CaLlses all Llnprocessed programs, other than those transferred, to be copied to 
the new text tape. 

(f) = COpy NONE -
caLlses no unprocessed programs, other than those transferred, to be copied 
to the new text tape. 

Note Blocks (a) to (d) are optional and may appear in any order. Either block 
(e) or (f) mLlst be the last of the Assembly Phase Messages. 

ao· 4 CorrectiOll Texts 
Corrections of SOLlrce programs. to be applied Llnder the Control of Assembly 
Phase Messages (section 30· 3) mLlst conform to the following rLlles. They mLlst 
be given in the order in whch they will be processed assLlming a single scan throLlgh 
the source text. starting at the first line and must be in one of the forms given 
below. 

30·4·1 Copying FaciUties 
AFTER n LlNE(S) copies the next n (decimal digits) lines of text. 

AFTER LINE - copies LlP to, and inclLlding, the next line which starts 
with the indicated characters. 

Page 237 



30· 4· 2 Deletion Facilities 
DELETE N LINE(S) - deletes the next n lines of text. 

DELETE TO AFTER LINE character-

DELETE TO BEFORE LINE character-

30·4·3 Insertion Facilltlel 
INSERT text -

Other Factltttel 
CHECK character -

CONNECT -

DISCONNECT -

copies the given text, which may be of any length, 
layout being preserved. The final-· is not preserved. 

causes the next line to be examined to see whether it 
begins as indicated. If the check is not satisfied, the 
item fails. 

cause the following lines of text to be printed on the 
device selected from the Correct ofp list (section 
30·3 (b),), UNTIL:-

causes the previous CONNECT- instruction to be 
cancelled. If this option is not included then, at 
the end of corrections for this particular program, 
the device will be automatically deallocated. 

3 ·4· 5 Library Extraction The student should now read Appendix 6 of 
Section 7· 3 of the Service Routine Library Manual. 

It will ne noticed that library .. " .; can be included anywhere in the program. 
If It occurs other than just before FINISH;-the format should be 

;A;B;Jr; library .... ;PO;r;C; 

The reason for this is that the actual text of the library subroutines will be sub
stituted for libr~ .... ; in which case, were the jump instruction not included 
the Instruction to be obeyed after instruction B; would be the first in the library 
subroutine. But entry to the subroutine must be by JSL., .. ; Using the for
mat above ensures that after B; control jumps to r; of the main program '(PO) 
and so obeys instruction C; next. This complication does not occur If library 
is placed just before FINISH; -and it is advised that It should always In general 
be In that position. 

Also pay particular attention that DELETE ~ .. ;-Is NOT a valid correc
tion message. The method to use when requiring to alter the library callis 
clearly explained in the specification. 

30· 5 Translation Phase Messages 
(a) PROGRAM program identifier; 
or 

SEGMENT program Identifier; 
Indicates the program or segment to be compiled. 

Page 238 



(II) Compiler; This must be either USERCODE; 
or KIDS GROVE ; 
or WHETSTONE; 
or FORTRAN; 

(ill) With Tables; Indicates that reference tables are to be output to the first 
available device specified in (vi) below. There are other 
items which may be used, a full list of which is given in 
the SRLM. 

(iv) STdddd; This option indicates the store limit dddd to be assigned to 
the compiled program. If omitted the store limit of the 
translator is assigned. 

(v) TLeeee; This option indicates the time limit eeee (seconds) to be 
assigned: if omitted a limit of 120 seconds is set. 

(vi) o/p5, 8, L;- (details as in Section 30 0 3(i». 

(vii) END TRANS LA TION-

blocks (i), (ii), (vi), (vii) are mandatory. 

Page 239 



30- 6 Example of a POST l'UIl 

M 
KAB00050lUP3 
ASSEMBLE jFROM <POSTOUl2 >j 
ONTO <POSTOUl3> EX< POSTOUl3> ; 
L;8;-
-CORRECT KEZGL0403UPl; 
o/p L. 8j 
-CONNECT 
-INCLUDE LffiRARY 
-AFTER LINE Vll= 
-DELETE 1 LINE 
-INSERT Vl2 = PL7DClj 

:=ESTABLISH KESAOOlOOUPl; 
SAMPLE; 
o/p L. 8; 
V23; 
PROGRAM; 

UbraryL59 
!INISH; 

VO = B30; 
Vl = etc •• 

•• ••• _ .•. ;J9; 

~ELETE KEF.ABOOl9UPl 
::copy REST 
TRANSLATE ;FROM<POSTOUl3>; 
ONTO <POSTOUll> EX<POSTOUll>; 
M4; 
L;8j-
PROGRAM KEZGL0403UPl; 
USERCODE; 
WITH TABLES; 
ST l024;TL3; 
O/PL.8-
PROGRAM KEDATAA04AP2; 
K1DSGROVE; 
O/PL-
END TRANSLATION -
END POST-

Page 240 



APPENDIX 1 ANSWERS 

Chapter 2 
1- (a) 157(10) 

(b) 29- 5(10) 

(e) 157 (8) 

(~ 35· 4(S) 

(e) 101(2) 

(f) 1101- 01 (2) 

2- (a) 45(10) 

(b) S)~ 
8)~ 

Or5 

Ans. 55(8) 

(b) 2)~ 
2)~ 1 
2)...!!...!:.... 0 
2)2.!..,. 1 
2)~ 1 
2)-.!..!:.... 0 

Or 1 

(lX10~+(5X101)+(7X100) 

(2X101)+(9X10~+(5X10-1) 

(lXS'+(5XS1)+(7XS~ 

(3XS1)+(5XSO)+(4XS-1) 

(lX22) +(OX21)+(lX2~ 

= (lX23)+(lX22)+(OX21)+(lX20)+(OX2-1)+(lX2-; 

Ans. 101101(2) 

N . B. The answer in binary could have been written down directly from the 
octal representation: 

55(S) 101 101(2) = 101 101(2) 

(a) 16· 5(10) 

(b) S)~ 
BL!LO 

Or2 

Ans. 20'4(8) 

·5 
S 

4·0 

(b) Taking answer directly from 20· 4(8) 

we have 010 000 . 100 = 10000'1(2) 

Page 241 



4. 

6· 

6· 

(a) 634· 23 (8) 110011 100 • 010011(2) = 110011100'010011(2) 

(b) 2.1(8) 010 • 001 = 10· 001 (2) 

(0) 100· 001(8) 001 000 000 • 000 000 001(2) = 1000000'000000001(2) 

(a) 101 101'101(2) 101 101 • 101(2) = 55· 5 (8) 

(b) 1101'1101(2) 001 101 • 110 100(2) = 15- 64(8) 

(0) 1·1 (2) 

(II) 276(8) 

167(8) 

3§l 
517 
21 

(b) 12· 43 
762·4 

0·13 
775,16(8) 

001 • 100(2) = 1· 4(8) 

6+7+2(10) = 15(10) 17(8) put down 7 carry 1. 

7+6+3+1(10) = 17(10) 21(8) put down 1 carry 2. 

2+1+2(10) = 5(10) 5(8) put down 5 carry O. 

Answer 517(8) 

7-7 = 0 (0) 36· 27(8) 

15· 37(8) 

20' 70(8) 

2-3 will not go; borrow 1 (which when brought over = 8) 

8+2-3 (10) = 7 

(d) 521· 63 (8) 

43·67 

455· 74 8) 
-( 

pay back the 1 
6- (5+1) = 0 

(II) 10000·1000 (2) 

(b) 1010101111010'00011(2) 

(c) 101010'1101001(2) 

(d) 110.1(2) 

Chapter 3 
l' (a) 41 42 43 44 23 2434 75 

Page 242 



(0) .3263326432573260 

2· (8) £1 .... 9s 

(b) AD 
ab 

(0) NO ~-.... 

S' Of the 95 bits, DO-D94, DO is the sign digit. To hold an integer the bin-
ary point is placed after D94. We can use D1-D94 to hold the integer, i.e., 
94 bits. 

With 94 bits all holding l' s we have the largest losiuve Integer possible. 
1 added to this makes 1 followed by 94 O's = 29 . 
Answer 294 _1. 

4' (a) 11 integral places implies that the programmer imagines the binary 
point to be after D11. The binary pattern for +16 is 10000. 

Hence the the 12 bit word contains !!.,..Q.9 !!!t9 Q!.9 ~ 
Written in octal this is 0 0 2 0 

(b) Using the equation x=(-s+f)X2P and substituting the known quantities 
we have 

-16 = (-1+f)X24. 

But 24 = 16, hence f = O. 

So that the 12 bit word contains 100000000000 

i. e., 4000 in octal. 

(0) -0·575 = (-1+f)X20 = -l+f 
(10) 

Therefore f = +0'425(10) 

Convert this octal ,425 
a 

3·400 
a 

a 
1'6 
~ 

f,a 
~ 

!'4 
(Since it is only a 12 bit word, and each octal digit uses Up 3 of these bits. we 
really only need to calculate to 4 octal digits. However it 1s better togo to 5 

Page 243 



for purposes of rounding up if necessary). 

Therefore· 425 (10) • 33146(8) 

·011 011 001 100 110(2) 

s=l; so the contents are 1 01 101 100 110, (no rounding necessary). 

Answer: 5546 

(d) 31' 5 = (-0+f)x25 

= fx 32 

therefore f ~ 31,5/:.12 = 0'984375(10) 

Convert to octal:- O' 984375 
8 

7·875000 
8 

7 000 

31· 5/32(10) = • 77(8) = '111111(2) 

s = 0, so the contents are 0 11 III 100000 

Answer: 3740 

(e) -0'09375 = (-1+f) x 2-3 = (-1+f)/8 

Therefore f = +0·25 = • 01 
(10) (2) 

s = I, 80 the contents are 101 000000000 

Answer: 5000 

(f) As this is required as an Integer we require the point to be after 
D11 (In a 12 bit word). 

1865 (10) convertf'ct:-

= 3511(8) 

= 011101001001' (2) 

8/ 1865 
8/ 233 r 1 
8/ 29· r 1 
8/ 3 r 5 

o r 3 

Hence contents are 3511 

(g) For maximum precision -0' 0001(10) $; 2P 

therefore p has to be -13 

Page 244 



N.B. 2-13 = ·000122 .... '(10) 

2-14 = ·000061. .... (10) 

-0.0001 = (-1+f) x 2-13 
(10) 

f ., 1-(. 0001X213) ( 213 8192. J 

" 0·1808 
(10) 

Convert to ocotal = • 13444(8) 

= • 001 011 100 100 100(2) 

=f 

s = I, so word contains 1 00 101 110010 
Which in octal is 4562 

5. (Il) 16<25 Therefore p=5 {N .B. 16 is not 1e •• than 2~ 

+16 = (_0+!)X25 

Pattern is 01000010110000 .........• 

(b) I -161 ~ 24 Therefore p=4 

-16 = (-1+0)X24 

Pattern is 1100001000000 •....... 

(0) -0'575~ 20 Therefore p = 0 

From question 4c we see that f = • 01101100i100110 .•...••• 

So that the standard floating point pattern is 
1 10000000011011001100110 ....... . 

(d) 31' lie: 25 Therefore p=5 
From question 4d, f=·l11111 

Answer is 0 10000101 1111110000 •....•.. 

(e) It is explained in the text that floating point zero is always set the 
ume as fixed point zero. 

Answer is 48 O's 

(f) -0. 09375< 2-3 Therefore p=-3 

From question 4e, f=· 01 

Answer is 1 01111101 0100000 ••••.... 

Page 245 



Chapter 6, 
1- Set 1 o 

(a) YO ES12 
YI9 ES31 

(b) EO 1024 1024 = EO 
YO ES12 IS36 

(0) ESI2= YO 
ESI7= YS 

(~ YO ES12 ES12 = YO 
Y32 ES44 

(e) YO IS36 
Y32 IS68 

(f) YAS 1236 
YAO = 1231 

1024 Et 
1231 E207 
YAO Is' E207 (or 1231). 

2- This first V store declaration of any program, VO, Is ALWAYS placed 
In E8. 

8' E12 Is the same as V4 
V4; =EI2; Is the same as V4;=V4; 

1. e., the effect Is to fetch a copy of the contents of V 4 into the top cell of the 
nesting store and then overwrite what Is In V 4 with what Is In the top cell of the 
nesting store - resultant effect Is Nil. 

,. 31, because if the gap were greater than or equal to 32 the data area would 
be pushed up as far as possible a multiple of 32 words. 

IS· No, because 1183 Is not a multiple of 32 and EO Is always placed at the 
beginning of a line. 

1- Set 2 
EO 2048 

ES44 = 2S92 = YO 
Y3S = 2627 

main store word address 2627 Is also Y3S. 

128(10) =' 200(8) 

Page 246 

8~ 
8L...!!!..!: 0 
8--!.!:, 0 

Or2 



Since the number Is held to 47 Integral places. the point comes after 047. 
Hence the contents of the word. expressed In octal Is 0000 00 00 00 00 02 00. 

2' For Standard floating point the value of p has to be the algebraic minimum 
To find this. for positive numbers. we use 128<2P• 

Try p = 7 27 = 128. 

Is 128<27• answer No. 
8 

So Increase p by 1. 2 = 256 
8 

Is 128< 2 • answer Yes. 

Hence p must be 8. 

We now need to find s and f from the equatlon:-
8 

128 = (-s+f)X2 

s is 0 because the original number. 128. is positive. 

128 = fx256 

128 = f 
256 

Hence s = 0; f = '1000(2); P = 8(10) = 1000(2) 

So. in standard floating point, 128 is 

00 D1 02 03 04 05 06 07 08 09 

f=0'5(10) 

= 0'1(2) 

010 ...... 

10 
, 

1 
I 

0 0 0 1 0 0 0 I 1 0 0 0 ...... : . 
2 1 0 4 

An.swer: 2104000000000000 

(N. B. The full 48 bits (16 octal digits) must be shown). 

Chapter '1 
l' Set 1 

0 ...... 

During the compilatiott of the Usercode program into machine code the dec
laration V7 = 4; is converted into the integer 4. as a binary number held to 
47 integral places which is placed into the position reserved for V7 (I. e .• EI5). 
This is not an "instruction" and so will not be obeyed at run time. The way 
to obtain the constant during run time is by the instruction V7; which fetches 
the contents of V7 into the nesting store. 

When the Instruction SET4; is encountered during compilation a 3 syllable 
(24 bit) machine codt equivalent is generated - the first 8 bits are the machine 
code equivalent of SET and the latter 16 bits will hold the integer 4. This is 
an instruction which. when obeyed during run time. causes a copy of the last 

Page 241 



16 bits of itself to be entered into the least significanl16 bits of thetop.eell 
of the nesting store. 

2- (a) VO 2'3 +5/18' 10 • 

(b) VlD 17 20' 01' 27 20/94' 10' -10 . 

(c) V3D F:l2-2; 

3- va D070Ull; 

4' (a) V7 AW3; 

(b) V 1:1 AV16; 

(c) V9 AR12; 

(d) VIO AYAOL; 

(e) 129 as a binary integer held to 47 integral places. 

5- (a) Valid 

(b) Not Valid; 32768>32767. 

(c) Not Valid 1.024 should be 1024 

(d) Valid provided the equivalent E address of Y(-92) is not negative - this 
ml':ms that all absolute addresses must be positive. 

(e) Valid 

(f) Not Valid.; a reference specifies a "point" and so cannot have an Upper 
or Lower half. 

6' (a) Not Valid; 8 is not un octal digit. 

(b) Valid 

(0) Not Valid; 17- 5 calUiot beheld in 4 binary integral places. 

(d) Valid 

(e) N.ot Valid. A half length word only has 24 bits so tl)at. at mos't, only 
1:1 octal digits can follow the B. 

(I) Valid; there is no reason why the lower half of V2 (i.e .• the lower 
half of EIO) should not contain the integer 21 (21 is the half length address of 
EI0L). 

Page 248 



7- (a) Valid 

(b) VaUd 

(0) Not Valid; the •• representing a space, does not require 1 ! around it. 

(d) Not Valid; should be V1S/16= •.••.• 

(e) Valid. 

(I) Valid 

(g) KDF 9 PROG. EX. 

8- (a) Valid 

(b) Valid; equivalent to SET - 163; 

(c) Valid 

(d) Valid 

(e) SET Bt/Pi is not valid. 

(f) SETz; is not vaUd. The correct version of this is SET 1700; 

(g) Not Valid; should be SET AY40: 

(b) Valid 

9' V4 = B1/2; 

Sell 
1- For maximum precision p must be algebraic mlnlmum:-

..!.. < 2P ..!.. < 2-3 (i.e.,..!.. <!) P = -3. 
10 10 10 8 

V3D = 0·1/-3: 

J. The binary point is to be considered as being Just to the right of D7 making 
the contents of the word. 

011010110011011000 •••••• 

V5 = B32633/14; 

8- A SET Instruction cumot be of the form SETup; 

3-5(10) = 11-1(2); this, held to 43 Integral pisces gives 00 ••••• 00011100~D47 

Answer: SETB70; or SET56; 

Page 249 



Chapter 8 
l' Set 1 

(a) =Ql;=+Ql:=-tQl: 

(b) 1. DC5;DC5; 

2. SET-2; =+C5: 

3. SET5; =C5; 

(c) 1. SET64;=RC1; 

2. SET3;=Cl;SETAYO;=Il;SETAY64;=Ml; 

3. SET-2:=RIl; 

4. QO;=RC1; 

6. SET74;=RCI ;M+ll; 

2' 1. IMITOQ3: COTOQ3; 

2. Q2TOQ3 ;13 =-2; 

3. Q2TOQ3;DC3:NC3: 

4. Q2TOQ3; NC3;DC3;NC3; 

6. QOTOQ3 ;I2TOQ3;M +13; 

Set 2 
l' YO 

6. 11 TOQ3;C2TOQ3; 

E320. 

AY3 = 323 

AE4U = 8 

Y3 E323. 

The contents of Q5 after the two given instructions will therefore be: 

323/-1/8 

0000000101000011(2)/1111111111111111/0000000000001000 

Expressed in octal this is 0024177777600010 

Answer: V7 = B0024177777600010; 

Page 250 

8~ 
8 L..1Q..r 3 
8 L2..rO 

Or5 



(N. B. It is to be emphasized that in practice a Q Type constant would be used 
as V7 = Q AY3/ -1/ AE4U;) 

(b) The only difference between this and the previous question is that the 
modifier is to contain AE4 (Le., 9) instead of AE4U (1.e., 8). 

Answer V7 = B0024177777600011; 

(0) YO = E320, . •• E322 = Y2 

100(10) = 144(8) 

E322 is therefore to contain 

..... 00001100102 '000000000000000 
D32 

a L!ruL 
a L!!.,.r 4 
a L-Lr 4 

Or 1 

Breaking this down to its 3 groups of 16 bits this becomes 

c 
i 

o 
= 50(10) 

m = 0 

Answer: va = QO/50/0; 

2· (8) 63/9/13 

(b) 63/9/11 

(0) 63/9/523 (Note that the digits after the B are 'octal', and that any 
spaces are ignored) 

(d) 63/9/5 

Ce) 63/9/11 

(I) 63/9/13 

(I) 63/19/3 

(h) 73/9/3 

a· 0/0/0 

4· 0/2/0 (Note that after the instruction =RM5; Q5 wi1l be 0/1/-1, and when 
= +Q5; is obeyed the process is to bring all of Q5 into N1, N1 and N2 are added 
(assuming the bits form a fixed point integer), and then the result is placed back 
into Q5). 

Page 251 



Chapter 9 
Set 1 

l' PERM: 

2' CAB: 

3' REV:DUPD:REV: 

Set 2 
l' VO FI9·6l15: 

VI = Q AY30/16/AYI5: 
VO: =Q5: SETB235:=Q7: 
VI :=Qll:111:=RC9:DC9: 
SET6:=I9:SETI28:=M8: 
CI9TOQ8:CI9TOQIO:Cl1:=MIO:CIO:=+MIO: 

Chapter 10 
Setl 

l' QI: =YO: 

2· MOMI: =MOM2: or EOMI: =EOM2: 

3· (a) SET32: =RCI: 
I: YOMI: =YAOMI:M+I1:DCI:JICINZ: ..... 

(b) SET32: =RCI: 
I: YOM1:=YAOMIQ:JICINZ: ..... 

,. =Ql:JICINZ:11:=RM2:1l=+1: 
2: MOMIQ:=MOM2Q;J2CINZ: ..... 
I: ..... . 

5· SET31:=RCl:SET3:=ll;I15=+1: 
I: YOMl:=MOMI5Q:YIMlQ:=MOMI5Q:JICINZ: ..... 

Seu 
l' Ql:=+Q2:Q2:=E256: 

2' (a) Y35 will contain the integer 707(10) held to 47 integral places. 

(b) No overall effect on Y35. 

(0) Q5 becomes 27/680/680 and a copy of the contents of Y707 will be 
placed in Y35. 

(d) No overall effect on Y35, Q5 becomes 27/680/680 and M4 becomes 27 .. 

Page 252 



(e) no overall effect on Y35, Q5 becomes 27/680/680 and M4 becomes 27. 

(f) Q5 becomes 27/680/680 and M4 becomes 680. 

3' (~ No overall effect on E 7, but M6=7 and M5=7. 

(b) E 7 will contain a copy of the contents of Y7, 
Nl will contain integer 327 and M5=7 and M6=327. 

(0) Y7 will contain a copy of the contents of E14, 
Nl=327, N?=320, M6=14, 

(" Y7 will contain a copy of contents of Y14, 
Nl=7, N2=320, M5=327, M6=7. 

4' Nesting store empty. 
Y2 contains a copy of contents of Yl, and Y3 a copy of Y42. 
Ql=93/0/0, Q2=AY93/9410, Q5 -I/O/-I. 

Chapter 11 
Bet! 

l' SET6;=RCli 
YOMIQ~TR; 

I, DUPD;+D,YOMIQ,STR,+D,JICINZ,=Y6,=Y7, 

a· SET32,=RCl,ZEROiSTRi 
I,YBOMl,STR,YAOMIQ,STR,-D,+D,JICINZ, 
OONT, .....•........ 
2, 

a· DUPD,REV,SIGN,=M5, 

,. DUPD ;AND;NEV ;NEV ; 

6' BITS;NOT;SETl,AND,=Cl, 

e, (~ 20 20 20 23 22 27 26 30 
(lit 00 00 OQ 03 02 07 06 10 
(0) 00 00 00 00 00 10 00 00 

,. VO=B1212121212010212, 
VO;REV,1'OB; 

e· VO=B1717171717171717, 
Vl=B 1212010612010612, 
VO;AND,Vl;REV,1'OB, 

Page 253 



9· VO=BI212121212121212; 
VO;REV;FHB; 
1111111111111111 

10· VO=B 1212121201040102 
Vl=B 2020202020202020; 
VO;REV ;FRB;Vl ;OR; 

Set 2 
1· As for answer to question 10 Set 1 except that Vl=B2020202000200020; 

2· (a) The original integer +1 
(b) The original integer -1 

3· VO=PI2345678; sets the Contents of VO (expressed in octal) as 
2122232425262730 
VO=BOI02030405060710 sets the Contents of VO (expressed in octal) as 
0102030405060710 
So that the first is the character form of the digits and the second is the 
binary coded form of the digits. 

Chapter 12 
Set 1 

1· VO QO/AYPO/AYPI9; 

2· 

VI = B30; 
V2 = P 1 7DC 1; 
VI; =YPO;YA47;=YP1; 
SET 16;=RCI;ZERO; 

1 ;DUP;",YP2MIQ;JICINZ; 
YR31,~YPI8; 

V2;=YPI9; 
VO;SET8;OUT; 

VO BIO; 
VI Q4095/ -1/120; 
V2 P LNC6Dj; 
V3 Q 0/AYPO/AYP1; 
V4 Q50/2/0; 
V5 QO/ A YPO/ A YP3; 

VO;=YPO;Vl;=YP1; 
V3;SET8;OUT;\" 4;=Ql; 

1 ;VO;~YPO;V2;·=YPI ;YAIMI ;=YP2; 
YA2MIQ;=YP3;SET8;OUT;JICINZ; 
VO ;=YPO;V 1 ;=YPI ;V3;SET8;OUT; 

Page 254 



Set 2 
l' VO=9; Is just the same as VO = B11; 

Vl=P1..P70j; Is just the same 8S VI = Q4095/··1/-1 
Hence thc effect of the Instructions Is to CIlUIII' a punch gap of 12 Inches using 
strcam number B11. 

(N. n. Aftcr the OUTS VO will have been ovel'wrltten) . 

2' VO = P17Sj/;lsjustthesameasVO=BI7; 
VI = B0753444677003137; the same as 
VI = PLNj KDF LOj *9. ; 
V2 = B2000011; Is just the same as V2 = QO/AVO/AV1; because V2 = really 
contains Q 0/ AES/ AE9 or 111 other words 0/S/9 which Is (In binary) 
16 0's/12 O's lQOO/12 O's 1001, which Is In octal 000000002000011. 

Hence the effect Is to cause the contents of VI to be punched on the paper tape 
punch using stream B17 which Is In VO. (N.B.SETI0; Is the same as SET S;). 

Chapter 13 
Set 1 

l' SETI024;=RC4; 
QOTOQI;=1:QIT0Q2; 
QITOQ3; 

5; YOM4Q;OUP;Jl>Z;J2=Z;OC3;J4; 
1; ERASE ;OCl;J4 
2; OC2;J4; 
4; J5C4NZ;NCl;NC2;NC3; 

Note the OUP; after YOM4Q; this is necessary because even if a jump does 
not occur on Jl>Z; the original contents of Nl will be erased by they are sun 
needed for the next Instruction J2=Z; Should the jump occur on Jl> Z then it Is 
(in this case) necessary to have ERASE; after 1; 

2' SET32;=RCl; 
QOTOQ2;I2=1 ;Q2TOQ3 ;Q2TOQ4; 

5; YOMIQ;OUPO;-;OUP;Jl=Z;J2<Z;=YBOM4*;J4; 
1; ERASE;ERASE;DC2;J4; 
2; =YAOM2Q; 
4; J5CINZ ;ERASE ;C3 ;NEG;C4;NEG;C2;NEG; 

Seta 
l' SET244S; 

J. Had we used SET-I; all the 4S bits of Nl would have been l's. 
Note that the SET inst!:uction first sets up the least significant 16 bits of Nl 

ad tIleD puts a copy of 032 into 00-031. Hence it is DOt possible to set 00-031 
as O's and 032-047 as l's by a set Instruction. 

Page 255 



Chapter 14 
Set 1 

l' Y4:JSLI000:=YP1:=YP2; 
The call message JWlt before FINISH:
w1ll be 
library LIOOO: 
(LI000) : 

Set2 
l' VO=PFDj +; 

Vl=PL7Dj-; 
V2/3 = P*140737488355328: 
V4 = PL7Sj 0: 

Y4;DUP;Jl Z;VO;REV;DUP;J2=Z; 

3; JSLI000:J4; 
I; Vl;REV;VR;NEG;J3NV; 

ERASE:V3:V2:J4: 
2; V4;REV; 
4; =YPl;=YP2;=YPO; ....•. 

Chapter 18 
VO = B30; 
VI = P NAME L3Dej; 
V2/3 = P POWERS*OF*TWOL2DCj ; 
V4 P L7DCj; 
V5 QO/AYPO/AYPl; 
V6 = QO/AYQO/AYQ1; 
V7 = QO/AYPO/AYP3; 

VO:=YPO;Vl;,.YPl;V5;SET8;OUT; 
VO;=YQO;V4:=YQ1;V6:SET8:0UT; 
VO;=YPO ;V2 :=YPI :V3 ;=YP2;V5 ;NOT;NEG ;SET8;OUT; 
VO;=YQO;V6;SET8;OUT; 
V4;=YP3:SET40;=RC1;SET1; 
1; J2Cl Z ;DUP ;JSLI000 ;=YPI :=YP2 :VO;=YPO; 

V7;SET8;OUT;DUP;+;DC1;Jl; 
2: ERASE:ZERO;OUT: 

library LI000: 
(LI00) ; 
FINISH; 

Chapter 17 
Set 1 

1, VO = QO/AYDO/AYDIOOO; 
VI = QO/AYP53/ AYP57; 
V2/3 = P [NC]PARITY*P. T.R. [C); (N.B. Carriage return llDe feed t. 
not allowed on the flexowrUer when using OUTS); 

Page 256 



V4 .. QO/AV2/AV3: 

VO:=Ql:SET2:SET5:0UT:=Cl: 
PREQl: 
VI :=Q2 :Cl TOQ2 :PARQl :J3TR: 
PRQ2:PARQ2;J2NTR: (Note the use of JrNTR): 

3: V4:=Q8:TWQ8: 
2: Cl :SET6:0UT: 

(N' B. TWQq: has been used to show its use but please bear in mind the 
comment at section 17'10 and particularly that when output goes to the 
typewriter none of the characters may be "Carriage return line feed at "Tab"). 

2, VO QO/AVI/AVl: 
VI P17DPj: 
V2 B0770067007710671: 
V3 QO/AV2/AV2: 
V4 QO/0/60: 

VO:=Ql:SET3:SET5: OUT:=Cl: 
LPQl:PARQl: 
LPQl:PARQl: 
LPQI :PARQI :J3NTR: 

(N.B. there are no Jumps after previous PARQq's. We are only interested 
if a parity occurred anywhere): 

3· t 

3, VO 
VI 
V2 
V3 
V4 
V5 

V4:=Q3:SET2:SET5:0UT:=C3: 
PGAPQ3: . 
V3:=Q2:C3TOQ3: 
PWQ2 ;PGAPQ3 :SET6-oUT: 
Cl:SET6:0UT: 

QO/AVI/AVI: 
P L7DPj: 
P L7DCj: 
Q O/AYPO/AYPI: 
Q O/AYPI/AYPI: 
P LNCjP*L.PLCj: 

VO:=QI:SET3:SET5:0UT:=Cl: 
LPQl :YR7:=YPO:V2:=YPI :V3:=Q2:Cl TOQ2: 
PARQI:JITR:LPQ2:V4:=QI:C2TOQI:PARQ2:,J2TR: 
LPQI :PARQI :J3TR:LPQ2 :PARQ2:J4TR; 

5: C2:SET6;OUT: ............. . 

1;2:3:4: V5:=YP1:V4:=Ql:TWQ1;J5: 
(Notice how the four parity failure jumps have been linked together by 

giving one point more than one reference. Also refer to the note after the 
solution to question 1). 

Page 257 



4· VO 
VI 
V2 

QO/0/40; 
QO/AYD5/AYD5; 
QO/l/l; 

VO;=Ql;SETl;SET5;OUT;DUP;=Cl; 
VI ;=Q2;=C2; 
SET5;=RC3; 

1; PGAPQl;PWEQ2; 
V2;=+Q2;DC3;JlC3NZ; 
SET60;=Ml; 
Cl ;SET6;OUT; 

6· VO/2 = P LN~ IS*IT*MONDAY LDQ}; 

V3 QO/AYO/AY2; 
VO;=YO;Vl;V2;=Y2; 
V3;=Ql;TWQl; 
(Refer to the note in solution to question 1.) 

(N. B. The operator's reply Y . - or N . - will go Into the first 3 characters 
of Y2 - the remaining 5 characters being 00(8)' It would have been possible for 

V3 = QO/ AVO/ AV2; but later in the course, when RESTARTS are dealt with, the 
reader will see that, In general, it is not wise to print out from V -stores). 

6· VO/l = P+KESUBLE. 50-1470; 
VI ;VO;SETI0;OUT;=Cl; 
(Note that VI must be brought into the ne,:·t than the least significant half). 

Set 2 
1· (a) w KDF LJ 9 

Ca....tindicates a space. The first character of the OULpUt to the lineprinter by 
LPQq; will be printed at the left of the next line). 

(b) LJKDF ul!. 

2' Answer: A 

Nl originally contained 3675(8) 

N.2 originally contained -1(8) L =-1(8)1 

.' • after -; Nl contains -3676(8) 

which is 7777777777774102(8) 

i.e., in P-<:onstant format this is l6DjAlCj 

(a) vo = 
Vl/2 = 
V3 
\14= 

QO!AYPI/AYP8; 
P JOE"'SOAP. l6DCj 
Pt'lf)'Pj; 
QO/A'YQ4/AYQ6; 



V4 QO/AYQ4!AYQ5; 
V5 P L7DCj; 
V7 QO/AYQO/AYQ5; 
V8 PLNj PARITY; 
V9 QO/AYQO/AYQ2; 

VO;=Ql;SET2;SET5;OUT;=Cl;PRQl; 
SETb~S;YQ4;V3;=YQ5; 

V4;SET8;OUT; 
SETB3S;=YQl;V2;~YQ2; 

V9;SET8;OUT; 
V5;=YQ5;PARQl; 
Cl ;SETS;OUT;Jl TR; 
(Notice reason for deallocating before jumpUig on test register after 

PARQq;) 
SETB3S;DUP;=YQ4;V4;DUP;SET8;OUT;REV; 
=YQ4;SET8;OUT;ZERO;DUP r VQ2;=YQ3; 
SET8;=RCl;SETB3S; 

2; DUP ;=YQO ;YPIMIQ;=YQI ;YPIMIQ;=YQ4; 
V7;SET8;OUT;DUP;=YQ4;V4;SET8;OUT;J2CINZ; 

3; ZERO;OUT; 
1; V8;=YQ5;ZERO;=YQ4;V 4;SET8;OUT;J3; 

FINISH; 

Chapter 18 
Set 1 

1- VI = QI0/I0/AYO; 
VI;=Ql;Il5=+I; 

1; M~I;=_MI5Q; 
MSDMIQN;=M!6M15Q-JICINZ; 

2- VI = Q32/2/AYAOL; 
V2 = Q32/3/AYBjilJU; 
Vl;=Ql;V2;=Q2; 

1; MiJMIQH ;=MtJM2QH ;JICINZ; 

3- VI = Q9/1S/AY"U; 
V2 = Q9/1S/AYf/JL; 
Vl;=QI;V2;=Q2; 

1; MiJMIH;MIi'JM2H;=~MIH;=MilM2H; 
M0MIHN ;MilM2HN ;=M9JMIQHN ;=~M2QHN iJICINZ; 

Set 2 
1- 0000000000201235(~ 

2- Answer: NO. 

MilM~HN; fetches a copy of the half length word ElU into 
DO - D23 of Nl. 

Page 269 



SET5: Sets the Integer 5, held to 47 integral places, into the nest. 

Hence when Nl Is added to N2 a mixed result Is obtained. 

",MOMOHN: overwrites the half word EIU with the contents of DO -D23 of 
Nl, which will not have changed. 

Chapter 19 
Set 1 

l' SET64:=RC1:ZERO:STR; 
I: YOMIQ:DUP:xD:+D:J2V; 

JICINZ: 

2· (a) SETAYOU:=RM1; 
MOMIQH :MOMlH:x; 

(b) 46 integral places 

3' VO = B 1717171717171717; 
VI = B 1212121212121212; 

VO:YO;AND;Vl;REV;TOB: 
SET240;XD :CONT;=YO; 

". VO = Q64/1/0: 
VO:=Ql:ZERO:DUP: 

I: YOMIQ:STR:+D:JICINZ: 
Ml; .. D: 
(Note that Ml now contains 64 and Cl contains 0). 

6' SET12;+I;=Y2; 
SET20;+I ;=Yl; 

",YO; 

8· (a) Valid 128 = 6· 7 
18 

and 6' 7 can be held to (8-5) integral places 

(b) Not Valid !.!!...- > 1 
17,785 

and this cannot be held to (5-5) integral places. 

10 -2 
(e) Not Valid..1 = 2 

212 

Since this is +ve we use 2 -2..:: 2P 
-2 1 

But p we are allowed is (11-13), hence 2 (= ~ cannot be held in -2 
integral places. 

Page 260 



8et2 
l' UUUUUUU+UUUUUUU4UUUUUUUUUUUUUUU+UUUUUUU1 

5 2 
5 + 2 

+ 4 1 

2' VO -13; 
VI -3; 
V2 =13; 
V3 +3; 
V4 +13; 
V5 -3; 
V6 +13; 
V7 +3; 

3' The first syllable of the two syllable Instruction MOM1; will be placed in the 
main store so that It Is In the 1st syllable of the next available word. 

Similarly for the three syllable instruction JICINZ; Any unused syllables of the 
preceding word wlll automatically be fUled with sufficient one syllable DUMMY; 
instructions. 

Chapter 20 
Sets 1 and 2 

l' (a) VO = Q60/1/AY9; 
VO ;=Ql ;ZERO ;DUP-

1; MOMIQ;DUP;X+-6;JICINZ; 
(The instruction X+-6; could have been written as XD;SHAD-6;+D) 

(b) 6 integral places. 

30 
The largest possible answer Is 18 = 1 2/3 

To find the p to hold the answer to maximum preclsion:

Ij < 2P 

Therefore p needs to be 1. 

But N2 has p=5 
Nl has p=6 

So that result may have p=1 the contents of N2 (the numberator needs to be 
shifted -2 binary places so as to make its p=7. 

Page 261 



Then 7-6 = 1. 

Solution: -

ZERO ;CAB;SHAD-2;CAB;+D; 

3' ZERO;REV;SET8;=RCl; 

1; SHLD-3;SHL-3;DCl;JICINZ; 
ERASE ;SHL-24; 

4· =Ql ;J3CIZ ;MOMIQ;J2CIZ; 
MOMIQ;MAX;J4CIZ; 

1; MOMIQ;MAX;PERM;MAX;ERASE; 
REV ;JICINZ ;J4; 

2; DUP;J4; 

3; ZERO;DUP; 

4; VR; ....... . 

6' Number f p 

2'5 ·625 2 
1'0 ·5 1 

-1' 0 0 0 (N .B. 8=1) 
5·25 ·65625 3 

·25 '5 -1 
4·7 ·5875 3 
0'1 . 8 -3 

6· YO;DUP;J2=Z;DUP; 
=RCl;SETAY1;=Ml;ZERO; 

1; MOMIQ;STAND;+F;JICINZ; 
REV;SET47;FLOAT;+F; 
=MOMl;J3; 

2; ERASE; 

3; ...... . 

7· YO;DUP;J3:!;;Z;=RCl;QIT0Q2;SET-128': 
1; YIMIQ;FIX;REV;ERASE;MAX;REV;ERASE;JICINZ; 

2; DUP;Y1MIQ;J2C2NZ;=;=C15; 
SHAC15 ;=Y1MIQ;J2C2NZ ;=YIMl; 

3; (n.oO); 

8' SET64;=RCl;ZERO;DUP; 
1; YOMIQ;DUP;CAB;+;PERM;SET47; 

FLOAT;+F;REV;JICINZ; 
REV;FIX;SET47;-; =Cl; 
SHACl;REV ;SIGN; 

Page 262 



9' ROUNDF; 

Model Solution to Programming Exercise B 
(Although the following is neatly finalised with the V store declarations followed 
by the instructions. the reader must not be led to think that the course of writing 
the program was to write all the declarations then the instructions. The process 
was to write the instructions and on a separate sheet to write the declarations as 
the need for them arose.) 

An elementary solution would be:'. 

VO QO/AYO/AY32; 
VI B30; 
V2 P SORT i3DCJ; 
V3 B 1212121212121212; 
V4 B 1717171717171717; 
V5 Q O/AVl/AV2; 
V6 PPAR.P.T.; 
V7 P pDCj; 
V8 *O/AYAO/AYA2; 
V9 *O/AYAO/AYAl; 

VO;=Ql;SET2;SET5;OUT;=Cl; 
PREQl;V5;SET8;OUT;(Vlis now B30;)PARQ1;J101TR; 
Cl;SET6;OUT; 
YO;V 4;AND ;V3 ;REV ;TOB ;=RC2 ;M+I2; 
SETl;DUP;=RM3;=RM5; 

2; M3;C2;~;J3=Z; 
M3TOQ4;M3TOQ5 ;M+I5; 

4; M5;C2;-;J5>Z; 
YOM4;YOM5;-;J6<Z; 
M5TOQ4; 

6; M+I5;J4; 
5; YOM4;YOM3;=YOM4;=YOM3;M+13;J2; 
3; V7;=YA2; 
4; SETB30;=YAO;YOM2Q;=YA1;V8;SET8;OUT;J4C2NZ; 
7: ZERO;OUT; 

101: SET~=YAO:V6:=YAI ;V9 ;SET8;OUT:Cl :SET6;OUT;J7: 
FINISH:-

Probably a better solUtion, making use of more types of Usercode Insturctions, 
would be as below:-

VO = Q 0/AYO/AY32; 
VI = B 30; 
V2/5 = P MODEL*SOLUTION*TO 

*SORT*EXERCISE: 
V6 = P iIDC]": 
V7 = Q 6/1/0: 
V8 = Q 0/AYP.o/AYP5: 

Page 263 



V9 = 
V10 = 
Vll = 
V12 = 
V13 = 
V14 = 

1· · 

2· · 
4; 

6· · 5· · 3; 
8; 

7; 
101; 
102; 
103; 

Chapter 22 
Set 1 

l' VO 
Vl = 
V2 = 

B 1212121212121212; 
B 1717171717171717; 
Q 0/ A YPO/ A YP2; 
P PARITY; 
P N*IS*O; 
QO/AYPO/AYP1; 
YO; =Q1; SET2; SET5; OUT; =C1; 
PREQ1; V7; =Q2; 
V1M2; =YPOM2Q; JIC2NZ; 
V8; SET8; OUT; VI; =YPO;V6=YPl;V14;SET8;OUT; 
PARQ1; J101TR; C1; SET6; OUT; 
V9; YO; V10; AND; TOB; DUP; =RC2; =RC3; 
JI02C3Z; 
SETI; =M3; DC3; 
J3C3Z; 
M3; =RM4; M4TOQ5; M+I5; 
M5; C2; SIGN; J5>Z; 
YOM4; YOM5; SIGN; J6<Z; 
M5; =M4; 
M+I5; J4; 
YOM4; YOM3; =YOM4; =YOM3Q; J2; 
V6; =YP2; 
VI; =YPO; YIM2Q; =YP1; 
Vll; SET8; OUT; JSC2NZ; 
ZERO; OUT; 
VI2; JI03; 
VI3; J103; 
=YPI; VI; =YPO; V6; =YP2; 
Vl1; SETS; OUT; J7; 
FINISH; 

QO/AYO/AY2; 
QO/AYBO/AYB2; 
QO/AYZO/AYZO; 

VO;=Q2;C1TOQ2;METQ2;JITR;MWQ2; 
V1;=Q3;CITOQ3;PARQ2;J2TR-MBRQ3; 
PARQ3;J2TR; ............. . 

2; ZERO ;=YZO;V2;=Q4;C1 TOQ4;MWQ4; ........... . 
2; Cl;SET6;OUT; ..... . 

2' VO = PABCD1234; 
VI = QO/1/4; 
V1;=Q1;VO;SET4;OUT;=C1;MFSKQl; 
PARQl;JlTR; ........ . 

1; Cl;SET6; OUT; 

Page 264 



VO 
VI 
V2 

PABCDI235; 
QO/AYO/AYOOO; 
QO/AYZO/AYZO; 

VO;SET4;OUT;=RCI;M+II;MFSKQI; 
VI ;=Q2;Cl TOQ2;PARQl;Jl TR;METQ2;J2TR; 
MWQ2;PARQ2;JITR;M+II;MBSKQI;MBTQI;J3TR; 
P AHQ 1 ;Jl TH;M -11 ;MBSKQl ;MBTQl;J 4NTR; 
PAHQl;JITR; ............. . 

1; Cl;SET6;OUT; ........ . 
2; ZERO;=YZO;V2;=Q7;CITOQ7;MWQ&; ....... . 
3; (Routine required to show that "Too few blocks written"); ... . 
4; (Routine required to show that "Too many blocks written") ; ... . 

Set 2 
VO P KEEMOOOO; 
VIP KEDJ9999; 
V2 QO/l/l; 
V3 QO/AYAO/AYAI023; 
V4 QO/AYBO/AYBI023; 

VO;SET4;OUT;DUP;=YDO;=RC3;M+I3;MFSKQ3; 
Vl;SET4;OUT;DUP;=YDI;=RC4;M+I4;MFSKQ4; 
PARQ3;JITR; 
(Claimed and positioned both tapes); 
V2;=Ql ;(Block counter) ;V3;=Q5;V 4;=Q6; 
C3TOQ5;C4TOQ6; (Sett up areas for read and write, not locked out); 
PARQ4;JITR; 

3; MFREQ5;IM5TOQ7;IM5TOQ5;IM7TOQ6; 
(Interchange areas for double buffering) ;PARQ5;JITR; 
PARQ6;JITR;MLBQ5;J4TR; 
METQ6;J5TR; 
METW6;J5TR; 
MWEQ6;M+I3; (Add 1 to counter); J3; 

1; (Print mag parity via OUTS) ;JI0; 
4; MLWEQ6;M+ll;APRQ6;JITR;C6TOQl;MBTQl;JITR; 

MBSKQ1; 
MBTQl;J6TR;M4TOQl; (Sets 1 in Mode); PARQ1;JITR; 
MBSKQl; 
MBTQl;J7NTR; (Check tape correctly written); PARQ1;JITR; 

10; YDO ;SET6;OUT;YDI ;SET6;OUT ;ZERO ;OUT; 
5; (Print end of tape); JlO; 
6; (Print too few); JI0; 
7; (Print too many); JIO; 

FINISH; 

Page 265 



Chapter 23 
Set 1 

1- P2VO: 
JITR:ZERO:=WO: 

2: SET4;OUT;DUP:=RCI5:M+I15: 
MFSKQI5:PARQI5:J3TR:WO;=TR;EXIT2; 

2: SET-l;=Wo;J2; 
3; EXIT1; 

2- P4VO; 
3; =Q15;QOTOQI4:J2V;SET1:=WO; 
4; MOMI5Q:DUP;DUP;=Q14:J5CI5Z; 
5: QI4:VR: 

ZERO;WO;MAX;ERASE:ERASE: 
6; EXIT; 
2; ZERO;=WO;J3; 

The principle here is to keep the current largest and smallest in the nesting 
store and to sum the rest in Q14. 

The largest possible value of n is 32767, hence the largest possible total of all 
the numbers is approximately 

4 . 9 13 14 . 
3' 2><10 x 10 = 3' 2><10 , this is less than l' 4'<10 and 80 the result can 
be held single length. No failure is possible so only the one exit is needed. 

Notice the method of ensuring that the overflow register is the same on exit 
as it was on entry. (N .B. ZERO ;ZERO :MAX; sets the overflow register). 

8' DUP;J3=Z;SETAR3;=LINK;EXIT2: 
3: ........ .. 

Set 2 
l' P6VO; 

PERM;=C14;=CI5: 
SH CCI4;N CI4;CI4;=+CI5 ;:Jl C15Z ;STR; 
REV ;SHXX15:STR;PERM;REV ;OONT;NCI5; 
SHCCI5;REV;OONT: 

I: SHCCI4:EXITl; 

Chapter 24 
Set! 

l' SET64:=RCl; 
ZERO;STR: 

* I:WOMIQ;DUMMY;DUMMY ;DUP: 
*X+F;JICINZS; 

Page 266 



Chapter 24 
Set 1 

1- SET64;=RCl; 
ZERO;STR; 

*l;WOMIQ;DUMMY;DUMMY;DUP; 
*X+F;JICINZS; 

Set 
l' VO = Q12S/1/AYO; 

VO;=Ql;QO'IOQ2;MOMlQ;MOMlQ;MAX; 
*1;MOMIQ;MAX;PERM;*MAX;=+Q2;REV;JIClNZS; 
DUPD;+;Q2;+; 

Although a short loop is the best method for this routine it is unfortunate that 
the first two rules for optimisation of short loops given in paragraph 24- 2' 3 
cannot be obeyed. 

Chapter 25 
Model Solution to Programming Exercise C. 

VO QO/l/l; 
VI P NAME L3DCl; 
V2 QO/AYPO/AYPl; 
V3 P l7DCl; 
V4 QO/AYQO/AYQl; 
V5 Q47/l!AYO; 
V6 QO/AYl!AY48; 
V7 
VS 
V9 
VlO = 
Vll = 
V12 = 
V13 = 
V14 = 
V15 = 
V16 = 
V17 = 
V18 = 
V19 = 

B30; 
QO/AYPO/AYP6; 
P L7DCl; 
Q47/-l!AY47; 
1013 ; 
P L.B.PAR LCl; 
PEND. TP. LCl; 
PWRT.PARLCl; 
PB.R. D.PR LCl; 
P TOO_FEW lCl; 
P LB-BTPR LCl; 
P 1'00 MANY L Cl; 
P LBBKSKP LC1; 

VO;=Ql;V2;=Q2; 
ZERO ;SET4;OUT;=Cl; MFSKQl ;SETB30;=YPO;Vl;=YPl; 
V2:SETS;OUT: 
SETB30 :=YO-V3 :=YQl:V 4;SET8;OUT ;PARQl ;JlOl TR: 
ZERO :=YO :SETl:",Yl :V5 :=Q2; 

*1; MOM2:MOM2QN:+:*=MOM2N; 
JlC2NZS; 

Page 267 



2; V6;=Q2;CITOQ2;METQ2;JI02TR;MWQ2;PARQ2;JI04TR; 
MBRQ2;PARQ2;JI04TR;MBSKQl;PARQl;J105TR;MBTQl;Jl06TR; 
MBSKQl;PARQl;JI07TR;MBTQl;JI08NTR;CI;SET6;OUT; 
Y48;JSLIOOO;=YPl;=YP2;V7;=YPO;ZERO;DUP;=YP3;DUP;=YP4;=YP5;V9;=YP6; 
V9;SET8;OUT; 
VIO;=Ql; 

3; MOMl;DUP;JSLI000;=YPl;YP2;V7;=YPO;MOMIQN;Vll;><D;CAB;+D; 
JSLIOOO;ZERO;SHLD+18;SHL+6;SETB37;OR;SHLD-18;ERASE; 
=YP4;=YP5;V8;SET8;OUT;J3CINZ;4;ZERO;OUT; 

101; (MT LBI Partty); VI2;J5; 
102; (End Tape); VI3;J5; 
103; (MT Write Parity); VI4;J5; 
104; (MT B.read Parity); VI5;J5; 
105; (MT LB BK Sk); VI9;J5; 
106; (Two few); VI6;J5; 
105, (MT parity LB-BTW); VI7;J5; 
108; (MT Too many); VI8;J5; 

5; =YPl;V7;=YPO;V2;SET8;OUT;Cl;SET6;OUT;J4; 
library LIOOO; 
(LIOOO); 
FINISH; 

(N .B. This program oauses the program to wlnd-up In the case of a 
failure Jump. but there Is no reason why an appropriate corrective routine 
should not have been used for the program to oontlnue.) 

Page 268 



APPENDIX 2 REVIEW OF ELEMENTARY KA THEKA TICS 

This appendix is Intended for those who require a quick refresher or a review of 
the terminology of algebra. 

l' Algebrafc EquatlCll1s 
The "equality" symbol is used to Indicate that what is on the left hand side (LHS) 
of it is exactly equal to what is on the right hand side (RHS), (e.g., 2+3=4+1). 
This is known as an "equation". When one of the terms is not known a letter of 
the alphabet may be used to replace the unknown quantity. 

E.g., lfln the above equation the second term on the LHS were not known, the 
equation could be written as 

2 + Y = 4 + 1 .••••••• (i) 

To find the value of y from the equation 2 + Y = 4 + 1 all that is needed is to subtract 
the 2 from the LHS and RHS. 

So:

Therefore 

2+y-2 

Y 

4+1-2 

3 

The rule is: to find the value of an unknown In equation add to, subtract from, 
multiply by, divide by, etc., both sides of the equation until the unknown 1s 
isolated on one side. 

E: g., to find the value of s given that 

2s+4=3-3s 

2s+4-4=3-3s-4 

2s -3s-1 

2s + 3s = -3s - 1 ... 3s 

5s -1 

2! -1 
5 5 

s .:! 
5 

Sometimes an equation has more than cme 1Dlknown term, e. g. , 

x = 4.,.8. 

If we can, by some other means, find the value of s, we can then find the value of x. 

··Let us say that s = 3 
we, then know that x = 4-3 

,', x = 1 

Page 269 



This process of putting in a known value for an unknown value is called 
"substitution" . 

Let us now consider the equation 

y = 2+3X4 

Wha~ is the value of y1 

Is it 2 plus 3 giving 5 then multiplied by 4 giving y = 20, or is it 3 multipUed by 
4 giving 12 then plus 2 giving y = 141 The answer Ues in the rule that multipUcatl\._ .. 
(and divisions) must be done before additions (and subtractions). Hence in the 
equation above 3 x 4 = 12 then +2 gives y = 14. 

Some more examples are 

a = 4x2+3Xl 
(4x2) + (3Xl) 

8 + 4 

It will be noticed that the use of brackets has been made here: they are used to 
indi.cate that all operations inside the brackets are to be performed first. 

b = 3 - 8 + 2 x 10 + 140 
3 -(8+2) x 10 + 140 
3 - 4 x 10 + 140 
3 -(4XI0) + 140 
3 - 40 + 140 
103 

Notice the set of brackets which ensures the correct result is obtained. Brackets 
can be used at any time but notice how they work from the following examples. 

G = 3 + (4X2) 
= 3 + 8 

II 

d (3+4) x 2 
7x2 

!i 

It is convention to leave out the. multiplication sIgn just in front of or after a 
bracket when it is clear what js intended; 

Consider 

Page 270 

-d 2 x (3+4) 
2x7 
14 



It is clear that d = twice (3+4) 
Therefore we could write d = 2(3+4) 

An example linking the items so far reviewed is: 

2· Indices 

f 14 - (3-2) 8 - 2 x 4 
14 - (1) 8 - (2X4) 
14 - 8 - (2X4) 
14 - 8 - 8 
-2 

There is the type of equation where the LHS is equal to something on the RHS 
multiplied by itself many times. e. g .• y = 5x5x5x5 

It is conventional in this case to only write the 5 once and to put a little number 
above it to show how many times it is to be multiplied by itself. 

In this example we would write y = 54 

Let us now see what x is in the following case 

x = (-6+3) x 23 

(-3) x2x2x2 
(-3) x 8 
-24 

The "raised number" is called the index. 

To consider the index a little further we can see that 

45 - 1024 4 -
4 = 256 
43 = 64 
42 = 16 

A close inspection reveals that reducing the index by 1 has the 
effect of dividing the number by the "base" number, in this case 
4 (1024+4 = 256). 

From this we would assume that 

41 = 16+4 
= 4 (1. e., 4 multiplied together once) 

Surely if reducing the Index by 1 has the effect of dividing the answer by the base, 
then knowing that 

41 = 4 
Page 271 



we must conclude that 

continuing further 

Two points emerge: 

1 

4-1 = 1+4 1 
-2 

4 = 1+4 = .L 
16 

<a) ADy number with an index 0 has the value 1 

(b) ADy number with a negative index has the value of 1 divided by the same 
number with the corresponding pol'litive index. 

E.g., 4-2 = ..!.. 
16 
1 
~ 

Therefore 4-2 = 1+42 

If then the equation x = (-s+f)X2P is to be solved where s, f and pare given values, 
the value of x can be found 

e.g. , x 

e.g. , n _ (_I+j)X2-2 

(-& Xl) 

-! 
12 
1 

'6 

The use· of the index is useful when large numbers are being referred to 

e. g .. , 17000000 

can be written as 17xI06 

3, 

or as 1· 7XI07 
etc. 

Two terms often used are "Iilgebralc" and ''numeric'' minimum. 

(a) Algebraic minimum refers to that quantity which is less than any other being 
considered, where a negative quantity is less than any poSitive quantity. 

Page 212 



(b) ,Numeric minimum refers to that quantity which is nearer to zero - or in 
other words the sign in front of the numbers are ignored and the smallest 
found. 

Hence +~ is numerically less than -1. 

4. Suffixing 
Although any letters can be used in an equation to represent unlalOwn quantities 
sometimes the same letter is used with a "suffix" to differentiate between the 
various terms. 

e.g. , x 2x4+7-3 

could be written as 

n alxa2+a3-a4 

where a 1 2 

a2 4 

a3 7 

a4 3 

There is no reason why the suffix should not be negative but in this case, to prevent 
confusion, the suffix is placed in parenthesis, e.g., a(_4) 

5. Jnequalities 
There is a class of equation where the LHS need not necessarily be equal to the 
RHS. This is expressed by the symbols 

< meaning algebraically less than 
> meaning algebraically greater than 
~ meaning algebraically greater than or equal to 
:;. meaning algebraically greater than or equal to. 

Examples: x~42 means that x can have any algebraic value which is less than 
or equal to 16. 

x< 23 means that x can have any algebraic value less than 8. 

6. Modulus 
When it is required to refer to the magnitude of a quantity without quoting whether 
it is positive or negative, then the quantity is placed between two vertical bars 
and called the "modulus of the quantity". 

e.g. , I 51 
I+!I 
1-41 

is the same as 5 
is the same as ~ 
is the same as 4 

Page 273 



7. SlgnUlcance 

I x I (where x = -2) is the same as 2 
I Y I (where y = 4) is the same as 4 

In the number 34- 278, the digit 3 is the most significant 
and the digit 8 the least significant. 

The "value" to the left of the decimal point Is called the "integral part" and that 
to the right the "fractional part". 

Page 274 



APPENDIX 3 POWERS OF TWO 

N 2N 2 
-N 

0 1 1·0000000000000000000000000000000000000000000000 
1 2 ·5000000000000000000000000000000000000000000000 
2 4 ·2500000000000000000000000000000000000000000000 
3 8 ·1250000000000000000000000000000000000000000000' 
4 16 ·0625000000000000000000000000000000000000000000' 
5 32 ·0312500000000000000000000000000000000000000000 
6 64 ·0156250000000000000000000000000000000000000000 
7 128 ·0078125000000000000000000000000000000000000000 
8 256 ·0039062500000000000000000000000000000000000000 
9 512 ·0019531250000000000000000000000000000000000000 

10 1024 ·0009765625000000000000000000000000000000000000 
11 2048 ·0004882812500000000000000000000000000000000000 
12 4096 ·0002441406250000000000000000000000000000000000 
13 8192 ·0001220703125000000000000000000000000000000000 
14 16384 ·0000610351562500000000000000000000000000000000 
15 32768 ·0000305175781250000000000000000000000000000000 
16 65536 ·0000152587890625000000000000000000000000000000 
17 131072 ·0000076293945312500000000000000000000000000000 
18 262144 ·0000038146972656250000000000000000000000000000 
19 524288 ·0000019073486328125000000000000000000000000000 
20 1048576 ·0000009536743164062500000000000000000000000000 
21 2097152 ·0000004768371582031250000000000000000000000000 
22 4194304 ·0000002384185791015625000000000000000000000000 
23 8388608 ·0000001192092895507812500000000000000000000000 
24 16777216 ·00000005'96046447753906250000000000000000000000 

Page 275 



Powers of two (continued) 
N 2N 

25 33554432 
26 67108864 
27 134217728 
28 268435456 
29 536870912 
30 1073741824 
31 2147483648 
32 4294967296 
33 8589934592 
34 17179869184' 
35 34359738368 
36 68719476736 
37 137438953472 
38 274877906944 
39 549755813888 
40 1099511627776 
41 2199023255552 
42 4398046511104 
43 8796093022208 
44 17592186044416 
45 35184372088832 
46 70368744177664 
47 140737488355328 
48 281474976710656 

Page 276 

2-N 
·000000029802322387695312500000000000000000000000 
·000000014901161193847656250000000000000000000000 
·000000007450580596923828125000000000000000000000 
·000000003725290298461914062500000000000000000000 
·000000001862645149230957031250000000000000000000 
·000000000931322574615478515625000000000000000000 
·000000000465661287307739257812500000000000000000 
·000000000232830643653869628906250000000000000000 
·000000000116415321826934814453125000000000000000 
·000000000058207660913467407226562500000000000000 
·000000000029103830456733703613281250000000000000 
·000000000014551915228366851806640625000000000000 
·000000000007275957614183425903320312500000000000 
·000000000003637978807091712951660156250000000000 
·000000000001818989403545856475830078125000000000 
·000000000000909494701772928237915039062500000000 
·000000000000454747350886464118957519531250000000 
·000000000000227373675443232059478759765625000000 
·000000000000113686837721616029739379882812500000 
·000000000000056843418860808014869689941406250000 
·.000000000000028421709430404007434844970703125000 
·000000000000014210854715202003717422485351562500 
·000000000000007105427357601001858711242675781250 
·000000000000003552713678800500929355621337890625 



APPENDIX 4: INSTRUCTION CROSS-REFERENCE (With Syllable COWltS) 

This list is intended to provide easy reference to any User Code instruction 
describcd in this manual, and also quotes the number of syllables occupied by 
each instruction. 

Any item in brackets is optional. 

The form Yy has been used to indcate where any of the usual alternatives may 
exist. 

Form Syllables Section Form Syllables Section 

ADS 1 11'1 Jr 3 13'1'5 
ADSF 1 20'5'1 JS 3 13'1'6 
AND 1 11'4'2 JE 3 13'1'7 

JSE 3 13'1'7 
BITS 1 11'4'1 J(N)EJ 3 13'1'7 
BUSYQq 2 App.6 J(N)EN 3 13·1·7 

Jr(N)V 3 13'1-3 
CAB 1 9·1 Jr(N)TR 3 13-1·4 
ClkTOQq 2 8·3 Jr=. Jr-f; 3 13'1·2 
CMkTOQq 2 8·3 Jr=Z,Jr>Z. etc 3 13'1'1 
CONT, 1 (11'1'3 JrCq(N)Z 3 10'4 

(19'1'2 JrCqNZS 2 24·2'1 
CkTOQq 2 8·3 LINK 2 23'3'1 
Cq 2 8'1 LPQq 2 17'12 

DCq 2 8·2 MANUALQq 2 App.6 
DUMMY 1 9·1 MAX 1 11·2 
DUP 1 9'1 MAXF 1 20·5'1 
DUPD 1 9'1 MBR (E) Qq 2 22'1-8 

MBSKQq 2 22-1'9 
ERASE 1 9·1 MBTQq 2 22·1·3 
EXIT(n)(ARr) 3 (23·2·3 METQq 2 22'1·3 

(23'3'3 MFR 2 22-1-5/7 
MFSKQq 2 22'1-9 

FINISH 0 6·2·6 MGAPQq 2 App.6 
FIX 1 20'5'5 MLBQq 2 22'1·3 
FLOAT 1 20'5'5 MLW(E)Qq 2 22'1'5/7 
FLOATD 1 20'5'5 MW(E)Qq 2 22'1'5/7 
FRB 1 11'5'7 M±Iq 2 8·2 

Mq 2 8·1 
IkTOQq 2 8·3 MkMq(Q) (H»N) 2 (10'3 
IMkTOQq 2 8·3 (10-5 
INTQq 2 App.6 (18 
Iq 2 8·1 MkTOQq 2 8·3 
Iq=±l 2 8·2 MRWDQq 2 22-1'9 

lq=±2 2 8·2 MWIPEQq 2 App.6 

Page 271 



Form Syllables Section Form Syllables Section 

NCq 2 a'2 VR 1 1a·1·a 
NEG 1 11'1·2 Vv(D):z(/s) 0 7·a 
NEGO 1 11·1·2 Vv(D)=Fz 0 7·a 
NEGF 1 20'5'1 Vv=A 0 7'5 
NEGOF 1 20·5·4 Vv=B 0 7'4 
NEV 1 11'4·2 Vv=P 0 7·a 
NOT 1 11'4·1 Vv=Q 0 7'6 

Vv(U) = 0 7'7 
OR 1 11'4·2 Vv(L): 0 7'7 
OUT a 17'3 

Yy(Mq)(Q) 3 (10·2 
PARQq 2 17·a (10'5 
PERM 1 9'1 ZERO 1 9'1 
PGAPQq 2 17'7 + 1 11'1'2 
PRC(E)Qq 2 17·7 +F 1 20·5'1 
PRQq 2 17'7 +0 1 11·1·2 
PWQq 2 17·7 +OF 1 20'5'4 
PWC(E)Qq 2 17'7 

1 
PREQq 2 17'7 11·1'2 

-F 1 20'5·1 
PWEQq 2 17'7 

-0 1 11'1'2 

Qq 2 S'l -OF 1 20'5'4 

QkTOQq 2 a'3 x 1 19'1·2 
r 0 6·2·2 xF 1 20'5'2 
REV 1 9'1 xD 1 19'1'2 
REVD 1 9·1 xDF 1 20'5'4 
ROUND 1 11·2 x+±n 2 20'2 
ROUNDF 1 20'5·4 x+Cq 2 20'2 
ROUNDH 1 11·2 x+F 1 20'5'4 
FOUNDHF 1 20'5'1 

1 + 19·2·2 
REe 0 13'1·7 

+F 1 20'5'2 

SET 3 7'9 +0 1 19·2·2 

SHA 2 20·1·2 +OF 1 20'5'4 

SHL 2 20·1·a 
+R 1 20·3 

SHC 2 20'1'4 
+1. 1 19·2·2 

SIGN 1 11'1'4 :LlNK 2 23·a·1 
SIGNF 1 20'5'1 :TR 1 la·1·4 
STAND 1 20'5'3 =Qq 2 a'l 
STR 1 11'1'3 =+Qq 2 a'l 

=(R)Cq 2 S'l 
TLOQq 2 App.6 =(R)lq 2 a-I 
TOB 1 11-5-5 :(R)Mq 2 S'l 
TIi(E)Qq 2 17'1(1-2 :+Cq 2 8'1 
TW(E)Qq 2 17'10'2 :+Iq 2 a'l 

Page 278 



Form Syllables Section 

=+Mq 2 S-l 
=.MkMq(Q)(H)(N) 2 10-3 

=Yy(Mq)(Q) 3 

10-5 
18 

(10-2 
(10-5 

Page 279 





APPENDIX 6 REFERENCE TABLES, FAILURE REPORTS, LmRARY 
SUBROUTINES 

Reference Tables: 
During the compilation stage of a program the computer keeps a record of the E 
addresses of all the reference labels in the program. The programmer may, 
obtain a print out of this record when the compilation stage is completed. 

The record is called the "Reference Tables" and appears in the following 
format. 

KEABCDOOI UPl TITLE DATE:16/l2/65 TIME: 21·50. 
Y SPEC E512 

REFERENCE TABLES 
PO 40 0 1 51 3 90 65 5 
PI 73 0 
P2 75 0 1 77 0 
L54 106 0 1 106 0 2 122 5 3 125 1 4 III 5 

5 121 0 

Explanation 
(a) Y SPEC E512 indicates that Y/J is placed in E512(10) 

(b) The main program is always P/J, in this case the first instruction begins 
at ~40(8) = E32(10) syllable /J. Reference 1 of P/J is at the Syllable 3 of E51(S) 

=E41(10)" 

(e) Th«:J program was written with two private subroutines PI, and P2 and one 
library subroutine L54. 

(el) Note in L54, that the first instruction is at syllable /J of EI06(8) = E70(10) 
and that reference 1 is also at that point. Notice also that reference 5 is at 
syllable 0 of E121(1!) = ES1 and yet reference 2 is at 122/5, i.e., the reference 
tables are laid out in the order of the reference labels as they are encountered 
in the program. 

(e) Note particularly that in the Y Spec. the E address is given in decimal. 
but that in the reference tables the E address is in octal. 

Failure Reports 
If during the compilation stage, Usercode errors are detected. each error will 
be reported on the lines between the program identifier and the Y spec. 

There will be a failure report for each error found and these will be of the form. 

FAILURE REPORT 
PO R90 +4 
V13 = YP5; 
AT 64/4 L54R6 NOT IN 

Page :.l81 



Explanation. 
(8) PO R90 +4 

(b) VI3 = YP5; 

(0) AT 64/4 L54 R6 

indicates that an error was found at the 4th instruehon 
after Reference 90 in Program pll. 

shows what the erroneous instruction is: in this case 
it is obvious the instruction should be VI3; = YP5; 

NOT IN means that at syllable 4 of E64 is an instruction 
which refers to Reference 6 of L54 but that such a 
reference label is not in the subroutine. 

Any compilation failure can be found by use of the reference tables and failure 
reports. 

In addition to obtaining reference tables and failure reports the programmer may 
obtain a printout of the Usercode Version of the program as held in the computer 
just before compilation is started. This is useful to ensure that the punching of 
the program on paper tape was performed correctly - and it is this computers 
Usercode Version of a program which should be referred to when corrections 
or modifications are subsequently made to the program. 

Library Subroutines 
When a program is to include a subroutine which is in the library the programmer 
has three possible paths open to him. 

(8) Copying out the instructions of the subroutine just before FINISH;-in the 
same way as he would if he had written the subroutine himself. This approach 
of course will mean that he will have to obtain the actual instructions of the 
subroutine. 

(b) Obtaining II- paper tape copy (in Usercode) of the subroutine and, when the 
full program is to be compiled to send three tapes to the operator - tape 1 
being his program excluding FINISH; - . 
Tape 2 being the subroutine 
Tape 3 being merely the message FINISH;-

(0) Using the POST SYSTEM and so allow the possibility of a library call message 
in this program (see Section 14). 

When using a library call message the general format is 

library LI, L2, L16; 

In the printout of the Computer's Usercode Version of the program this will 
merely appear as . 

LIDRARY 

If the call message be written as : 

Page 282 



library Ll; 
(Ll); 
library L2; 
(L2); 
library L16; 
(LI6) ; 
the printout will appear as 

LIDRARY 
(Ll); 
LIDRARY 
(L2); 
LIDRARY 
(LI6) ; 

This will be of more use to the programmer when he refers to the program 
some months later. 

It must be borne in mind however that in fact the actual instructions of the 
library subroutines will be in the computer - it is only the "print-out" of the 
program which is abbreviated in this way. 

For more details concerning failure reports, etc., reference should be made to 
the Service Routine Library Manual Section 7·1. 

Page 283 





APPENDIX 6: OTHER PERIPHERAL DEViCES AND THEIR INSTRUCTION CODE 

1· Generalised Peripheral Instructions 
As alternative instructions for peripheral devices the programmer may use any 
of the following general forms each of which is to be followed by Qq. e. g .• 
instead of TWQq; the programmer may use POAQq; 

Flexowriter 

Instructions 

POA WRITE (TWQq) 
POB WRITE TO EM (TWEQq) 
POD CHARACTER WRITE 
POE L.I.V 
POF L.I.V 
POG 

} POI{ Undefined 
POK 
POL 

PIA READ (TRQq) 
PIB READ TO EM (TREQq) 
PIC CHARACTER READ 
PID CHARACTER READ TO EM 
PIE READ 
PIF READ TO EM 
PIG CHARACTER READ 
PIH CHARACTER READ TO EM 

PMA LIV 
PMB NO EFFECT 
PMC " 
PMD LIV 
PME LIV 
PMF 

} 
NO EFFECT 

PMG Director only 
PMH 
PMK Undefined 
PML Undefined 

Page 285 



Paper Tape Reader 

Instructions 

POA LIV 
POB II 

POC II 

POD II 

POE II 

POF II 

POG II 

POH II· 

POK II 

POL II 

PIA READ (PRQq) 
PIB READ TO EM (PREQq) 
PIC CHARACTER READ (PRCQq) 
PID CHARACTER READ TO EM (PRCEQq) 
PIE READ 
PIF READ TO EM 
PIG CHARACTER READ 
PIH CHARACTER READ TO EM 

PMA LIV 
PMB SET TR IF 8 CHANNEL SET 
PMC NO EFFECT 
PMD LIV 
PME LIV 
PMF NO EFFECT 
PMG } Director only 
PMH 
PMK } Undefined 
PML 

Page 286 



Paper Tape Punch 

Instructions 

POA WRITE (PWQq) 
POB WRITE TO EM (PWEQq) 
POC CHARACTER WRITE (PWCQq) 
POD CHARACTER WRITE TO EM (PWCEQq) 
POE CHARACTER GAP (PGAQq) 
POF WORD GAP 
POG Effect dependant on configuration 
POH and therefore not defined 
POK (see DISC, CARD PUNCH, Graph Plotter 
POL Drum, IBM Deck) 

PIA LIV 
PIB " 
PIC " 
PID " 
PIE " 
PIF " 
PIG " 
PIH " 

PMA LIV 
PMB NO EFFECT 
PMC NO EFFECT 
PMD LIV 
PME LIV 
PMF NO EFFECT 
PMG } DIRECTOR ONLY 
PMH 
PMK } Undefined 
PML 

Page 287 



Card Reader 

Instruction 

POA LIV 
POB " 
POC " 
POD " 
POE " 
POF " 
POG " 
POH " 
POK " 
POL " 

PIA BINARY READ 
pm BINARY READ TO EM 
PIC BINARY CHARACTER READ 
PID BINARY CHARACTER READ TO EM 
PIE ALPHA-NUMERIC READ 
PIF ALPHA-NUMERIC READ TO EM 
PIG ALPHA-NUMERIC CHARACTER READ 
PIH ALPHA-NUMERIC CHARACTER READ TO EM 

PMA LIV 
PMB SET TR IF RECHECK SWITCH OFF 
PMC NO EFFECT 
PMD LIV 
PME LIV 
PMF NO EFFECT 
PMG 

I DIRECTOR ONLY 
PMH 
PMK 

Un<!.efined 
PML 

Page 288 



Card Punch 

Instructions 

POA PUNCH, DmECT MODE 
POB PUNCH TO EM, DIRECT MODE 
POC CHARACTER PUNCH, DIRECT MODE 
POD CHARACTER PUNCH, DIRECT MODE TO EM 
POE CHARACTER PUNCH, DIRECT MODE 
POF PUNCH, DIRECT MODE 
POG PUNCH CONVERTED MODE 
POH PUNCH CONVERTED MODE TO EM 
POK CHARACTER PUNCH CONVERTED MODE TO EM 
POL CHARACTER PUNCH CONVERTED MODE 

PIA LIV 
PIB " 
PIC " 
PID " 
PIE " 
PIF " 
PIG " 
PIH " 

PMA LIV 
PMB NO EFFECT 
PMC NO EFFECT 
PMD LIV 
PME LIV 
PMF NO EFFECT 
PMG Director only 
PMH Director only 
PMK Undefined 
PML Undefined 

Page 289 



Mapetlo .... (1081 ad 10111) 

Instructions 

POA WRITE (MWQq) 
POB WRITE TO EM (MWEQq) 
POC LAST BLOCK WRITE (MLWQq) 
POD LAST BLOCK WRITE TO EM (MLWEQq) 
POE· GAP (MGAPQq) 
POF· WIPE (MWIPEQq) 
POG 

} POH Undefined 
POK 
POL 

PIA FORWARD READ (MRFQq) 
PIB FORWARD READ TO EM (MFREQq) 
PIC FORWARD READ 
PID FORWARD READ TO EM 
PIE BACKWARD READ (MBRQq) 
PIF BACKWARD READ TO EM (MBREQq) 
PIG BACKWARD READ 
PIH BACKWARD READ TO EM 

PMA FORWARD SKIP (MFSKQq) 
PMB SET TR IF BTC (MBTQq) 
PMC SET TR IF LBC PRESENT (MLBQq) 
PMD REWIND (MRWDQq) 
PME BACKWARD SKIP (MBSKQq) 
PMF SET TR IF ETW (METQq) 
PMG } DIRECTOR ONLY 
PMH 
PMK } Undefined 
PML 

• These two instructions have not been dealt with in this manual because 
they should only be used when tapes are uses! on the 1081 decks, and could cause 
catastrophic errors if used on other decks. Those readers interested in these 
instructions will find details of their effect at the end of this appendix. 

Page 290 



mM Compatible Tape 

Instructions 

POA WRITE ODD PARITY 
POB WRITE EVEN PARITY 
POC WRITE TAPE MARK OLD PARITY 
POD WRITE TAPE MARK EVEN PARITY 
POE GAP 
POF WIPE 
POG 

I POH Undefined 
POK 
POL 

PIA READ ODD PARITY 
PIB READ EVEN PARITY 
PIC READ ODD PARITY 
PID READ EVEN PARITY 
PIE BACKWARD READ ODD PARITY 
PIF BACKWARD READ EVEN PARITY 
PIG BACKWARD READ ODD PARITY 
PIH BACKWARD READ EVEN PARITY 

PMA FORWARD SKIP ODD PARITY 
PMB SET TR IF TAPE ON BTC 
PMC SET TR IF LAST BLOCK LEVEL 
PMD REWIND 
PME BACKWARD SKIP ODD PARITY 
PMF SET TR IF ETW 
PMG Director only 
PMH Director only 
PMK FORWARD SKIP EVEN PARITY 
PML BACKWARD SKIP EVEN PARITY 

Page 291 



Dlso (Dlreotor only) 

Instructions 

POA WRITE 
POB WRITE TO EM 
POC WRITE (FIXED HEADS) 
POD WRITE TO EM (FIXED HEADS) 
POE WRITE (FIXED HEADS) 
POF WRiTE 
POG WRITE NEXT SECTOR 
POH WRITE NEXT SECTOR TO EM 
POK WRITE NEXT SECTOR (FIXED HEADS) TO EM 
POL WRITE NEXT SECTOR (FIXED HEADS 

PIA READ 
PIB READ TO EM 
PIC READ (FIXED HEADS) 
PID READ (FIXED HEADS) TO EM 
PIE READ NEXT SECTOR 
PIF READ NEXT SECTOR TO EM 
PIG READ NEXT SECTOR (FIXED HEADS) 
PIH READ NEXT SECTOR (FIXED HEADS) TO EM 

PMA SEEK 
PMB NO EFFECT 
PMC NO EFFECT 
PMD CLEAR HEAD POSITIONS 
PME Undefined 
PMF SET TR IF END OF AREA 
PMG Director only 
PMH Director only 
PMK Undefined 
PML Undefined 

Page 292 



Drum (Director only) 

Instructions 

POA WRITE 
POB WRITE TO EM 
POC WRITE 
POD WRITE TO EM 
POE WRITE ZEROES 
POF WRITE ZEROES 
POG 

} POH Undefined 
POK 
POL 

PIA READ 
PIB READ TO El\4 
PIC READ 
PlD READ TO EM 
PIE READ 
PIF READ TO EM 
PIG READ 
PIH READ TO EM 

PMA LIV 
PMB NO EFFECT 
PMC NO EFFECT 
PMD LIV 
PME LIV 
PMF NO EFFECT 
PMG Dii-ector 
PMH Director 
PMK Undefined 
PML Undefined 

Page 293 



Graph Piotter (CALCOMP) 

Instructions 

POA PLOT 
POB PLOT TO EM 
POC CHARACTER PLOT 
POD CHARACTER PLOT TO EM 
POE NO EFFECT 
POF NO EFFECT 
POG 

l POH 
Undefined POK 

POL 

PIA LIV 
PIB LIV 
PIC LIV 
PID LIV 
PIE LIV 
PIF LIV 
PIG LIV 
PIH LIV 

PMA LIV 
PMB SET TR IF PLOTTER ATTACHED 
PMC NO EFFECT 
PMD LIV: 
PME LIV 
PMF NO EFFECT 
PMG Director only 
PMH Director only 
PMK Undefined 
PML Undefined 

Page 294 



8taDdard IIlterfaoe Buffer 

Instructions 

POA WRITE 
POD WRITE TO EM 
POC CHARACTER WRITE 
POD CHARACTER WRITE TO EM 
POE CHARACTER GAP 
POF WORD GAP 
POG 

} POH Undefined 
POK 
POL 

PIA READ 
PIB READ TO EM 
PIC CHARACTER READ 
pm CHARACTER READ TO EM 
PIE READ PARITY OFF 
PIF READ TO EM PARITY OFF 
PIG CHARACTER READ 
PIH CHARACTER READ TO EM 

PMA LIV 
PMB SET TR IF 8 CHANNEL SET 
PMC SET TR IF 8 CHANNEL SET 
PMD LW 
PME LIV 
PMF NO EFFECT 
PMG Director only 
PMH Director only 
PMK Undefined 
PML Undefined 

Page 2S1j 



a· OeDeral 
So far detailed use of the nexowrlter. paper tape reader and punch. magnetic 
tape unita and the line printer has been given ~ We shall now briefly refer to 
the other peripheral devices available for use on the KDF 9 system. 

3- Card Reader 
3·1 PriDciples of Operation The .card reader Ii! designed to read stand-
ard 80-c~lumn cards at an average rate of 600 cards per minute. The feed 
hopper in which the cards are loaded for input holds approximately 2000 cards, 
which are .stacked face down with the most significant column (Column 1) to
wards the reading head. There is a reject pocket into which cards are directed 
if a failure occurs. 

The reader interprets a column of a card as one six-bit character (when op
erated In the converted or al~hanumerlc mode), or two six-bit characters (when 
operated in the direct or binary mode). The resultant six-bit characters are 
stored away in the main store as for any other peripheral device. 

Elaborate checks in the reader Itself ensure that any mechanical mal-function 
is detected, and the reader stopped to enable the operator to take corrective 
action. 

8.2 The 80-column Punched Card The standard 80-column card is laid 
out with the columns numbered from 1 to 80 across the face of the card from 
left to right. The card also contains 12 rows, numbered Y,X, 0,1,2, .•• ,9 
from top to bottom. We can thus have 960 possible positions in which a hole 
can be punched, which can be referred to by co-ordinates, (e.g .. , 6/49 re
fers to a punching in column 6 of row 49. 

There are many different codes in use for punched cards. but the code known 
as "IBM 4-zone" Is one of the most popular and has been ad~ted as the basis 
for the code built Into KDF 9. If this code Is used, the alphanumeric mode of 
reading will automatically convert the card punchings into the 6-bit characters 
used for the on-line printer, before transferring them to the main store. 

(N.B. these are the same as normal case characters on paper tape.) 

If a non -standard code is used, the binary mode of reading should be used, 
and the bit patterns interpreted by the program. 

For the standard code, we require to produce 64 patterns (i. e., all combinations 
of 6 bits). It is possible to obtain 4096 combinations from the 12 rows in anyone 
card COII1ilUl, so a subset of 64 of these has been chosen for the standard set. Tl 
64 different card punching arrangements together with their KDF 9 eqUivalent 
are shown on the table at the end of this appendi'lt. There is no check that the 
configuration found on a card is valid, and any invalid configuration encountered 
will be converted to a 6-bit character. If Y and 0 or X and 0 are punched to
gether in one column the 0 punching is ignored. Similarly, if Y and X are 
punched together in a column the X punching is ignored. 

Page 296 



3'3 The Reading Mode As previously stated, the reader interprets a 
column of a card as one or two 6-bit characters according to the instruction 
spcc ilied by the programmer. 

In the binary Read Mode the reader inteprets a column as two characters and 
transfers the information without conversion. The 1st. character consists of 
the information read from rows Y to 3 inclusive and the 2nd consists of rQws 
4 to 9. Y and 4 are the most significant bits of the two characters. 

In the Alphanumeric Read Mode, the reader converts the information in a col
umn to one 6-bit character before performing the transfer. Each character 
is converted to the 6-bit KDF 9 code representation of the characters punched 
on the card. 

A read to E. M. may be specified by the programmer for either the binary or 
the alphanumeric mode, so that a transfer m,ay be terminated by an E.M. 
character in either mode. 

A single character read may also be specified for either mode, so that suc
cessive characters can be placed in the least significant character positions 
of successive main store words (Digits DO to 041 are set to zero). 

If any transfer ends part way through a card, the transfer will cease as re
quested but since the reader cannot stop with a card only partially read, the 
remaining information on the card will be lost. 

For a card transfer rate of 600 cards per minute the mean transfer rate for 
the Alphanumeric Read Mode is 800 characters per second, and 1600 charac
ters per second for the Binary Read Mode. The actual transfer rate when the 
columns are passing over the senSing station is 1400 and 2800 characters per 
second respectively. This discrepancy is due to the time lag between reading 
successive cards. 

After the conclusion of a transfer the drive motion of the card reader continues 
to run for approximately 7 seconds. The computer can therefore call for a 
further transfer in the 7 second period without having to wait for the drive motor 
to accelerate up to' speed. 

3'4 Card Reader Controllnatructions The card reader device number 
is obtained from Director by the instructions SET4;SET5;OUT; Deallocation 
is effected in the normal way via OUT6; with the device number in N2, 

In contrast to the Input/Output devices already conSidered, there is no specialised 
set of instructions for the card reader alone. The instructions for reading in
formation from punched cards into the main store are 

PIAQq; Binary Read: Puts 6 information bits Y -3 into 1st character po
sition, Puts 6 information bits 4-9 into 2nd character position 
etc. , 

Page 297 



PIBQq; 

PIBQq; 

PIDQq; 

PIEQq; 

PIFQq; 

PIGQq; 

Binary Read to End Message. 

Binary Character Read: Puts each charactcr into onc word. 

Binary Character Rcad to End Message. 

Alphanumeric Read: Looks at 12 bits in each column and 
forms the corresponding 6 bits charactcr in printcr codc 
and feeds them into the word charactcr at a time. 

Alphanumeric Read to End Mcssage. 

Alphanumeric Character Head. Puts cach character into 
one word. 

3·5 Checking Facilities on the Card Reader By using two reading 
stations placed a column apart, a column by column comparison is made 
bcforc thc information is transferred. Parity chccking within the computer is 
ignorcd. Thc action taken in the cvent of a failurc dcpcnds on the position of 
thc RECHECK switch. 

If the RECHECK switch is on, the reader will reject the failed card and stop. 

None of the information in the column at which the failure occurred or in sub
sequent columns of the card will be transferred. The operator may then re
place the card in the freed hopper, and it will be re-read, all columns pre
ceding the failed column being ignored. At the failed column the reader 
"rechecks" and if the comparison is good the transfer continues as usual, 
otherwise the above failure sequence is repeated. 

If the RECHECK switch is off and a failure occurs the failed card and all sub
sequent cards are rejected but the transfer is continued as normal. The 
failure is indicated by the illumination of the CHECK FAIL lamp on the reader, 
which is only reset by the computer after the instruction PARQq; The state of 
the RECHECK switch can be detected by the test instruction PMBQq; which sets 
the test re~ister if the recheck switch is off. 

4· Magnetic Drum 
There are no new user code instructions to be learned in connection with the 
drum, all communication with the drum being made through the Director via 
"OUT" instructions. It should be also emphasised that there is no possibility 
of "optimum programming" of the drum. 

The drum consists of 320 sections, each sector containing 128 KDF 9 48-bit 
words. Thus the total storage space is 320x128 ~ 40,960 words. The uses to 
which this storage space can be put full into 3 categories and accordingly the 
drum is considered to be divided into 3 parts:-

Page 298 



1. Permanent Program Space (PPS) 

I. Temporary Program Space (TPS) 

3. Data Space (OS) 

Any or all of these 3 parts may be absent (1.e., occupy no space or the drum) 
at any time. 

4'1 Permanent Program Space Programs to be stored in PPS will be 
called for by Director, along with the date, time and list of available peri
pheral devices. Director requires these immediately after it has becn read 
into the machine, before the first program of the day is run. Programs in 
PPS are thus intended for frequent use during the day, or during a long run, and 
they are permanent in the sense that they cannot be removed except by re
loading Director without them. Director uses a subroutine to load programs 
into PPS. 

,. 2 Temporary Program Space This will contain a series of programs 
to be called down in succession, or indepcndently compiled sections of a large 
program which could not be held completely in the main store. Programs for 
i,torage in TPS are loaded by means of a special loading subroutine, which is 
available in the KDF 9 library. Programs in TPS can be removed by loading 
!lew programs when TPS is 'cleared'. Here 'clearing' means that the spaee 
is made available for subsequent overwriting, not that zeros automatically 
overwrite the old TPS. 'Clearing' will occur after obeying aUTO, OUT2, 
typewriter interrupt A, or after termination following a program failure. 

4·3 Data Space Programmers may wish to use part of the drum for data 
storage. Before writing to or reserve Some of this space for his own use and 
no traI~sfer of data can occur until this reservation has been made. Further. 
such a reservation of data space can be made only once in a program. It 
should be noted that successor programs or sections called by OUT 1 cannot 
reserve additional data space, nor can they cancel or modify reservations made 
by their predecessor. Like TPS, DS can only be 'cleared' by obeying aUTO, 
OUT2 or as a result of termination by the operator of program failure. 

4· 4 Calling Program from the Drum Programs in PPS may be called 
to the core store and entered by thc same means as any other program by 
standard 'new program' action after termination by operator or by program 
failure, after OUTO or by obeying OUT 1. 

Programs in TPS can be called and entered by obeying OUT 1. If a, program 
is to be called from the drum, the 3rd character of the first word of the 
'A Block' must be "d" to indicate the source of the program. The maximum 
number of programs which may be stored on the drum is 16. 

All transfers of information t:> or from the drum are controlled by Director. 
All information about the drum, which may be required at run time is also 

Page 299 



obtained through Director. These functions are effected by the following 
'OUT' facililtes. 

4'5 OUT 14 At any time In a program a request may be made to dis
cover how many sectors are available for use on the drum. This is effected 
by the instructions SET14;OUT; No additional parameters are necessary. 
On returning to the Instruction following 'OUT' Nl contains the number of 
sectors available. If a reservation of data space has already been made (or 
been made by a predecessor program if the durrent program was called by 
OUT 1). Then DO of Nl w1l1 be 1 on return from OUT 14, although the number 
of sectors unused will st111 be In the least Significant part of Nl. 

The Test Register is also set on return from OUT 14. if a parity failure occurr
ed during the last read-from-drum operation. 

4' 8 OUT 13 Once and once only In a program maya reservation of data 
space be made. This is accomplished by obeying OUT 13, with N2 containing 
the number of sectors required. 

e.g. SET42; SET13; OUT; 

would reserve 42 (decimal) sectors, which the programmer can then address 
as sectors 0 - 41. 

It is possible to reserve a number of sectors computed at run time. The number 
of sectors available to a programmer at run-time may not be known to him, but 
he can check that his request is possible by using OUT 14. 

4-' OUT 12 This is a read-from-drum operation and reads from the 
drum Data Space. Thus the instructions SET12;OUT; to read from the data space 
may not be used until a DS reservation, using OUT 13; has been made. 

For an OUT 12 operation, N2 must contain a Q-type parameter of the form (1st 
sector number involved in the transfer)/L. C.A./H. C.A. 

The sector is the programmer's sector number, referring to his program's re
served area of DS. The numbering is from 0 to (n-1) where n sectors have been 
reserved. The low and high core ad~esses specify that part of main store 
which is to hold the information read from the drum. No core area other than 
this is altered. The 1st sector specified in the counter position of the para
meter in N2 will be written to the core area specified and further sectors Will 
be transferred if necessary until this core area is completely filled. 

Parity may be tested by OUT 14 after a read operation. If the read is still In 
progress when OUT 14 is obeyed, the program is not re-entered until the trans
fer is over; OUT 14 will set the test register if a parity failure occurred. 

4-8 OUT 11 The instructions SET ll;OUT; with a Q-type parameter In 
N2 as for OUT 12, allow the programmer to write information to the drum DB. 

Page 300 



Thus OUT 11 may not be used until a reservation of DS, by OUT 13, has been 
made. 

When OUT 11 is used, the core area specified will be written to the drum be
ginning at the 1st word of the specified sector and continuing into successive 
sectors if necessary until the whole of its core area specified has been trans
ferred. 

Any remaining part sector will then be filled with zeros, since writing cannot 
stop in the middle of a sector but only in the gaps between sectors. 

4' 9 OUT 15 This is used by the program-loading subroutine and Is 
mentioned only for completeness. Programmers wishing to load programs to 
the drum will normally be expected to use the Library Subroutine provided for 
this purpose. . 

4'10 Layout of Programs on the Dnun The diagram represents successive 
sectors in TPS or PPS. 

Sector No. s 

B 
Block H C1 I ~:~een 

...... ___ "-'L..-__ --I section 3 
\. 

'" 
First C Block 

Sector No. (s+l) Sector No. (s+2) 

I 

The program begins in Sector s. The B-block with its· filler word occupies the 
first eight words. The first C block will always be stared directly after the 
B-block on the drum. even though the filler word (see section 26· 3· 3 refiUer.;. 
words) may indicate that a gap is to be left in the core store between E7 and the 
first word of the C-block. 

The remaining .C-blocks will be stored consecutively in succeeding sectors, each 
C-Block starting at the beginning of a sector. AnyC-Block which occupies only 
a part of Ii. sector, or which 'spills over'into part of a sector will have the re
mainder of that sector written up with zeros. The next C-block will begin at the 
start of the next sector and so on. 

Although there is an inter-sector gap on the drum between sectors (e.g., between 
the two parts of Cl, the first C-block) the parts arecoiltinuous when brought 
down into the core store. Any gap which may occur in the core store between 
successive C-blocks is determined only by the appropriate filler word, Thus the 
gap between Cl and C2inthe cOre store is determined by Fl and the shaded area 
bears no relationship to this gap in the core store. The shaded areas merely 
illustrate the filling up of the paria11y filled sectors with zeros. 

Page 301 



Each pl'Ogram block i. e., the B-block and 1st C -Block together, followed by 
further individual C-Blocks, is written to the drum using OUT 15. This re
quircs in N2 thc core address (relative to EO) at which the program starts - it 
docs not require the final address or the sector number. The final address is 
determined by the last filler word. whilst Director itself determines the sector 
number. It should be noted that when a program block is to be written to the 
drum by OUT 15, it does not have to be stored in the same part of the core store 
which it would occupy when brought back from th(; drum. (Where the term 
"program" is mentioned in connection with OUT 15 it is understood to be the 
compiled version of that program - similar to the "on tape" schedule in 
section 26' 3· 2). 

When the first block of a program is stored on the drum, OUT 15 will check 
that its :lrd and 4th words, co.ntain a proper program name, and will insert the 
letter '0' as the:lrd character oIthe first of these two words. OUT 15 will not 
assume that a program has been completely written to the drum until it has 
written a C-block which follows a filler word with zeros in 00-015. Until the 
program is completely written no magnetic drum OUT. except OUT 15 may be 
used. Once OUT 13 has been used. OUT 15 may not be used again. Thus the 
reservation of data space prevents the further expansion of TPS. 

4·11 Fatlures Any logical failures will cause Director to terminate the 
program. Examples are:-

1. A negative sector number 

2. L.C.A. greater than H.C.A. 

3. Attempting to reserve more sectors than are available. 

5· Grapb Plotter 
5'1 General There are four models of the graph plotter available for 
use on KDF 9 which from the programmer's standpoint have the following details. 

-
Model Number 563 564 565 566 

Plotting Length 120ft. 120ft. 120ft. 120ft. 

Plotting Width 29~ins. 29~ins. 11ins. 11ins. 

Step size O' 011ns. 0·005in5. O· Olins. O· 005ins. 

Pen Speed:Raise 
or Lower 10/sec 10/sec. 10/sec. 10/sec. 

: Plotting 200/sec 200/sec. 200/sec. 200/sec. 

Plain or pre-printed (e. g., graph) paper is available. 

Page 302 



The plotter holds up to 120ft. of paper so that many curves may be drawn betweeJI 
successivere-Ioading of the device. There are sprocket holes down both sides 
of the paper to facilitate accurate positioning. There are no perforations nor 
any other phusical divisions across the paper, so it would be possible to use the 
entire paper supply for one continuous picture. 

Papcr is fed from a supply reel, over a drum, and onto a take-up reel. The 
paper may also be allowed to hang over the tront so that the graph or figure 
drawn may be seen. Above the drum, on guides parallel to the drum axis, runs 
a carriage upon which rides a pen. The pen may be lowered onto the paper or 
raised from it. The pen carriage may be moved across the paper, but not along 
it. Very small paper feed movements are possible. When the pen is lowered, 
drawing is achieved by combining pen carriage movement and paper feed. 

Paper feed may take place in either direction as required, which is a most 
useful feature of this type of plotter and one which makes it fundamentally 
different from other output devices, e. g., a line printer. 

5· 2 Princlples of Control The plotter is a digital incremental plotter, 
L c .. commands for pen carriage movement and paper feed are of the type 
"move a single step from the present pOSition" . 

The step size is fixed for anyone model of the plotter, and is the same sIze for 
paper feed and for pen carriage movement. 

A single command may be used to achieve either paper feed; or pen carriage 
movement, or simultaneous paper and pen carriage motion thus giVing a true 
diagonal movement of the pen across the paper. 

Hence when the pen is lowered, one plotter command may draw a (Short) line 
in anyone of eight standard directions each separated by 4$~ (N. B. a "diagonal" 
command produces a line of 12 times the step size quoted for the model.· The 
thickness of the line drawn is of the game order as the step size so that virt
ually a pure curve may be drawn. 

Thge plotter is connected to KDF 9 via an eight hole paper tape punch buffer. 
A switch is provided to connect the buffer to either the paper tape punch or the 
plotter. If the switch is set to the plotter the instruction PMBQq;(where Cq 
contains the device number) will set the test register. 

Commands to the plotter consist of 6 bits. Since this is the same Size as char
acters sentout to other KDF 9 peripherals, plotter commands can be sent out 
in thenormal manner using the instruction POAQq; (Cq has device number, Iq 
and Mq have the low and high core addresses. respectively). EM(75S) will cause 
a peculiar pen movement and will not terminate a transfer, 

5·3 Plotter Commands The eleven types of command which may be sent 
to the plotter and their effects. are listed below .No other characters may be 
output to the plotter since the effect is unpredictable. 

Page 303 



Command Code 

000 000 Dummy-no effect. 

100 000 Pen raise. 

010 000 Pen lower. 

001 000 Move pen carriage left (+Y). 

000 100 Move pen carriage right (-Y). 

000 010 Feed paper forward (+X). 

000 001 Feed paper back (-X). 

001 010 + Y and +X together } 001 001 -Y and -X together 
true diagonal 

6· 4 Use of Algol The plotting of graphs 1s slow, being 200 commands 
per second, consequently it is recommended that commands should be output 
to an "off-line" magnetic tape for subsequent plotting. 

There are organisation difficulties to be overcome when using the plotter, e. g. , 
ensuring that one graph does not extend so far as to overlap the previous one on 
the paper. To prevent such calamities it 1s recommended that the plotter is only 
used with "KDF 9 Algol". For detailed usage the reader is referred to "KDF 9 
Graph Plotter Users Manual" . 

6- The KDF 9 Disc FUe - Ueers Descrtpttoa 
6-1 Physical Properties The KDF 9 Disc file Unit contains a number of 
magnetically coated discs (31" diameter) mounted on a vertical common shaft, 
rotating at 1000 r.p.m. There are 16 discs in the unit for storage, plus a baffle 
disc at top and bottom used for control purposes. Information is stored in 
circular tracks on both sides of the storage discs. 

Access to the recording surfaces is by means of rigid sets of read/write heads 
mounted on movable positioners. There is one positioner for each disc. Each 
pOSitioner carries 8 read/write heads, 4 above and 4 below the disc, thus allow
ing 8 tracks on a disc to be accessed without moving the positioner _ The po
sitioner can be moved into anyone of 64 positions thus giving 512 tracks on each 
disc. 

In order to reduce the effects of the large differences in the speed of the disc 
surface between the innermost track and the outermost track, the disc surface 
is divided into tw zones, an inner and an outer. There are equal numbers of 
tracks in each zone. 

Each track is divided into distinct sectors; there are 16 sectors in an outer zone 
track and 8 sectors in an inner zone track. 

Each sector will contain 40 KDF 9 words, and is preceded by an address header 
to identify the sector. 

Page 304 



The storage capacity is therefore organised as follows: 

1 Sector = 40 worus 
1 Inner track ~ H sectors = 320 words 
1 Outer track = H; sectors = 640 words 
1 Position = 4 outer tracks + 4 inner tracks = 3840 words 
1 Disc = 64 positions = 245,760 words 
1 Disc file = 16 discs = 3,9432,160 words 

Transfer qf information to the disc is in multiples of 40 words (1 sector), any 
unused part of a sector being written with zero words. Transfer from the disc 
is also in units of 1 sector. and will cease when the area of /llain store given in 
the usual way via a Q store is filled. It is not possible to move the positioner 

during a transfer: the largest block of information transferable is therefore 
640 words. 

The disc file is a restricted device (as it is shared by all levels in a time
sharing machine) and access can only be obtained via the Director program, 
using a set of OUT instructions. 

The speed of 100 r.p.m. gives approximate transfer rates of:

Outer zone 85,000 characters/sec (10,600 words) 
Inner zone 42, 000 characters/sec (5,300 words) 

The time to move a positioner varies, dependent on actual movement, but 
average figures are:-

Access record in adjacent track 
Access any record 
worst case access time 

156 miUisecs 
231 millisecs 
367· 5 millisecs. 

6· 2 Users Aspects From the user's point of view, it is essential that he 
should have control over the movement of the positioners to allow some measure 
of optimum usage. Director therefore allocates space on the disc file to a user 
in units of complete discs, up to a maximum of 8 for one program. As the 
16 positioners move independently one of the other, there is no inter-action 
between two separate programs. 

To minimise the movement of the positioners, it is better to use what is known 
as "cylindrical addressing" over several discs rather than to use the discs in 
serial order. The cylindrical addressing technique involves working down 
from one disc to the next with all the positioners in similar positions until all 
discs allocated have been used: then all positioners are moved to the next cyl
inder. 

To reduce the effort required on the part of the user, the concept of "logical 
blocks" is introduced. The program claims a set of discs, and thereaftcr 
refers to the logical block by number. Director translateR the number into the 

Page 305 



actual disc address before initiating the transfer. For each logical block, a 
record is kept by Director of whether any part of it has been written to: if 
an attempt is made to read from a logical block that has never been written, 
Director will give a failure without having to read an unwritten area. It is not 
possible to keep this check at sector level, so the writing of part of .a logical 
block will allow the subsequent reading of any or all parts of it, with a risk 
of a catastrophic parity error. It is advisable to use the disc only in units of 
logical blocks to reduce this possibility. 

The numbering of logical blocks is in the order:-

0-3 First disc, outer zone 
4-5 First diSC, inner zone 
6-9 Second disc, outer zone 
10-11 Second diSC, inner zone 
12-15 Third diSC, outer zone etc. 

The positioners start from the outermost track. 

The relationship between logical block number (b), position (p), disc used (d) 
and head used (h) for a set of D discs are:-

...!L gives p (integer quotient) 
6D 

r 
6 

+r (integer remainder) 

gives d (integer quotient) 
+h (integer remainder) 

If 0 .,; h .,; 3, an outer zone head is used 
If 4 .,; h .,; 5, an inner zone head is used 

Each logical block is divided into 16 sectors of 40 words each. Any transfer can 
specify any sector as the starting point, provided the transfer does not extend 
beyol'.d sector 15. As the length of the transfer is specified in the usual way (low 
and high addresses in a Q store format word) there is a relationship between the 
starting sector and the addresses. 

For a valid transfer, 

Start sector no. E; 16 - (high address -low address + 1)/40 

1. e. There are 6 logical blocks for each position 
384 logical blocks on each disc. 

6· 3 Claiming of Discs - OUT 44 Any users may at any time have two sets 
of discs allocated to his program, providing the total number of discs allocat(ld 
to a single program at any time does not exceed 8. The two sets are known as:-

(a) the FIRST set - that which was claimed earliest 

(b) the SECOND Bet - that which was claimed latest. 

Page 306 



Note that the subsequent de allocation of the first set will promote the other. 

Discs are claimed using OUT 44; 1. e .• by obeying the instruction OUT when:

N1 contains the integer + 44 

N2 contains the integer n (to claim n discs) 

The integers in Nl - N2 will be removed by Director whilst obeying the OUT; 
instruction. 

The sequence of instructions:-

SET + 5; SET<- '14; OUT; SET + 3; SET + 44; OUT; 

will claim 2 sets of discs. the FIRST has 5 discs and the SECOND has 3 discs. 

6·4 Deallocation of Discs - OUT 45 Discs can only be deallocated in 
SETS: the integer placed in N defines which set is to be deallocated. 

Deallocation is performed by OUT 34, i.e .• by obeying the instruction OUT: 
when: 

N1 contains the integer 45 
N2 contains wither zero to deallocate the FIRST set or the negative integer -1 
to deallocate the SECOND set. 

The integers in N1 and N2 will be removed by Director whilst obeying the OUT; 
instruction. 

Note that deallocating the FIRST set promotes the SECOND set: since only one 
set is now allocated, it becomes the FIRST in all subsequent operations. 

A failure will occur if an attempt is made to deallocate a set of discs not pre
viously claimed by OUT 44. 

6· 5 Select Disc Set - OUT 43 Any transfer to or from a disc does not in 
itself define which of the two possible sets is the correct one to use. OUT 43 is d 
designed to define which set is currently used. 

The instruction OUT: when 

N1 contains the integer + 43 
N2 contains either zero for the FIRST set or the negative integer -1 for the 
SECOND set. 

defines which set of discs is to be used for all data transfers until a further 
selection is made. 

The instructions:-

ZERO; SET + 43; OUT; 
prime Director to use the FIRST set of discs until furtbC'r notice. The integers 
in N1 and N2 will be removed by Director whilst obeying OUT; 

Page 301 



Director is initially primed to use the FIRST disc set; if thi.s Is the only set 
claimed, there Is no need to use the Select option, but an unnecessary use will 
not cause a.failure. 

6- 6 Write Data toDiso - OUT 41 The maxlmuPl sIZe of transfer permitted is 
640 words (1 logical block), .and this Implies starting at sector zero. If the start 
is not at sector zero, the size Is reduced by 40 words for each missing sector. 
In the general case, for a start at sector S where O<e;S Ea5. 

Block length <e;40 (16-8) words 

The write is performedby obeying the instruction OUT; when:

Nl contains the integer + 41. 
N2 contains the parameter word 

The parameter word (basically in Q store format) contains 

DO-l1: logical blQck number 
DI2-15: Starthlg sector number within block 
(these two share the COUNTER part in Q store format) 
BI6-31: lower address of main store (Increment) 
D32-47: Higher address of miiin store (Modifier) 

Note: Counter = 16x(logiQalblock number) + starting sector no. 

Disc must be claimed using OUT 44, before this instructions is obeyed. 

If the main store area defined is not a multiple of 40 words, the remaining part 
of the partly filled sectOr will be fUled with zero words. 

A failure w1ll occur if the transfer.will extend beyond Bector 15. 

Example YO = Q 86/AYO/AY63; 

SET + 1; SET + 44; OUT; SET + 1; SET +44; OUT; 
SET -1; SET + 43; OUT; 
YO; SET + 41; OUT; 

This will:,.. 

(a) Claim 2 sets of discs ·(1 disc only per set) 

(b) Select SECOND set 

(0) Write YO-63 to sectors 6 'and 7 of logical block 5 on disc set 2, and pad out 
with 16 zero words (86 = 5 x 16 + 6). 

6' 7 Read Data from Dlso - OUT 411 The mBldmuJJi size of transfer per-
mitted is 640 (1 lOgical block.) and this implies starting at sector zero. If the 
start is not at secitorzero. the maximum length Is reduced by 40 words for each 

Page 308 

:'.: 



missing sector. In the general case, for a start at sector S where 0 S 15 

Block length .,;40 (16 - S) words 

A rcad is pcrformed by obeying the instruction OUT; when: 

Nl contains the integer + 42 
N2 contains the paramcter word 

Thc parameter word (basically in Q store format) contains:

DO-ll: logical block number 
DI2-15: Starting sector number within block 
(these two share the COUNTER part in Q store format) 
DI6-31: lower address in main store (Increment) 
D32-47: Higher address in main store (Modifier) 

Note: Counter = 16 x (logical block number) + starting sector number. 

Director will check that the number of words requested (high address - low 
address + 1) does not extend byond the end of sector 15 of the logical block: 
a failure will result before readin the disc if this check fails. 

A catastrophic disc parity failure in Director is liable to occur if an attempt is 
made to read a sector that has not been written by the program concerned. 

Out 44 must have been used to claim a disc before OUT 42 is obeyed. 

Example 
VO = Q80/AYO/AY639; 
VI =Q86/AY128/AYI69; 

SET + 1; SET + 44; OUT; 
VO; SET 41; OUT; 
VI; SET + 42; OUT; 

This will: 

(a) claim 1 disc for the first set 

(b) Director assumes FIRST set in the absence of specific directives 

(e) Write 640 words to logical block 5. 

N. B. The programmer nevcr knows which actual disc(s) have been allocated to 
him. Therefore, he eaIlllOt assume anything concerning the information he will 
find there. This means that, once a logical block has been written, any sector in 
it is available for reading or writing only until the disc containing the logical 
block is deallocated. 

(d) Read 42 words from sectors 6-7 of logical block 5: the remaining 38 \\'ords 
of sector 7 will not be transferred. 

Page 30!) 



6· 8 Write Programs to Temporary Program Space on Disc - OUT 46 
This will write a single program block to a suitable place on the FIRST set 
of discs claimed by the program. One set of discs must be claimed before 
atteml>ting to write p.rograms, but the read, write or select options (OUT 41, 
42 or 43) must NOT be used prior to any use of this facility. The space avail
able for programs is closed immediately a read, write or select operation is 
initiatcd. 

The program is assumed to be in standard binary format - a B block of 8 
words with a standard filler word in word 8, and one or more C blocks with 
fillcr words in the last word of all except the last (just as on paper tape). 

The first occurrence of OUT 46 is assumed to relate to a B block: this is 
written to the disc, and the filler word remembered, to allow Director to 
compute the length of the next C block. 

The next occurrence of OUT 46 is a C block: Director already knows its length. 
and whether it is the last C block or not (from the previous filler word), so it is 
written, starting on a sector boundary. 

Note: that for all C blocks, ONE SPARE WORD is required by Director pre
ceding the block: this will be changed in the Program area by Director. 

The parameter for OUT 46 is the address of this spare word: it should NOT 
however be included in the block defined by the filler words, as it will not 
appear when the program is subsequently loaded. 

Note that the filler words relate to the location of the program when it is sub
sequently loaded: the parameter for OUT 46 relates to the current location 
which may be different. 

The instruction OUT; obeyed when:

N1 contains the integer + 46 
N2 contains a store address 

will: -

(a) on first occurrence, or on the occurrence following the writing of the last 
C block of the previous program (defined by marker in filler word), write a B 
block of 8 words starting from the location specified in N2, and use the. 8th word 
as the next filler. 

(b) on other occurrences, write a block of length (final address) - (initial add
ress) + 2 words starting from the location specified in N2. The initial and final 
addresses are obtained from the filler word of the previous block: the last word 
written is assumed to be filler word for the next block, unless this is the last 
C block of the program. 

The integers in N1, N2 will be removed by Director whilst obeying OUT 46. 

Page 310 



Note that the maximum length of a C block is limited to:

(a) For first C block - 3758 + 1 (filler) + 1 (spare) 

(b) For last C block - 3839 + 1 (spare) 

(c) For other C blocks - 3838 + 1 (filler) + 1 (spare). 

For cfficient use of disc space, the maximum size possible should be used. 
Each C block written will then occupy 6 logical sectors -the reduced size of 
the first C block allows space for the B block and some control information used 
by Director. Thus if N program C blocks are written to the disc, using the rules 
given above, 6N logical sectors will be occupied. 

The program will then have 384D-6N logical blocks left for data, on a set of D 
discs. 

Howcver, to make data transfers easier, the block called logical block ·zero by 
the program will be stored following the program space: a correction factor 
will be added by Director to put logical block zero into the next available po
sition, that is an exact multiple of 6, to make the timings still predictable. The 
only problem left for the user is to ensure that the number of logical blocks used 
does not exceed the limit given above. 

It is possible to read the program back from this disc using data transfers - the 
adjustment to logical block numbers makes it impossible. However, an OUT 1; 
instruction to Director, with the program identifier having a U in the third char
acter position (U = User program) will cause a program in temporary program 
space to be loaded and entered. 

When the program that loaded other programs to the disc using OUT 46, or any 
of its logical successors called in by OUT 1, terminate via OUT 0 or by a fail
ure termination, the temporary pl"ogram space is deallocated, and will not be 
available to any other program. 

Page 311 



Table for calculatlDg addresses for OUT 46 

First Block General Last Block Example 
(problem below) 

No. of words to write 
L. L L L 8183 4425 587 

First word used at E E E E 8 3766 7604 

First word now at Y Y Y Y 1 3759 7597 

Filler address (low) E E E 8 3766 7604 

Filler address (high) E+ 3758 E + 3838 E + L -1 3766 7604 8190 

Final word written/block Y + 3758 Y + 3838 Y + L-1 3759 7597 8183 

Parameter address Y -1 Y -1 Y -1 0 3758 7596 

Next L L - 3758 L-3S38 0 4425 587 0 

Next E E + 3758 E + 3838 - 3766 7604 

NextY Y + 3758 . Y + 3838 - 3759 7597 

Notes: L is the number of words of program still to write at each stage 
E is the address to be occupied by the next word to be written when the program 
is obeyed 
Y is the address currently occupied by the next word to be written 
Filler addresses are those to go in increment and modifier pOSitions of filler 
word. 
Parameter address is the address required in N2 for OUT 46 - the spare word 
for Director use. 
Final word written is the one that is to contain the filler word (it will require 
special treatment). 

Example (refer to example in table above) 
A program is in store, with its B-block in locations YBO to YB7, and the body 
in locations Y1 toY8183. 

It is required to write this to the disc, with fillers to put the body into locations 
E8 to E8190 (the B block must as always go to EO to E7). 

VO 
VI 
V2 

Q - 1/8/3766; 
Q - 1/3766/7604; 
Q 0/7604/8190; 

SET + 1; SET + 44; OUT; 
VO; = YB7; 
SETAYBO; SET + 46; OUT; 
Y 3759; 
VI; = Y3759; 

Page 312 

first filler, 3759 words 
second filler, 3839 words 
third filler, 587 words 

claim disc set. 
store filler for first C block 
writeB block 
preserve word of program 
replace by second filler 



SET AYO; SET+46; OUT; 
= Y3759; 

write first C block 
replace program word 
preserve word of program 
replace by third filler 
write second C block 
replace program word 
write last C block 

Y7597; 
V2; = Y7597; 
SET AY 3758; SET + 46; OUT; 
=Y.7597; 
SET AY 7596; SET + 46; OUT; 
SERa; SET + 4:l; OUT; close program space. 

7· 
TLOQq; 

Miscellaneous Instructions relating ta Input/Output 

BUSYQq; 

INTQq; 

MANUALQq; 

Will cause the Test Register to be set if any part of the 
area of main store area defined, as usual, by the incre
ment and modifier positions of Qq, is locked out. The 
counter of Qq is ignored. 

will cause the Test Regist'!r to be set if the device spec
ified in the counter position of Qq is still busy. This can 
be useful to the programmer. enabling him to program 
to perform other operations until the device is once 
again available. 

(called "interrupt if busY" is intended for time-sharing 
machines only), causes Director to be entered (thus 
allowing a lower level program to be obeyed) if the de
vice specified in the counter position of Qq is busy, but 
on return to the program does NOT try to obey the same 
instruction again. The program will continue when any 
one of its devices ceases to be busy. As it moves to the 
next instruction, all devices can again be inspected using 
BUSY to find which to use next. 

An example of BUSY and INT where the program uses 
three devices is 

1. BUSYQl; J2TR; (PRINT)Ql; 
2. BUSYQ2; J3TR; (PRINT)Q2; 
3. INTQ3; JlTR; (PRINT)Q3; 

In this arrangement if devices Cl, C2, C3 are all in use 
then after INTQ3 Director is interrupted and another pro
gram until ANYone of Cl, C2 C3 are free when control 
returns to this program and JlTR is obeyed. 

sets the device whose number is in the counter of Qq into 
an already state (i. e., under operator control), which 
prevents ANY further operation on that device from start
ing until manual reset. It does not, however, stop an 
operation already started. 

Page 313 



8· POEQq and POFQq (MGAPQq II MWIPEQq) OIl 1081 Mapetlo Tape 
DeckaONLY 
These rules do NOT apply on the other taypes of tape desk. 

It may sometimes be essential to overwirte one block on a magentic tape during 
an updating sequence, rather thaD rewrite the complete tape. This is possible 
provided the tape originally written in a form to allow overwriting" and certain 
rules are obeyed. The derivation of these rules involves many factors.in the 
engineering of the tape system - they will only be stated here without any attempt 
to justify them. 

The two instructions required if overwriting is to be possible are: 

MWlPEQq; Write a gap on tape equivalent in length to a blOck of m 
words, when m is given in the modifier of Qq. Over
writes previous contents of tape. 

MGAPQq; As for MWlPE but the erase will stop BEFORE the tape 
stops, thus complete removal of previous information is 
not possible. For this reason the tape MUST always stop 
in a gap previously made using MWIPE. 

Anunchangtng rule for the use of these instructions is "Use MWlPE only when 
first writing a tape, use MGAP in all subsequent overwriting instructions" . 

The lengths of the gap required are functions of the mechanical features of the 
tape system are also of the length of the block being overwritten. The values to 
be used are:-

g = O'llB+8 

G= 3g+60 

Where g is the gap for MGAP 
G is the gap for MWIPE 
B is the block length in words. 

It should also be noted that overwriting of every block on a tape is not allowable: 
a sentinel block (of any length) must be written before each .block that may be 
overwritten, to provide a reference point from which to start the overwriting 
operation. Such sentinel blocks can with profit contain a block number, to ensure 
that the correct block is about' to be overwritten. 

The normal sequence of events fOl" overwriting a tape (ignoring all checks etc. 
for the purpose of illustration) is:-

(a) First writiDg: 
MWQq 
MWQq; 
MWlPEQq; 

Page 314 

write fixed sentinel block 
write block for subsequent overwriting 
write gap of (3g+60) words 



(b) 8ub8eqUeDt oVerwrlttDg: 
MFRQq: read sentinel block to check position 
MWQq; overwrite block 
MGAPQq; write gap of g words. 

If the block to be overwritten is the first on the tape (i.e .• the label block of 
up to 16 words). the values used may vary to allow for the increased delay on 
writing from BTC. 

The sequences are:-

(I) Write label (for Bubsequent overwriting) before writing new tape 
MRWDQq; rewind tape 
MWQq; write label 
MWlPEQq; write initial gap of 526 words 

(b) Bead exl8ttDg label. leave space for overwriting tIleD write reset of tape 
MBWDQq; rewind tape 
MFBQq: read label (or skip over it) 
MWlPEQq: write gap of 542 words. 

(0) Overwrtte label wttbout rewrittDgtape 
MRWDQq: rewind tape 
MWQq: overwrite label 
MGAPQq: write gap of 232 words. 

The programmer is advised. 

<a) not to use these two instructions if there is the possibillty that his magnetic 
tape may not always be run on 11)81 deck. 

and 

(b) to only use them if the effect cannot be obtained by other instructions. 

e- Other Devtoea 
Programming details for the other peripheral devices will be included in this 
appendix at a later date. 

Page 315 





APPENDIX 7 PROGRAMMING FOR TM 4 ON KDF 9 

1· I. B. M. Magnetic tapes are of two types. binary tapes which are 
written with ODD parity and alpha-numeric tapes which are written with 
EVEN parity. 

1'1 Binary tapes are recorded and read using the following instructions:-
(ODD parity) 

1'1'1 Forward Read MFRQq PIAQq 124 2q. 0 

1·1·2 Backward Read MBRQq PIEQq 126 2q. 0 

1·1'3 Write MWQq POAQq 130 2q. 0 

1·1'4 Write Tape Mark MLWQq POCQq 130 (2q+1). 0 

1'1'5 Forward Skip MFSKQq PMAQq 1342q. 0 

1'1'6 Backward Skip MBSKQq PMEQq 136 2q. 0 

1·2 Alpha-numeric tapes are recorded and read using the following 
instructions:- (EVEN parity) 

1·2·1 Forward Read "to Group Mark" MFREQq PIBQq 1252q. 0 

1'2-2 Backward Read "to Group Mr.rk" MBREQq PIFQq 127 2q. 0 

1,2-3 Write GROUP MARK MWEQq POBQq 1312q. 0 

1·2·4 Write Tape Mark TAPE MARK MLWEQq PODQq 131 (2q+1). 0 

1,2-5 Forward Skip Even Parity PMKQq 134 2q. 4 

1·2'6 Backward Skip Even Parity PMLQq 136 2q. 4 

1'3 The Erase. Rewind and Test instructions are identical for both types 
of tape and are identical to - and have the same effect as - the KDF 9 1081 
tape system. 

2· The I.B.M. Tape Mark is a one character block. the character being 
17 (8) with even or odd parity as appropriate. 

2'1 This is produced by the user code Write Last Block instruction. 
The Q store specified must contain the device address and an initial and 
final address. The initial and final address have no significance but must 
be present; they may conveniently be those relating to a previous transfer. 

2· 2 The tape mark is reacl as a black and overwrites the first word of the 
main store as specified by the initial address. 

2-3 The instruction MLBQq (PMCQq) test for the tape mark having 
been read in the forward direction only. Tape marks are not read in the 
reverse direction. 

Page 317 



3· The I.B.M. Group Mark (character 77(8» terminates alpha-numeric 
transfers (EVEN Parity) in a manner analogous to the KDF 9 End Message 
character. 

3'1 On I.B.M. systems the group mark is not physically recorded. It 
is in fact only a character marker within the main store defining the end of the 
transfer area. This is unlike the KDF 9 End Message termination of alpha
numeric transfers since in the latter case the end IIJessage character is actually 
recorded. 

As a result, EVEN Parity tapes produced on the I.B.M. SYSTEM (1401 - 7090 -
Stretch) if written to Group Mark will contain any number of characters, not 
necessarily modulo eight characters. 

3' 2 When writing even parity tapes via. KDF 9/TM 4 using the 
instruction MWEQq the character 77(8) which is the I.B.M. Group mark 
(held in store to define the transfer area) will terminate the transfer when the 
last character of the word contaningthe group mark character has been 
recorded on tape. (N. B. Unlike I. B. M. systems which do not record the 
group mark). 

4· In I.B.M. 1401 Systems it is not possible to write other than 
immediately following a previous write operation. It is possible however to 
do this on KDF 9/TM 4 providing provision has been made after the previous 
write instruction. A length of tape must be erased using the User Code 
instruction MWIPEQq after the last block written. Back skipping (or reading) 
followed by a forward (re) read of the last recorded block will permit further 
recording. 

A one-word length of erased tape is sufficient. 

5' It should be noted that the instruction MLWQq and MLWEQq produce 
a one-character block which must be recorded with the correct lateral parity, 
MLWQq for binary (odd parity) tapes and MLWEQq for alpha-numeric (even 
parity) tapes. 

Note: Any such data interchanges between magnetic tapes for different 
computers must conform to the standards as laid down in ECMA5. 

Page 318 



NOTES 



NOTES 


