

ALGOL 60
IMPLEMENT ATION

Also in the series

A.P.LC. Studies in Data Processing
(General Editor: Richard Goodman)

No.1

Some Commercial Autocodes

A COMPARATIVE STUDY

E. L. Willey
Marion Tribe

by

Michelle Clark

No.2

A. d'Agapeyeff
B. J. Gibbens

A Primer of ALGOL 60 Programming

by

E. W. Dijkstra
Together with a Report on

the Algorithmic Language ALGOL 60

No.3

Input Lauguage
for Automatic Programming Systems

by

A. P. Yershov G. 1. Kozhukhin
U. M. Voloshin

No.4

Introduction to System Programming

Edited by

Peter Wegner

A.P.1. C. Studies in Data Processing
No.5

ALGOL 60
IMPLEMENTATION

The Translation and Use
of ALGOL 60 Programs on a Computer

by
B. RANDELL and L. J. RUSSELL

with a Foreword by
E. W. DIJKSTRA

Published for

THE AUTOMATIC PROGRAMMING INFORMATION CENTRE
Brighton College of Technology, England

by

1964
ACADEMIC PRESS

LONDON AND NEW YORK

ACADEMIC PRESS INC. (LONDON) LTD.

Berkeley Square House

Berkeley Square

London W.l

u.S. Edition published by

ACADEMIC PRESS INC.

111 Fifth Avenue

New York 3, New York

Copyright © 1964 by the Automatic Programming
Information Centre, England

To
E.R. and M.A.R.

Library of Congress Catalog Card No. 63-23326

PRINTED IN GREAT BRITAIN BY

WILLMER BROTHERS AND HARAM LTD.

BIRKENHEAD

Foreword

I am very happy that the authors of tbis book have been so kind as to ask
me to write a foreword to it, because the presence of their manuscript on my
desk relieves my somewhat guilty conscience in more than one way.

Accidental circumstances made me play some role in the initial stages of
th(!.t part of their work to wbich they refer as 'the Whetstone Compiler', a fact
wbich I should regret forever if their acquaintance with our solutions would
have withheld them from looking for better ones themselves. The manuscript
of tbis book, however, has convinced me that there is no reason for such
regret. On the contrary: both the structure of the object program and the
structure of the translator are of such an illuminating perspicuity that one
can only be grateful when one's earlier work has been allowed to act as source
of inspiration.

The second reason for my guilty conscience is related to the book itself.
When they were urged to write it they were so imprudent as to ask my advice,
whether I thought that they could write such a book, whether there was a
point in trying it, etc. Impressed by the clarity of their previous writings I
answered in a most encouraging and confirmative way, all the time aware of
the fact that the preparation of a manuscript like tbis would be a tremendous
task. The production of a piece of mathematical writing is always a consider
able task wbich puts great demands on one's accuracy and ability to be con
cise but not obscure. Algorithmic translators, however, are hardly a standard
subject of scientific publications, and the authors, who had to create a con
siderable portion of their 'metalanguage' to describe their subject, must have
suffered greatly from tbis lack of a tradition. But the bigh degree of read
.ability of their product, I am happy to say, removes one more burden from
,my conscience.

I am very glad that tbis manuscript has been finished and that it will be
:published in book form. As far as the latter is concerned I should like to add
'and the sooner the better', because I tbink its publication to be very im
portant. In the Preface the authors express their hope that their 'attempt at a
description of the problems of implementing a language such as ALGOL on
present-day computers will be of interest to the designers both of program
ming languages and computers.' I should like to use my present privileges to
point out that I think tbis hope - all appreciation for understatements in
cluded - too modest. Of course I hope that it 'will be of interest' but I hope
much more. For most of the difficulties met during translation can be traced
down to a single source, viz. either an awkward feature of the language or
an awkward feature of the machine. Now I hope that we all agree that there
is no point in imposing unnecessary burdens on the translator or its compos-

FOREWORD

ers. On the contrary they make translators unnecessarily expensive to con
struct, unnecessarily expensive to run and, worst of all, they tend to affect the
reliability and trustworthiness of the whole system. If we agree on this, the
art of language designing becomes the art of designing a powerful and
systematic language primarily from those elements which can be processed
elegantly by a translator - and this book shows that this set is certainly not
empty - and the art of machine designing becomes the art of building-in such
features that can be used by a translator in a neat and orderly way - and the
Control Routine described in this book shows some of these features. Many
of the signposts along the road to improvement in the computer field are set
by the experiences gained by the implementors. And as this improvement is
very dear to my heart I can only end by wishing this book a wide circulation
and an intelligent audience that will not fail to hear its message.

Technological University
Eindhoven, Netherlands
October 1963 EDSGER W. DUKSTRA

Preface

Our main intention in writing this book has been to present a full description
of an ALGOL 60 Compiler, originally developed for the English Electric
KDF9 Computer. In fact the information contained in this book has already
been used in order to produce similar compilers for three other computers,
a Ferranti PEGASUS, ACE at the National Physical Laboratory, and an
English Electric DEUCE.

We have attempted in the description of the compiler to give the reasons
for choosing the particular techniques that we have used, and in certain cases
to describe possible alternative techniques; furthermore, in order to place our
compiler in a proper perspective, we have included a short survey of the
various published descriptions of other ALGOL Compilers and translation
techniques. By these means it is hoped that a reader who wishes to imple
ment ALGOL on a computer will be able to evaluate the various possible
techniques, and perhaps to take and develop any of the techniques that he
might consider to be suited to his own requirements.

It is further hoped that the book will be of use to readers with a more general
interest in computers and automatic programming systems - in particular
that our attempt at a description of the problems of implementing a language
such as ALGOL on present-day computers will be of interest to the designers
both of programming languages and computers.

The writing of this book has been a very enjoyable though somewhat ex
hausting experience. When we originally undertook to write a complete
description of our ALGOL Compiler, we had little idea of the magnitude of the
task ahead of us. That we have managed to complete this task is largely due to
the help and encouragement we have had from many friends and colleagues.

First and foremost it is a pleasure to acknowledge our indebtedness to
Professor E. W. Dijkstra, now at Eindhoven University-indeed, without his
great assistance in describing to us his pioneering work with Mr 1. A. Zonne
veld, on the ALGOL Compiler for the Xl Computer at the Mathematical
Centre, Amsterdam, our own ALGOL Compiler would have been a very
inadequate and inelegant affair, and this book would never have been con
templated. It is also a pleasure to acknowledge the invaluable assistance we
have had from Mr M. Woodger of the National Physical Laboratory, from
the first days when we were considering whether to attempt this task, right
up to the final stages of proof reading.

Our thanks are also due to Mr F. G. Duncan, of the Data Processing and
Control Systems Division of the English Electric Company, without whom
KDF9 ALGOL would soon have degenerated into a mere dialect of ALGOL,
and to Mr M. A. Batty, of the Atomic Power Division, whose painstaking

PREFACE

checking of the drafts, coupled with an unerring eye for a vague or inaccurate
description, caused much re-writing. Equally, we are indebted to Mrs M.
French, who has typed and re-typed the drafts of this book with patience and
accuracy. However, it must be emphasized that all remaining errors and in
adequacies in this book are solely the responsibility of the authors.

This book is published by kind permission of the English Electric Company
Limited, to whom we wish to express our thanks, in particular for allowing
us to include the complete logical flow diagrams of our compiler.

Leicester, October 1963

viii

B. RANDELL

L. J. RUSSELL

Contents
Page

Foreword v
Preface vii

1 ALGOL COMPILERS 1
1.1 Introduction 3
1.1.1 ALGOL 60 3
1.1.2 The Implementation of ALGOL 5
1.2 ALGOL Translation Techniques 8
1.2.1 The Tasks of a Translator 8
1.2.2 One-Pass and Multi-Pass Translation 9
1.2.2.1 Intermediate Languages 9
1.2.3 ALGOL from an Implementor's Viewpoint 10
1.2.4 ALGOL Translators 13
1.2.4.1 Direct Methods 14
1.2.4.1.1 Delimiter Pair Techniques 14
1.2.4.1.2 Priority Level Techniques 16
1.2.4.2 Syntax Oriented Methods 19
1.2.4.2.1 Syntactic Routine Methods 19
1.2.4.2.2 Syntactic Information Methods 21
1.3 Translation of Arithmetic Expressions 22
1.3.1 Early Techniques 22
1.3.2 Single Scan Techniques 24
1.3.3 A Double Scan Technique 28
1.3.4 Integrated Techniques 29
1.3.5 Reverse Polish 30
1.3.6 Summary 33
1.4 The Whetstone Compiler 34
1.4.1 ALGOL on KDF9 34
1.4.2 The Design of the Whetstone Compiler 35
1.4.2.1 Program Checking 36
1.4.2.2 Program Testing 38
1.4.2.2.1 Facilities Used during the Running of a Program 38
1.4.2.2.2 Facilities Used at the Failure of a Program 40
1.4.2.3 The Segmentation of Programs 41
1.4.2.4 Input/Output 41
1.4.3 The Description of the Whetstone Compiler 41

2 THE OBJECT PROGRAM 47
2.1 Assignment Statements 48

2.1.1
2.1.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.2
2.2.1
2.2.1.1
2.2.1.1.1
2.2.1.1.2
2.2.1.1.3
2.2.1.2
2.2.1.2.1
2.2.1.3
2.2.2
2.2.3
2.2.4
2.2.4.1
2.2.5
2.2.6
2.2.7
2.2.8
2.3
2.3.1
2.3.1.1
2.3.2
2.3.3
2.4
2.4.1
2.4.1.1
2.4.2
2.4.3
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.4.1
2.5.4.2
2.5.4.3
2.5.4.4
2.5.4.5
2.5.4.6

CONTENTS

Arithmetic Expressions
Exponentiation

Constants
Subscripted Variables
Simple Boolean Expressions
Conditional Expressions
Conditional and Compound Statements
Summary

Blocks and Procedures
Block Structure

The Stack
Implementation of a Stack
The Procedure Pointer
Display

Procedures
Function Designators

Re-declaration of an Identifier
Link Data
Activation of Blocks and Procedures
Completion of Blocks and Procedures

Update Display
Assignment to Procedure Identifier
The Operation REJ EeT
The 'Return Mechanism' for Blocks
Summary

Arrays
The Storage Mapping Function

The Operation MSF
The Operations INDA and INDR
Own Arrays

Labels and Switches
Simple Go To Statements

Labelled Blocks
Switch Declarations
Switch Designators

Parameters
Parameters Called by Name
Parameters Called by Value
Procedure Calls
Actual Parameters

Simple Variables
Constants
Expressions
Arrays
Subscripted Variables
Labels

x

48
52
52
53
56
58
59
60
62
62
63
63
64
65
69
69
70
71
72
74
75
76
76
77
77
80
81
83
87
87
89
89
90
91
94
97
98

100
101
102
102
104
104
106
107
108

CONTENTS

2.5.4.7 Switches 108
2.5.4.8 Procedures 108
2.5.4.9 Strings 109
2.5.4.10 Formal Parameters 109
2.5.5 Formal Parameters 110
2.5.5.1 Real and Integer 111
2.5.5.1.1 Assignments to Arithmetic Formal Parameters 111
2.5.5.1.2 Use of Arithmetic Formal Parameters in Expressions 115
2.5.5.2 Boolean 116
")':;:':;:'1 A __ ~~.

117 ~.-'.-' • ..J r1.L.Lay

2.5.5.4 Label 118
2.5.5.5 Switch 118
2.5.5.6 Procedure 119
2.5.6 Parameter List Operations 119
2.5.6.1 Real or Integer Formal Parameters 121
2.5.6.2 Boolean Formal Parameters 121
2.5.6.3 Label Formal Parameters 122
2.5.6.4 Arrays Called by Value 123
2.5.7 Summary 124
2.6 For Statements 125
2.6.1 For Blocks 126
2.6.2 For List Elements 128
2.6.2.1 Arithmetic Element 128
2.6.2.2 While Element 130
2.6.2.3 Step-Until Element 131
2.7 Code Procedures 135
2.7.1 User Code Procedures in KDF9 ALGOL 135
2.7.1.1 Type5 of Parameters 136
2.7.1.1.1 Real, Integer and Boolean Parameters 136
2.7.1.1.2 Label Parameters 137
2.7.1.1.3 Array Parameters 137
20701.1.4 Strings 1,)"7

.LJI

2.7.2 The Implementation of Code Procedures 137
2.7.2.1 Real, Integer and Boolean Parameters 138
2.7.2.2 Label Parameters 139

3 THE TRANSLATOR 141
3.1 Introduction 143
3.1.1 One-Pass Translation 143
3.1.1.1 Skeleton Operations 144
3.1.1.1.1 Chaining of Skeleton Operations 146
3.1.2 The Method of Translation 147
3.2 Translator Stack 149
3.2.1 Translation of Expressions 149
3.2.1.1 Simple Arithmetic Expressions 149
3.2.1.2 Simple Boolean Expressions 154

xi

CONTENTS

3.2.1.3 Subscripted Variables 155
3.2.1.3.1 First Method 155
3.2.1.3.2 Second Method 157
3.2.1.4 Conditional Expressions 159
3.2.2 Translation of Statements 167
3.2.2.1 Assignment Statements 167
3.2.2.1.1 Multi-Assignment Statements 168
3.2.2.2 Go To Statements 169
3.2.2.3 Conditional Statements 169
3.2.2.4 Compound Statements 171
3.3 Name List 173
3.3.1 Declaration of an Identifier 175
3.3.2 Use of an Identifier 176
3.3.3 The End of a Block 178
3.3.4 The End of a Program 183
3.3.5 Procedure Block 184
3.3.5.1 Assignment to a Procedure Identifier 185
3.3.6 Dim Column 189
3.3.7 U Column 190
3.3.8 Summary 191
3.3.8.1 First Method 191
3.3.8.2 Second Method 192
3.4 Translation Techniques 193
3A.l Tra1ishition of Declarations 193
3.4.1.1 Scalar Declarations 193
3.4.1.2 Array Declarations 195
3.4.1.2.1 Translation of an Array Segment 196
3.4.1.2.1.1 Non-Own Array Segment 196
3.4.1.2.1.2 Own Array Segment 199
3.4.1.2.2 Translation of Comma Used Between Array Segments 201
3.4.1.3 Switch Declarations 201
3.4.1.4 Procedure Declarations 205
3.4.1.4.1 Translation of the Procedure Heading 205
3.4.1.4.2 Translation of the Procedure Body 207
3.4.1.5 Bypassing Switch and Procedure Declarations at Run

Time 209
3.4.2 Translation of Switch Designators 210
3.4.3 Translation of a Procedure Call 211
3.4.3.1 Procedure Call with No Parameters 211
3.4.3.2 Procedure Call with Parameters 212
3.4.3.2.1 Actual Parameter Part 213
3.4.3.2.1.1 Implicit Subroutine 214
3.4.3.2.1.2 Parameter Comment Convention 214
3.4.3.2.1.3 Types of Actual Parameter 215
3.4.3.2.1.3.1 Identifier 215
3.4.3.2.1.3.2 Constant 215

xii

3.4.3.2.1.3.3
3.4.3.2.1.3.4
3.4.3.2.1.3.5
3.4.3.2.2
3.4.4
3.4.4.1
3.4.4.1.1
3.4.4.1.2
3.4.4.1.3
" A A 1 A ,).'1'.'1'.1.'1'

3.4.4.2
3.4.4.2.1
3.4.4.2.2

3.4.4.2.3
3.4.4.2.4

3.4.4.2.5
3.4.5
3.4.5.1
3.4.5.2
3.4.5.2.1
3.4.5.2.2
3.4.5.2.3
3.4.5.2.4
3.4.5.2.5
3.4.5.2.6
3.4.5.3
3.4.6
3.4.6.1
3.4.6.2
3.4.7

CONTENTS

Subscripted Variable
Expression
String

Translation of Closing Parameter Bracket
Translation of For Statements

Translation of the For Clause
Arithmetic Expression Element
Step-Until Element
While Element
Translation of the Delimiter do

Translation of the Controlled Statement
A Single Statement as the Controlled Statement
An Unlabelled Compound Statement as the Con
trolled Statement
An Unlabelled Block as the Controlled Statement
A Labelled Block or Compound Statement as the
Controlled Statement
A Conditional Statement as the Controlled Statement

Translation of Code Procedures
Procedure Heading
Procedure Body

Translation of the Delimiter KDF9
Real Parameter Called by Name
Integer Parameter Called by Name
Boolean Parameter Called by Name
Label Parameter Called by Name
Translation of Remainder of Procedure Body

End of a Program Containing Code Procedures
Translation of a Program

Start of a Program
End of a Program

Program Checking
3.5
3.5.1
3.5.1.1
3.5.2
3.5.2.1
3.5.3

Translator Routines
Basic Cycle Routine

Read Routine
ALGOL Section Routine

DIeT Routine
Delimiter Routines

References

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5

A Worked Example
Restrictions Imposed on ALGOL 60 in KDF9 ALGOL
The KD F9 Computer
KDF9 ALGOL Hardware Representations
Implementation of Program Testing Facilities

xiii

216
216
220
220
223
224
225
226
228
230
231
231

232
233

233
233
234
235
235
235
235
236
236
236
236
237
237
237
238
238
240
240
240
243
245
247

248

253
269
272
273
276

Appendix 6
Appendix 7
Appendix 8
Appendix 9

Appendix 10
Appendix 11

Index

CONTENTS

Implementation of Segmentation
Object Program Operations
State Variables
Details of the Various Implementations of the Whet
stone Compiler
Control Routine Flow Diagrams
Translator Flow Diagrams

xiv

277
278
281

282
284
325

415

1 ALGOL COMPILERS

1.1 INTRODUCTION

The International Algorithmic Language, 'ALGOL 60', a language for the
description of numerical processes, both for purposes of communication and
for use on automatic computers, has been the subject of an eadier book in
this series-'A Primer of ALGOL 60 Programming', by E. W. Dijkstra [18].
The present book is concerned with the problems of implementing ALGOL on
a computer, and contains a detailed description of an ALGOL 60 Compiler,
which, by translating ALGOL text into a form suitable for a computer, allows
the computer to be programmed in ALGOL. This compiler has been designed
by the authors, at the Atomic Power Division of the English Electric Com
pany, Whetstone, Leicester, England, for the KDF9 Computer, and is for
convenience referred to as the Whetstone Compiler.

1.1.1 ALGOL 60

The definitive description of ALGOL 60 is contained in the document
'Revised Report on the Algorithmic Language ALGOL 60', issued by the In
ternational Federation for Information Processing [55]. The original ALGOL
60 Report [53] was found to contain various errors and ambiguities, and at a
meeting of some of the authors of the Report, in Rome, during April 1962,
agreement was reached on several amendments, which are incorporated in
the Revised Report. The International Federation for Information Process
ing has assumed responsibility for resolving the remaining ambiguities and
for the future development and refinement of the language.

ALGOL 60 is a language, based on normal mathematical notation, which
has been widely used for the publication of the details of computational pro
cesses, in the form of 'algorithms', and which is sufficiently precise to be used
for the programming of automatic digital computers. The basic constituents
of ALGOL programs are 'statements' and 'declarations'. Statements are used
to indicate the various actions which are to be carried out by a program, and
declarations to describe the meaning attached to the various names (or
'identifiers') used in a program.

Example

real a,b; integer i;
L: a:= 3.0;

i := 1 + a12;
b : = a - (i + 1) X 4;
go to L;

In this rather trivial example the identifiers a and b are declared to be

4 1 ALGOL COMPILERS

variables of type real (i.e. to have normal numerical values, which will be
represented to some finite accuracy), and the identifier i is declared to be a
variable of type integer (i.e. to have an integer value, which will be repre
sented exactly).

The identifier L is used to label the first statement, which has the effect of
assigning the value of the 'expression' given on the right hand side, in this
case simply the number 3.0, to a. (The occurrence of an identifier labelling a
statement in this way is often described as a 'declaration' of the identifier to
be a label.)

The following two statements assign values to i and b, and the final state
ment, a 'go to statement', causes a jump to be made to the first assignment
statement. Thus the effect of this piece of ALGOL text is to perform a repeated
loop assigning values to a, i and b.

The words 'real', 'integer', etc., given in bold type are considered to be
single symbols and have no relation to the individual letters of which they
are composed.

The symbols 'begin' and 'end' can be used to group statements together to
form 'compound statements' and 'blocks' (a block differs from a compound
statement in that one or more declarations are given between the begin and the
first statement). A program is a self-contained block or compound statement.

Example
begin real a,b;
a:= 1;
b:~ 2
end

A sequence of statements grouped in this way into a block or compound
statement can be considered to be a single statement, and thus can be used
in the construction of further blocks or compound statements. An important
feature of a block is that it 'localises' the validity of a declaration (i.e. the
declaration of an identifier is valid only for the block in which it occurs). As a
result, the same identifier can be used for different quantities in different
blocks; furthermore, storage space need be reserved for variables only for the
duration of the block in which they are declared.

Other features of ALGOL include 'conditional' expressions and statements.

Examples
x : = if i > 0 then n + 1 else n - 1;

This statement assigns the value of 'n + l' to x if i is greater than zero,
otherwise the value of 'n - 1'.

if i = 0 then x : = y else go to L;

This statement assigns the value of y to x if i is zero, otherwise causes
a jump to be made to the statement labelled with L.

1.1 INTRODUCTION 5

So far identifiers have been used to represent real and integer variables,
and labels. By means of a 'procedure declaration' an identifier can be associ
ated with a piece of ALGOL text.

Example

begin procedure P; a : = b + c;
b:=l; c:=2;
P;
b:= a;
P

end;

is equivalent to

begin b := 1; c :=2;
a:= b + c;
b :=a;
a:= b + c

end;

Here P is used as shorthand for the statement 'a := b + c', in fact as
a 'procedure statement'.

Identifiers can also be used to denote 'Boolean variables', which can have
the value 'true' or 'false', 'arrays' of variables, 'switches', which are basically
lists of labels, and 'parameters' to procedures.

However these features will not be discussed further, as the aim of this
very brief account has been merely to give some idea of the ALGOL language.
Readers who are not already familiar with ALGOL are recommended to study
the book by Dijkstra mentioned earlier, or any of the various other descrip
tions and teaching manuals of ALGOL (e.g. Bottenbruch [10], Naur [54],
McCracken [51], or the KDF9 ALGOL Manual [72]).

1.1.2 The Implementation of ALGOL

It can be seen that ALGOL is very different from the language of present
day computers. In order to be able to use ALGOL as a programming language
it is necessary to overcome the great disparity between ALGOL and normal
machine language.

It would of course be possible to program the computer to read in ALGOL

text, and to carry out the operations specified by the ALGOL statements (i.e.
to obey the ALGOL text 'interpretively'). However it is much more convenient
to apply a preliminary transformation to the ALGOL text in order to obtain
a program more suitable for use on a computer. (This program mayor may
not be in machine language.)

The reason for the preliminary transformation is to avoid unnecessary
repetition of the work involved in relating an ALGOL program to the equiva-

6 1 ALGOL COMPILERS

lent computer operations. For instance the task of examining an arithmetic
expression, and converting it into a set of sequential arithmetic operations
could well be carried out once, rather than each time the expression is to
be evaluated.

Example

a - (b + c X d) / e

Here the order in which the calculation is to be performed, which is given
by the normal rules of arithmetic precedence, and by the parentheses, is

1. Multiply c and d
2. Add the result to b
3. Divide the result by e
4. Subtract the result from a

A further example of the usefulness of a preliminary transformation is in
connection with the scanning of the ALGOL text which is necessary in order
to interpret the meaning attached to an identifier.

Example

begin real a;
(Dots indicate further ALGOL statements)

begin real b;

L: b :=3;
M: b :=2;

gotoN
end;

N: a :=4
end

The successor to the statement 'go to N' is found by first searching the
block in which this statement occurs, and then the outer block, until a
statement with the label N is found. This scanning need be done only
once, and then, each time the statement 'go to N' is obeyed, it can use
the known location of the statement labelled with N.

Such a preliminary transformation is performed by a program known as
a 'translator', and the transformed ALGOL program is known as an 'object
program'. (The original ALGOL program being known as a 'source program'.)
The authors use the term 'compiler' to describe a program which reads
ALGOL text, translates this text into an object program and uses this object
program to perform the computation specified by the ALGOL text, whilst
providing all the necessary facilities for checking and testing the ALGOL text.
Thus an ALGOL 60 Compiler allows a computer to be programmed in ALGOL

1.1 INTRODUCTION 7

60, without the need for any knowledge of the normal machine language.
This technique of using a compiler to bridge the gap between normal

machine language and a language which a human being finds suitable to use
is of course not peculiar to ALGOL. A large number of compilers have been
developed over the last ten years or so, particularly 'algebraic compilers'
(i.e. compilers which allow the specification of a computation in algebraic
statements) for use on scientific problems. However, virtually all of these com
pilers have been for languages which have been designed with a particular
computer in mind. (One of the most widely known and used is the
FORTF-.\N language [6]; originally developed for the IBM 704 computer, but
since used as a basis for compilers for various other computers.) The im
portance of ALGOL is that it is completely machine-independent, and has
received international recognition as a language for describing numerical
processes, for purposes of publication, as well as for use on computers. This
is not to say that ALGOL 60 is the final word in the definition of a machine
independent language for numerical processes. On the contrary, just as
ALGOL 60 has benefited from experience on earlier algebraic languages, it is
to be expected that any future languages will profit from the great amount of
work on the design and implementation of languages that has been prompted
by the publication of ALGOL 60.

1.2 ALGOL TRANSLATION TECHNIQUES

1.2.1 The Tasks of a Translator

An ALGOL translator is a program which takes as its input the coded repre
sentation of an ALGOL source program and produces as its output an object
program (which mayor may not be in machine code). Whether the object
program is in fact in machine code or not, the task of the translator is not
defined until it has been decided how to represent the various features of the
ALGOL source program in the object program. As a result the boundary
between the transformation to and the execution of the object program is
somewhat blurred, and may vary considerably in different translators. (For
instance storage for scalars and arrays could be allocated during translation
or during the running of the object program.) However there are certain
aspects of this task of transforming an ALGOL program into a form more
suitable for use by a computer which are obviously the responsibility of the
translator.

These include:
(i) the recognition of the various source language constituents from the

coded representation of the source program;
(ii) the analysis of the structure of the ALGOL program (e.g. locating

corresponding begin and end symbols, finding the extent of conditional
statements, etc.);

(iii) the linking up of the use and declaration of identifiers; and
(iv) the transformation of arithmetic expressions into a suitable sequence

of simple arithmetic operations, by applying the normal precedence rules,
and analysing the bracket structure.

The first and last items are to a large extent common to translators for
any algebraic language. Item (i) is not usually of general interest since it
depends largely on the actual method of presenting a source program to a
translator. However item (iv) has been the subject of much effort ever since
the development of the first algebraic compilers and a large number of meth
ods of translating arithmetic expressions have been developed. For this
reason the subject of arithmetic expression translation is treated separately
in section 1.3.

On the other hand items (ii) and (iii) are required specifically for the trans
lation of ALGOL, and did not arise in earlier algebraic translators. Item (ii),
the analysis of the ALGOL statement structure, arises from the recursive
definition of statements and hence requires a technique of translation en
tirely different from those used for earlier 'statement-at-a-time' languages.
Item (iii) is a task peculiar to ALGOL translators because of the introduction

1.2 ALGOL TRANSLATION TECHNIQUES 9

in_ALGOL of the technique of declaring at the head of each block the identi
fiers used for the variables, arrays, etc., which are local to that block.

1.2.2 One-Pass and Multi-Pass Translation

The conversion of the source program into the object program can be
regarded as a series of simple transformations rather than as one complex
transformation. A single transformation could be applied to the source
program as a whole; alternatively a set of simple transformations could be
applied in turn to each small section of the source program. In a 'one-pass'
translator the entire sequence of simple transformations is applied in turn
to each section of the program, so that the object program is generated
during a single scan of the source program. This is in contrast to a 'multi
pass translator' in which a sequence of transformations is applied to the
program as a whole.

Stated thus, the differences between a one-pass and a multi-pass trans
lator seem fairly trivial. However this is not usually the case. In a multi-pass
translator it is possible to collect much more information about the source
program, during one or more preliminary scans, than is available during a
single scan translation scheme. This extra information can be used to pro
duce a more efficient object program from the source program. In the more
sophisticated multi-pass translators considerable effort is involved in exam
ining the source program, often to the extent of tracing through the flow of
the source program, in order to detect situations which can be optimized
(e.g. simple use of subscripts within a loop). On the other hand a simple,
and fast, translation scheme is very useful where the time taken by such an
optimizing translator cannot be justified. (This is often the case during the
debugging of a program, when frequent re-translations are required.) In
such a situation a strictly one-pass translator can often have the merit that
the time taken to read in the source program can largely, or even com
pletely, cover the time taken for translation.

1.2.2.1 b:termediate Languages

The technique of transforming the source program into the object pro
gram by means of a sequence of simple transformations leads naturally to
the idea of 'intermediate languages', which mark the completion of various
important stages in the translation process. For example a simple two-stage
translator might involve the translation of a program first to some standard
assembly language, and then from the assembly language to machine lan
guage. Such a translator can take advantage of the existence of an assembly
program which deals with questions of storage allocation, absolute jump
addresses, etc., by including this assembly program as the last stage of trans
lation. There has in the past been a tendency for such translators to produce
detailed print-outs of the assembly language version of the translated pro
gram for use by the programmer for purposes of debugging. However the
realization that such a system would require a programmer to know two
B*

10 1 ALGOL COMPILERS

languages in order to write and check out a program has spurred the develop
ment of translators which allow a programmer to check out his program in
the original source language.

In general, however, intermediate languages do not have a separate
existence and are entirely internal to the translator, being the concern only of
the translator writers. Indeed, users need not even be aware of their existence.

An intermediate language can become of importance in the case of a
translator with alternative inputs. Two somewhat different problem oriented
languages might be translated into the same intermediate language, and
thereafter use the same translation process. Similarly a translator may have
alternative outputs. Thus machine coding would be produced for two different
computers using a single translator, having two alternative last stages. The
whole question of translators with alternative first and last stages has re
ceived much attention recently. The need for an intermediate language which
could act as a Universal Computer Oriented Language (UNCOL) has been
proposed (Strong et al. [67], Steel [66]), but the design of such a language
gives rise to many problems. Certainly, if an UNCOL could be produced it
would greatly decrease the effort necessary for the production of translation
systems for new problem-oriented languages or computers. In theory the
numbers of translators it is necessary to write for n programming languages
and m computers would be reduced from 'm X n' to 'm + n'. However
there has been much controversy over the possibility of designing an UNCOL
which would be of practical value; comments have ranged from

' ... UNCOL is an exercise in group wishful thinking', (McCarthy [50D,
to

'As each new machine is produced, all that would be necessary in the
way of systems programming is a single translator to convert UNCOL to
the new machine language.' (Strong et al. [67].)

Another use for an intermediate language is with an interpreter. Then the
final stage of translation is omitted, and the object program generated by
the translator is used by a control routine at run time (this is the case with
the Whetstone Compiler). A judicious choice of such an intermediate lan
guage can often result in various gains (compact storage of object program,
simplicity of translator etc.) which can in certain circumstances offset the
decrease in running speed of the object program. This subject has also been
dealt with in a paper by Grau [26], who proposes an intermediate language
in a form somewhat similar to that used in the Whetstone Compiler. It is
pointed out that such an intermediate language could also indicate the way
in which machine hardware might develop in the future.

1.2.3 ALGOL from an Implementor's Viewpoint

An important feature of ALGOL is the manner in which it is defined in the
Revised ALGOL 60 Report. Earlier languages did not have the benefit of

1.2 ALGOL TRANSLATION TECHNIQUES 11

such a set of well-defined rules of syntax; indeed many early languages were
virtually defined by the action (not always predictable) of their compilers.
However the Revised ALGOL Report, using a notation that has since be
come known as 'Backus Normal Form' (see Backus [7]) to describe the
syntactical rules governing the formation of ALGOL text, provides a very
useful reference manual for translator writers.

Unfortunately the rigour with which the syntax of ALGOL is defined does
not extend to the semantics. In fact the informal semantics often serve to
qualify the rules of syntax, instead of merely explaining the meaning of
syntactically correct .. A...LGOL formations. (An instance of this occurs in sec
tion 4.6.6 of the Revised ALGOL Report. Were ii not for this section the syn
tax and semantics of for statements given in the preceding sections would
result in the effect of a go to statement leading into a for statement being
perfectly well-defined.) An attempt to avoid the shortcomings of the system
of using formal syntax and informal semantics to define a language is con
tained in an interesting paper by Floyd [24]. This paper gives a rigorous and
very concise definition of a language similar to ALGOL, but lacking certain
important features such as the call by name facility. A paper by Genuys [25]
also deals with this subject.

The formal rules of syntax given in the Revised ALGOL Report describe
many of the features of ALGOL by means of recursive definitions. This results
in a language very different from earlier algebraic languages. Instead of being
formed from a simple sequence of separate statements an ALGOL program
can be a block (itself a form of statement) which is formed from many con
stituent blocks and statements. Similarly the recursive definition of arith
metic expressions automatically allows the full variety of arithmetic expres
sions as subscripts and as parameters to function designators.

This system of recursive definitions has naturally had a considerable effect
on the design of translators. Instead of translating each statement separately,
using a different routine for each kind of statement, as was possible in trans
lators for earlier algebraic languages, an ALGOL translator must be capable
of dealing with a recursive statement and expression structure.

Equally challenging to implementors is the problem of translation of
ALGOL programs containing procedures used recursively. Such recursive use
of procedures is allowed either directly, by means of a recursive declaration
for a procedure, or formally, by means of an actual parameter. In fact the
whole subject of procedures and parameters, in particular parameters called
by name, which is a development of the earlier concept of subroutines and
their arguments, gives rise to many interesting problems in implementation.

One of the most vexed questions of interpretation of the Revised ALGOL

Report is in connection with the possibility of a call on a procedure by means
of a function designator causing what are sometimes known as 'side effects'.
These arise from the ability to make assignments to formal variables called
by name or to variables which are non-local to the procedure body, and to
leave the procedure body by jumping to a formal or a non-local label. When
a procedure which includes such features is called by a function designator it

12 1 ALGOL COMPILERS

is possible to write an expression in which the normal commutative and
associative laws do not apply. The drawback of interpreting the Revised
ALGOL Report as allowing side effects is the lack of strict rules regarding the
order of evaluation of primaries in an expression, of parameters called by
value, etc. The case against allowing such 'facilities' is made in a letter by
Arden, Galler and Graham [4], which has been answered by Dijkstra [17].
The authors' views on this subject are in agreement with those expressed in
a paper by Higman [33], in which he states

' ... the plain fact of the matter is (1) that side effects as a principle are
necessary, and (2) programmers who are irresponsible enough to introduce
side effects unnecessarily will soon lose the confidence of their colleagues,
and rightly so.'

Another important feature in ALGOL is that of block structure and the
associated concept of the scope of identifiers. Variables and arrays can be
declared at the head of the block in which they are needed, and have no
existence outside this block. Various storage allocation techniques have been
developed to take advantage of this feature in order to make compact use
of machine storage. Thus a minimum of working storage is used by a pro
gram without the need for any directives extra to the normal program text.
Equally important for compact use of machine storage is the ability to use
arrays with variable bounds. In most implementations of ALGOL the space
required for an array is determined by evaluating such variable array bounds
on entry to the block in which the array is declared. By this means the amount
of storage allocated to an array can be varied during the running of the trans
lated program.

One of the most immediate consequences of the large number of new and
challenging features of ALGOL has been the tendency for implementors to
define subsets (or even dialects) of the language. In fact there are several
valid reasons for such a course of action.

Even though ALGOL is a great step forward as an algebraic programming
language it is by no means perfect. The implementation of certain anomalous
features of the Revised ALGOL Report (the consequences of which were
probably not even realized by the authors of the report) is of questionable
value. (A case in point is that of the use of integer labels in designational
expressions-see Appendix 2.)

At many computer installations ALGOL is of interest mainly as a pro
gramming language, and the overriding requirement is that programs should

,be translated and run on the existing equipment as efficiently as possible.
In such a situation the importance of some of the more novel aspects of
ALGOL (e.g. the ability to call a procedure recursively) tends to be under
rated. ALGOL was designed as a machine-independent language whereas
earlier languages were usually designed with the features and failings of a
particular machine in mind. As a result the efficiency of a full ALGOL trans
lator would often be somewhat lower than that of a translator for a language

1.2 ALGOL TRANSLATION TECHNIQUES 13

designed specifically for a machine, and instead only a subset of ALGOL is
implemented.

However in assessing the efficiency of a translation system it is all too easy
to concentrate solely on easily measurable quantities such as speed of trans
lation and of translated program, and amount of storage space taken up by
the translated program. What really matters in a computer installation is the
rate at which useful information can be produced and the cost, both in time
and money, of producing this information. Thus the efficiency of a transla
tion system can only be assessed within the context of the installation in
which it is used. This means that the ease with which programs are pre
pared and used must also be taken into account. Program preparation is
dependent on such features as the programming language used, the facilities
for amending, checking, and testing a program, and also the ease with which
a programmer may draw upon published material (in the form of techniques,
algorithms, etc.) and library routines. The ease with which a program is
used depends very much on the efficacy of the operating system, which can
schedule the machine's activities, maintain a logbook, organize the use of
peripheral equipment, etc.

However, at establishments where ALGOL is of interest as a theoretical
language rather than as a programming language the question of efficiency
of translation on present-day computers is of less importance. In fact one of
the most important results of the publication of ALGOL has been the stimu
lating effect it has already had on research into formal languages and their
specification, on compiling techniques, and even on machine design.

1.2.4 .ALGOL Translators

At the time of writing very few detailed descriptions of any ALGOL trans
lators have been published-in fact the only one known to the authors is
that by van der Mey [69] describing the ALGOL 60 translator for the ZEBRA
Computer. This is of course not surprising in view of the complexity of the
task of translating ALGOL. However many interesting articles have been pub
lished which give details of the very varied techniques employed in the vari
ous ALGOL translators. This has encouraged the authors to attempt a brief
survey of ALGOL translation techniques. In this survey an attempt is made
to compare and contrast different ALGOL translation techniques rather than
to give a detailed historical survey of the development of ALGOL translators.
The authors have attempted to make this survey as complete as possible;
apologies are made for any omissions, and for any inadequacies of interpreta
tion of the articles cited. Due to the large number of techniques that have
been developed for the translation of arithmetic expressions, not only for
ALGOL but for all the earlier algebraic languages, this subject is considered
separately, in section 1.3, even though this causes a certain amount of dupli
cation in the description of some of the ALGOL translators.

One of the most important characteristics of an ALGOL translator is the
method by which it analyses the structure of the text of an ALGOL program.

14 1 ALGOL COMPILERS

Not surprisingly a large number of different techniques have been developed
for performing this analysis. One possible classification of these techniques
is into two groups, namely direct methods and syntax oriented methods,
though the boundary between the two groups is somewhat blurred.

Obviously any method of analysing the structure of an ALGOL program
must take into account the syntactic definitions of ALGOL. In many transla
tion schemes the syntactic units of an ALGOL program have a direct counter
part in the translator, either because the translator is composed of routines
corresponding to the syntactic units, or because the translator records inform
ation about the structure of the text in terms of the syntactic units. This is
not the case in what are here described as direct methods, which usually
work in terms of the basic symbols of the ALGOL text. The direct methods,
though often quite efficient, tend to be rather ad hoc; on the other hand,
since ALGOL is largely defined using syntactic formulae, there is a certain
attractiveness about the idea of a syntax oriented translator. It is likely that
theoretical investigations into syntax oriented methods will lead to the
development of programming languages which are more suited to this
approach than is ALGOL.

1.2.4.1 Direct Methods

The 'direct methods' of translation discussed in this section are for con
venience further subdivided into two groups. The first group consists of
translators whose course of action is based on pairs of delimiters. In the
second group of translators each delimiter has a priority level associated with
it, and comparisons of priority levels are used in order to decide the appro
priate course of action.

1.2.4.1.1 Delimiter Pair Techniques. The translation technique used by
members of the ALCOR Group has been described by Samelson and Bauer
[62, 63]. The ALCOR (ALGOL ConvertoR) Group was formed in 1959 to
facilitate the interchange of ALGOL programs between different computers at
various scientific institutes. The translators for each computer were prepared
using logical plans developed at the Institute for Applied Mathematics at
Mainz University. In addition agreements were reached on a common hard
ware representation (based on 5-hole paper tape) and input-output facilities.
The language accepted by translators of the ALCOR Group is a restricted
form of ALGOL 60, which has been described by Baumann [9].

The ALCOR translation system is based on the use of a 'push-down store',
(i.e. a store with 'last-in-first-out' properties, called a 'cellar' in the Samelson
and Bauer paper [62]). During a left-to-right scan through the text of an
ALGOL program the cellar is used as a holding store for information obtained
from the text that has already been read, until the translation of the informa
tion can be completed. The information is kept mainly as representations of
various ALGOL basic symbols. The last-in-first-out properties of the cellar
are used to permit the analysis of the bracket structure of the program. For

1.2 ALGOL TRANSLATION TECHNIQUES 15

example the delimiter begin which starts a block or compound statement is
kept in the cellar until the matching end is found. During translation of the
block or compound statement any further begin delimiters will be placed in
the cellar so shielding the original begin. The last-in-first-out properties of the
cellar automatically allow the matching of end delimiters with their corre
sponding begin delimiters. These same properties of the cellar are also used
to re-order the arithmetic and Boolean operators to allow for the normal
rules of algebraic precedence. (This use of the cellar for the translation of
arithmetic expressions is discussed in more detail in section 1.3.4.)

The course of translation is controlled by what is called a 'transition
matrix'. The rows and columns of this transition matrix correspond to the
various ALGOL delimiters. The delimiter at the top of the cellar and the
delimiter currently being scanned are used to select an element of the matrix,
which then causes the appropriate action to be taken by the translator. A
single transition matrix, developed at Mainz, is the basis of the translators
for each of the different computers of members of the ALCOR Group.

The final part of the Samelson and Bauer paper [62] describes a technique
for efficient handling of subscripted variables used in for statements. The
technique is based on the removal from within the for statement of as much
as possible of the calculation necessary to determine the particular array
element specified by a subscripted variable. This 'optimization' of subscripted
variables is applied to those having linear subscript expressions.

The translation techniques used in the NELIAC family of compilers are the
subject of a book by Halstead [28]. NELIAC, which is described as 'a dialect of
ALGOL', has more in common with ALGOL 58 [56] than ALGOL 60. The most
interesting feature of the NELIAC project is that only a single basic NELIAC

Compiler was hand coded (for the Univac M-460). This was then used to
translate a version of itself written in NELIAC, and the resulting Compiler used
to write a full NELIAC Compiler. With only an absolute minimum of further
hand coding NELIAC Compilers have been written in NELIAC for various other
computers. In fact complete listings, in NELIAC, of compilers for ine M -460, ine
CDC 1604, and the IBM 704 are given by Halstead.

The logical problems of dealing with NELIAC symbols in a NELIAC program
are avoided by assigning integer values to each symbol, and then processing
these integers rather than the symbols.

Example
if Delimiter = Semi Colon then go to End Statement;

Here Semi Colon is a simple variable which has been set up with the
numerical equivalent of the bit pattern used inside the computer to
represent' ;'.

The basis of all the NELIAC Compilers is a table of 'next operator' against
'current operator', which is used to select the appropriate generator (i.e. a

16 1 ALGOL COMPILERS

subroutine which produces or 'generates' the required coding). Thus this
table is similar to the transition matrix of the ALCOR Group.

1.2.4.1.2 Priority Level Techniques. Several ALGOL translators use a tech
nique in which a numerical value (called a 'priority level') is associated with
each delimiter. The action of the translator is controlled by comparing the
priority levels of delimiters. Naturally the values chosen as a set of priority
levels must be dependent on the rules of syntax-an example of this is given in
the Revised ALGOL Report itself, in which the rules of precedence of arithmetic
operators are given by means of a table (section 3.3.5.1) as well as implicitly
by the syntax (section 3.3.1). The relationship between syntax and priority
levels is discussed in the paper by Genuys [25] mentioned earlier.

The techniques used in the ALGOL translator developed for the Xl Com
puter at the Mathematical Centre, Amsterdam, are the subject of a paper by
Dijkstra [16]. The translator is again based on the use of a push-down store,
here called a 'stack', but the transition matrix of the ALCOR Group is re
placed by a 'discrimination vector'. The vector contains one element for each
ALGOL delimiter, giving the priority level associated with the delimiter. The
translator is made up of a set of separate routines, one for each delimiter.
As the ALGOL text is scanned each delimiter invokes the appropriate 'delimiter
routine'.

The push-down store, or stack, is again used, mainly as a holding store for
delimiters. A comparison of the priority levels of the current delimiter and
the delimiter at the top of the stack is used to control the stacking and un
stacking of delimiters. This system is used equally for anaIysing statement
structure and for re-ordering arithmetic and Boolean operators. The struc
ture of the program is analysed by matching corresponding delimiters, e.g.
begin and end, if then and else, etc., in a similar way to that described for the
ALCOR system.

Other papers by Dijkstra [14, 15], describe the techniques of using a run
time stack for storage of variables and arrays. This method of storage alloca
tion takes advantage of the block structure of ALGOL to permit a very compact
use of storage, and also facilitates the implementation of recursive procedures.

Other translators which are based on the techniques developed by Dijkstra
include the Whetstone Translator, a detailed description of which forms the
major part of this book, and a translator for a prototype airborne computer
(see Higman [32]).

This airborne computer must surely possess the distinction of being the
smallest computer on which ALGOL has been implemented-the total storage
of the computer comprises 480 words, each of 20 bits. Naturally the very
limited amount of machine storage has had its effect on the design of the
translator, which in fact uses five passes to convert the ALGOL text into an
object program, which is obeyed interpretively. An interesting feature of the
paper by Higman is that a detailed description is given of three of the five
passes of the translator, and of the interpreter, in ALGOL.

1.2 AGOL TRANSLATION TECHNIQUES 17

The technique used by Higman to write 'ALGOL in ALGOL' is rather differ
ent from the technique used in NELIAC, and is independent of the hardware
representation. Symbols given in the program are in general enclosed in
string quotes, and transfer functions used to attach a value to each symbol.

Example

if Next Symbol = V (' ;') then go to End Statement;

In order to handle even the string quote symbols, the symbol c is intro
duced. This has the effect of enclosing the symbol following it in implicit
'super-quotes'. Since these super-quotes are implicit, they cause no prob
lems and the symbol c itself can be handled by writing c c. This provides a
means for handling arbitrary sequences of basic symbols, in contrast to that
described in section 2.6.3 of the Revised ALGOL Report.

Example

if Next Symbol = V (c') then go to Start String;

The techniques used in the very successful ALGOL Compiler written at
Regnecentralen, Copenhagen, for the GIER computer, have as yet not been
published. However the authors have been privileged to see a draft descrip
tion of parts of the Compiler, in particular a very interesting account of the
system for organizing use of the two-level storage of GIER.

The GIER computer has 1024 words of core storage and 12,800 words of
drum storage. As a result, the Compiler works in 9 passes (two of which are
reverse scans), so that during each pass there is sufficient space in core storage
for all the sections of the Compiler which are necessary for the pass. Once
again a stack and priority level technique is used to analyse the structure of
the ALGOL program and a system of stacked storage is used by the translated
program for simple variables and arrays. The translated program is kept on
the drum and decisions as to the transfers of program from drum to core
store are made dynamically, depending on the amount of storage used for
variables and on the relative frequency of use of the various sections of
translated program.

A very recent report by van der Mey [69] contains a complete description
of the ALGOL Compiler for the ZEBRA Computer. (A brief description of
this compiler has also been given by van der Poel [70].) The aim has been to
make the compiler as complete as possible; in fact the only restrictions placed
on ALGOL are that own arrays must have constant bounds, scalar and array
declarations must precede switch and procedure declarations, and the con
trolled variable of a for statement must be a simple variable.

The report by van der Mey describes the compiler in ALGOL, and as with
NELIAC, describes the manipulations carried out on the numerical equivalents
of delimeters, etc., rather than using some such technique as given by Hig
man. The translation process uses stack and priority level techniques but

18 1 ALGOL COMPILERS

differs from the methods described earlier in that any identifier or constant
following a delimiter is stacked with the delimiter. This has the effect that
the evaluation of primaries is done in a different order.

The generated object program is interpreted at run time. Advantage has
been taken of the rather unusual order code of the ZEBRA Computer, in
which each of the 15 bits of an instruction has a separate significance, in
order to carry out the interpretation efficiently. In contrast to the system used
·by Dijkstra, two stacks are used at run time, one for simple variables and
intermediate results, the other for arrays (own arrays are embedded in the
object program itself). Arithmetic operations are carried out using a fixed
accumulator, and intermediate results are put in the stack only when the
accumulator is needed for another operation, instead of stacking all operands,
and carrying out all arithmetic operations on the top one or two items in the
stack.

A very different approach to the problem of ALGOL translation is con
tained in a paper by Hawkins and Huxtable [31] which describes the Kids
grove Optimizing Translator.

During the initial stages of translation, procedures are classified into three
groups. The first group consists of type procedures, whose bodies do not con
tain any procedure calls, and which obey a rigid set of rules, aimed mainly
at ensuring that the procedures cannot give rise to any side effects. The
remaining procedures form the second and third groups; the third group
consisting of those procedures, which considered only in the context of the
program being translated, can be shown to be incapable of being called
recursively.

The members of the first group of procedures are determined during a
backwards scan through the procedure declarations. Then the flow of the
ALGOL program is followed through in order to build up a 'correspondence
matrix'. This matrix gives details of the calls made on procedures and is
processed in order to determine which procedures belong to the third group.

The next stage of translation is the allocation of storage within each pro
cedure. During the running of the translated program the storage needed by
a procedure is added to the top of a run time stack when the procedure is
entered, and is deleted from the stack on exit from the procedure. The pre
vious classification of procedures is used in order to simplify, where possible,
the operations generated to organize procedure entries and the setting up and
deleting of stacked storage.

This stage is followed by a process for expanding for statements in each
procedure into explicit ALGOL statements, where possible taking advantage
of simple cases of SUbscripted variables in for loops, in order to apply
optimization techniques. These techniques are designed to remove all un
necessary calculation of the addresses specified by subscripted variables from
within the for loops, and to allocate index registers optimally.

After the for statements have been dealt with the procedures which form
the program text are separated, and translated into an intermediate language,

1.2 ALGOL TRANS LA TION TECHNIQUES 19

again using a stack and priority level technique. This intermediate language
version of the program is then processed in order to remove common sub
expressions before finally generating machine code.

1.2.4.2 Syntax Oriented Methods

It was mentioned earlier that syntax oriented translators can be divided
into two groups, namely those which are composed of routines correspond
ing to syntactic units, and those which relate the text being translated to the
syntactic units of wrJch it is composed, and manipulate representations of
these syntactic units.

The first group uses what is, in a sense, the most natural method for
translating ALGOL, and these translators can be regarded as direct descend
ants of those used for translation of earlier algebraic languages. In such lan
guages programs consisted of a number of separate statements of various
kinds (assignment statements, jump statements, etc.). The translator would be
composed of a set of 'statement routines', each capable of translating a
particular kind of statement. To use this technique for an ALGOL translator
the routines would have to be capable of being used recursively. Further
more, in ALGOL there is much less distinction between the various kinds of
statements-for example all statements (other than dummy statements) can
contain expressions. It is therefore logical to base a translator on routines
which correspond to each and every syntactic unit, rather than just to
statements.

One of the most important features of the second style of syntax oriented
translators is that it is possible to make the translator independent of the
rules of syntax which it uses in order to translate a program. Indeed such a
translator could accept as input data both the program to be translated and
the rules for its translation. This has the advantage that it is possible for the
rules to be given in a form similar to that used in defining the language, and
also that modifications to the language can be accommodated by changing
the translation rules rather than the translator. However the efficiency both
of the translator and of the object program it produces is dependent on the
syntax definitions, and great care must be taken in formulating these defini
tions if they are to be used to control the working of a translator.

1.2.4.2.1 Syntactic Routine Methods. The ALGOL translator described by
Grau [26] is composed of routines which correspond roughly to the various
syntactic units, and uses a 'control push-down store'. Items or 'states' stored
in the control push-down store indicate the state of the translator at entry to
each of the currently activated routines. Thus on exit from a routine the
'state' at the top of the push-down store indicates the reason for entry, and
hence determines the course of action to be followed. As the ALGOL program
is scanned, the current delimiter and the state at the top of the control push
down store are used to select an element of a 'translation table'. This element
determines which routine is to be entered. The main tasks of each routine

20 1 ALGOL COMPILERS

are, firstly, the updating of the information given in the control push-down
store, and, secondly, the generation of the appropriate object program oper
ations.

A theoretical discussion of 'syntactic routine translation methods' is given
in a paper by Lucas [48]. This paper describes the metalanguage used in the
Revised ALGOL Report for the syntactic definitions, and then introduces a
'metametalanguage' for describing this metalanguage. The metametalanguage
is then used in discussing the various kinds of syntactic definitions used in
the Revised ALGOL Report. A description is given of a translator composed
of routines for each syntactic unit in ALGOL, and using a push-down store
for links and as a holding store for information. Simple flow diagrams
are given for each kind of syntactic definition, and a detailed flow diagram
given for the routine 'arithmetic expression'. This routine can call itself re
cursively, and uses the routine 'simple arithmetic expression'.

A third translator which can be regarded as using an approximation to
the 'syntactic routine method' of translation is described in a paper by
Evans, Perlis, and van Zoeren [21]. This translator does not use a control
push-down store but instead is based on the use of threaded lists. A threaded
list (see Perlis and Thornton [57]) is an extension of the idea of a simple list
structure, i.e. a method of storage of a sequence of items of information,
where each item carries with it the address at which the next item is stored.
(List structures have the advantage that items can easily be added to, or
deleted from, any part of a list, without the need for moving any of the items
already in the list; furthermore, since any item can itself indicate a further
subsidiary list, they facilitate the manipulation of highly complex data
structures). It is stated that an advantage of the threaded list technique is that
corrections can be made to an ALGOL text, and the equivalent modified
machine code program produced, without the need for complete retransla
tion. The translator consists of three passes; during the first pass an ALGOL
program is converted into a bracket-free form, stored as a threaded list,
together with tables of identifiers and constants. The second pass converts
this threaded list into relocatable machine code. The third pass takes place
during the loading of this relocatable machine code, converting it into an
absolute machine code program ready to be obeyed. The conversion of the
ALGOL text into threaded list form uses a set of routines called 'recognizers'
which in general correspond to syntactic units. The threaded list itself is used
to control the translation process. As the ALGOL text is scanned names of the
appropriate recognizers are entered into the threaded list. The names are then
replaced by the coding obtained from using these recognizers, which might
again contain recognizer names. This process continues until the whole of
the ALGOL text has been read, and the generation of the threaded list is com
plete. However, a standard scanning process (in fact the one used in the GAT
translator, which is discussed in section 1.3.2) is used to translate arithmetic
expressions. It is claimed that this avoids the construction of the needlessly

1.2 ALGOL TRANSLATION TECHNIQUES 21

complicated threaded list structures that would result from following the
ALGOL 60 syntax rules governing arithmetic expressions.

1.2.4.2.2 Syntactic Information Methods. Probably the most widely known
syntax oriented ALGOL translator is that of Irons. A somewhat expanded
version of the original paper by Irons [39] has recently been published [40],
giving some detailed worked examples to demonstrate the method of trans
lation. The two inputs to the translator are the program to be translated, and
the rules for performing the translation. These rules of translation each con
sist of a syntax formula, and a description of its semantics (i.e. the action to
be taken, machine instructions to be generated, etc.). The syntax formulae
are used by the translator in order to analyse (or 'diagram') the ALGOL text.
The result of this analysis is a list structure indicating, in sequence, the syntax
rules which have been used in order to analyse the ALGOL text. This list struc
ture is then used, together with the semantic information given with each rule
of syntax, in order to generate an assembly code version of the ALGOL pro
gram. The final task of the translator is to convert this assembly code into
machine code.

A variation on the above method of translation has been described by
Ledley and Wilson [47]. The syntax formulae, given in the set of translation
rules, are tested against the ALGOL program text, which is stored as a set of
linked list elements. When a formula is found that applies to a set of symbols
in the 'ALGOL list', elements containing these symbols are replaced by a single
element which contains a representation of the appropriate syntactic unit. At
the same time a small list structure, containing the translated program frag
ment, is built up, using the semantic information given in the translation
rules. This process is repeated until at the end of translation the ALGOL list
has been collapsed into a single element, representing the syntactic unit
'program', and the generated lists have merged into a single list structure,
which contains the complete translated program.

A third method of translation which can be considered to be a 'syntactic
information method' has been briefly described by Floyd [23]. This method
uses a push-down store instead of list structures. The translator uses a set of
'productions', which are applied to the program text as it is being scanned, in
order to analyse its structure and to generate the appropriate machine coding.
The productions are not directly given as syntax formulae, but instead indi
cate tests and manipulations to be carried out on the items at the top of the
push-down store. The items kept in the push-down store in general correspond
to syntactic units. The method is thus quite similar to that given by Ledley
and Wilson, except that syntactic information which has to await the scanning
and analysis of further items of the program text before being used is kept in
a push-down store rather than in a list structure.

1.3 TRANSLATION OF ARITHMETIC EXPRESSIONS

Many different techniques have been published for the transformation of an
arithmetic expression into a sequence of operations suitable for a computer.
Whilst this is only a small part of the total work of an algebraic compiler,
it has provided much scope for the development of interesting and varied
techniques.

As was mentioned in section 1.2.3, the recursively defined statement and
expression structure of ALGOL has led to the development of what might be
called 'integrated translation systems', as opposed to 'statement-at-a-time
translators' formed of a set of routines for processing expressions and the
various kinds of statements. Thus in describing techniques for the translation
of ALGOL arithmetic expressions, it must be realized that such techniques are
embodied in an integrated translation system, rather than in a separate
'expression routine'.

In this section brief descriptions are given of some of the techniques which
have been developed for the translation of arithmetic expressions. Apology
is made to the authors of the papers quoted for any inadequacies or inaccur
acies in this survey, which does not pretend to be complete.

1.3.1 Early Techniques

Probably the earliest description of a technique for translating arithmetic
expressions is given in a paper by Rutishauser [61], published in 1952. (See
footnote 1, p. 33.) The method described by Rutishauser uses a technique of
repeated scanning of an expression.

During a first left-to-right scan of the expression level numbers are assigned
to each operation, operand, and parenthesis. The level starts at zero for the
first constituent of the expression, increases by one for each left parenthesis
or operand, and decreases by one for each right parenthesis or operator.

The example given by Rutishauser (where the level numbers have been
placed under each constituent) is

(AI -7- (A2 + As)) - (AI X A2 X As)
o 1 2 1 2 3 2 3 21 0 1 2 1 2 1 2 1 0

After level numbers have been assigned in this way the expression is scan
ned repeatedly, in order to generate the equivalent program. The first scan
starts with the innermost bracketed sub-expression (found by inspection of
the level numbers) and the equivalent program operations are generated. The
constituents of the sub-expression are replaced by one operand, with a level
equal to that of the operands of the sub-expression. This process is repeated,
each time removing the innermost sub-expressions.

1.3 TRANSLATION OF ARITHMETIC EXPRESSIONS 23

By this means the above example would be transformed into a set of
operations equivalent to

RI := A2 + Aa;
R2 := Al --:- RI ;

Ra := Al X A2 X Aa;
R := R2 - Ra;

The methods used in the FORTRAN compiler, work on which started in
1954, were not published until some years after completion of the compiler
in a paper by Sheridan [65]. This paper contains a description of a very com
plex system for producing an efficient coding of an arithmetic expression.

Briefly, the translation is performed in a number of steps. (The examples
used will be those used in Sheridan's paper.)

The first step is to replace constants and subscripted variables by simple
variables. (This can easily be done because of the restrictions on subscript
expressions in FORTRAN.) Then' extra parentheses are inserted, to make the
normal rules of precedence of arithmetic operators explicit.

Thus
A+BtCjD

becomes
(((A))) + (((B)) t (C))j((D))

(The FORTRAN symbols for multiplication and exponentiation are
* and **.)

This is done by a set of transformations which operate during a left-to
right scan of the expression.

The third step is to break down the fully parenthesized expression so
formed into sub-expressions, or 'segments'; the segments are then broken
down further into what are called 'triples'.

The example given is the expression

(((A + B) - C) j { {D X (E + F) j G) - H + J))

(The extra parentheses have been omitted.)

The segments formed from this are

1. (A + B)
2. ((A + B) - C)
3. (E + F)
4. (D X (E + F) j G)
5. ((D X (E + F) j G) - H + J)
6. ({ (A + B) - C) j ((D X (E + F) j G) - H + J))

24 I ALGOL COMPILERS

A triple is generated from each term in a segment and consists of the seg
ment number, operator, and operand.

The above expression, in triple notation, is

(1, +, A) (1, +, B)
(2, +, 1) (2, -, C)
(3, +, E) (3, +, F)
(4, x, D) (4, x, 3) (4, /, G)
(5, +, 4) (5, -, H) (5, +, 1)
(6, x, 2) (6, /, 5)

The set of triples is formed during a left-to-right scan of the fully paren
thesized expression. During this scan a counter, which is increased at each
left parenthesis, is used to determine segment numbers.

The next step is a right-to-Ieft scan, during which the redundant triples
which have been produced from the extra parentheses inserted in step 2 are
deleted. The sequence of triples is then repeatedly scanned in order to re
move the triples corresponding to common sub-expressions, so that the
amount of actual computation performed at run time is minimized.

The triples within each segment are then re-ordered where possible in
order to minimize the number of fetch and store operations required, before
the triples are finally converted into SAP assembly code. The generation of
SAP instructions is performed using a segment of triples at a time, starting
with the last segment, and scanning each segment from left-to-right.

1.3.2 Single Scan Techniques

One of the earliest descriptions of a system for breaking an arithmetic ex
pression down into its constituent steps during a single scan is that given by
Milnes [52]. The method described by Milnes is, however, not used for the
production of machine code by a translator, but as a means of obeying an
expression directly, using an interpreter.

During a left-to-right scan of the expression, operations are performed
immediately where possible. At the occurrence of a symbol such as a left
parenthesis partial results are stored for use after ce>mpletion of the process
ing of the sub-expression contained in parentheses.

For example

a + (b - c) / (/ X g + e)

is performed in the set of steps

Rl := a;
R2 := b;
R2 := R2 - c;
Rs :=/;

1.3 TRANSLATION OF ARITHMETIC EXPRESSIONS 25

R3 := R3 X g;
R3 := R3 + e;
R2 := R2/ R3;
Rl := Rl + R2 ;

The actual method of operation is to use one table both for partial results
and for subroutine transfer instructions. These instructions which, when
obeyed, lead to the appropriate arithmetic operation subroutines, form a
record of the operations which are, at any given time, in abeyance awaiting
the completion of the calculation of sub-expressions. -

The same principles can be used for the generation of machine coding
during a single scan of an expression. An early description of such a system
is contained in a paper by Wegstein [71]. In this paper a detailed flow diagram
is given of a fairly simple algorithm for producing three-address machine
code, of a form similar to that shown in the above example.

The translation algorithm scans the expression from left to right, processing
one language constituent at a time. The route through the flow diagram is
dependent on the type of language constituent encountered (operand, 'C,

,. '+', '-', etc.).
Operators are kept in a list until they can be used in three-address instruc

tions. Operands either cause the generating of an instruction for setting up
a temporary store

e.g. R2 := b;

or are used in three-address instructions

e.g. R3 := R3 X g;

Operations which have had to be held over in the list, until further oper
ations have been dealt with, eventually cause the generation of three-address
instructions working entirely on temporary results

A paper by Kanner [44] describes a system which is in some ways similar
to the above, but which embodies certain improvements, notably concerned
with the use of temporary storage. The generation of separate instructions
to load a temporary store with an operand is avoided.

Thus

(a + b) - (c + d) t e

26 1 ALGOL COMPILERS

instead of being translated into

R1 := a;
Rl := Rl + b;
R2 := c;
R2 := R2 + d;
R2 := R2 t e;
R1 := Rl - R2 ;

is translated into

Rl := a + b;
R2 := c + d;
R2 := R2 t e;
Rl := Rl - R2 ;

The system of translation differs from that of Wegstein in that, during the
scanning of the expression (again from left to right), both the operands and
operators are recorded. The generation of instructions is performed at certain
stages by interrupting the recording process, and processing the items that
are stored, in the reverse order to the order in which they were recorded.
These interruptions occur at right parentheses, and on operators which are
lower in priority than the operator currently in abeyance.

A somewhat different technique is described by Arden and Graham [2, 3],
in connection with the GAT compiler for the IBM 650 computer. The GAT
compiler accepts a much less restricted form of arithmetic expression, allow
ing mixed mode working (i.e. real and integer variables and constants in an
expression) and imposing no limits on subscript expressions. The system of
translation differs from those of Wegstein and Kanner, in that arithmetic
expressions are scanned from right to left. In addition the algorithm uses a set
of 'precedence rankings' to re-order the arithmetic operations in accordance
with the normal rules of precedence, instead of branching according to the
type of operator.

The algorithm results in the production of a matrix (the 'algorithmic
matrix') in which each row is effectively a coded form of three-address in
struction.

These three-address instructions use a different temporary storage location
for each partial result, and a simple transformation is applied to the matrix
to avoid this.

The example given by Arden and Graham

(C1 + D 1) X Y2 + 2.768 + (12 - J2) X K1 / Z1

is thus transformed into the matrix

at,l ai, 2

1 1
2 1 X

ai,S ai"

12 J2
1 KI

1.3 TRANSLATION OF ARITHMETIC EXPRESSIONS

3 1 / 1 Zl
4 2 + Cl Dl
5 2 X 2 Y2
6 2 + 2 '2.768'
7 1 + 2 1

This is equivalent to the three-address instructions

R;" :=:12 - J2;
R1 := Rl X Kl;
Rl := Rl / Zl;
R2 := Cl + Dl;
R2 := R2 X Y2;
R2 := R2 + 2.768;
R1 := R2 + R1 ;

27

The extra information necessary for the production of machine instruc
tions is formed in the algorithmic matrix. Boolean variables giving informa
tion as to the type (real and integer) of the operands, whether a partial result
is immediately overwritten by the result of the next instruction, etc., are kept
in a set of extra columns (six in all) in the matrix. The actual translation into
machine instructions is performed using a set of 'translation matrices', one
for each operation. The elements of each translation matrix are Boolean
functions, to be applied to the last six elements of a row of the algorithmic
matrix, in order to decide which machine instructions to generate from a given
basic three-address instruction.

One important virtue of this system is that it is, to a large extent, machine
independent, as the actual generation of machine instructions is controlled
by the translation matrices alone.

An ingenious system, used in the RUNCIBLE compiler, also on the IBM
650 computer, is described in a paper by Knuth [45]. The translation tech
nique, which is highly machine-dependent, uses a single right-to-Ieft scan.

Because translation is performed during a single pass, the technique used
is to generate instructions to meet the most awkward case, and to replace
these instructions if later information proves this was unnecessary. Thus, for
example, instructions to float a fixed point number are generated in case the
number should be used with a floating point operation. If this does not prove
to be the case the float instructions are removed. This technique is facilitated
by careful choice of internal representations for items manipulated by the
compiler (see Lynch [49]).

The paper demonstrates the technique on the example used by Arden and
Graham [2], showing that a slightly more efficient object program is gener
ated.

28 1 ALGOL COMPILERS

1.3.3 A Double Scan Technique

A variation of the right-to-Ieft scan translation technique has been describ
ed by Floyd [22]. In order to translate an arithmetic expression into efficient
code for a one-address machine with index registers a bi-directional scan is
used. The scanning starts from the left of an expression and continues until
the closing bracket of a set of one or more subscript expressions is found.
The direction of the scan is then reversed, and the subscript expressions are
translated. The left-to-right scan then continues, being interrupted for any
further subscript expressions, until the end of the arithmetic expression is
reached. Then a right-to-Ieft scan is used to complete the translation of the
expression. Thus all translation takes place during scanning from right to
left, but precedence is given to subscript expressions.

This can be demonstrated by the transformation of an expression into a
set of equivalent simple assignment statements

(A [i + j X k] + B) X (C - D [i - jD

is transformed into

Rl :=j X k;
Rl := i + R1 ;

R2 := i - j;
R2 : = C - D [R2];
Rl := A[R1] + B;
Rl := Rl x R2 ;

The algorithm for performing this transformation is given in flow diagram
form, the route through the flow diagram being dependent on the type of
symbol being processed. The machine storage used for this technique is
organized as three 'push-down' stores, (i.e. stores working on a last-in-first
out principle). Push-down stores (which are also known under a variety of
other names, e.g. cellars, nesting stores, yo-yo lists), are in fact implicit in all
the single scan translations techniques described so far. Thus the 'table'
used by Milnes, the 'list' used by Wegstein, though not so described, all work
on the last-in-first-out principle. (This subject will be pursued further in
section 1.3.4.)

Two of the push-down stores used by Floyd are used for the symbols of
the arithmetic expression during the bi-directional scan, the third as a holding
store for operations during actual compiling.

However, the major part of the Floyd paper is concerned with improving
the efficiency of the resultant coding, and an extended version of the transla
tion algorithm is described. The extensions permit the assessment of the
types (real and integer) of partial results, the computation of operations
depending solely on constants during translation, the removal of duplicated
sub-expressions, etc.

1.3 TRANSLATION OF ARITHMETIC EXPRESSIONS 29

Thus the expression

y - z + 1.3 / (z - y)

is translated into one-address instructions which are equivalent to the
sequence of simple assignment statements

RI := z - y;
R2 := 1.3/ R1 ;

RI := R2 - R1 ;

1.3.4 Integrated Techniques

It was pointed out in section 1.3 that a technique for translating arithmetic
expressions in an ALGOL program would normally be part of an integrated
translation system. In this section a few papers describing techniques which
are capable of use in such an integrated system are described. (Techniques
for the translation of ALGOL are described in section 1.2.4.) An important
paper in this field is that by Samelson and Bauer [62], entitled 'Sequential
Formula Translation'. (See footnote 2, p. 33.) This contains one of the earliest
descriptions of the technique of using a store with 'last-in-first-out' prop
erties, i.e. a push-down store (here called a 'cellar'). Equally important,
however, is that it is shown that such a store can be used for the translation
of ALGOL statements as well as arithmetic expressions. However, the dis
cussion here will be limited to the translation of arithmetic expressions.

The paper first describes a technique for translating an expression using
two cellars, a 'symbol cellar' and a 'number cellar'. The symbol cellar is used
as a holding store for operators, whilst parenthesized sub-expressions and
further operators with bigher precedence are processed. The number cellar
contains the stores assigned for the partial results of the expression.

The method of translation is to read one symbol at a time, starting at the
left (for the purpose of this description identifiers, numbers, etc., are all
treated as single symbols). Identifiers simply cause the generation of an in
struction transferring the corresponding variable to the top of the number
cellar. The other symbols (parentheses and operators) are compared against
the symbol at the top of the symbol cellar, to decide upon the course of
action to be taken by the translator. The pair of symbols is in fact used to
select an element from a 'transition matrix', which is then used to trigger-off
the appropriate action by the translator.

By this means an expression such as

(a X b + c X d) / (a - d)

would be transformed into

R1 := a;
R2 := b;
RI := RI X R2;

30

R2 := c;
Ra:= d;
R2 := R2 X Ra;
Rl := Rl + R2 ;

R2 := a;
Ra:= d;
R2 := R2 - Ra;
Rl := Rl/ R 2 ;

I ALGOL COMPILERS

This is exactly the same as would be produced by the algorithm given by
Wegstein [71]. The symbol and number cellars are essentially the list of
operations and the set of locations for partial results used by Wegstein.

By splitting the number cellar into two cellars (a number cellar and an
address cellar) Bauer and Samelson show how to avoid operations which
simply load a variable into a partial result location. The three-address in
structions which would be produced by this modified system would be similar
to those produced by the system described by Kanner [44].

A paper by Huskey [35] describes in detail a somewhat similar system of
one-pass translation. Successive symbol pairs are used to control the choice
of 'generators', which either produce object program operations (in this case
in a conventional one-address format) or perform housekeeping tasks neces
sary for the process of translation. A push-down store (symbol list) is used
for the storage of operators until they can be converted into one-address
instructions.

An important modification of the Bauer and Samelson method of using
a push-down store has been described by Dijkstra [16]. The use of a transition
matrix is avoided, and instead a 'discrimination vector' is used. Each symbol
is given a priority; the discrimination vector is a table of symbols and their
corresponding priorities. The priority of the symbol just read in is compared
against the priority of the symbol at the top of the push-down store to control
the generation of instructions. This method, and a development of it, using
a double priority system, which is used in the Whetstone Compiler, is de
scribed fully in section 3.2.1.

An interesting notation for describing the use of a push-down store has
been given by Floyd [23]. The notation, which is somewhat reminiscent of
that used by Sheridan [65] for describing the method of inserting extra paren
theses in an arithmetic expression, is demonstrated on two systems for
translating arithmetic expressions. The first system is essentially similar to
that of Bauer and Samelson, and the second is the bi-directional scan tech
nique given in an earlier paper by the same author [22].

1.3.5 Reverse Polish

A push-down store can be used for the evaluation of an arithmetic ex-

1.3 TRANSLATION OF ARITHMETIC EXPRESSIONS 31

pression as well as for translating it into its constituent steps. (In fact the
system described by Milnes [52] could be said to use one push-down store
for simultaneous translation and evaluation.)

This can be demonstrated by expanding the sequences of three-address
instructions, produced by the simple left-to-right scan translation techniques,
so that all operations work on partial results.

Thus

a + (b X c - d)

would be translated into

R1 := a;
R2 := b;
Ra:= c;
R2 := R2 X Ra;
Rs:= d;
R2 := R2 - Rs;
RI := RI + R2;

These instructions fall into two types, namely those which load a
partial result location, or which perform an operation on the contents of
two consecutive partial result locations. The above set of instructions could
be abbreviated by deleting all references to partial result locations and instead
writing it as the sequence

a, b, c, X, d, -, +
This sequence can be used as instructions to specify the way in which a

store with last-in-first-out properties is to be used at run time. A symbol
which is an operand causes the sequence

Rp := 'operand'; p := p + 1;

to be obeyed, whereas an operator is equivalent to the operations

p := p - 1; Rp - 1 := Rp - 1 'operator'Rp ;

This has been described in a paper by Dijkstra [15] who uses the term
'stack' for the set of partial result locations, and 'stack pointer', for the index
p. The paper goes on to develop the system of using a stack for the whole of
the storage of variables in an ALGOL program, and demonstrates how this
facilitates the implementation of recursive procedures.

The sequence of symbols used as instructions controlling the stack are in
fact obtained by rewriting the original expression in 'Reverse Polish' nota
tion. This parenthesis-free notation is a variant of that introduced by the
Polish logician J. Lukasiewicz, and has the property that any operation is pre
ceded by its operands.

32 1 ALGOL COMPILERS

Thus

a+b

is written as

a,b, +
and

(a + b) X c

as

a, b, +, c, X

A recent paper by Hamblin [30] describes the various forms of Polish
notation, and simple techniques for translating between these notations and
normal algebraic notation. In a much earlier paper [29] the same author
described an interpretive program, for the English Electric DEUCE computer,
which allowed users to program in Reverse Polish notation. This interpretive
program was written as part of an investigation into the possibility of design
ing a computer with a Reverse Polish form of instruction code. In fact several
recent computers have been of this form; see, for example, papers by All
mark and Lucking [1] describing the English Electric KDF9, by Barton [8]
describing the Burroughs B5000, and by Takahashi, et al. [68] describing the
E.T.L. Mk. 6 Computer.

Several extensions to the normal technique of one-pass translation of an
arithmetic expression into Reverse Polish have been described in a paper [60]
by the authors. Two markers are introduced, one to indicate type of operands,
the other to indicate whether an operand is a constant or a variable. When
an operator is placed in the stack, copies of the current values of the two
markers are stored with it. During a single left-to-right scan of the arithmetic
expression, it is translated into a form of Reverse Polish in which the types
of all the operands, and the instructions to convert operands from real to
integer, are given explicitly. At the same time the constant marker is used to
evaluate all operators whose operands are constants. This is done by using the
store in which the Reverse Polish is being generated as a second push-down
store.

The techniques used in the Kidsgrove multi-pass optimizing ALGOL 60
compiler, for producing efficient coding of arithmetic expressions, are de
scribed in a paper by Hawkins and Huxtable [31]. The expression is re
ordered into a Reverse Polish form, which is then scanned repeatedly to
remove common sub-expressions, and to minimize the number of fetch oper
ations. This Reverse Polish then forms the basis of the generated machine
code object program, in which the computation is reorganized where possible
to take advantage of the nesting store accumulator of the KDF9, and to

1.3 TRANSLATION OF ARITHMETIC EXPRESSIONS 33

minimize the use of the various manipulative instructions such as PERM,
REV, DUP, etc. (see Appendix 3).

1.3.6 Summary

It will be seen that the original methods of translating arithmetic expres
sions were quickly replaced by simpler techniques. These techniques were
then extended in order to produce more efficient object programs. The next
stage was the development of integrated systems, and a coming into promin
ence of Reverse Polish notation. This last trend has had its influence on
machine design.

Footnotes added in proof

1. It has been brought to our notice that in this description of early techniques for the
translation of arithmetic expressions we have omitted to mention

Bohm, C. (1952.) "Calculatrices Digitales. Du d6chiffrage de formu1es 10gico-math6-
matiques par la machine meme dans la conception du programme". (Dissertation,
Zurich 1952). Ann. Mat. pura appl. (1954), 4, 37, pp. 5-47.

This paper, considered by many to have merited more attention than it originally
received, describes a single scan translation technique, using a rudimentary 'transition
matrix' (see section 1.3.4).

2. We are indebted to Professor F. L. Bauer for the following details of further papers
dealing with the 'cellar' technique.

c

Samelson, K. (1955). "Probleme der Programmierungstechnik. Aktuelle Probleme· der
Rechentechnik". Ber. Int. Mathematiker-Kolloquium, Dresden, 22-27 Nov., 1955.
VEB Deutscher Verlag der Wissenschaften, Berlin (1957), pp. 61-68.

Bauer, F. L. and Samelson, K. (1960). "Verfahren zur Automatischen Verarbeitung von
kodierten Daten und Rechenmaschine zur Auslibung des Verfahrens". Deutsche
Patentausiegeschriji, 1 094 019.

Bauer, F. L. and Samelson, K. (1962). Maschinelle Verarbeitung von Programmsprachen.
"Digitale Informationswandler" (ed. by W. Hoffmann), pp. 227-268. Vieweg, Bruns
wick.

1.4 THE WHETSTONE COMPILER

1.4.1 ALGOL on KDF9

The Whetstone Compiler is one of the two ALGOL 60 Compilers written
for the English Electric KDF9 Computer, as part of the 'KDF9 ALGOL
System'; see Duncan [19]. During the planning of the software for the KDF9
it was realized that it would be undesirable to attempt to satisfy the diverse
requirements of all users of an algebraic programming scheme with a single
compiler. This is because a compiler, like any other program, takes time and
space to perform its function. During development and testing of an ALGOL
program, it is undesirable to use much time in compiling, since the compiled
program will have a very short-lived existence. On the other hand a tested
program which is used extensively should make economic use of the com
puter, and it is worth spending more time and effort on the compilation of
such a program in order to produce an efficient object program. This has
prompted the development of two distinct, but compatible, ALGOL 60 com
pilers, one a fast single-pass compiler, written at the Atomic Power Division
of the English Electric Company, Whetstone, Leicester, England, and the
other a multi-pass optimizing compiler, written at the Data Processing and
Control Systems Division, Kidsgrove, Stoke-on-Trent, England. For the
convenience of operators and users these two compilers are embedded in a
single operating system, the 'KD F9 ALGOL System', which also includes
facilities for amending ALGOL programs, and for extracting routines from an
'ALGOL library', stored on magnetic tape.

The Whetstone Compiler produces an object program in an intermediate
language, which is interpreted at run time. During translation, which takes
place as the ALGOL program is being read in, an exhaustive series of checks
is performed, in order to ensure the validity of the ALGOL text. At run time
an extensive range of program testing facilities is available, enabling a
programmer to test his program in terms of the original ALGOL text. After
an ALGOL program has been tested, it is possible to recompile it, using the
Kidsgrove Optimizing Compiler, in order to produce an efficient machine
code program.

Since the two compilers are designed to be used interchangeably within the
KDF9 ALGOL System, it is essential that they should be completely compat
ible as regards the specification of the ALGOL source language which they
will accept. As a result the logical sum of the restrictions on ALGOL inherent
in either translation system forms the complete set of restrictions used to
define the subset of ALGOL 60 which is called KDF9 ALGOL. This compati
bility extends even to code procedures-both compilers will accept procedure
declarations whose bodies are written in KDF9 User Code. (User Code, the
standard assembly language for KDF9, is briefly described in Appendix 3.)

1.4 THE WHETSTONE COMPILER 35

Since programs containing code procedures may be compiled by either com
piler, the rules for writing code procedures are designed to ensure that no use
is made of the internal properties of a compiler, or of the object program it
generates, other than through the parameter list.

The main restrictions which have been placed on ALGOL 60, as defined by
the Revised ALGOL Report, are:

(i) all formal parameters must have specifications;
(ii) labels must be identifiers, and not unsigned integers; and
(iii) dynamic own arrays are not allowed.

A full list of the restrictions is given in Appendix 2.

1.4.2 The Design of the Whetstone Compiler

The translation techniques used in the Whetstone Compiler are a develop
ment of those used in the ALGOL Translator written for the Xl Computer at
the Mathematical Centre, Amsterdam, by E. W. Dijkstra and J. A. Zonne
veld. A brief description of the Whetstone Compiler has been given in an
earlier book in this series [58]. Because of the need for a fast translation
system the Whetstone Compiler is designed to translate an ALGOL program
during a single scan through the text. In particular, when a program is pre
sented directly on paper tape, instead of magnetic tape, translation takes
place as the tape is being read, and the generated program is complete in the
core storage, ready to be obeyed, virtually as soon as the last item of ALGOL
has been read.

The existence of the Kidsgrove Optimizing Compiler has allowed the
authors of the Whetstone Compiler a considerable amount of freedom in the
design of the object program produced by their compiler. Thus the object
program is designed in order to facilitate the task of translation and to pro
vide easy means of communication between program and programmer, in
terms of the original ALGOL text. Rather than expand the compactly coded
object program into a sequence of machjne code instfl.lctions; it is obeyed
interpretively using a Control Routine. In fact the object program language
can be thought of as approximating to the authors' ideas for an order code
of an ideal computer (ideal that is for running ALGOL programs I).

Because the object program has been designed in this way, and because the
KDF9 is a new computer with, as yet, no 'traditional programming conven
tions', there is little in the fundamental design of the Whetstone Compiler
which is in any way machine-dependent. In fact the Whetstone Compiler has
been implemented to date on three other computers, of widely differing
characteristics, namely a Ferranti PEGASUS, ACE at the National Physical
Laboratory, and an English Electric DEUCE.

The Whetstone Compiler is divided into two sections, called the 'Trans
lator', and the 'Control Routine'. The Translator uses the stack and priority
level techniques which have been briefly described in section 1.2.4.1.2. The
resultant object program, which consists of a sequence of 'object program

36 1 ALGOL COMPILERS

operations' together with their parameters, is obeyed interpretively by the
Control Routine, using a stack for the storage of simple variables and arrays.
Sections 2 and 3 of this book consist of a detailed description of the design
and use of the Object Program, and of the Translator respectively.

Since the Whetstone Compiler is intended mainly for use during the
development of ALGOL programs, considerable attention has been paid to
providing facilities for checking and testing programs. A further facility
available with both the Whetstone and the Kidsgrove Compilers is that of
program segmentation.

1.4.2.1 Program Checking

During translation an exhaustive series of checks is made on the ALGOL
text, and any errors found cause the printing of an 'error message' which
gives details of the type of error and the position in the text where the error
has become evident. Details of the various checks are given in the description
ofthe Translator in section 3, and in the Translator flow diagrams in Appendix
11. The method of translation makes it difficult to check out certain errors
during translation, such as compatibility of actual and formal parameters of
a procedure. In such cases the checks are performed at run time by the
Control Routine.

The basis of the system for checking errors is the assumption that the
statement bracket structure of a program is correct. This assumption cannot
be verified until the end of the text is reached, by finding an equal number of
begin and end symbols (ignoring those occurring within comments and
strings). Thus if the final error message produced in fact states that the
statement bracket structure is incorrect, any previous error messages should
be regarded with suspicion. However, if the bracket structure is correct it is
possible to produce a list of errors which, though not exhaustive, will not
contain any spurious errors (i.e. apparent inconsistencies arising from earlier
errors). This is done by treating each block separately. When an error is
found in a block, the rest of the block is skipped. Any internal blocks are
checked, but it is assumed that valid declarations for any non-local variables
have been missed during the skipping of the block which contained an error.

Example

begin real a;
a = 3;

end

begin real b;
b := 2 - c

end;
a:= 2

The error in the outer block ('a = 3' instead of 'a := 3') causes the rest
of that block to be skipped. The inner block is checked but the use of an
undeclared variable c will not be found.

1.4 THE WHETSTONE COMPILER 37

Since the outer blocks are not affected by the errors in an inner block, it is
possible to resume normal checking after the end of a block containing an
error has been reached. This system has the advantage that a fair proportion
of the errors in a program can be found during a single scan of the text,
without any complicated system of analysing the probable cause of each
error in an attempt to get the Translator 'back on the rails'. The implementa
tionof this system is described in section 3.4.7.

The position at which an error has been found is indicated by a message
containing:

(i) line number (counting only lines which contain printed characters);
(ii) position identifier (the last declaration of a procedure identifier or a

label prior to the error);
(iii) relative line number (number of lines counted from the position

identifier) ;
(iv) last delimiter; and
(v) last identifier or constant.

As a further aid to the checking of ALGOL programs various warning
messages can be produced during the course of translation. These messages
are designed to draw attention to parts of the ALGOL text which, though
valid, are probably in error.

One of the most frequent causes of errors in statement bracket structure is
the omission of a semi-colon after an end, which turns the text following the
end into a comment.

Example

x:= 3;
begin real a;

a:= 2
end
x:= 1;

This is a perfectly valid, though somewhat unlikely, piece of ALGOL
text, in which 'x := l' is a comment.

For this reason a warning message is printed whenever a comment after
the symbol end contains a delimiter. Thus the normal uses of the end com
ment convention, giving an identification of the block or procedure, or the
controlled variable of the for statement it finishes, will not give rise to any
warning messages.

Two other warning messages are concerned with the declaration of identi
fiers. If an identifier (other than a label) is declared but not used, or if a
formal parameter of a procedure is rendered inaccessible by a declaration at
the head of the procedure body, then warning messages are printed.

38 1 ALGOL COMPILERS

Example
begin real procedure F (a); real a;

begin real a;
F:=2

end;

Here the parameter a is inaccessible in the procedure F, and the local
variable a is declared but not used, and hence both types of warning
message will be printed.

Since the Whetstone Compiler uses only the first eight characters of an
identifier a message is printed when an identifier of nine or more characters
is encountered. This message gives the full sequence of characters forming
the identifier, as an aid to avoiding mistakes due to the use by the Compiler
of an abbreviated form of such identifiers.

1.4.2.2 Program Testing

The essential feature of the program testing facilities is that their use re
quires no knowledge of the object program produced by the Translator, or
of KDF9 machine code.

The testing facilities fall into two categories-those which can be used
during the running of a program, and those which can be used when a pro
gram has reached a failure. The various program testing facilities are con
trolled by means of directives given to the Compiler at the head of the ALGOL
program, and by ALGOL statements within the program.

Brief details of the implementation of the various program testing facilities
are given in Appendix 5.

1.4.2.2.1 Facilities Used During the Running of a Program. The testing of an
ALGOL program is accomplished by examining the results it produces, in
cluding any information produced as a result of a failure. Thus the normal
program testing strategy is to organize the printing out of extra information,
such as partial results, to indicate the course taken by the program, and to
help validate the results obtained from the program. A very powerful system
for controlling the output of test information can be built up using normal
ALGOL procedures.

Example
procedure TEST SHOT (a,b); value b; string a; real b;
begin

end;

print text (a);
print text (' L.......J = L.......J ');

print (b)

If this procedure were called by the statement
TEST SHOT ('alpha', alpha);

1.4 THE WHETSTONE COMPILER 39

where alpha has the value 1.2345, the result would be to print

alpha = 1.2345

In this, and succeeding examples, some suitable declarations for simple
output procedures are assumed.

The power of such a simple procedure can be greatly increased if its
action can be controlled during the running of a program.

Example

procedure TEST SHOT (a,b,c); value b,c; string a;
real b; integer c;
if TEST CONTROL > c then begin print text (a);

The sequence of statements

read (TEST CONTROL);
TEST SHOT (,a',a,1);
TEST SHOT ('b' ,b,2);
TEST SHOT ('c',c,1);

end;

print text (' '---J = '---J ');

print (b)

would produce no output, the values of a and c, or the values of a, band
c, depending on whether TEST CONTROL was read in as zero, one or
two, respectively.

Two program testing facilities are provided in the \Vhetstone Compiler to
supplement the facilities that can be provided by ALGOL procedures such as
those given above. The first of these is the automatic deletion, on request, of
all procedure declarations and procedure statements concerning procedure
identifiers starting with the letters TEST.

The second facility, a form of trace, can be harnessed to a system of levels
of testing (such as that demonstrated in the above example). The trace, when
operative, causes the printing of each position identifier and of the value of
each assignment statement that is passed. A 'position identifier' is defined as
an identifier used as a label attached to a statement, or as a procedure
identifier at the declaration of the procedure.

Example

integer procedure CALC; CALC := 4;
L:n := 3;

m:= 2 X CALC;
M:m :=0;

40 1 ALGOL COMPILERS

would produce a trace consisting of

L, 3, CALC, 4, 8, M, 0

The trace facility provides a means of performing a very detailed check on
the action of an ALGOL program. However, it would not be practicable to
trace a complete program, and therefore a means has been devised for
switching the trace facility on and off by means of ALGOL statements. This is
done by replacing the variable TEST CONTROL used in earlier examples by
an integer procedure TEST. Although this procedure has a body written in
code, its declaration is equivalent to

integer procedure TEST (E); value E; integer E;
begin own integer i;

if E < 0 then TEST : = i else i : = E
end;

Thus the statement

TEST (3);

will assign the value 3 to i, whilst TEST can be used by a function designator
with a negative parameter, in order to obtain the current value of i.

However, since the body is in fact given in code (written by the authors of
the Compiler) the integer i does not have to be stored in the stack in the
normal way. Instead a special store is used, and the action of the Com:rol
Routine at assignment statements and at position identifiers is dependent on
the value given in this special store, so that procedure statements of the form
TEST (E) can be used to switch the trace on and off.

Thus a very powerful system for obtaining partial results and trace in
formation can be built up using ALGOL procedures whose action is dependent
on the integer i, the value of which is controlled by a set of procedure state
ments of the form TEST (E). When required these procedure declarations and
statements can be deleted automatically.

The trace facility requires that the characters forming the various position
identifiers be held in the computer during the running of the object pro
gram. Since this is necessary only when the trace facility is to be used the
position identifiers are stored only when a directive is given to the Compiler
before reading in the ALGOL program.

1.4.2.2.2 Facilities Used at the Failure of a Program. No matter how much
care is taken in the incorporation of testing facilities of the kind described
above in a program, all too often a failure occurs in a section of the program
within which few, if any, partial results have been requested. For this reason,
several further program testing facilities in the Whetstone Compiler are con
cerned with the output of information at a failure, for use in attempting to
analyse the cause of the failure.

The normal failure information consists of a message detailing the type of

1.4 THE WHETSTONE COMPILER 41

failure (e.g. integer overflow) and the position in the ALGOL text at which the
failure occurred, given as an absolute line number, the last position identifier,
and the line number relative to this position identifier.

Often such failure information is of little value in itself; for instance a
failure might occur within a procedure, and what is really needed is informa
tion concerning the particular call of the procedure which lead to the failure.
This sort of information is given by what is here called a 'retroactive trace'
which is provided automatically at a failure if the trace facility has been re
quested (whether or not it is actually switched on at the:time of failure).This
retroactive trace consists of the last sixteen position identifiers passed, during
the running of a program, prior to the failure. By this means the route taken
to the failure (i.e. the sequence of labelled statements obeyed, and procedures
entered) is known.

The final program testing facility is known as the 'post-mortem'. This
consists of a print-out of the identifiers and current values of the simple
variables in the current block, and in the surrounding blocks. The number of
block levels which an;! 'post-mortemed' in this way is governed by a directive
given to the Compiler before the ALGOL text is read in.

1.4.2.3 The Segmentation of Programs

In both the Whetstone and the Kidsgrove Compilers it is possible to
divide an ALGOL program into segments and to translate these segments
separately. During the running of the program, the translated segments are
kept on magnetic tape and occupy space in the core store only during the
activation of the segment.

One of the main complaints against ALGOL has been that an ALGOL pro
gram is not suitable for segmentation. In fact the structure of ALGOL is such
that a 'complete procedure' (i.e. a procedure with declarations or specifica
tions for all identifiers used within its body) lends itself very well to such
treatment. Some details of the techniques used in the Whetstone Compiler
to translate and run segmented programs are given in Appendix 6.

1.4.2.4 Input/Output

The input/output facilities in KDF9 ALGOL are based on the use of code
procedures. Thus the input/output facilities are completely independent of
the compilers. A standard set of procedures 1S provided, but any user can
modify, replace, or extend this standard set to suit his own requirements.

A general discussion of the philosophy behind the method used for input/
output in KDF9 ALGOL, and brief details of the standard set of procedures,
are given in a paper by Duncan [20].

1.4.3 The Description of the Whetstone Compiler

It was stated earlier that the basic design of the Whetstone Compiler is,
to a large degree, independent of the computer for which it was developed

C*

42 I ALGOL COMPILERS

(the English Electric KDF9). In detail, of course, many features of the
KDF9 have influenced the Compiler. However, in the description of the Com
piler an attempt has been made to prevent such details from obscuring the
main issues. In many cases, whilst describing various internal features of the
Compiler, the authors have attempted to describe alternative techniques, and
to indicate the reasons (sometimes rather arbitrary) behind the choice of the
particular technique used.

The environment within which the Whetsone Compiler is used has naturally
had a large effect on the design of the Compiler. For instance, the fact that
it is meant for use mainly during program development has prompted the
authors to use a strictly one-pass translation system, together with a Control
Routine which obeys the object program interpretively at run time. How
ever, neither of these features can be regarded as really fundamental to the
basic logical design of the Compiler.

The one-pass techniques used in the Compiler are made feasible by the
fact that there is sufficient high speed storage on the KDF9 to allow the
object program to be built up within the computer. If this were not the case
it would be perfectly possible, say, to use a preliminary pass to collect details
of the identifiers used in a program, and a final pass after translation to insert
addresses in forward jump instructions. If this were done the object program
could be output as it was generated, and the third pass, dealing with forward
jump instructions, could operate as the object program was being read back in.

Similarly, the division of responsibility between the Translator and the
Control Routine could easily be altered. In the Whetstone Compiler the
object program is obeyed interpretively and the addresses and types of inter
mediate results are determined at run time. All these features help to simplify
the Translator but are not essential to the basic techniques described in
section 2, on the Object Program.

However, sections 2 and 3 give a detailed description of what has actually
been implemented on KDF9. It has not been possible to keep the description
completely machine-independent, mainly because it is necessary to describe
the way in which various items of information are stored inside the machine.
It would have been rather unrealistic to ignore the fact that in many cases
several items have been packed into one word (48 binary digits on KDF9);
the way in which this is done on a given computer depends on the number
of digits necessary for a store address, the size of words, the facilities for
packing and unpacking information, etc.

It has been very difficult to decide how to present the detailed logic of
the Compiler. The idea of describing-indeed even programming-a com
piler in its own language has a certain appeal, but it is by no means certain
that ALGOL, a language designed primarily for describing computational
processes, is ideal for describing a compiler, particularly to a human reader.
Naturally if an ALGOL compiler for some machine had been readily available
it would have been used, but as this was not the case the programming was
done in an assembly language. Before starting this detailed programming the
authors drew up a set of logical flow diagrams originally meant only for

1.4 THE WHETSTONE COMPILER 43

their own use. However, with the aid of sections 2 and 3 of this book, several
copies of the compiler have now been made from these logical flow diagrams.
In view of this the detailed logic of the compiler is given by means of these
logical flow diagrams (Appendices 10 and 11) which are to be regarded, not
so much as a rigid plan for programming, but as a basis to work from, having
regard for the order code and structure of a given computer. The authors'
only defence against criticisms of this decision to use the logical flow dia
grams, and of the notation used in the flow diagrams, is that they have already
been used successfully to implement ALGOL Compilers on several widely
rI;f+'o. ;,. ,...A.~"f""\ ... '1+O..,.C'!
U.I..1.J.\.,;".l..l.ll5 ,",V.l..1..I.pu.L,.\.,;"J.CJ.

2 THE OBJECT PROGRAM

2 THE OBJECT PROGRAM

The object program, generated from the ALGOL by the Translator, consists
of a set of operations, with parameters where necessary, which are obeyed
interpretively by the Control Routine, using the remaining core storage as a
stack. Each operation, which for purposes of description is given a mnemonic
abbreviation, is represented by an 8-bit code, The inner loop of the Control
Routine is used to fetch an operation code and then to select the routine
appropriate to the operation. Thus the Control Routine consists mainly of a
set of separate routines, one for each type of operation. However, there is
also a small set of sub-routines which is common to several routines.

Operations and their parameters are packed into words by syllables of
eight binary digits and are addressed using a 'program counter' working in
units of one syllable. Progress through the object program is normally made
by increasing the program counter, where necessary allowing for the syllables
used by parameters. For reasons of efficiency, the program counter is split
into two parts-the first indicating the word number, the second giving the
position of the syllable within this word, but this fact will be disregarded in
what follows.

2.1 ASSIGNMENT STATEMENTS

2.1.1 Arithmetic Expressions

It has been mentioned earlier that the object program corresponding to
an arithmetic expression is essentially in Reverse Polish notation. The evalua
tion of such an expression is accomplished by using the stack as a simple
push-down store.

Example

e + (a X b + c) / b - / X g

in Reverse Polish becomes

e,a,b, X ,c,+,b,/,+,f,g, X,-

This could easily be expanded into a set of commands, using explicit
stack addresses, as follows

s [0] :=e;
S [1] :=a;
S [2] :=b;
S [1] :=S [1] X S [2];
S [2] :=c;
S [1] : = S [1] + S [2];
S [2] :=b;
S [1] : = S [1] / S [2];
S [0] :=S [0] + S [1];
S [1] :=/;
S [2] :=g;
S [1] : = S [1] X S[2] ;
S [0] :=S [0] - S [1];

Here the vector S has been used as a stack, and the actual identifiers are
used to indicate the addresses of the variables.

However, it is obviously not necessary to give actual addresses to all these
operations, since all can be made to work under control of a single stack
pointer p, which is always set to indicate the first free store after the end
of the stack. Thus one would treat the Reverse Polish as a set of commands,
modifying the stack pointer appropriately.

Each identifier causes the value of the simple variable to be placed in the
stack at the position given by the stack pointer, which is then increased by
one. Each operation works on the contents of the top two stack positions

2.1 ASSIGNMENT STATEMENTS 49

(i.e. S [P-2] and S [p-lJ) placing its result in S [P-2], and then subtract
ing one from the stack pointer.

A slight complication arises from the possibility of using '+' and '-' as
unary operators. Unary' +' can be ignored, and unary' -' can be changed
into the operation NEG, which negates the value at the top of the stack,
(S [p-lJ), and does not alter p.

Example

~b X (+ a - b) t (-c)

becomes

b, NEG, a,b,-,c,NEG, t ,x

The operation of this is then equivalent to the explicit commands

S [0] :=b;
S[O] :=-S[O];
S [1] :=a;
S [2] :=b;
S [1] :=S [1]-S [2];
S [2] :=c;
S [2] : = - S [2];
S [1] :=S [1] t S [2];
S [0] :=S [O]xS [1];

So far no consideration has been given to the question of real and integer
working. The KDF9 computer has full facilities for arithmetic in both float
ing point and fixed point modes and these, naturally, are made to correspond
with the ALGOL types real and integer. The Revised ALGOL Report gives
explicit rules in section 3.3.4 concerning operators and types and the object
program must be made to reflect this.

The method used is to expand the above system of a 'Reverse Polish'
notation for the object program, by the inclusion of type information in the
operations which fetch the various operands into the stack. This information
is obtained by the Translator from the relevant type declarations. When an
operand is put into the stack it is accompanied by a second word, containing
an identifying bit pattern. Thus the arithmetic operators now work on one
or two word pairs, each word pair containing an operand and the information
necessary for decisions about real and integer working. Such word pairs are
called 'accumulators', and are addressed by means of a special stack pointer
which is called AP, the accumulator pointer, to avoid confusion with various
other stack pointers which will soon be introduced. AP works on exactly the
same principle as the stack pointer used earlier, and thus is always set to
indicate the first free accumulator after the end of the stack. However, AP
changes by one for each word, and hence by two for each accumulator.

It is now worth writing out a portion of object program in the form which

50 2 THE OBJECT PROGRAM

was described earlier, i.e. as a set of operations, with parameters where
necessary. However, until the method of storage of variables has been ex
plained the original identifiers will be used as parameters.

Example

The expression

i - (x + j) X Y

where x and yare of type real, i and j of type integer, which in
Reverse Polish is

i,x,j,+,y, X,-

is represented in the object program by

TIR i, TRR x, TIRj, +, TRRy, X, -

Here two new operations TIR (Take Integer Result) and TRR (Take Real
Result) are introduced. These 'Take Result' operations each have one
parameter which is the address of a simple variable. The operation
occupies 8 bits (one syllable) and the parameter occupies two syllables.
For convenience the object program is written out in tabular form, with a
syllable count appended.

Syll Op Par
o TIR
3 TRR x
6 TIR j
9 +
10 TRR Y
13 X
14
15

Examining the action of these operations in some detail, assuming that
AP has an initial value of, say, 10

TIR

TRR

TIR

+

x

j

Sets value of i in S[AP], i.e. S[10], and a bit
pattern meaning 'integer result' in S[AP+ 1],
i.e. S[11]. Two added to AP, which thus be
comes 12.
S[12] := x; S[13] := 'real result';
AP := AP+2;
S[14] := j; S[15] := 'integer result';
AP := AP+2;
Examines S[AP-3] and S[AP-1], i.e. S[13]
and S[15], converts 'j'in S[14] to real, sets the
real result 'x+ j'in S[12], decreasesAP by two.

2.1 ASSIGNMENT STATEMENTS 51

TRR y

X

S[14] := y; S[15] : = 'real result';
AP := AP+2;
No conversions necessary.
S[12] := S[12] X S[14]; AP :=AP- 2;
Convert i in S[10] to real.
S[10] := S[10] - S[12];
S[11] :='real result'; AP :=AP-2;

The system is extended to deal with simple assignment statements by means
of 'Take Address', and 'Store' operations.

Example

x:= y := i+ j;

is translated into

Syll Op
0 TRA
3 TRA
6 TIR
9 TIR
12 +
13 STA
14 ST
15

(where x and yare real variables, i and j are
integer variables)

Par
x
y

j

TRA (Take Real Address), stacks the address of an operand, and a bit
pattern meaning 'real address'. ST (Store), working on the top two accumu
lators, (an address and a result), does any necessary conversion between real
and integer, stores the result at the given address, and decreases AP by four.
ST A (Store Also), used only in multi-assignment statements, performs con
version and storage as in the operation ST, but then replaces the contents of
the 'address accumulator' by the contents of the 'result accumulator' and
only decreases AP by two. Thus ST A performs storage, but leaves the result
in the top accumulator, for use by succeeding ST A or ST operations.

Thus the action of an assignment statement is to stack one or more
addresses, before calculating the value of the expression, which eventually is
placed in the top accumulator, immediately above the addresses. Any ST A
operations successively move this result down one place, until a final ST
operation deletes the result and the final address.

It should thus be noted that after completion of an assignment statement
the accumulator pointer returns to the value it had originally. Furthermore,
the correct working of an assignment statement takes place independently
of the starting value of AP. The importance of this fact will become obvious
when the method of storage allocation of variables is described.

52 2 THE OBJECT PROGRAM

2.1.1.1 Exponentiation

The implementation of the exponentiation operator 't' is in accordance
with the definition given in section 3.3.4.3 of the Revised ALGOL Report.

This can be done because all anonymous intermediate results carry an
indication of their type. Thus the case of forming 'a t i', where i is of type
integer, can produce a result either of the same type as a, or of type real,
depending on the value of i.

In the case of an integer exponent the rule for giving the result of the ex
ponentiation operation involves the repeated multiplication

a X a X a X • .• X a (i times)

This can be done efficiently by repeated squaring, and is easily implemented
on a binary machine such as KDF9. The result is formed as the continued
product of various factors formed by repeated squaring of the base. The
digits of the binary representation of the exponent are used to decide which
factors are in fact necessary.

Thus
as = a4 X a l = (a2)2 X a l

al3 = as X a4 X al = «a2)2)2 X (a2)2 X at,
etc.

The calculation is performed by means of a small loop of instructions
which shift down the exponent and repeatedly square the base. Each time
round the loop that the least significant digit of the exponent is non-zero the
partial result is multiplied by the current value obtained from the repeated
squaring of the base.

2.1.2 Constants

Any constant appearing in an arithmetic expression is translated into a
'Take Constant' operation with, in general, the value of the constant as a
6-syllable parameter. The effect of such an operation is to stack its parameter,
together with the appropriate bit pattern specifying type.

In a somewhat arbitrary fashion a special case has been made for two
commonly used integer constants, namely 'zero' and 'one'. These each have
a special parameterless operation (TICO - Take Integer Constant Zero, and
TICl- Take Integer Constant One, respectively).

Example

(a + 2) X 3.0 - liN

2.1 ASSIGNMENT STATEMENTS 53

is translated into

Syll Op Par Remarks
0 TRR a
3 TIC '2' (Take Integer Constant)
10 +
11 TRC '3.0' (Take Real Constant)
18 x
19 TIC1
20 TIR N
""I" I
L:J I
24
25

Note that in this representation of the object program, quotes are used
to show that a parameter is a constant. This also serves as a reminder
that the parameter takes up 6 syllables.

An alternative, and perhaps better method of dealing with constants
would be for the Translator to set up a list of all the different constants used
in a program, and then to generate operations whose parameters refer to this
list, rather than include each constant in the program each time it occurs.
Such a system would be slightly more complicated for the Translator as it
would involve scanning a list each time a constant was used.

Methods of avoiding run time real-integer conversions on constants, and of
performing any operations which depend solely on constants during trans
lation are discussed briefly in section 1.3.

2.1.3 Subscripted Variables

The method of representation of subscripted variables in the object pro
gram is quite straightforward. Without going into details regarding the method
of storage of arrays, it is sufficient to assume the existence, for each array, of
an 'array word', which is used to address the 'storage mapping function' of
the array. A storage mapping function is basically a set of coefficients cal
culated from the subscript bounds given in the relevant array declaration.

These coefficients can be used, together with the values of the actual sub
scripts, by an 'indexing routine', to find the element of the array to which
the subscripted variable refers.

Thus, to obtain the address of an array element, the object program must
assemble, as data for the indexing routine, the address of the array word, and
the value of each subscript expression. This is done by using a 'Take Address'
operation to stack the address, not of a variable this time, but of the array
word, and the type of the elements of the array, followed by the normal
object program representation of each subscript expression. The operation
IN DA (Index Address) follows, and this uses the accumulators that have
been set up by the previous operations.

54 2 THE OBJECT PROGRAM

Example

A[i, j + 2, i - j x k]

is translated into

Syll Op Par
0 TRA A
3 TIR
6 TIR j
9 TIC '2'
16 +
17 TIR
20 TIR j
23 TIR k
26 X
27
28 INDA
29

In this, and following examples,
suitable declarations are assumed
for the various identifiers.

Assuming that AP has the value (say) 7 before this set of object program
operations is obeyed, then when IN DA is reached the following accumu
lators will have been set up:

S[13] and S[14]
S[11] and S[12]
S[9] and S[10]
S[7] and 8[8]

(Top Accumulator) Value of'i - j X k'
Value of'j + 2'
Value of i
Address of array word A

The operation IN DA works down through the stack, starting with the top
accumulator, examining the identifying bit pattern of each accumulator in
tum. Any real numbers are rounded off and converted to type integer, as
required by section 3.1.4.2 of the Revised ALGOL Report. This process ter
minates when an accumulator containing an address is reached. This address
enables the array word and hence the storage mapping function to be
obtained. The indexing routine is then used to process the storage mapping
function and the stacked subscripts, to obtain the address of the array ele
ment. This address is placed in the accumulator which contained the address
of the array word, and the accumulator pointer,is decreased so as to make
this the top accumulator. Thus the total effect of the set of operations is just
the same as a 'Take Address' operation for a simple variable.

In an arithmetic expression the value, rather than the address, of an array
element is required, and in such a case the operation INDR (Index Result) is
used instead of INDA. This works in the same way as INDA but finishes by
fetching the actual element.

This system of using INDR to replace the address of the array word and
the values of the subscripts by the value of the subscripted variable is used
to implement multiple sUbscripting.

2.1 ASSIGNMENT STATEMENTS

Example

A[A[2]] := A[3+A[1]];

is translated into

Syll Op Par
0 TRA A
3 TRA A
6 TIC '2'
13 IlvDR
14 INDA
15 TRA A
18 TIC '3'
25 TRA A
28 TIC1
29 INDR
30 +
31 INDR
32 ST
33

Remarks

Finds value of A [2].
Finds address of A [A [2]].

Finds value of A[1].

Finds value of A[3+A[1]].

55

This system of taking the addresses of the variables (simple or subscripted)
in the left part list of an assignment statement before evaluating the right
hand side allows multi-assignments to subscripted variables to be carried out
in accordance with the rules given in section 4.2.3 of the Revised ALGOL

Report.

Example

n[i] := i := 6;

which is translated into

Syll
o
3
6
7
10
17
18
19

Op
TIA
TIR
INDA
TIA
TIC
STA
ST

Par
n

'6'

If i is initially (say) 10, the value 6 is assigned to i, and to n[10], rather
than to n [6].

56 2 THE OBJECT PROGRAM

This treatment of subscripted variables is very inefficient for simple uses of
subscripted variables, although sufficiently general to deal with all the possi
bilities inherent in the recursive definition of subscript expressions given in
the Revised ALGOL Report. Optimization of subscripted variables, and indeed
of arithmetic expressions in general, will normally involve some changing of the
order of operations. This can only be done in ALGOL when it has been proved
that none of the operands involved is a function designator whose evaluation
induces side-effects. A discussion of function designators must be deferred
until the object program representation of procedures has been described.

However, bearing in mind this limitation, optimized treatment of sub
scripted variables, particularly in for statements is certainly possible. Papers
dealing with this subject include those of Hawkins and Huxtable [31], Samel
son and Bauer [62], Hill, Langmaack, Schwarz and Seegmtiller [34].

2.1.4 Simple Boolean Expressions

Simple variables of type Boolean are represented in core storage by a word
consisting of binary zeroes for the value faIse or binary ones for the value
true. The object program representation for simple Boolean expressions is
again essentially derived from Reverse Polish notation, and uses the opera
tion TBR (Take Boolean Result) to stack an accumulator with the value of a
simple Boolean variable, together with an identifying bit pattern. The Boolean
operators 1\, V, =>, -, work on the top two accumulators, replacing them
by the resulting Boolean value. The unary operation --. merely changes the
top accumulator from true to false, or vice-versa.

Example

-, b 1\ (c - d) V e

is translated into

Syll Op Par
0 TBR b
3
4 TBR c
7 TBR d
10
11 1\
12 TBR e
15 V
16

Relational operators work on the top two accumulators, which must be
real or integer, do any necessary conversion to type real, and if the relation
is satisfied, replace the accumulators by a Boolean accumulator with the value
true, otherwise with the value false.

2.1 ASSIGNMENT STATEMENTS 57

Example

x+y>z/\z~O

is translated into

Syll Op Par
0 TRR x
3 TRR y
6 +
7 TRR z
10 >
11 TRR z
14 TICO
15 <
16 /\
17

The re-ordering of the operations which is performed by the Translator
ensures that the arithmetic expressions involved in relations are evaluated
before the Boolean value of the relation is assessed.

The Boolean constants true and false are set up by the parameterless
operations TBCT (Take Boolean Constant True) and TBCF (Take Boolean
Constant False), which are analogous to the special operations TICO and
TIC1 used to set up the integers 'zero' and 'one'.

Simple Boolean assignment statements use the operation TBA (Take
Boolean Address) and the storage operations ST and ST A which have been
described earlier.

Example

b : = c : = x > 0 ;\ true;

is translated into

Syll Op Par
0 TBA b
3 TBA c
6 TRR x
9 TICO
10 >
11 TBCT
12 /\
13 STA
14 ST
15

58 2 THE OBJECT PROGRAM

Boolean arrays are dealt with in a similar way to real or integer arrays,
but use the operation TEA to fetch the array word.

More efficient methods of dealing with Boolean expressions involve use
of an object program representation which avoids performing unnecessary
operations.

For example

al\bl\cl\d

has the value false if any of the operands is false.

Optimization based on these principles is again somewhat restricted by the
problems of function designators and side-effects but can, for involved
Boolean expressions, prove most effective. Bottenbruch and Grau [11] give
several 'optimized' representations of Boolean expressions, and papers by
Huskey and Wattenburg [36], and Arden, Galler, and Graham [5], describe
methods of compiling optimized Boolean expressions.

2.1.5 Conditional Expressions

The description of arithmetic and Boolean expressions can now be ex
tended by a discussion of conditional expressions.

Essentially a conditional expression uses the truth values of Boolean ex
pressions to choose between various simple expressions. The object program
representation of simple expressions consists of sets of operations which are
executed strictly in sequence. Two operations IFJ (If False Jump) and UJ
(Unconditional Jump) are used to break the normal sequencing of operations
in order to choose the set of operations corresponding to the required simple
expression.

IFJ is used after the program generated from the Boolean expression in
an if clause. It allows a jump to be performed to the operations correspond
ing to the expression following the else of the conditional expression, if the
Boolean expression has the value false.

IFJ does this by inspecting, and deleting, the top accumulator, which must
be Boolean. If the accumulator had the value faIse then the program counter
is replaced by the parameter to the IFJ operation.

UJ is used after the unconditional expression between then and else, to
avoid the expression following the else. This is done by a simple replacement
of the program counter. The parameter to both IFJ and UJis a 16-bit counter.

Example

if x > 0 then y + z else y x z

2.1 ASSIGNMENT STATEMENTS 59

is translated into

Syll Op Par Remarks
D TRR x
3 TICD
4 >
5 IFJ (18) x> D?
8 TRR y
11 TRR z
14 +
15 UJ (25)
18 TRR y
21 TRR z
24 X
25

This mechanism can of course be used inside subscripts, within the Boolean
expression of an if clause, etc.

2.1.6 Conditional and Compound Statements

A technique similar to that used for conditional expressions, is used for
conditional statements.

Example

ii x = 0 then x : = 1 eise x : = 2;

is translated into

Syll Op Par
0 TIR x
3 TICD
4
5 IFJ (16)
8 TIA x
11 TICI
12 ST
13 UJ (27)
16 TIA x
19 TIC '2'
26 ST
27

On the other hand an if statement can be used to decide whether a given
statement is to be obeyed, rather than to choose between two statements.

60 2 THE OBJECT PROGRAM

Example

if x = y then x : = x-I;

is translated into

Syll Op Par
0 TIR x
3 TIR Y
6
7 IFJ (19)
10 TIA x
13 TIR x
16 TIC1
17
18 ST
19

The statement brackets begin and end, when used to group statements into
compound statements, do not have any direct equivalent in the object pro
gram.

Example

if b then begin x := 1; y := 2 end;

is translated into

Syll Op Par
0 TBR b
3 IFJ (22)
6 TIA x
9 TIC1
10 ST
11 TIA Y
14 TIC '2'
21 ST
22

2.1.7 Summary

Expressions are represented in the object program by re-ordering the oper
ators, to generate a Reverse Polish form of the expression. 'Take Result'
operations are used to give information regarding the type of variables. The
evaluation of expressions is performed using a stack. Indexing operations,
working on the values of subscript expressions, are used to find the particular
elements of arrays specified by subscripted variables. Conditional expressions
are implemented using two implicit jump operations, IFJ (If False Jump),
and UJ (Unconditional Jump).

2.1 ASSIGNMENT STATEMENTS 61

Assignment statements are translated using 'Take Address' operations and
the operations ST (Store) and ST A (Store Also) to assign values to the vari
ables given in the left part list.

Conditional and compound statements, for the moment demonstrated
simply using assignment statements, are built up without needing to intro
duce any further operations.

Taking a final example of an assignment statement

A [if b then 1 else 2] : = X : = (if if b then X > 0 else X > 0 then X + y
_"1 __ 'T "Tr'\ "" ""-el:seA - .1) l..c;

is translated into

Syll Op Par Remarks
0 TRA A
3 TBR b
6 IFJ (13) b?
9 TIC1
10 UJ (20)
13 TIC '2'
20 INDA Address of A [if b then 1 else 2]
21 TRA X
24 TBR b
27 IFJ (38) b?
30 TRR X
33 TICO
34 >
35 UJ (43)
38 TRR X
41 TICO
42 >
43 IFJ {,I\"\

, v J x> O? or X >O?
46 TRR X
49 TRR Y
52 + X+ Y
53 UJ (63)
56 TRR X
59 TRR Y
62 X- Y
63 TIC '2'
70 t
71 STA
72 ST
73

2.2 BLOCKS AND PROCEDURES

2.2.1 Block Structure

One of the most important concepts in ALGOL is that of block structure.
Each block introduces a new level of nomenclature; identifiers declared in a
block are local to that block and have no existence outside that block. This
fact can be used so as to make efficient use of core storage.

The most obvious saving would be to use the same storage spaces for
variables in separate blocks.

Example
B: begin real a;

begin real b;

end;

begin real c;

end;

end

Here band c are in separate blocks, each contained in the block labelled
B, and hence could use the same storage space.

The situation becomes more complicated when procedures are considered,
if a compact use of storage is required. This is because a procedure can be
called into action at various points in a program, which need not have the
same set of currently valid declarations.

Example
begin real a;

procedure Q;
begin real b;

end

end;
begin real c;

Q;

end;
Q;

2.2 BLOCKS AND PROCEDURES 63

At the first call of Q (in the innermost block) there are valid declarations
for a and c, whereas at the second call of Q only a has a valid declar
ation.

The most compact use of space is to have dynamic allocation of storage
during the running of the object program. In the Whetstone Compiler this
is done using a system whereby space for variables is called into existence
only for the duration of the block in which they are declared. The imple
mentation of this uses a stack.

2.2.1.1 The Stack

As each block in the object program is entered, its working storage, i.e.
the storage space required for its local variables, is added to the top of the
stack. When a block is left this working storage is deleted from the stack.
Thus, in the above example, within the procedure body of Q during its first
call, the stack will contain the variables a,c and b, and later, during the second
call, only the variables a and b will be in the stack.

If a procedure body is re-entered by means of a recursive procedure call
before it has been left, then a further set of working storage is created on top
of the stack, rendering the original set inaccessible for the duration of the
recursive call. Thus the use of a stack allows the same system to be used for
the allocation of space for working storage of both recursive and non
recursive procedures.

Dynamic arrays (arrays whose size vary during the execution of a pro
gram) are also implemented using the stack. On entry to a block, the expres
sions in an array declaration are evaluated and the amount of storage space
necessary for the array elements is reserved on top of the stack. Thus only
the exact amount of space required by an array for the current activation of
the block in which it is declared is set aside in the stack.

The technique of dynamic storage allocation using a stack, though fairly
simple to implement, and very efficient as regards use of storage, involves a
certain amount of extra work at run time. An alternative system (Irons and
Feurzeig [41]) involves detecting the recursive use of procedures at run time.
In this system the working storage of a given block or procedure is copied
into a push-down store if a further recursive activation occurs. In a paper by
Jensen, Mondrup and Naur [42], a description is given of a storage allocation
scheme, for all but recursive procedures, which allows the programmer to
control the use of backing storage.

2.2.1.1.1 Implementation of a Stack. With the stack system the Trans
lator, instead of allocating a separate fixed address to each variable in a pro
gram, treats each block separately. Each variable declared in a block is
allocated an address relative to the start of the working storage of the block.
At run time, when a block is entered, its working storage space is set up in the
stack; during the activation of the block the relative addresses of its variables

64 2 THE OBJECT PROGRAM

can be used to calculate the actual addresses. During different activations of
a block its variables may well have different actual addresses. (This is shown
in the case of the variable b in the above example.)

At any point during the running of the object program the stack contains
storage space for the variables of each block which has been activated and
not yet left. However only those sets of variables which have currently valid
declarations will be accessible. It should be noted that in ALGOL the scope of
a declaration is determined from the written structure of the program, i.e.
lexicographically, rather than from the dynamic flow of the program.

Thus in the above example, although both a and c are accessible at the
first call of Q, within Q c is shielded, and only a and b are accessible. On
exit from Q c will once more become accessible.

In the examples of ALGOL text the indentation which has been used to
show the block structure can be used to illustrate the concept of block levels.
During translation the lexicographic structure of the program can be used to
assign a level to each block, starting at one for the main program. Then the
body of procedure Q and the inner block, of the above example, both have
the main program as their surrounding block, and thus are both said to have
a level or 'block number' (BN) of two. Since the system of assigning a block
number to each block is related to the lexicographical structure, it can be
used to determine the scope of a declaration.

Relating this to the stack system, the block numbers corresponding to each
set of working storage can be used to determine whether the working storage
is currently accessible. One or more sets of variables will be left in the stack,
but rendered inaccessible, when a procedure call involves a jump to a parallel,
or lower block level. Thus, during the activation of a block at level n when the
current local variables are at the top of the stack, the only other sets of
accessible variables will be in the lexicographically containing blocks, i.e.
with levels n -1, n - 2, etc. The sets of variables for any inaccessible blocks
will be in the stack, between the various accessible sets. Thus, between the
sets corresponding to accessible blocks on levels i + 1 and i, say, (where i = 1,
2, ... n -1) any sets with levels greater than i will be inaccessible. As a re
sult, wherever a procedure is activated from within its body only a fixed
number of sets of stacked variables (given by the level of the procedure
declaration) are accessible, though many more sets may be stacked and in
accessible.

Example

Using the ALGOL text of the above example, during the first call of
Q, the stack will contain two sets of accessible variables- a on level 1,
bon level 2, and between a and b there will also be the inaccessible con
level 2 (a more detailed example is given in section 2.2.1.1.3).

2.2.1.1.2 The Procedure Pointer4 During the running of the object pro
gram it is necessary to keep a record of the starting position of each set of
stacked working storage. For the current block this position is kept in a

2.2 BLOCKS AND PROCEDURES 65

counter called PP. (This in fact stands for Procedure Pointer - the relation
ship of blocks and procedures is described later, in section 2.2.1.2.) In order
to delete a set of working storage from the stack on exit from a block, the
record is consulted to find the value of PP that the containing block had used,
and PP is reset to contain this value.

The record of previous values of PP is also used to find the actual address,
from its relative address, of a variable in the stack. However, within a block the
only variables that can be used are those which are currently accessible. Thus
only the values of PP for blocks which are currently accessible will be needed
to find the addresses of variables. It is therefore preferable to keep two separate
records of values of PP. The first record gives the start of the stacked work
ing storage of each block that has been activated and not yet left. It is this
record that would be used to reset PP each time a block is left. The second
record contains only the values of PP which can be used, in the current block,
to find the actual address of a variable.

These records are in fact kept in the stack rather than in two sets of con
secutive stores. At the start of each set of working storage in the stack a
space is reserved for 'link' data. The link data for a block contains two
values of PP, which comprise one element from each list. It has previously
been stated that PP contains the address of the first position of the working
storage of the current block. To be exact it contains the address of the link
data of the block, which precedes the working storage proper.

Thus each value of PP in a record is kept in the word whose address is
given by the value of PP which forms the next item in the record. The ele
ments of the list of currently accessible blocks form what is called the static
chain, whilst the elements of the list of all sets of stacked block information
(i.e. link data and working storage) form the dynamic chain. Thus the record
of all accessible blocks can be found by starting at the set of link data for the
current block, and by working down the static chain (each element giving
the address of the next element).

2.2.1.1.3 Display. For reasons of efficiency, since it must be referred to at
each use of a declared variable, the static chain is duplicated in a set of fixed
stores (effectively index registers) called DISPLAY. Thus the set of values of
PP for currently accessible blocks, though primarily given as a 'chain', is
also given in a straightforward list.

In the Whetstone Compiler, 64 stores have been allocated to DISPLAY.
This means that the number of block levels which can be declared within
each other has been limited to 64. However it is considered extremely un
likely that this limit will be reached in any practical program.

An object program operation referring to a declared variable does so by
using a 'dynamic' address, of the form (n,p). Here n is the level, or block
number of the relevant declaration, and p is the address of the variable
within the working storage of the block. However, for own variables, which
are stored as though they are declared at the head of a program, n is zero.

The actual or 'static' address of a variable is then given by
D

66 2 THE OBJECT PROGRAM

DISPLA Y[n] + p

If DISPLA Y were not used a declared variable could only be found by
working back down the static chain until the correct set of working storage
was located. The disadvantage of duplicating the static chain in this way is
that care must be taken, during manipulation of the stack, to ensure that
DISPLA Y does in fact continue to mirror the static chain.

Example

begin real a;
procedure QI;
begin real b,c;

Q2: begin real e;
procedure R3;
begin real f,g;

L: g:=O
end R3;

Q3: begin real h;

end
end QI;

M: R3;

end;

PI: begin real i,j;

P2: begin real /;
N: QI;

end
end

end

FIG. lea). Example of block structure.

In the example given in Fig. lea), which again uses indentation to
show block structure, labels and procedure identifiers have been chosen
so that the label of each block (or, if the block is a procedure body, the
procedure identifier) shows the level of the block and whether it is part
of the main program or of one of the procedures. These labels and pro
cedure identifiers are used to represent the values of PP marking the
starting positions of the stacked information for their blocks. The main
program is assumed to have the label P.

2.2 BLOCKS AND PROCEDURES 67

(i). At label N only the blocks P, PI and P2 have been activated. These
blocks are on successive levels, and have been activated in the order
that they occur in the text, so the static and dynamic chains coincide.
Thus the link data stacked at the position P2 contains two elements,
both specifying PI and the link data at PI contains two elements speci
fyingP.
The copy of the static chain in the vector DISPLA Y is as follows

DISPLA Y [1] = P
DISPLA Y [2] = PI
DISPLA Y [3] = P2

(ii). At label M in procedure QI, which has been called from block P2,
the situation has become more complicated. On entry to Ql the blocks
PI and P2, though still stacked, become inaccessible. Therefore the
static chain links together

P, QI, Q2, Q3

whereas the dynamic chain links together

P, PI, P2, QI, Q2, Q3

DISPLA Y contains

DISPLA Y [1] = P
DISPLA Y [2] = QI
DISPLA Y [3] = Q2
DISPLA Y [4] = Q3

(iii). At label L in procedure R3 the block Q3 has become inaccessible.
The static chain 'now links

P, QI, Q2, R3

whilst the dynamic chain links

P, PI, P2, QI, Q2, Q3, R3

DISPLA Y now contains

DISPLA Y [1] = P
DISPLA Y [2] = QI
DISPLA Y [3] = Q2
DISPLAY [4] = R3

Figure l(b) shows the contents of the stack at this point. In this stylized
representation the chain elements have been given in square brackets;
the dynamic chain is illustrated on the right of the stack, the static chain
on the left.
The sets of link data not currently joined by the static chain still contain
a static chain element. This is the element that had been set up when the
block was first activated, and will again be used when (and if) the block
once again becomes accessible.

68 2 THE OBJECT PROGRAM

Value of PP Contents of Stack

TOP OF STACK

g

R3:

I ____ f_!
i [Q2, Q3] I
I I
I h!

Q3:
i---·

[Q2, Q2]

Q2:

QI: ~-~~I
I I

P2: I-[pl:-~n~
I 1--- j

PI:

a

P:

FIG. 1 (b). Stylised Representation of contents of stack, as at
label L in procedure R3.

2.2 BLOCKS AND PROCEDURES 69

2.2.1.2 Procedures

In the Whetstone Compiler little distinction is made between blocks and
procedures. The concept of block levels described above is extended to in
clude procedures, and the activation of both procedures and blocks involves
forming a new set of link data at the top of the stack. In the case of a pro
cedure an accumulator space is left below the link data for a possible pro
cedure value or 'result', and space is allocated in the stack above the link
data for any parameters. In a block, which naturally does not need a result
accumulator, the working storage (for local variables) is placed above the
link data. However, in the case of a procedure whose body is an unlabelled
block the block level is only increased by one. (Thus the levels given to the
blocks in the previous examples are still correct.) The stack space required
for the procedure and block is combined, and consists of

(i) A Result Accumulator,
(ii) Link Data,
(iii) Parameter Space, and
(iv) Working Storage.

Thus a block could be thought of as a parameterless and nameless pro
cedure which is called at the same point as its 'declaration'.

As was mentioned earlier, recursive activation of a procedure is easily
implemented using the stack system. When a procedure is called from within
itself a further set of link data, space for parameters, and working storage for
the procedure body is stacked, causing the original set of stacked information
to become inaccessible. When the recursive activation is finished its stacked
information is deleted from the stack, uncovering the original set. Within
such a procedure, blocks entered recursively ,\X.,rill siII'Jlarly cause further sets
of link data and working storage to be created on the stack, shielding the
original set-.

A variation on this technique of using a stack for dynamic storage alloca
tion has been described by Hawkins and Huxtable [31]. The method of stor
age allocation is based on procedure levels rather than block levels; use is
made of the fact that a block can be entered recursively only by means of a
recursive call on the procedure in which it is embedded. Hence it is possible
to assign storage locations to the simple variables declared in each block,
which are fixed relative to the start of the procedure (where possible using
the same locations for variables in parallel blocks). During translation the
structure of the ALGOL program is examined to determine which procedures
are capable of being called recursively. Non-recursive procedures use a
DISPLA Y for access to non-local variables; entry and exit to such procedures
does not involve any complicated systems for keeping DISPLA Yup to date.
Recursive procedures use the sets of stacked link data in order to gain access
to non-local variables.

2.2.1.2.1 Function Designators. During the description of assignment state
ments it was mentioned that the evaluation of an expression (using a stack as

70 2 THE OBJECT PROGRAM

a simple push-down store) is not dependent on the starting value of the
accumulator pointer (AP). As a result it can be arranged that the top of the
stack above the working storage for the current block is used for the evalua
tion of expressions. Thus AP has as its starting value (to which it returns
after each assignment statement) the address of the first free store above
the stacked working storage. This address is called WP, the working storage
pointer. Then if evaluation of the expression involves activation of a pro
cedure (by means of a function designator) this can set up its link data and
working storage on top of the stack, above any accumulators containing
anonymous intermediate results of evaluation of the expression. Eventually
the value of the function designator is placed in the result accumulator
space which has been left under its link data, and the link data and the work
ing storage are deleted from the stack. Thus the total effect of the function
designator is to set up one accumulator on top of the stack, and hence evalu
ation of the expression can proceed normally.

2.2.1.3 Re-declaration of an Identifier

In the above no mention has been made of the possibility of re-declaring
an identifier and so rendering a previous declaration of the identifier inaccess
ible. This situation is dealt with by the Translator, rather than at run time, by
ensuring that any use of an identifier is translated into object program oper
ations referring to the currently valid declaration.

The implementation of calls of a procedure occurring outside the scope of
any non-local quantities of the procedure body is in accordance with the
Revised ALGOL 60 Report.

Example

begin real a;

end

procedure P (b); integer b; b : = a;
a:= 5;
begin integer a, i;

P(i)
end

In this example the call of procedure P in the inner block is outside the
scope of the non-local variable a used in the procedure body, because of
the re-declaration of the identifier a. This would have been undefined,
according to section 4.7.6 of the original ALGOL 60 Report. However,
in the Revised Report section 4.7.6 has been deleted and section 4.7.3.3
amended, so that the above example is valid. In fact it is stated that in
such a case conflicts between identifiers are avoided by suitable systematic
changes of the identifiers whose declarations are valid at the place of the
procedure call. The method described earlier of using the static chain
(by means of DISPLA Y) to address currently accessible variables

2.2 BLOCKS AND PROCEDURES 71

automatically ensures that within a procedure body the non-local
variables which have declarations valid at the procedure declaration are
used. This is obviously equivalent to the systematic changes described
in the Revised Report.

2.2.2 Link Data

It is now necessary to consider the subject of link data further. Whenever a
block is activated a set of stores is set aside at the top of the stack for link
data and working storage. For convenience, within this section on Link Data,
the term 'block' is being used synonymously with the term 'procedure'. The
link data that has been considered so far consists of the dynamic and static
chain elements. These elements are in fact the values of PP (the procedure
pointer) for previous blocks. The dynamic chain element is the value of PP
for the block in which the activation takes place, whilst the static chain
element is the value of PP for the lexicographically containing block of the
block being activated, i.e. the block in which the 'declaration' of the block
in question occurs.

Take the example of a block a in which there is an activation of block b,
where the declaration of block b is in block c. The dynamic and static chain
elements in the link data for block b are the values of PP that were current
during the most recent activation of blocks a and c, i.e. PPa and PPc, re
spectively.

PPa can be considered as the part of the link data which allows the pro
gram to resume block a after completion of block b. PPc can be considered as
part of the information that block b needs during its activation, in order to
perform its task properly. Thus the link data of a block can be regarded as
having two distinct tasks - firstly to enable the program to resume correctly
after completion of the block, secondly to contain information currently
needed by the block. The further items of link data which must now be de
scribed can also be categorized according to which of the above tasks they
perform.

Two extra items are needed for the correct resumption of working after a
block has been completed. A block (and certainly a procedure) can be re
garded as a subroutine, and needs the normal form of subroutine link
mechanism. Thus the first item is a conventional link, i.e. a 'return address',
which is a value of the program counter indicating the position reached in
the program of the outer block, when the current block was activated. Stack
ing this return address in the link data enables the program counter to be
reset for the Control Routine to start obeying the object program operations
of the new block. At the end of this block the return address is used to restore
the program counter to its original value. The second item is a machine code
link, needed because a certain form of block is sometimes called from within
the Control Routine. The reason for this is explained in section 2.5.5.1.1.

The three remaining items of the link data contain information currently
needed by the block. They are BN - the block number, or level, of the current

72 2 THE OBJECT PROGRAM

block, WP-the current value of the working storage pointer, and FP-the
formal pointer. BN and WP have already been described: the formal pointer
will be described in section 2.5.6.

The method of storage of the various items of link data depends largely on
particular machine characteristics. In the Whetstone Compiler for the KDF9
Computer the seven items have been, for convenience, packed into three words.
(see Fig. 2).

~
i

Word
0 I 2 3 4 5

i
I

I

2 RAa
;

Machine code link
I

1 BNb WPb I FP

I
•

0 PPc PPa
I I

FIG. 2. Packing of Link Data.

This has been done by packing BN and WP together, and then allocating
a half word for each item. BN, though given eight bits in the link data, only
needs six since the vector DISPLAY, which it addresses, has been arbitrarily
limited to 64 elements.

2.2.3 Activation of Blocks and Procedures

Within the object program the main distinctions between a block and a
procedure are that a block can never have parameters, and can never define
the value of a function designator.

For the present it will be sufficient to state that at the call of a procedure
the object program representation of its actual parameters is used to set up
a group of 'formal accumulators' in the stack immediately above the link
data. A discussion of formal accumulators will be deferred until section 2.5.
Within the body of a procedure, references to formal parameters are repre
sented by calls on these formal accumulators. When a procedure (as distinct
from a block) is called, a double-word space (called the result accumulator)
is reserved at the top of the stack, before stacking the link data. Any value
assigned to the procedure identifier is stored in this result accumulator. When
the activation of the procedure is finished only the result accumulator is left
on the stack. For convenience any activation of a procedure, either by a pro
cedure statement or by a function designator, sets up a result accumulator.

Immediately after entry to a procedure has been completed (i.e. after the

2.2 BLOCKS AND PROCEDURES 73

operation PE) the stack has been set up with a result accumulator, link data,
formal accumulators, and 'first order' working storage (see Fig. 3). First
order working storage consists of scalars (real, integer, and Boolean vari
ables), and one word for each array. The full amount of working storage will
not have been set up until all the array declarations have been processed so
as to set up mapping functions, and space for array elements. (Mapping
functions and array elements are said to use 'second order' working storage.)

Word
Pointers l{umber

WPb, APb: 12
11 3rd Working Store
10 2nd Working Store
9 1st Working Store

~} 2nd Formal Word

Accumulator Pointers Number

~} 1st Formal WPb, APb: 6
Accumulator 5 3rd Working Store

~l
4 2nd Working Store

Link Data 3 1st Working Store
APa, PPb:

~l ~} Result Link Data
Accumulator APa,PPb:

(a) (b)

FIG. 3. Stack Reservations on Entries to Procedures and Blocks. (a) Procedure
with two formal parameters, three working stores. (b) Block with three working
stores.

PP is set to indicate the first word of link data and has in fact been obtained
from the value contained in AP (the accumulator pointer) before the block
or procedure was activated (a result accumulator is reserved simply by adding
two to AP before using it to form the new PP). AP is then set to indicate the
first free store above the working storage. This position is also given in WP,
which is kept in the link data. Thus at any time within the activation of a
block or procedure AP gives the extent of the stack and PP can be used to
find such quantities as WP and BN.

The actual process of activating a procedure is shared between two oper
ations. The first operation CF (Call Function) or CFZ (Call Function Zero)
does some preliminary setting up of the link data, sets up any formal accum
ulators, and then jumps to the object program operation at the start of the
procedure, which is P E (Procedure Entry). P E completes the setting up of the
link data, calculates the new values of AP and WP, and copies the new static
chain element into the appropriate element of DISPLAY.
0*

74 2 THE OBJECT PROGRAM

CF has two parameters-a (a two-syllable program address) and m (one
syllable, giving the number of parameters). CF increases AP by two, and uses
the stack address thus formed as the position of the start of the link data.
The dynamic chain element PPa is the current value of PP. The return address
(the current value of the program counter), and a machine code link, are then
placed in the link data. A new value of PP is formed from AP, the formal
accumulators are set up, and finally the program counter is replaced by the
value a. The control routine as a result jumps to the operation P E. An UJ
operation is placed in front of the operation P E, and is used to avoid the
procedure on entry to the block in which it is declared.

The system of translation used to generate the object program makes it
necessary to make a special case of a procedure with no parameters. The
operation CFZ, which has a single parameter a (a two-syllable program
address), is used to call such procedures.

The operation P E has three parameters, nand L, which are packed into
two syllables, and m, which occupies one syllable. n gives the block number,
or level, of the procedure; as DISPLAYhas been limited to 64 elements
n can be fitted into six bits. The remaining ten bits have been thought sufficient
for L, which gives the number of words that will be needed in the stack for
the formal accumulators and first order working storage. The main task of
L is to enable P E to set aside the working storage space. It is only for con
venience that L includes the formal accumulator space, which could have
been worked out from the parameter m, which gives the number of formal
parameters belonging to the procedure. This is checked at run time against
the number of actual parameters as given with the operation which called the
procedure. In the case of a call using CF or CFZ this is just duplicating a
check made at translation time. The check is really needed at run time for
calls on formal procedures (see section 2.5.5.6). The parameter n is used to
obtain the static chain element PPc. PPc is the value of PP for the last
activation of a block with a level of 'n - 1'. This could be found by working
back down the dynamic chain, but is in fact obtained from DISPLA Y
[n-l]. The current value of PP is placed in DISPLAY [n]. BN (given by n),
WP (ca1culated using L), and FP (set up as the stack address of the first
formal accumulator) are.placed in the link data, and finally AP is set equal to
WP.

The activation of a block uses the operations CBL (Call Block) and BE
(Block Entry). CBL has no parameters - m is obviously not needed since
it must be always zero. Furthermore, because a block is activated at the same
point as it is declared, it is unnecessary to give CBL the address of the BE
operation as a parameter, since the operation BE is fixed relative to CBL
(see section 2.2.7). BE is a simplified version of P E (Procedure Entry) without
the parameter m, since no checking is necessary.

2.2.4 Completion of Blocks and Procedures
When the action of a block or procedure has been completed its link data

and working storage must be deleted from the stack, so that the action of the

2.2 BLOCKS AND PROCEDURES 75

containing block (or procedure) can be resumed. This is done by the opera
tion RETURN. In the case of completion of a procedure RETURN has the
extra task of ensuring that DISPLA Y is reset to the state it was in before the
activation of the procedure.

Example

U sing the example given in Fig. 1, after entry to procedure Ql the
dynamic chain is

P,PI,P2, QI

and DISPLAY is
DISPLA Y [1] = P
DISPLA Y [2] = Ql

When procedure Ql is finished a return must be made to the block in
which Ql was activated (namely P2), and DISPLA Y updated such that

DISPLAY [1] = P
DISPLA Y [2] = PI
DISPLA Y [3] = P2

However, leaving block P2 to return to block PI just causes the third
item in DISPLA Y to become redundant.
Thus DISPLA Y is effectively

DISPLAY [1] = P
DISPLA Y [2] = PI

The task of updating DISPLA Y to duplicate the static chain is performed
by a subroutine UDD (Update Display) which is called into action by the
RETURN operation. Since UDD, by inspection of DISPLA Y, can determine
whether any resetting is in fact necessary, it is convenient to use exactly the
same RETURN operation for blocks as for procedures.

2.2.4.1 Update Display

The method of updating DISPLA Y is to work back down through the
static chain given in the various sets of stacked link data, using each static
chain element to correct the corresponding element of the vector DISPLA Y.
In theory it is sufficient to terminate this process as soon as the level at which
the static chain and DISPLA Y coincide has been reached. However, in prac
tice extra care must be taken when exit is being made from one level to a
higher level (e.g. in the above example, of return from procedure Q). This is
because the elements of DISPLA Y for the higher levels may contain obsolete
values of PP. Thus it is necessary to check DISPLAY down to the level of the
procedure being left, and thereafter until the static chain and DISPLA Y
coincide. Alternatively, if so desired, it is possible to avoid this complication
by zeroing elements of DISPLA Y when they become redundant.

76 2 THE OBJECT PROGRAM

2.2.5 Assignment to Procedure Identifier

An assignment to a procedure identifier is needed in a procedure which is
to be called by a function designator. In addition, the declaration of such a
procedure must start with a type declarator (real, integer, or Boo)ean). (See
section 5.4.4 of the Revised ALGOL Report). For convenience of checking,
the Whetstone Compiler insists that type procedures include an assignment
to the procedure identifier, even if they are not to be called by a function
designator. In the object program this is represented by an assignment to the
result accumulator at the head of the stacked information for the procedure.
This is done using the normal 'Take Address' and 'Store' operations.

The stack address of any variable is given in the object program by a
dynamic address of the form (n,p); n enables the value of PP for the block or
procedure containing the variable to be found from DISPLA Y, p is the posi
tion of the variable in the stack relative to this value of PP. PP is set to indi
cate the stack address of the link data, and thus the stack address of the first
word of the result accumulator is 'P P - 2'. For convenience this is represented
by a dynamic address (n,O), rather than (n, - 2), which would involve using one
of the ten bits allotted to p as a sign digit.

The 'Take Address' operation, when it has a parameter of the form (n,O),
stacks the value of 'DISPLA Y [n] - 2', and an identifying bit pattern. The bit
pattern is used to identify the address as being that of a result accumulator.
As a result the 'Store' operation, in addition to its normal task of real-integer
conversion, and storage of the value given in the top accumulator, sets up a
bit pattern in the second word of the result accumulator.

Example

integer procedure P; P : = 3;

is translated into

Syll Op Par

° PE (2,0), °
4 TIA (2,0)
7 TIC '3'
14 ST
15 RETURN
16

It is assumed here that the procedure is given a block number, or level,
of two.

2.2.6 The Operation REJECT

It is necessary to allow for the possibility of a type procedure being called
by means of a procedure statement instead of a function designator. In such
a case an unwanted result accumulator will have been left at the top of the
stack after return from the activation of the procedure. This accumulator is

2.2 BLOCKS AND PROCEDURES 77

deleted by the operation REJECT, which simply decreases AP by two. For
convenience all procedure statements use a 'Call Function' operation followed
by REJECT. .

2.2.7 The 'Return Mechanism' for Blocks

Since a block is activated at the point where it is 'declared', it is necessary
to allow for the action of the operation RETURN, which causes a jump to
the operation following the CBL operation.

In fact the layout of the object program corresponding to a block is

CBL
UJ (a)
BE (n,L)

RETURN
a:

Thus the CBL operation jumps forward four syllables to the BE operation.
Eventually RETURN jumps to the UJ operation which jumps around the
'declaration' of the block. (An alternative system would be to introduce a
special operation, BLOCK RETURN.)

2.2.8 Summary

By way of summary to the description of blocks and procedures, an
example of a small 'program' is given in Fig. 4, in which a type procedure is
called both by a function designator and by a procedure statement.

begin integer i, j;

end

real procedure P;
begin real x;

x :=0;
P:= x-1

end;
j:= 1;
begin integer j, k, !;

!:=P
end;
P

FIG. 4(a). Algol Text.

78 2 THE OBJECT PROGRAM

Syll Op Par Remarks
0 CBL Call Program Block
1 UJ (54)
4 BE (1,2) Program Block
7 UJ (29)
10 PE (2,1),0 Procedure P
14 TRA (2,3) x
17 TICO
18 ST x :=0
19 TRA (2,0) P
22 TRR (2,3) x
25 TIC1
26
27 ST P:= x-I
28 RETURN
29 TIA (1,4) j
32 TIC1
33 ST j:= 1
34 CBL Call Inner Block
35 UJ (49)
38 BE (2,3) Inner Block
41 TIA (2,5) I
44 CFZ (10) CallP
47 ST I :=P
48 RETURN
49 CFZ (10) CallP
52 REJECT
53 RETURN
54 FINISH

FIG. 4(b). Object Program.

The first operation, CBL, starts to set up the first set of link data, and calls
the BE operation at syllable 4, which marks the beginning of the program
block. The BE operation specifies the block number to be one, and the num
ber of local variables to be two. The first action of the program block is to
jump around the declaration of procedure P, i.e. to syllable 29. The next
three operations perform 'j : = 1'. The dynamic address of j, since it is the
second local variable in a block of level one is given as (1,4) - as always,
allowing three words for link data.

The CBL operation at syllable 34 causes a jump to the BE operation which
starts the inner block. In this block the address of I is stacked, and then the
operation CFZ is used to call procedure P. The PE operation which starts the
procedure, at syllable 10, gives its level as two, and the amount of working
space as one. The first three operations of the procedure perform 'x := 0'.
The TRA operation at syllable 19 then stacks the address of the result

2.2 BLOCKS AND PROCEDURES 79

accumulator of P. After computing the right hand side using the next three
operations the ST operation at syllable 27 stores 'x-I' in the result accumu
lator of P. The operation RETURN deletes the link data and working stor
age of procedure P from the stack, leaving its result ('x-I') as the top entry,
before returning to syllable 47. (This syllable number was stacked when the
procedure was called by the operation CFZ at syllable 44.) Thus the value
of the function designator P is stored in l. The next operation, RETURN,
deletes the stacked information corresponding to the inner block, and returns
to syllable 35, which is a jump around the declaration of the inner block, to
syllable 49. This is another call on procedure P. Eventually a return is made
from P, with its result in the result accumulator on top of the stack, to syll
able 52. The operation REJECT deletes the result of P. The next operation
RETURN completes the main program block; control is passed to syllable
1 and hence to syllable 54. This is an operation FINISH, which has not
previously been mentioned. Its task is to mark the end of a translated program.

2.3 ARRAYS

The first order working storage, which is set aside in the stack when a block
or procedure is activated, contains scalars (real, integer, and Boolean) and
array words. In the object program all references to an array refer to the
appropriate array word.

Example

B [1, 10] := 0;

is translated into

Syll
o
3
4
11
12
13
14

Op
TRA
TICI
TIC
INDA
TICO
ST

Par
(3,7)

'10'
The dynamic address of the
array word of B is (3,7), say.

The array elements and their storage mapping function occupy second
order working storage. A storage mapping function is a linear expression
(described in section 2.3.1) used by the operation INDA or INDR to locate
a particular array element. An array declaration is translated into object pro
gram operations, which at run time calculate the storage mapping function.
A storage mapping function is set up for each array segment. The number of
words required for a storage mapping function is equal to the number of
dimensions of the arrays.

Example

integer array A, B, C, D [1: 4, 0: 5, -2: 0], E, F [0: 7];

This declaration will cause space for six array words to be allocated in
first order working storage. The number of elements in each array of the
first array segment is 4 X 6 X 3 = 72. The arrays in the second array
segment have 8 elements each. Therefore the amount of second order
working storage needed is 3+4x72+1+2x8 = 308 words.

Each array segment is translated into a set of object program representa
tions of each arithmetic expression in the bound pair list, followed by the
operation MSF (Make Storage Function). MSF has as its parameters the
dynamic address allocated to the last array word, and the number of array

2.3 ARRAYS 81

identifiers in the segment. Array words are allocated dynamic addresses in
sequence.

Example

Boolean array B [i:j + 3, 0: 1], C, D [- 2:j];

is translated into

Syll Op
0 'T'Tn

1 J l\.

3 TIR
6 TIC
13 +
14 TICO
15 TIC1
16 MSF
20 TIC
27 NEG
28 TIR
31 MSF
35

Par
£1 //\
~.4,"t }

(2,5)
'3'

(3,6), 1
'2'

(2,5)
(3,8),2

Here i and j, declared in an outer block, are assumed to have addresses
(2,4) and (2,5). The array words for arrays B, C, and D, have been
allocated addresses (3,6), (3,7) and (3,8) respectively. When the oper
ation MSF, at syllable 16, is reached, the top of the stack will contain the
current values of the lower and upper bounds of each subscript of the
array. MSF uses these values as data in order to calculate the storage
mapping function.

2.3.1 The Storage Mapping Function

The elements of an array are stored sequentially, each element taking one
word of storage.

Example

array A [-1: 1, 0: 2];

has its elements stored in the order

A[-1,0], A[O,O], A[I,O], A[-1,1], A[O,I], A[I,l], A[-1,2], A[0,2], A[l,2]

The storage mapping function of an array consists of a set of integer
coefficients which are used by the operations INDA and INDR to find the
10cation of a particular element of an array specified by means of a sub
scripted variable.

82 2 THE OBJECT PROGRAM

The location of the element

of the n-dimensional array can be given as

b + So x Co + SI X CI + ... + Sn-I X Cn-h

where b is the base address of the array, i.e. the address of A[O,O, .. , 0]
(this need not be an element of the array). The integers Cj (i = 0, .. , n -1)
are calculated from the subscript bounds of the array; if the declaration of
array A is

then the integers Cj are given by the recurrence relation

Ci = Cj -I X (Ui -I - Ii -I + 1), i = 1, ... , n - 1,

where Co = 1.
Here 'Ui - Ii + l' gives the 'range' of the (i + 1)th subscript, and hence

the integers Ci give the amount by which the address of an element changes
corresponding to a change of one in the (i + 1)th subscript. Co has the value
one, because each element occupies one word.

In fact when space is to be allocated in second order working storage for
a set of array elements it is the address, w, say, of the first element
(A[lo, Ib 12 , •• , In -I]), rather than the base address b, which is known.

However
w = b + 10 x Co + ... + In-I X Cn-I

Therefore
b = w - (to X Co + ... + In-I X Cn-I)

Example

array B [-1: 2, 0: 4,1: 4];

w is given as, say, 96.

Here

Co = 1
CI = 1 X (2 - (-1) + 1) = 4
C2 = 4 X (4 - ° + 1) = 20
b = 96 - ((-1) X 1 + ° X 4 + 1 X 20) = 77

The number of elements in an array is obtained using the recurrence relation
for Ci, and is

2.3 ARRAYS 83

The storage mapping function for an n-dimensional array consists of n
integers

(Advantage has been taken of the fact that Co= 1 and therefore need not
be stored, to replace it by Cn - the size of the array.) The storage mapping
function, and the array word, are set up by the operation MSF. The array
word consists of three 16-bit integers- w,b and the address of the first word
of the storage mapping function.

By this system of storing certaLn items of the information required to
locate an array element in the array word, rather than with the storage map
ping function, it is possible to use the same storage mapping function for each
array in an array segment.

A paper by Sattley [64] describes a somewhat similar system of storage
allocation for arrays, using, for each array, a form of storage mapping func
tion ('dope vector'1) which contains the values of the subscript bounds.

2.3.1.1 The Operation MSF

The task of the operation MSF is to set up a storage mapping function,
and an array word for each array in an array segment, and to allocate space
in the stack for the elements of each array.

An array segment is translated into a set of object program representations
of the subscript bound expressions, followed by MSF. Thus when the oper
ation MSF is obeyed the top of the stack will contain '2 X n' accumulators,
each giving the current value of a subscript bound expressjon. It is not
necessary to give n (fhe number of dimensions of the arrays) as a parameter
to MSF, since it can be found from WP (the working storage pointer, which
is kept in the stacked link data), and AP. This is because it is known that be
fore the evaluation of the subscript bound expressions was started, AP and
WP were equal.

Therefore
n = (AP - WP)/4

The division by four is because each accumulator takes two words, and
there are '2 X n' accumulators.

MSFuses the accumulators (if necessary performing conversions from real
to integer) and replaces them with n words containing the storage mapping
function. Then space is allocated in the stack above the storage mapping
function, for each array. As this is done the corresponding array word in
first order working storage is set up. Finally AP and WP are increased to
indicate the first free store in the stack above those allocated for the arrays.

Example

integer array A, B, C [0: 1, -1: 1];

84 2 THE OBJECT PROGRAM

This is translated into

Syll Op Par
0 TICO
1 TIC1
2 TIC1
3 NEG
4 TIC1
5 MSF (1,7),3
9

A representation of the stack, after completing the evaluation of the
subscript bound expression is given in Fig. 5(a). Stack addresses are
given relative to the current position indicated by PP.

For this array segment

Co = 1
C1 = 1 x (1 - 0 + 1) = 2

The number of elements,

C2 = 2 X (1 - (- 1) + 1) = 6

Therefore the storage mapping function is

Fig. 5(b) shows the stack after completion of the operation MSF. It has
been assumed that the block has seven first-order working stores, and
that the array words A, Band C have been allocated dynamic addresses
(J ,5), (1,6) and (J ,7) respectively. Because MSF has the (n,p) address of
the last array word as a parameter, it is convenient to allocate space for
the sets of array elements in inverse order to that of the corresponding
array identifiers.

During translation, various checks are made on the use of subscripted
variables to reference elements of arrays, in particular that only identifiers
declared, or specified, to be array identifiers are used for subscripted vari
ables. Thus it is sufficient for the address of an array word to be stacked (for
use by IN DA or IN DR) with a bit pattern indicating, say, 'real address', rather
than 'real array address'. Similarly it is in general possible for the Translator
to ensure that the correct number of subscript expressions is given in each
subscripted variable. However, although a check is made that each use of a
subscripted variable referring to a formal array has the same number of sub
script expressions, the Translator does not check that corresponding actual
and formal arrays have the same number of dimensions. This particular check
is therefore carried out at run time by the operations INDR and INDA,
which in fact always check that the correct number of subscript expression

2.3 ARRAYS 85

Stack
Address Contents

AP: 18

17

16

15

I :~~~er: l
I I I I

I I
'integer'

14 -1
Accumulators

13 'integer'

12 1

11 'integer'

WP: 10

9

1·······o···············IJ
.......................... l

8
........................... I

7 c\
6

5

4

3

::::::::::.:.::::::::.:::. Br

:::::::::::::::::::::.::::: A J

1st Order Working Storage

2

1

PP: 0

")

I.::::::::::·:.:::·:::·:·: .. } Link Data

FIG.5(a). After evaluation of subscript bound expressions.

86 2 THE OBJECT PROGRAM

Stack
Address Contents

AP: WP: 30

29 -------1 A [1,1]

28 ·································1 A [0,1]

27 A [1,0]

26

25

24

23

22

21

20

19

array A

I::::::::::::::::::::::::::::::::: ~ :~:~l]
1

1

A [0,-1]

1 ·1 ; :~:~:

I::::::: :::::::: :::::::::: ::::: :::1 B [1,0]

1 ·1 ; :~:~1]
1·································1

array B

18 I B [0,-1]

17

16

15

14

13

12

11

10

,-------1 C [1,1]

1······························· .. 1

1 ·1 ~ :~:~:
1···························· ·1

I · · .. 1 ~ :~:~ 1]1
(.............................. \ C [0,-11 J
! 2 i}
j 6 1 Storage Mapping Function

array C

9

8
; 1

j I

, I
7

·································1
I 12,14,10 I C
: I

6
·································1

18,20,10 ! B 1st Order Working Storage

5 24,26,10 I A

4

3

2

1

PP: °

................................. I

·································1 I
---------------! j

................................. I} Link Data

·································1

FIG.5(b). After operation MSF.

2.3 ARRAYS 87

values is given at the top of the stack above the address of the array word.
In order that this check can be carried out, the number of dimensions of the
arrays in a given array segment, which is calculated by the operations M SF
and MOSF, is for convenience placed in the most significant half of the first
word of the storage mapping function.

2.3.2 The Operations INDA and INDR

These operations work on the top accumulators, which contain the values
of the subscript expressions, and the address of an array word. The array
word is used to locate the storage mapping function. The array element
specified by the subscripted variable can then be found, as described in the
section on the storage mapping function.

In the Whetstone Compiler it has been decided that it will be sufficient to
check that a subscripted variable does in fact specify an element within the
confines of the array. A complete check that each subscript is within the sub
script bounds could easily be performed, but would increase the amount of
information needed in the storage mapping function.

The type (real, integer or Boolean) of an array element is given in the oper
ation which stacks the address of the array word, and hence need not be
given with an indexing operation, or with the operation MSF.

2.3.3 Own Arrays

It has already been mentioned that own variables are treated as though
they were declared outside the program block. In fact space is set aside for
'own' working storage before stacking the link data for the program block.
This working storage is again divided into first order working storage for
scalars and array words, and second order working storage for array ele
ments and storage mapping functions. One of the main restrictions to ALGOL
imposed in the Whetstone Compiler is with regard to 'dynamic own arrays'.
Only own arrays with subscript bounds which are integers are accepted.
Because of this the Translator can calculate the number of elements contained
in each own array. As a result the Translator can produce, for use by the
object program, two counters Lp and Lo, which give the extent of first and
second order own working storage. The value of PP for the program block
(which gives the location of its link data) is taken to be 'Lp + Lo'. Own vari
ables and own array words are allocated dynamic addresses of the form
(O,p).

Own arrays are set up by the operation MOSF (Make Own Storage
Function). This is very similar to MSF but uses Lp , instead of WP, to give
the position at which the storage mapping function is to be set up. Then L p ,

which originally indicated the extent of first order own working storage, is
increased to allow space for the storage mapping function and the own array
elements.

Because MOSF increases Lp each time it is obeyed, it is necessary to ensure
that MOSF is only obeyed the first time that the block containing the array

88 2 THE OBJECT PROGRAM

declaration is entered. This is done using the operation AOA (Avoid Own
Array). The first time AOA is used it acts as a dummy operation, but on any
subsequent uses it acts as an unconditional jump around the operations which
set up the own array.

Example

own real array A, B [1: 4], C [-1: 2];

is translated into

Syll Op Par
58 AOA (86)
61 TIC1
62 TIC '4'
69 MOSF (0,7),2
73 TIC1
74 NEG
75 TIC '2'
82 MOSF (0,8), 1
86

Here the array words A, Band C have been given the addresses (0,6),
(0,7) and (0,8).

This system has the disadvantage that space is used for own arrays even
before their declaration is met for the first time, but it permits use of the
normal stack mechanism.

The implementation of own arrays in ALGOL is a somewhat vexed question
and the above does not pretend to be any other than a very inadequate treat
ment. A further discussion of the subject of own arrays is contained in
Appendix 2.

2.4 LABELS AND SWITCHES

2.4.1 Simple go to Statements

A go to statement can be used to jump to a statement in the current block
or in an outer block. In the simple case of a jump within the current block all
that is necessary is to alter the program counter appropriately; the working
of this go to statement need be no more complicated than that of the implicit
jump operation UJ. However, in the more complicated case of a jump out
of a block, it is necessary to ensure that when the outer block is reached it
will be able to resume its working correctly. Furthermore it is necessary to
jump to the last activation of this outer block.

In order that a block can resume correct working it is necessary to update
DISPLA Y, and the counters AP and PP. It is known that at the object pro
gram operation equivalent to the start of the labelled statement, AP will have
the value to which it returns between each statement, i.e. WP, the working
space pointer. The value of WP is kept in the link data of a block, and can
be obtained once the PP of the block is known. Similarly, once this value of
PP is known, DISPLAY can be updated, using the routine UDD, which
works down the static chain. For these reasons the object program represen
tation of a label used in a go to statement consists of a value of PP, and of the
program counter. However, in different activations of a block the value of PP
will vary, and hence the label can be said to have as many different 'values'
as the block in which it is 'declared' has different activations.

It can be ensured that a jump is made to the last activation of a block by
using DISPLA Y to find the appropriate value of PP to use in a label. This is
done by the operation TL (Take Label), which is a form of 'Take Result'
operation. TL has two parameters-a value of the program counter (two
syllables), and a one-syllable parameter which gives the block number, or
level, in which the label is 'declared' (i.e. attached to a statement).

The action of TL is to obtain a value of PP from the element of DISPLA Y
corresponding to its block number parameter, and to stack an accumulator
containing this value of PP, and the value of the program counter. This
accumulator is used (and deleted) by the parameter operation GT A (Go To
Accumulator), which effects the required jump.

Example
go to L1;

is translated into
Syll
19
23
24

Op
TL
GTA

Par
(59),2

90 2 THE OBJECT PROGRAM

This will cause a jump to the object program at syllable 59 in a block
on level two.

However, the basic symbol go to is in general followed by a designational
expression, of which a label is but a special case. The method of implementing
conditional designational expressions is similar to the method used for con
ditional arithmetic expressions (see section 2.1.5).

Example

go to if b then (if c then L1 else L2) else L3;

is translated into

Sy/! Op Par
0 TBR b
3 IFJ (26)
6 TBR c The original identifiers have
9 IFJ (19) been used as parameters to the
12 TL L1 ~Take' operations
16 UJ (23)
19 TL L2
23 UJ (30)
26 TL L3
30 GTA
31

It has not been thought worthwhile to make a special case of a jump to a
label which is in the current block. Thus the operation GT A needs to test
whether a jump is within a block or to an outer block. This is done by com
paring the current value of PP with that given in the top accumulator. Only
if these two values are different is it necessary to reset PP, AP and DISPLA Y.

2.4.1.1 Labelled Blocks

It has already been stated that, in the case of a procedure body which is
an unlabelled block, the stack space required for the procedure and its body
is combined. Thus such a procedure causes an increase in block level of only
one. However, if the body is a labelled block, it must be possible to leave the
block, by a go to statement, without leaving the procedure body.

Example

procedure P R;
L: begin array B [1: n];

go to (L);

end;

2.4 LABELS AND SWITCHES 91

The statement 'go to (L)' could be used to re-enter the block, and re
declare the array B, using a different value of the non-local variable n, with
out leaving the procedure.

A similar situation arises when a program is a labelled block. It must be
possible to restart the program by means of a go to statement in the block,
and hence a 'double block' is generated.

Example

PROG: begin real i;
go to PROG

end

is translated into

Syll Op Par Remarks
0 CBL Call Program
1 UJ (21)
4 BE (1,0) Entry to Program
7 CBL Call Block
8 UJ (20)
11 BE (2,1) Entry to Block
14 TL (7),1 PROG
18 GTA go toPROG
19 RETURN
20 RETURN
21 FINISH

The reasons for generating a double block in the above situation are rather
trivial. Firstly, it should be possible to restart the program, having caused the
variables declared at the head of the labelled block to become undefined, by
jumping out of the block to its label. Secondly, the alternative method of
effectively moving the label to within the block would cause problems at
translation time in the case where there is a declaration of the same identifier
within the block.

For convenience a program is always treated as a block, whether in fact
it consists of a block or a compound statement. Jumping out of a compound
statement does not have the same significance as jumping out of a block;
as a result it is not necessary to make a double block out of a program which
is a labelled compound statement.

2.4.2 Switch Declarations

A switch declaration allows a switch designator to be used to choose one
of several designational expressions. The definition of a switch declaration is
recursive. Thus the designational expression appearing in a switch declara
tion may include calls on the switch either explicitly or inside function desig
nators.

92 2 THE OBJECT PROGRAM

Example

switch S := Ll, if b then L2 else S [3], L3;
Boolean procedure b;

begin b : = true ;
if/ail = 0 then go to S [1]

end;

For this reason the object program representation of a switch must be
capable of being used recursively, and as a result a switch is treated as if it
were a procedure. In fact a switch could be regarded as a 'label procedure',
which like any 'type procedure', has the net effect of leaving its 'result' (a
label) in the top accumulator on the stack.

The actual choice of a designational expression from the switch list is
governed by the value of the subscript expression, or 'switch index', in the
switch designator. In the object program this choice is effected using the
operation DSI (Decrement Switch Index), which precedes the set of oper
ations corresponding to each designational expression. DSI decreases the
switch index by one, and unless the index is then zero, jumps to the next
designational expression. At the end of each expression an UJ operation is
used to jump to the end of the switch declaration.

Example

Ll, if b then L2 else L3, L4

is translated into

Syll Op Par Remarks
0 DSI (10)
3 TL Ll L1
7 UJ (44)
10 DSI (33)
13 TBR b

} 16 IFJ (26)
19 TL L2
23 UJ (30)
26 TL L3

if b then L2 else L3

30 UJ (44)
33 DSI (43)
36 TL L4 L4
40 UJ (44)
43 ESL
44

In the above example the parameterless operation ESL (End Switch List)
is introduced. This is used to check out the use of a switch designator with
an out of range switch index. It will be seen that each DSIoperation has as

2.4 LABELS AND SWITCHES 93

a parameter the syllable number of the next DSloperation, or finally, of
the ESL operation. Each UJ operation which follows a designational expres
sion has the syllable number of the operation following ESL as its parameter.

Thus if the switch index has an initial value of one, the first DSloperation
will zero it, and hence the TL operation at syllable 3 will be used. This sets up
a label accumulator with the object program representation of L1, before a
jump is made to syllable 44. If the switch index does not have the value 1, 2
or 3 then the operation ESL is reached, and a failure indication is given.

The operation ESL could be used instead to permit the implementation of
a go to statement using a switch designator which is undefined because the
switch index is out of range, acting as a dummy statement (see section 4.3.5
of Revised ALGOL Report). This is not done in the Whetstone Compiler for
reasons of compatibility with the Kidsgrove Optimizing Compiler. In this
case the ESL operation instead of leading to a failure would set up a 'dummy
label'. The operation GTA (Go To Accumulator) would be modified such
that when it found a label accumulator containing a dummy label no jump
would be performed.

A switch declaration is made into a 'switch block' which, however, has a
'result accumulator' and stacks link data in the normal way. The set of
operations corresponding to the designational expressions are preceded by a
BE (Block Entry) operation, and are followed by the operation EIS (End
Implicit Subroutine). The EIS operation, which is also used in the object
program representation of certain actual parameters, stores the result of the
chosen designational expression in the result accumulator, before performing
the action of the operation RETURN. The switch index is kept in the one and
only working store of the block, Hence the BE operation specifies the amount
of working storage to be one. The switch block is preceded by an UJ oper
ation, used to avoid the switch block on entry to the block in which it is
declared.

Example

switch S := L1, L2;

is translated into

Syll
o
3
6
9
13
16
19
23
26
27
28

Op
UJ
BE
DSI
TL
UJ
DSI
TL
UJ
ESL
EIS

Par
(28)
(4,1)
(16)
L1
(27)
(26)
L2
(27)

The level of the switch block
has been chosen arbitrarily

94 2 THE OBJECT PROGRAM

2.4.3 Switch Designators

Because of the system of translation used in the Whetsone Compiler, it is
necessary that the object program representation of a switch designator be
similar to that of a subscripted variable. In fact the IN DR operation, which is
primarily used as an indexing operation, is also used to activate the block
which has been generated from a switch declaration. In place of the 'Take
Address' operation which stacks the address of an array word the operation
T8A (Take Switch Address) is used.

Example

go to 8 [i -1] ;

is translated into

8yll
o
3
6
7
8
9
10

Op
T8A
TIR
TICl

INDR
GTA

Par
8

The operation T8A has a two-syllable parameter which gives the address of
the BE operation of the relevant switch declaration. Its action is simply to
stack an accumulator containing this address. IN DR works back down the
stack, performing conversions to integer if necessary, until it finds an accumu
lator containing an address. When IN DR is being used for a switch desig
nator the bit pattern in this accumulator identifies it as a switch address.
(Checks incorporated in the translation process ensure that a switch desig
nator will have one and only one subscript expression.) INDR then positions
the switch index, given in the top accumulator, in the stack so that it will be
in the first working storage of the 'switch block'. Finally INDR, acting rather
like the operation CFZ, calls the switch block, positioning its link data so
that its 'result accumulator' is at the stack address previously occupied by the
accumulator containing the switch address. As a result, when the switch
block is left, using the operation EI8, its label result is in an accumulator
which has replaced the accumulators containing the switch address and the
switch index.

Example

go to S [2.0];

2.4 LABELS AND SWITCHES 95

is translated into

Syll Op Par
0 TSA (76)
3 TRC '2.0'
10 INDR
11 GTA
12

In Fig. 6(a) is shown the top of the stack, containing two accumulators.
The first contains the address of the BE operation of the switch block
generated from the declaration of switch S (at syllable 76, say). The top
accumulator has been set up by the operation TRC (Take Real Constant).

Stack
Address Contents

AP: 4

3 'real'

2 2.0
Accumulators

1 'switch address'

o 76

(a). Before operation INDR.

Stack
Address

AP:WP: 6

5

4

3

PP: 2

1

o

Contents

--I 2

..............................

..............................

..............................

________________ ~ J

Switch Index

Link Data for Switch
Block

Result Accumulator

(b). After entry to switch block.

FIG. 6. Use of the stack by switch designators.

96 2 THE OBJECT PROGRAM

In Fig. 6(b) the same portion of the stack is shown immediately after
entry to the switch block. IN DR has converted the real number 2.0 to
integer, and has moved it to stack address 5 (stack addresses have been
given relative to the switch address accumulator). The switch block has
been entered at syllable 76, its link data starting at stack address 2. As a
result the value 2 (the switch index) is in the single working store of the
switch block. PP is set at 2, and AP and WP indicate the first free store
at the top of the stack.
When the switch block is left, using the operation EIS, the result (a
label) is placed in the result accumulator which becomes the top accumu
lator. The total 'effect' of the operations generated from the switch
designator is thus to stack a label, for use by the operation GT A.

It has been mentioned that a switch designator is translated as if it were a
subscripted variable. As a result it is convenient in certain circumstances to
generate the operation INDA rather than INDR (see section 3.4.2). Therefore
both INDA and INDR can be used to set up a switch block in the stack, and
are in this case equivalent.

The implementation of a switch designator occurring outside the scope of
a quantity entering into a designational expression in the switch list is in
accordance with the amended version of section 5.3.5 of the original ALGOL
Report given in the Revised ALGOL Report. (An essentially similar situation
has been described in section 2.2.1.3 in connection with procedure calls.)

Example

begin switch S : = L, M;
M: begin real L;

end;
L:end

go to S [1];
L :=0

In the inner block a switch designator is used, and selects the label L
from the switch list. However, since the switch designator caused a
temporary return to the position of the switch declaration, a conflict
with the declared L in the inner block will be avoided, and a jump will
be made to label L at the end of the outer block.

2.5 PARAMETERS

The parameters of a procedure provide a channel of communication between
the body of the procedure, and the external conditions appertaining to its
call. When a procedure is activated, any actual parameters will be written
subject to the declarations valid at the position of its call. In the procedure
body the corresponding formal parameters will give access to these actual
parameters, even if the procedure body is at a level from which these declar
ations are inaccessible.

Example

begin real procedure P (a); integer a;

end

P : = a X (a -1);
real b;
b:= 1;
begin real c;

end

c :=2;
begin real d;

d:=3;
d : = P (b X c X d)

end

In this 'program' there are two declarations in the program block, i.e.
on level 1. These are for the procedure P and the real variable b. There
fore, within the body of procedure P, i.e. on level 2, the only non-local
variable that can be used is b. However, there is an activation of P in the
innermost block of the program, i.e. on level 3, with the expression
'b X c X d' as an actual parameter. Within the procedure body the corre
sponding formal parameter (called by name) is a. Therefore this para
meter is being used as a means of access to the variables b, c, and d. Of
these variables only b would normally be accessible as c is declared in a
parallel block, i.e. also on level 2, and d is declared in a block on level 3.

Thus the use of a formal parameter can be treated as a temporary exit from
the body of a procedure back to the position of a procedure call. In fact this
is only necessary for certain types of parameters, and a simpler treatment of
procedure parameters is often sufficient.

In the Whetstone Compiler procedure calls are translated without refer
ence to the corresponding procedure declarations for details about the para
meters. At run time the object program representations of the procedure call
E

98 2 THE OBJECT PROGRAM

and of the procedure declaration communicate via a set of formal accumu
lators. The formal accumulators of a procedure occupy space in the stack
immediately above the link data for the procedure. At the call of a procedure
the operations generated from the actual parameters ('actual operations') are
used to set up these formal accumulators. Within the procedure body uses of
formal parameters are represented by object program operations referring to
the formal accumulators. Thus a single translation of a procedure body can
be used by various different procedure calls.

Because no use is made of the information about parameters given in a
procedure heading when translating a procedure call, checks cannot be
made at translation time on the correspondence of formal and actual para
meters. These checks have to be deferred until run time, and are carried out
by special object program operations. These checking operations, which are
used immediately after a procedure has been entered, i.e. after the operation
PE(Procedure Entry), check the contents of the stacked formal accumulators.
The formal accumulators, which have been set up by 'actual operations', are
checked against the needs of a procedure declaration as given by its specifi
cation part.

It is at this point that the second important restriction which is imposed
on ALGOL 60 by the Whetstone Compiler becomes apparent. This is the not
uncommon restriction that the specification part of a procedure heading must
give details of all the formal parameters. The subject of optional specifica
tions is discussed further in Appendix 2.

2.5.1 Parameters Called by Name

It has already been shown that in certain circumstances a formal para
meter implies the ability to return temporarily from within a procedure body
to the conditions appertaining to the relevant call of the procedure. The full
consequences of the 'call by name' concept of ALGOL 60 are brought into
play by the use of an expression as an actual parameter corresponding to a
formal parameter called by name.

Example

procedure CALC (a, b, c, i); real a, b, c; integer i;
begin i := 1; a := 0; b := 1;
loop: a : = a + c;

finish: end;

b := b X c;
if i = 10 then go to finish;
i : = i + 1; go to loop;

This procedure can be used to form the continued sum and product of
a sequence of ten expressions, using the procedure statement

CALC (sum, product, b X (b - j), j);

2.5 PARAMETERS 99

This is shown by application of the rules given in section 4.7.3 of the
Revised ALGOL Report. This states that the effect of the procedure
statement is equivalent to that.of a suitably modified copy of the ALGOL

statement which forms the procedure body. The modifications necessary
in this case, (where all the parameters are called by name), are the re
placement of the formal parameters, at each occurrence in the procedure
body, by the corresponding actual parameters, having enclosed these
actual parameters in parentheses wherever possible. In general (but this
is not in fact necessary in this case) conflicts between identifiers inserted
through this process, and other identifiers already present are to be
avoided by systematic changes of the latter identifiers. Thus the action
of the procedure statement is equivalent to that of the statement

begin j:= 1; sum := 0; product := 1;
loop: sum := sum + (b X (b - j»;

product : = product X (b X (b - j)) ;
if j = 10 then go to finish;
j : = j + 1; go to loop;

finish: end;

The result of this statement and hence of the procedure statement is to
form

j-to
sum = L b X (b - j)

j=1

}~10

and product = IT b X (b - j)
}=1

Instead of implementing the actual process of copying out and modifying
the procedure body, a single copy is made of the object program representa
tion of the procedure body, in wrJch the use of a formal parameter is, in
general, represented by a call on a subroutine generated from an actual para
meter. By this means an actual parameter expression will be evaluated each
time its corresponding formal parameter is used (this is in fact necessary for
the correct working of the procedure in the above example). This will auto
matically have the same effect as enclosing the expression in parentheses,
since the evaluation of the expression will be completed before the subroutine
is left, and will avoid all problems of clashes of identifiers. In fact in simpler
cases of use of the 'call by name' facility a simpler technique can be used.
Thus in the above example all that is necessary for the use of the actual
parameters sum, product and j, is to give their corresponding formal para
meters access to the stack location of these three variables.

This method of implementing parameters called by name must be designed
to allow for recursive activation of a procedure, by means of an actual para
meter.

100 2 THE OBJECT PROGRAM

Example

real procedure SUM (a, i); real a; integer i;
begin real partial sum;

partial sum := 0; i := 1;
loop: partial sum : = partial sum + a;

if i = 10 then go to finish;
i : = i + 1; go to loop;

finish: SUM := partial sum
end;

This declaration defines a procedure SUM which can be activated by a
function designator, for use in an expression. Such an expression could
be used as an actual parameter to a procedure. For example, the state
ment

c := SUM (SUM (b [j, k],j), k);

will cause a double summation to be performed, setting

k=10 j=10

C = L L b [j, k]
k=l j=l

Thus during the action of a procedure an evaluation of an actual parameter
may cause a further activation of the procedure to take place.

In the object program this is accomplished using the normal stack mech
anism. A use of a formal parameter is represented by a reference to a formal
accumulator, and in such a case will cause a subroutine of object program
operations to be obeyed. This subroutine will have been generated during
the translation of the procedure call, and will be written in terms of the declar
ations valid at that point. Within the subroutine will be operations which
cause the procedure to be activated once more, allocating space for its link
data and working storage at the top of the stack. This will shield the informa
tion contained in the stack for the original call of the procedure.

At the end of the second activation of the procedure its link data and work
ing storage will be removed from the stack, leaving the subroutine free to
return to the original activation of the procedure.

2.5.2 Parameters Called by Value

The calling of parameters by value is a very much simpler concept than
call by name, and essentially simply involves evaluating an expression and
assigning the result to the formal parameter, which is thereafter treated as if
it were a local variable of the procedure body. The only exception to this
is a formal parameter with a specifier label-see section 2.5.6.3.

However, during the translation of a procedure call, it is not known which,
if any, of its parameters are called by value. Thus all actual parameters are
treated as if they correspond to formal parameters not appearing in the value

2.5 PARAMETERS 101

list of the procedure declaration. Then, at run time, immediately after a pro
cedure has been activated, each parameter which is called by value is evalu
ated and the result placed in the appropriate formal accumulator. Thereafter
the formal accumulator is treated as if it were part of first order working
storage, and its second word, which contained an identifying bit pattern, is
ignored.

This task of evaluating any parameters called by value is combined with
the task of checking formal-actual correspondence. A set of 'parameter list
operations' is generated immediately after the P E operation which starts a
procedure. The set contains one operation for each parameter. Each oper
ation checks the corresponding formal accumulator and, where appropriate,
replaces the accumulator with the value of the corresponding actual para
meter expression.

Some details of a similar method of implementing calls by name and by
value are contained in a paper by Ingerman [37], and a description of a
system capable of handling all non-recursive uses of procedures has been
given by Jensen and Naur [43].

2.5.3 Procedure Calls

The operation CF (Call Function) is used by both procedure statements
and function designators to start the activation of a procedure. (The simple
case of a procedure with no parameters, which uses the operation CFZ, need
not be considered further.) CF forms the first part of the link data of the
procedure, and then sets up the formal accumulators in the stack, before
jumping to the operation P E. At the end of the activation of the procedure
a return is made to the operation following CF.

The formal accumulators are set up using the 'actual operations'. These
'actual operations' are thus not obeyed directly by the Control Routine but
are processed by the CF operation. The 'actual operations' are positioned in
the object program immediately preceding the CF operation, and are given
in reverse order to that of the list of actual parameters. The number of 'actual
operations' is given by the parameter m of the CF operation. CFworks back
wards through the object program, processing each 'actual operation' in
turn.

All 'actual operations' occupy 4 syllables. In the case of an actual para
meter which is just an identifier an 'actual operation' is complete in itself
otherwise it gives the address of the object program representation of the
actual parameter. The operations generated from the actual parameter list
are preceded by an UJ operation. This operation causes a jump to be made
around the 'actual operations' to the CF operation.

Thus a procedure call is translated into

UJ (a)
'Actual Operations'

a: CF (b), m

102 2 THE OBJECT PROGRAM

Example

P (x, y, i, j)

is translated into

Syll Op Par Remarks
0 UJ (19) Jump to Call Function
3 PI j

1
7 PI

'Actual operations' 11 PR Y
15 PR x
19 CF P,4
23

In this example two 'actual operations' are introduced - P R (Parameter
Real), and PI (Parameter Integer), which will be described in detail later.
The UJ operation at syllable 0 causes a jump to CF at syllable 19. This
processes the four 'actual operations', at syllables 15, 11, 7 and 3 in that
order, and then jumps to the procedure P, having stacked 23 as a return
address.

2.5.4 Actual Parameters

The implementation of the various kinds of actual parameter is now de-
scribed in detail. In each case a description is given of

(i) The object program representation of the actual parameter,
(it) The setting-up of the corresponding formal accumulator.
Certain formal parameters can have various corresponding types of actual

parameters. For instance, a formal parameter specified to be real could corre
spond to an actual parameter which is a simple or subscripted variable, a
constant, a function designator, or, in the general case, an arithmetic expres
sion. A discussion of the method by which calls on formal parameters are
implemented will be deferred until the various kinds of actual parameters
have been described.

2.5.4.1 Simple Variables

Within a procedure body a formal parameter having a simple variable as
its corresponding actual parameter can be used on the left hand side of an
assignment statement, as well as within an expression. Thus the address,
rather than just the value, of the simple variable is needed within the pro
cedure body.

The only complication is that a simple variable, which by virtue of the
block structure would otherwise be inaccessible to the procedure body, can
be used by means of a formal parameter.

Such an occurrence is reflected in the object program by the fact that the

2.5 PARAMETERS 103

static chain, and hence DISPLA Y, are no longer set up in the appropriate
fashion to enable the address of the variable to be found.

Example

begin procedure P (a); real a;
a := a-l;

begin real b;
P (b)

end

In this example both a and b are at level 2. At the call of procedure P,
DISPLA Y [2] will be set so as to enable the location of b to be found,
but inside the procedure it will enable the formal accumulator corre
sponding to a to be found.

The method chosen to solve this problem is straightforward. The formal
accumulator corresponding to such an actual parameter is set up with the
stack address of the simple variable, evaluated from the dynamic address
given with the 'actual operation' before entering the procedure. Then, within
the procedure, DISPLA Y can be changed without affecting the accessibility
of the actual parameters. (An obviously inefficient alternative system is to
keep the dynamic address in the formal accumulator and to reset DISPLAY
temporarily each time the accumulator is used.)

The 'actual operations' corresponding to the various types of simple vari
ables are

P R (Parameter Real)
PI (Parameter Integer)
P B (parameter Boolean)

Each of these has a two-syllable parameter (n,p) - the dynamic address of the
simple variable. CF processes such operations, and sets up a formal accumu
lator with 'DISPLA Y [n] + p' and an identifying bit pattern. The bit pat
tern indicates the type of the variable, and the fact that the accumulator
contains an address.

All 'actual operations' occupy four syllables (the reason for this is described
in section 3.4.3.2.1), and in the above cases the fourth syllable is unused and
is left blank.

Example

pea, i, b)

where the address of a (real) is (l,4), i (integer) is (2,6), b (Boolean) is
(l,6), and the address of P E operation of procedure P is 54. This is
translated into

104 2 THE OBJECT PROGRAM

Syll Op Par Remarks
0 UJ (15)
3 PB (1,6), - b
7 PI (2,6), -
11 PR (1,4), - a
15 CF (54),3
19

2.5.4.2 Constants

An actual parameter which is a constant can only be used in an expression,
so the corresponding formal accumulator is simply set up with the value and
type of the constant.

The 48-bit constant is stored in the object program and the 'actual opera
tion' gives its syllable address. Such constants are placed in the program
between the operation UJ (which causes a jump to the operation CF) and the
set of 'actual operations'.

Example

P (5.0, a, true, 1)

is translated into

Syll Op
0 UJ
3 '5.0'
9 'true'
15 '1'
21 PIC
25 PBC
29 PR
33 PRC
37 CF
41

Par
(37)

(15), -
(9), -
(1,4), -
(3), -
(54),4

Remarks

(Parameter Integer Constant)
(Parameter Boolean Constant)
a
(Parameter Real Constant)
P

P and a have been given addresses as in the previous example. The
UJ operation causes a jump to be made to the CF operation at syllable
37, thus avoiding the constants and the 'actual operations'. CF works
back through these 'actual operations', where necessary using their para
meters to find the 48-bit representations of the constants.
It has not been thought worthwhile to make special provision for the
constants 0, 1, true, and false, when used as actual parameters.

2.5.4.3 Expressions

It has already been stated that in the general case of an actual parameter
which is an expression, a subroutine of object program operations is gener
ated for evaluating the expression. The corresponding 'actual operation' is

2.5 PARAMETERS 105

PSR (Parameter Sub-Routine), which gives the address of the start of the
subroutine. Such subroutines are positioned, with any constants, between
the operation UJ and the first 'actual operation'.

However such a subroutine can itself be used recursively.

Example

real procedure Q (n); integer n;
begin ...

peA + B X Q (n - 1));

end;

In this example a call on procedure Q will cause a call on procedure P,
which has an expression as actual parameter. In this expression is a
further call on Q. This again calls P, which again starts to evaluate the
expression, hence using the expression recursively. It is assumed that
the other statements, indicated by dots, give some means of ending this
continued nesting of calls on procedure Q.

Because of this possibility the subroutine of operations generated from an
actual parameter expression is made into a block. This 'subroutine block'
stacks link data in the usual way, and hence can use the normal mechanism
for recursive blocks and procedures. A result accumulator is reserved in the
stack for the result of the subroutine. The subroutine starts with a BE
(Block Entry) operation. This has as parameters en) the block level and 0
- as there is no first order working storage. The subroutine ends with the
operation EIS (End Implicit Subroutine). This operation has already been
mentioned in connection with switch declarations. Its action is to take the top
accumulator (the value of the expression) and store it in the result accumula
tor of the subroutine block, before performing the action of the operation
RETURN.

On calling a procedure with such a parameter the CF operation processes
the 'actual operation' and sets up a formal accumulator with the address of
the subroutine, the value of PP ruling at the time of the procedure call, and
an identifying bit pattern. The value of PP can be used, when this formal
accumulator is called from within the procedure body, in order to reset
conditions temporarily to what they were at the procedure call. This allows
the subroutine, which was generated from an expression written subject to
declarations valid at the procedure caB, to perform its work correctly.

Example

P (- A, 5, B + C [I])

is translated into
E*

106 2 THE OBJECT PROGRAM

Syll Op Par Remarks

° UJ (44) Jump to Call Function
3 BE (3,0) ")

6 TRR A J Subroutine to evaluate' - A' 9 NEG
10 EIS
11 '5'
17 BE (3,0)
20 TRR B
23 TRA C
26 TIR I Subroutine to evaluate 'B+C [I]'
29 INDR
30 +
31 EIS
32 PSR (17), -
36 PIC (11), -
40 PSR (3), -
44 CF P,3
48

The level of the block in which this procedure call occurs has been taken
to be two, and hence each implicit subroutine starts with 'BE (3,0)'.

In certain rather infrequent circumstances during the generation of the
object program it is not possible for the Translator to detect whether an
actual parameter expression is a designational expression or not. Unless this
is known, it cannot be decided whether operations generated from the identi
fiers in the expression will be 'Take Label' operations whose parameters
occupy three syllables or 'Take Result' operations whose parameters occupy
two syllables. In cases of doubt a four-syllable space is left free, to be filled
in later either with a 'Take Label' operation or with a 'Take Result' operation
followed by an operation DUMMY. At run time these DUMMY operations
have no effect, other than to increase the program counter by one syllable.
(A more detailed account of the problem of translating actual parameter
expressions is given in section 3.4.3.2.1.3.4.)

2.5.4.4 Arrays

Actual parameters which are arrays use the 'actual operations'
P RA (Parameter Real Array)
PIA (Parameter Integer Array)
P BA (Parameter Boolean Array)

These are very similar to the operations PR, PI, and PB, and have the
dynamic address of an array word as their parameter. The corresponding
formal accumulators are set up with the evaluated address of the array word,
and a bit pattern, indicating 'real array address', say. Thus the array word,

2.5 PARAMETERS 107

and hence the array elements, can be used inside the procedure body by
means of a formal parameter, even if the array declaration becomes inaccess
ible.

2.5.4.5 Subscripted Variables

Actual parameters that are subscripted variables can correspond to formal
parameters that are used in an expression or on the left hand side of an assign
ment statement. Just as an actual parameter which was an expression had to
be evaluated at each use of the corresponding formal parameter, so the address
of a subscripted variable must be repeatedly evaluated.

Example

procedure S (a, i); real a; integer i;
begin i:= 0;

a:= 0;
i:= 1;
a:= 0

end;
S (A U],j);

The consequences of the call on this apparently trivial procedure are
shown by writing out the procedure body with the actual parameters
substituted for the formal parameters. The formal parameter corre
sponding to 'A [j]' is used twice. At the first use 'A [0]' is zeroed, at the
second use 'A [1]'.

Thus an actual parameter which is a subscripted variable is translated into
an implicit subroutine for evaluating the address of the subscripted variable,
and an 'actual operation' PSR. The parameter of the PSR operation gives
the program address of the start of the implicit subroutine.

Example

S (A [j),j)

is translated into

Syll
o
3
6
9
12
13
14
18
22
26

Op
VJ
BE
TRA
TIR
INDA
EIS
PI
PSR
CF

Par
(22)
(n,O)
A
j

j, -
(3), -
S,2

Remarks

l
J Implicit Subroutine for A [j]

108 2 THE OBJECT PROGRAM

The corresponding formal accumulator is set up in the same way as for an
actual parameter which is an expression.

2.5.4.6 Labels

An actual parameter which is a label is translated into an 'actual operation'
PL (parameter Label). The parameters of the operation PL are similar to
those of a TL (Take Label) operation -i.e. a (a two-syllable program address)
and n (a one-syllable block number).

The PL operation and its parameters thus occupy all four syllables allotted
to 'actual operations'. (It is in fact the only 'actual operation' which needs
more than three syllables, but it is convenient for the Translator to standardize
on four-syllable 'actual operations'.)

Example

Q (l.0, L)

is translated into
Syll
o
3
9
13
17
21

Op
UJ
'1.0'
PL
PRC
CF

Par
(17)

(a), n
(3), -
Q,2

The corresponding formal accumulator is set up by the CF operation with
an identifying bit pattern and the evaluated label, i.e.

DISPLA Y [n], a

2.5.4.7 Switches

An actual parameter which is a switch is simply translated into an 'actual
operation' PSW (Parameter Switch), whose parameter gives the program
address of the BE operation of the switch declaration. The corresponding
formal parameter is set up with this program address, the value of PP ruling
at the time of the procedure call, and an identifying bit pattern. The value of
PP is needed to reset conditions temporarily to what they were at the pro
cedure call whilst the switch is being used from inside the procedure body.

2.5.4.8 Procedures

Actual parameters which are procedures use the appropriate 'actual oper
ation' from the list

PPR (Parameter Procedure)
PFR (Parameter Function Real)
PF[(Parameter Function Integer)

2.5 PARAMETERS 109

P FB (Parameter Function Boolean)

These are very similar to PSW (Parameter Switch), having a program
address as a parameter, and setting up a formal accumulator with this pro
gram address, PP, and a bit pattern.

2.5.4.9 Stl'ings

In the case of an actual parameter which is a string, a coded form of the
sequence of ALGOL basic symbols that constitute the string is stored in the
object program. (The code, which uses 8 bits for each symbol, is the same as
that used in the Kidsgrove Compiler.) The corresponding 'actual operation'
is PST (Parameter String) which has a parameter giving the address of the
first symbol of the string (i.e. the opening string quote). This 'actual oper
ation' causes the corresponding formal accumulator to be set up with this
address.

For the convenience of writers of machine code procedures (an ordinary
procedure cannot use a string, other than as an actual parameter to an inner
procedure) the first opening string quote is stored at the start of a word. Thus
there may be a gap between the last object program operation and the syllable
containing the opening string quote. Similarly there may be a gap after the
closing string quote, so that the next object program operation can be placed
at the start of the next word.

Example

P ('rope')

is translated into

Syll
o
6
7
8
9
10
11
12
16
20

Op
UJ

r
a
p
e

PST
CF

2.5.4.10 Formal Parameters

Par
(16)

(6), -
P,l

It is possible to use a formal parameter as an actual parameter in a further
procedure call.

110 2 THE OBJECT PROGRAM

Example

real procedure P (a); real a;
begin real procedure Q (b); real b; Q := b - 3;

P:= Q (a);

end;
c := P(c + 3);

Thus in this example a use of b in the body of procedure Q involves a
use of the actual parameter a, which was written in terms of conditions
holding at the position of the call of Q. However, this actual parameter
a is itself a formal parameter of P, and thus is being used as a means of
using the corresponding actual parameter 'c + 3'. Thus a use of a is
essentially a call of 'c + 3', which is written in terms of conditions hold
ing at the position of the call of P.

It can be seen that handing on a formal parameter as an actual parameter
essentially needs some means of handing on the ability to reach the original
actual parameters. This is done simply by handing on the contents of the
formal accumulator.

An actual parameter which is itself a formal parameter uses the 'actual
operation' PF (Parameter Formal). This has as its parameter the dynamic
address (n,p), of the formal accumulator to be handed on. In such a case CF
sets up the new formal accumulator by evaluating the dynamic address, and
copying the formal accumulator given at this address into the new formal
accumulator space.

Example

SUM(m)

where m is the second formal parameter of a procedure which has been
given the level two, is translated into

Syll
o
3
7
]]

Op
UJ
PF
CF

2.5.5 Formal Parameters

Par
(7)
(2,5), -
SUM,]

In general, formal parameters which are called by value are evaluated
immediately after entry to a procedure, and are thereafter treated as local
variables. This will be described in section 2.5.6. The various ways in which
formal accumulators can be set up have been given in the preceding sections,
and it is now necessary to describe how these formal accumulators are used.

2.5 PARAMETERS 111

2.5.5.1 Real and Integer

A formal parameter specified to be arithmetic (real or integer) can have
various corresponding actual parameters. If it is used on the left hand side
of an assignment statement it must correspond to a simple or subscripted
variable. However, if it is only used in expressions the corresponding actual
parameter could also be a constant, an expression, or the name of a type pro
cedure (if this type procedure has no parameters-see section 4.7.5.4 of the
Revised ALGOL Report).

2.5.5.1.1 Assignments to Arithmetic Formal Parameters. In the Whetstone
Compiler, if an arithmetic formal parameter is used on the left hand side of
an assignment statement its corresponding actual parameter must be of the
type given in the specification. Thus real-integer conversions are not allowed
in assignments to a formal parameter.

Thus the action of the operation generated for an assignment to a formal
parameter specified to be real or integer is to use the formal accumulator to
obtain the address of the corresponding actual parameter and to check its
type. The formal accumulator will contain the type and evaluated address
of the actual parameter already, or will have been set up from the operation
PSR (Parameter Sub-Routine). In the second case the formal accumulator
will contain the address of the start of the subroutine, and the value of PP
ruling at the call of the procedure.

The object program operations generated for taking the address of an
arithmetic formal variable are

TFAR
TFA!

(Take Formal Address Real)
(Take Formal Address Integer)

These operations each have the dynamic address of the appropriate formal
accumulator as a parameter.

Example

x :=y:= z+3;

where y is a formal parameter, is translated into

Syll Op Par
0 TRA x
3 TFAR y
6 TRR z
9 TIC '3'
16 +
17 STA
18 ST
19

112 2 THE OBJECT PROGRAM

It has already been mentioned that an implicit subroutine must be made
into a block so that it can be used recursively if necessary. Therefore to
evaluate an implicit subroutine, the value of PP contained in the formal
accumulator is used to update DISPLA Y so that the declarations valid at the
call of the procedure can be used by the subroutine. This is done after various
items of link data have been placed at the top of the stack, above a space
left for the accumulator which will be set up by the subroutine. A jump is
then made to the BE operation at the start of the subroutine, which com
pletes the link data. The effect of the operations forming the subroutine is to
produce an address in the top accumulator, above the link data of the sub
routine. The final operation EIS (End Implicit Subroutine) moves this accum
ulator to the space below the link data, and then performs the work of
RETURN. This uses the link data of the subroutine to reset PP, AP and
DISPLA Y to the values they had before entry to the subroutine. Thus the
net effect of the subroutine, even if it involved further calls on blocks or
procedures, is just to stack one accumulator.

Example

procedure ZERO (b); realb; a:= b:= 0;
ZERO (A [i + 1]);

The assignment statement in the body of procedure ZERO is translated
into

Syll Op Par
0 TRA a
3 TFAR b
6 TICO
7 STA
8 ST
9

and the call on procedure ZERO is translated into

Syll
o
3
6
9
12
13
14
15
16
20
24

Op
UJ
BE
TRA
TIR
TICI

+
INDA
EIS
PSR
CF

Par
(20)
(n,O)
A

(3), -
ZERO, 1

2.5 PARAMETERS 113

AP: 14

13 'real address' }
12 A [i + 1]

Accumulator

11 1
10 Link Data of Subroutine

............................

J PP: 9

8
"\

I I
............................ r 7 J

Result Accumulator of Subroutine

6 'real address' }

5 a
Accumulator

4 'subroutine' }

3 b
Formal Accumulator

2
····························1

1

0 I····························IJ
Link Data of Procedure ZERO

(a). After operation INDA in Subroutine.

AP: 9 1

8 'real address'

~

7 A [i + 1]

6 'real address'
Accumulators

............................

J 5 a

4 'subroutine' } Formal Accumulator
3 b

2

}
1 Link Data of Procedure ZERO

............................
0 PP:

(b). Mter operation TFAR.

FIG. 7. The Use of the Stack for Implicit Subroutines.

114 2 THE OBJECT PROGRAM

In Fig. 7(a) is shown the stack after the operation IN DA in the implicit
subroutine, which has been activated by the operation TF AR. An
accumulator space has been left above the accumulator containing the
address of a. TF AR, on examining the formal accumulator b, has found
a value of PP (that which was current before the entry to procedure
ZERO), and the address of the operation BE. The subroutine has been
entered, and has evaluated the address of 'A [i + 1]' which is in the top
accumulator.

In Fig. 7(b) the stack is shown after EIS has caused the accumulator
containing the address of 'A [i + 1] , to be moved down into the result
accumulator, and has deleted the link data of the subroutine. PP has
been reset to indicate the start of the link data of procedure ZERO.

A call of an implicit subroutine differs from a call of a procedure mainly
in that DISPLA Y must be updated before entering the subroutine, as well
as on leaving the subroutine. This is because calls of a subroutine, as distinct
from a procedure, can occur at a position where the declarations subject to
which it was written are no longer valid. A description of the technique of
updating DISPLA Y has been given in section 2.2.4.1.

Mter the call of the subroutine by the operation TF AR or TF AI has been
completed it is necessary to check that the resulting accumulator contains
an address, and that the address is of the specified type. Thus the subroutine
of object program operations is being called from, and is returning to, the
machine coding of the operation TF AR or TF AI. Since such a subroutine
could be called from various other 'Take Formal' operations (which have yet
to be described) it is necessary to have a double link system. The first link
has already been met in the description of blocks and procedures, and is a
value of the program counter. This gives the syllable address of the object
program operation after the one that called the block or procedure. The sec
ond link is needed when return is not to be made directly to object program
level. This is therefore the normal kind of machine code link giving the address
of the machine code instruction within the operation TF AR or TF AI to
which a return must be made.

In certain cases a procedure can be called from inside an operation (see
section 2.5.5.1.2) and thus both RETURN and EIS use the double link
system. Thus each resets the program counter from the 'object program link',
and then obeys the machine code instruction at the address given in the
'machine code link'. In simple cases, such as calls on blocks and procedures
by the operations CBL and CF the machine code link will be the address of
the start of the main control loop. Thus the control loop will immediately
obey the next object program operation as given by the reset program counter.
In other cases this system allows the work of an operation, which called a
subroutine or a procedure, to be completed before the next operation is
obeyed.

This double link technique could be avoided if operations such as TF AR

2.5 PARAMETERS 115

were split into two operations, say TFA (Take Formal Address), and CAR
Check Address Real). However tbis is not convenient for the system of
translation employed in the Whetstone Compiler.

2.5.5.1.2 Use of Arithmetic Formal Parameters in Expressions. The oper
ations generated from the use of an arithmetic formal parameter in an ex
pression are

TFR (Take Formal Real)
TFI (Take Formal Integer)

These operations have the dynamic address of the appropriate formal
accumulator as a parameter.

Example

x:= y + A [i];
where y and i are formal, is translated into

Syll Op Par
o TRA x
3 TFR Y
6 TRA A
9 TFI
12 INDR
13 +
14 ST
15

The action of TFR or TFI is dependent on the bit pattern found in the
appropriate formal accumulator, wbich can have been set up by the 'actual
operations'

PR, PI, PRC, PIC, PFR, PFI, PSR

(i) FOimal accumulator set up by PR or PI. This happens when the corre
sponding actual parameter is a simple variable. The value of the simple
variable, taken from the evaluated address in the formal accumulator, is
stacked, having performed any necessary real-integer conversion to the type
specified in the operation TFR or TFI.

(ii) Formal accumulator set up by PRC or PIC. Tbis case is even simpler,
as the value of the actual parameter (a constant) has been placed in the formal
accumulator. Once again tbis value is stacked, having performed any neces
sary real-integer conversions.

(iii) Formal accumulator set up by PFR or PFI. In tbis case the formal
accumulator will correspond to an actual parameter wbich is the identifier
of a type procedure with no parameters. The formal accumulator will con
tain the address of the PE operation of the procedure and the value of PP
ruling at the point where the actual parameter was given.

DISPLA Y is reset, using this value of PP, so that the procedure will be

116 2 THE OBJECT PROGRAM

called in conditions which allow it to use any non-local variables that were
valid at the point of its use as actual parameter. Then the procedure is activ
ated in the normal way, stacking a result accumulator, link data, etc. At the
end of the procedure activation, i.e. at the operation RETURN, the link data
and working storage are deleted, leaving the result accumulator as the top
accumulator. The double link system described in section 2.5.5.1.1 allows
the operation TFR or TFI to resume its working. In fact all that is necessary
is to check that the top accumulator does contain an arithmetic. value, and
to do any real-integer conversions.

(iv) Formal accumulator set up by PSR. PSR will have been used where
the actual parameter is a subscripted variable or the more general form of an
expression. The way in which such an implicit subroutine is activated has
been described in section 2.5.5.1.1, in connection with the operation TFAR
and TFAI. Thus a return will eventually be made to the operation TFR or
TFI, with the top accumulator containing the result of the subroutine. If the
subroutine has been generated from a subscripted variable then the accumu
lator will contain an address, otherwise it will contain a value. Therefore the
final actions of TFR and TFI are. to check the top accumulator, fetch the
appropriate value if the accumulator contains an address, and, finally to
perform any necessary real-integer conversions.

2.5.5.2 Boolean

The implementation of calls on formal parameters specified to be Boolean
is exactly the same as for real or integer formal parameters, except that no
type conversions are needed.

If a Boolean formal parameter is used on the left hand side of an assign
ment· statement the operation

TFA (Take Formal Address)
is generated.

Otherwise the operation

TFB (Take Formal Boolean)

is used. Each of these operations has the dynamic address of the appro
priate formal accumulator as a parameter.

Example

b := c /\ d;
where band d are formal, is translated into

Syll Op Par
o TFA b
3 TBR c
6 TFB d
9 /\
10 ST
11

2.5 PARAMETERS 117

It will be seen that assignments to Boolean formal parameters use the
general operation TFA, rather than a special operation 'Take Formal Address
Boolean'. TF AR and TF AI were needed so as to check that assignments to
arithmetic formal parameters do not call for real-integer conversions; in the
case of a formal Boolean, the address produced by the operation TF A will
be adequately checked at the operation ST.

2.5.5.3 Array

A formal parameter with an array specification must have a corresponding
actual parameter whose declaration agrees exactly with this specification.
Thus no real-integer conversions are allowed in the case of arithmetic arrays.
This correspondence will have been checked by a special operation gener
ated at the start of the procedure, from the parameter list (see section 2.5.6).

All uses of formal arrays use the operation TFA (Take Formal Address),
which in this case just stacks the address of the array word given in the
appropriate formal accumulator.

Example

A [i] := A [j] + 1;
b [i] : = b [j] /\ b [i];

is translated into

Syll Op Par Remarks
0 TFA A
3 TIR
6 INDA A [i]
7 TFA A
10 TIR j
13 INDR A [j]
14 TICl
15 +
16 ST A [i] : = A [j] + 1
17 TFA b
20 TIR
23 INDA b [i]
24 TFA b
27 TIR j
30 INDR b [j]
31 TFA b
34 TIR
37 INDR b [i]
38 1\
39 ST b [i] := b [j] 1\ b [i]
40

118 2 THE OBJECT PROGRAM

2.5.5.4 Label

The use of a formal parameter specified to be a label is represented by the
operation

TFL (Take Formal Label)

The action of this operation is dependent on the contents of the formal
accumulator given by its dynamic address parameter, which can have been
set up by PL or PSR.

In the first case the next accumulator is set up with the contents of the
formal accumulator, (a value of PP, and a program address, which is the
usual object program representation of a stacked label).

In the second case the implicit subroutine is activated, as described in sec
tion 2.5.5.1.1. At the end of the activation of the subroutine a return is made
to the operation TFL which checks that the resulting top accumulator does
contain a label.

Example

go to if b then L1 else L2;

where L1 and L2 are formal parameters, is translated into

Syll Op Par
0 TBR b
3 IF] (12)
6 TFL L1
9 UJ (15)
12 TFL L2
15 GTA
16

2.5.5.5 Switch

The use of a formal switch is represented by the operation TFA, and is
treated like a use of a formal array by a subscripted variable.

Example

go to S [1];

is translated into

Syll
o
3
4
5
6

Op
TFA
TIC1
INDR
GTA

Par
S

2.5 PARAMETERS 119

The action of TF A is to stack the formal parameter, which in this case
contains a value of PP and a program address. The indexing operation
works back down the stack until it finds an address, in this case identified as
being that of a 'formal switch'. The action of IN DR or IN DA is then as describ
ed for ordinary switch designators, except that DISPLA Y must be updated
before the 'switch block' is activated. This resetting of DISPLA Y is done
using the value of PP stacked by the operation TFA. By this means conditions
are temporarily reset to what they were at the use of the switch as an actual
parameter.

2.5.5.6 Procedure

All calls on a formal parameter specified to be a procedure or a type pro
cedure, by procedure statements or function designators, use the operations

CFF (Call Formal Function)
CFFZ (Call Formal Function Zero)

Both operations have the dynamic address of the appropriate formal
accumulator as a parameter. In addition CFF has a one-syllable parameter
giving the number of parameters of the procedure statement or function
designator that it represents. (CFFZ is used for a procedure call with no
parameters.)

The operations CFF and CFFZ are very similar to the operations CF and
CFZ and perform preliminary setting up of the link data of a procedure
before a jump is made to the appropriate PE operation. However, the address
of this PE operation is given in the formal accumulator, rather than as a
parameter, and before the jump is made DISPLA Y is reset, using the value
of PP also given in the formal accumulator. In the case of a procedure being
called by means of a procedure statement the operation REJECT is used to
delete an unwanted result accumulator.

It will be seen that the action of CFFZ is exactly the same as that of TFR,
TFIor TFB in the case of the corresponding formal parameter being set up
by PFR; PF[or PFB respectively. Thus an actual parameter, which is the
identifier of a type procedure with no parameters, can be translated without
inspecting the specification of the corresponding formal parameter to find
whether it is used as a procedure or as an expression.

2.5.6 Parameter List Operations

A set of 'parameter list operations' is placed immediately after the P E
operation which starts a procedure body. These operations check that the
setting of the formal accumulators is in accordance with the specification of
each formal parameter. In addition, if a parameter is called by value, then
its corresponding parameter list operation evaluates the actual parameter,
and replaces the formal accumulator by this value.

The parameter list operations are given in the order of the formal para
meters, and use FP, the formal pointer (kept in the stacked link data) to
address the appropriate formal accumulator. Each parameter list operation

120 2 THE OBJECT PROGRAM

checks the formal accumulator given by FP and then increases FP so that it
indicates the next formal accumulator.

In the case of formal parameters specified to be real, integer, Boolean or
label, the checking cannot be complete, since the actual parameter might be
an expression, which will have a simple PSR (Parameter Sub-Routine) as its
'actual operation'. In such cases it is the checking built into operations like
TFAR (Take Formal Address Real), TFB (Take Formal Boolean) or ST
(Store), which will detect errors. However, it has been thought worthwhile
to perform as much checking as possible on entry to a procedure, rather than
leave everything until a formal parameter is used.

The operations which are used for evaluating parameters called by value
are essentially similar to the various 'Take Formal Result' operations (e.g.
TFR, TFL), but use FP rather than an explicit (n,p) parameter, and place their
result in a formal accumulator rather than on top of the stack. In the case of
real, integer or Boolean parameters the single word occupied by this result
is thereafter treated as an ordinary working store, and the second word of the
formal accumulator (containing a bit pattern) is ignored. Label parameters
called by value are treated somewhat differently (see section 2.5.6.3).

The parameter list operations for formal parameters specified to be arrays
(called by name), switches, procedures and strings are quite straight for
ward, and perform a complete check on the setting of the formal accumu
lators.

The operations are

Example

CAR
CAl
CAB
CSW
CPR
CFR
CFI
CFB
CST

(Check Array Real)
(Check Array Integer)
(Check Array Boolean)
(Check Switch)
(Check Procedure)
(Check Function Real)
(Check Function Integer)
(Check Function Boolean)
(Check String)

procedure P (a, b, c, d); array c; switch a; procedure b;
real procedure d; ;

This procedure, with a body which is a dummy statement, is translated
into

Syll
o
4
5
6
7
8
9

Op
PE
CSW
CPR
CAR
CFR
RETURN

Par
(3,8),4

2.5 PARAMETERS 121

In this, and succeeding examples, the level of the procedure is taken to
be 3. The parameter L of PE is 8 - made up of 4 double-word formal
accumulators.

2.5.6.1 Real or Integer Formal Parameters

The check operation for real or integer formal parameters is CA (Check
Arithmetic). This checks that the formal accumulator has been set up by an
implicit subroutine, an arithmetic constant or simple variable or an arith
metic procedure with no parameters. It is not possible to do a complete check
regarding real and integer, since type conversions are allowed for calls by
value, and on use of formal parameters in expressions. The checking-out
of type conversions in assignments to formal parameters called by name is
done by the operations TF AR and TF AI.

In the case of calls by value, the operations CSR (Check and Store Real)
and CSI (Check and Store Integer) are used. These operations correspond
to the operations TFR and TFI.

Example

procedure SU11J (a, i, j); value i; real a; integer i, j; a : = i;

is translated into

Sy!! Op Par Remarks
0 PE (3,6),3
4 CA a
5 CSI
6 CA j
7 TFAR (3,3)
10 TIR (3,5)
13 ST a:= i
1A RETURl'l 1"T

15

It is because an operation such as CSI can cause an implicit sub
routine to be activated that FP (the Formal Pointer) is kept in the stack.
This is because within such a subroutine there might be a call on a
function designator, for instance, which would need its own FP.

2.5.6.2 Boolean Formal Parameters

The check operation for Boolean formal parameters is CB (Check Boolean).
This checks that the formal accumulator has been set up by an implicit sub
routine, a Boolean constant or simple variable or a Boolean procedure with
no parameters. The final checking of an implicit subroutine which delivers the
address of a subscripted Boolean variable (having been called by TF A), is
done at the operation ST or ST A when the address is used. If the implicit

122 2 THE OBJECT PROGRAM

subroutine is called in an expression it is checked by the operation TFB
(Take Formal Boolean).

Calls by value on Boolean parameters use the operation CSB (Check and
Store Boolean), which corresponds to TFB.

Example

procedure B (hI, h2); value hI; Boolean hI, h2;
h2 := hI 1\ h2;

is translated into

Syll
o
4
5
6
9
12
15
16
17
18

Op
PE
CSB
CB
TFA
TBR
TFB
1\
ST
RETURN

Par
(3,4),2

(3,5)
(3,3)
(3,5)

2.5.6.3 Label Formal Parameters

hI
h2

Remarks

h2 := hI 1\ h2

The check operation generated in the case of a label called by name is CL
(Check Label). This operation checks that the formal accumulator has been
set up by an implicit subroutine or a label. If it has been set up by an implicit
subroutine then the final checking will be carried out by the operation TFL
(Take Formal Label).

Labels called by value are not amenable to the treatment given to, say,
real parameters called by value. This is because an ordinary label need not
occupy space in the working storage of a block, as assignments cannot be
made to labels (see section 4.2.1 of the Revised ALGOL Report). The informa
tion generated from a label is given with the operation TL (Take Label) and
only appears in the stack in an accumulator. Thus TL is like TRC (Take
Real Constant), rather than TRR (Take Real Result).

The solution is to use TFL (Take Formal Label) in a procedure body, even
for labels called by value, but to evaluate a designational expression actual
parameter on entry to the procedure. This is done by the operation CSL
(Check and Store Label). The result of CSL is that the formal accumulator
contains a label (as if set up by PL (parameter Label)). Since the accumulator
is not to be used as a simple working store, the bit pattern must be retained.

Example
procedure JUMP (h, LI, L2); value h, LI; Boolean h;

label LI, L2;
go to (if h then LI else L2) ;

2.5 PARAMETERS

is translated into
Syll Op
o PE
4 CSB
5 CSL
6 CL
7 TBR
10 lFJ
13 TFL
16 UJ
19 TFL
22 GTA
23 RETURN
24

2.5.6.4 Arrays called by Value

Par
(3,6),3

(3,3)
(19)
(3,5)
(22)
(3,7)

Remarks

L1

L2

123

If a formal parameter specified to be an array is called by value then the
elements of the array given as an actual parameter are copied into the second
order working storage of the procedure. The contents of the formal accumu
lator are replaced by a suitably modified array word, which can be used to
address the storage mapping function and the new set of array elements.
Within the procedure the array so formed is treated as if local to the pro
cedure body.

This copying is performed by one of the parameter list operations
CRFA (Copy Real Formal Array)
ClF A (Copy Integer Formal Array)
CBFA (Copy Boolean Formal Array)

Each operation checks the setting of the formal accumulator, which
should give the stack address of the array word of the actual parameter
array. This array word is used to locate the storage mapping function and
elements of the array. The storage mapping function gives the number of
elements of the array. These elements are copied to the top of the stack, WP
(the Working Storage Pointer) increased so that the elements become part
of second order working storage and then AP is set equal to WP. During this
copying by CRF A and ClF A real-integer conversions can be performed. A
copy of the array word, modified to point at the new set of elements (but
still indicating the original storage mapping function) is stored in the formal
accumulator. Within the procedure body, calls on the formal array by means
of subscripted variables use a 'Take Address' operation, giving the (n,p)
address of this array word.

Example

procedure ARRA Y (a, b, c); value b, c; real array a, c;
Boolean array b;
begin a [1] := c [1] := 2 X c [1];

124 2 THE OBJECT PROGRAM

is translated into

Syll
o
4
5
6
7
10
11
12
15
16
17
24
27
28
29
30
31
32

Op
PE
CAR
CBFA
CRFA
TFA
TIC1
INDA
TRA
TIC1
INDA
TIC
TRA
TIC1
INDR
x
STA
ST

Par
(3,6),3

(3,3)

(3,7)

'2'
(3,7)

a
b
c

Remarks

a [1]

c [1]

c [1]

c [1] := 2 X c [1]
a [1] := 2 X c [1]

This procedure could be called by the statement

ARRA Y (A,B,C);

where A is a real array, B a Boolean array and C is either a real or
integer array.

2.5.7 Summary

Procedure declarations and calls are translated independently, the linking
up (and checking of) actual and formal parameters being performed at run
time, through a set of formal accumulators.

The operations CF and CFF set up the formal accumulators, using 'actual
operations', which correspond to the set of actual parameters. 'Actual oper
ations' are in general complete in themselves, but in certain cases (expressions,
constants, and strings) just give the address of the object program representa
tion of the actual parameter.

After entry to a procedure a set of parameter list operations is used to
check the setting of the formal accumulators, and to evaluate any parameters
called by value. Uses of parameters called by name are represented by various
'Take Formal' or 'Call Formal' operations. Parameters called by value are in
general used as if local to the procedure body.

A 'Call Formal' operation, or a 'Take Formal' operation on any but the
simplest forms of actual parameters causes a temporary exit from the pro
cedure body. During this exit it is quite possible to make a recursive activa
tion of the procedure. (This is 'formal recursion', as distinct from the recur
sion caused by a recursive declaration of a procedure or a switch.)

2.6 FOR STATEMENTS

A statement can be executed repeatedly, for various values of a controlled
variable, by preceding the statement with a for clause, and so making it into
a for statement. The for clause contains a set of for list elements, which con
trol the way in which values are assigned to the controlled variable. In the
Revised ALGOL Report the action of the step-until element and the while
element are described in terms of the controlled statement and additional
ALGOL statements.

In the Whetstone Compiler a for statement is implemented by using the
controlled statement as a 'subroutine' to a section of the Control Routine
called the For Routine. Since a for statement can involve further for state
ments the For Routine must be capable of being used recursively.

Example

for V [i] : = A step i until B do
for j := 1 step 1 until 10 do C [V [i],j] := 0;

Here a for statement has a further for statement as its controlled state
ment. However, the For Routine must also be capable of dealing with a
further for statement whilst organizing the setting up and testing of the
controlled variable. Thus in the above example i could be a function
designator. This could call a procedure in which a for statement was
used.

Because of these possibilities a for statement is made into a block, and
the various quantities needed by the For Routine are kept in the stacked
information of the block. By this means the working of the For Routine can
safely be interrupted so as to deal with a further for statement, during evalu
ation of an expression in the for list, or of the address of the controlled vari
able, or during the execution of the controlled statement.

This method of implementing for statements, though capable of dealing
with all the possibilities inherent in the definitions of the Revised ALGOL

Report, is very inefficient when used for simple for statements. More efficient
techniques implementing for statements, involving the detection of simple
forms of for statements at translation time, have been described by Hawkins
and Huxtable [31], and Hill, Langmaack, Schwarz and Seegmtiller [34].

Section 4.6.5 of the Revised ALGOL Report contains the rule that after
exit from a for statement due to exhaustion of the for list, the value of the con
trolled variable is undefined. However, when a subscripted variable is given
as the controlled variable of a for statement, it is quite possible for the
values of the subscript expressions to be altered during the action of the for
statement.

126 2 THE OBJECT PROGRAM

Example

i := V[i] := 0;
for V [i + 1] := V [i] + 1 while V [i + 1] < 4 do

i := i + 1;

In such a situation the phrase 'the value of the controlled variable' is
meaningless, as various different elements of an array have been used as a
controlled variable. As a result, in KD F9 ALGOL this section of the report is
interpreted to mean 'the value of the controlled variable that caused exit
from the for statement'. Advantage of this rule is taken only in the Kidsgrove
Optimizing Compiler, and not in the Whetstone compiler.

2.6.1 For Blocks

Due to the method of translation that is used, the controlled variable, the
expressions in the for list elements and the controlled statement must be
translated into object program operations in the order of their occurrence in
the ALGOL text.

The operation CFZ (Call Function Zero) is used to call the block which
has been formed from the for statement. This 'for block' starts with the oper
ation FBE (For Block Entry) and ends with the operation FR (For Return).
By positioning the CFZ operation in front of the object program representa
tion of the first for list element the address of this element is automatically
stacked as the return address by CFZ. The FBE operation, in addition to
the normal (n,L) parameters of an ordinary BE (Block Entry) operation, has
a two-syllable parameter indicating the start of the object program representa
tion of the controlled variable.

If the controlled statement is itself an unlabelled block this block is com
bined with the for block, and the parameter L given with FBE will include
the first order working storage of the unlabelled block.

If the controlled statement is a labelled block it is not possible to combine
the two blocks in this way, because it must be possible to leave the block,
without leaving the for statement (a similar situation was described in sec
tion 2.4.1.1 in connection with a procedure body consisting of a labelled
block).

Various links needed by the For Routine are kept in the result accumu
lator set up by the CFZ operation which called the for block. In addition,
four working stores are needed for the operation of any step-until elements.
These working stores are set aside in the stack by the operation FRE. Thus
the parameter L of FBE covers these four working stores, plus any needed by
a controlled statement which is a block.

The execution of the for statement is actually controlled by sets of oper
ations generated from the for list elements. Each set of operations assigns a
value to the controlled variable, and causes the controlled statement to be
obeyed zero or more times, before control is handed on to the next set of
operations. The set of operations corresponding to the last for list element is

2.6 FOR STATEMENTS 127

followed by the operation FSE (For Statement End). This operation deletes
the link data and working storage of the for block from the stack, and causes
a jump to be made to the statement following the for statement.

Thus the general form of the object program representation of a for state
ment is

Op Par
UJ (a)

d: (Controlled Variable)
a: CFZ (b)

(For List Elements)
FSE (c)

b: FBE (n,L), (d)
(Controlled Statement)

FR
c:

(A detailed example is given in section 2.6.2.1)

The first operation is an Unconditional Jump, which is used to avoid the
operations generated to evaluate the address of the controlled variable. This
causes a jump to the CFZ operation, which in turn calls the for block which
starts with the operation FBE. FBE has the address of the operations gener
ated from the controlled variable as a parameter. This address is kept in the
stack for use by the sets of operations generated from the for list elements.
The FBE operation then causes a jump to the operation whose address has
been stacked as a return address by CFZ, i.e. the address of the first for list
element. This for list element then assigns a value to the controlled variable
and either hands control to the next for list element, or causes the controlled
statement to be obeyed. At the end of the controlled statement the operation
FR returns control to the current for list element. Eventually the operation
FSE is reached. This deletes the stacked information of the for block, and
causes a jump to the statement following the for statement, whose address it
has as a parameter.

The 'return address', originally set up in the link data of the for block by
CFZ, is used to indicate the for list element currently being used. The object
program representation of each for list element includes the sets of operations
generated from the expressions contained in the element. These sets of oper
ations, and the set of operations for evaluating the address of the controlled
variable, are used as subroutines by the For Routine. During the activation
of these subroutines a machine code link is kept in the stack. At the end of
each of these subroutines the special object program operation LINK is used
to return control to the For Routine, at the address given as a machine code
link.

The subroutine generated from an expression in a for list element can be
used recursively.

128 2 THE OBJECT PROGRAM

Example

real procedure F;
begin ...

for A := A + F step 1 until 10 do S;

end;

This situation is similar to that described in section 2.5.4.3, with regard to
the implicit subroutine generated from an actual parameter expression. How
ever, it is not necessary to make a for list element expression into a block,
as was necessary with an actual parameter expression. This is because the for
statement has already been made into a block, and all the link data required
to allow recursive activation of the for list element expression is kept in the
stack.

In fact the double-word result accumulator set up by CFZ is used to hold
various quantities needed by the For Routine (e.g. the addresses of the first
object program operation of the controlled variable and the controlled state
ment). By this means all the 'working storage' of the For Routine is kept in
the stack, either in this result accumulator or as link data, during the action
of any of the object program subroutines, or of the controlled statement.
Thus the For Routine, even though written in machine code, can be used
recursively, as is needed in the example given in section 2.6.

2.6.2 For List Elements

Each for list element is represented by a set of object program operations,
consisting of a subroutine for each expression in the for list element, and one
or more 'for operations'. The various for operations call the appropriate
sections of the For Routine, and hence control the action of the for statement.

2.6.2.1 Arithmetic Element

An arithmetic for list element uses a single for operation, .

FORA (For Arithmetic)

This operation is followed by a set of operations for evaluating the arith
metic expression, which is in turn followed by the operation LINK.

The action of FORA is to call firstly the subroutine which evaluates the
address of the controlled variable, and secondly the subroutine which evalu
ates the arithmetic expression, and then to assign the resulting value to the
controlled variable. After setting the return address given in the link data
to indicate the next for list element, a jump is made to the start of the con
trolled statement.

Example

for V [i] : = A + 1, A + 2 do C : = C + V [i] ;

F

2.6 FOR STATEMENTS 129

is translated into

Syll Op Par Remarks
0 UJ (11)
3 TRA V "1

6 TIR I Controlled
9 INDA

~ Variable
10 LINK J
11 CFZ (37)
14 FORA 1 i5 TRR A I First For List 18 TICI I 19 + Element

20 LINK J
21 FORA "1

22 TRR A

)
Second For List 25 TIC '2'

32 + Element

33 LINK
34 FSE (58)
37 FBE (2,4), (3)
42 TRA C

1 45 TRR C
48 TRA V

f
Controlled 51 TIR i'
Statement 54 INDR I 55 +

56 ST J
57 FR
58

The operation CFZ at syllable 11 will set up the stacked return address
with 14, the address of the first for operation, before jumping to the
operation FBE. The FBE operation records the addresses of the first
of the sets of operations generated from the controlled variable, and the
controlled statement, (i.e. 3 and 42) in one of the words set aside as a
result accumulator by CFZ. These addresses, (3 and 42), are given as a
parameter to FBE, and by the current value of the program counter,
respectively. (FBE has been given an arbitrary block level of 2.) FBE
then causes a jump to be made to the address given in the stacked return
address, i.e. the operation FORA.
FO RA records the current value of the program counter in the second
word of the result accumulator, and then sets up the program counter
with the address 3 given in part of the first word of the result accumu
lator. A machine code link is placed in the link data, and by this means
FORA uses the operations for evaluating the address of the controlled
variable as a subroutine. These operations stack this address, and then

130 2 THE OBJECT PROGRAM

the operation LINK, using the machine code link, causes a return to be
made to the appropriate position in the routine corresponding to FORA.
The information in the result accumulator is then used to reset the pro
gram counter, and the operations for evaluating the arithmetic expres
sion, starting at syllable 15, are used as a subroutine. The top two accum
ulators are then used to perform a 'Store' operation, and the return
address is set up with 21, the current value of the program counter,
which is the address of the next for list element. Finally the program
counter is set up with the address of the controlled statement.
The controlled statement is then obeyed, and eventually the operation
FR, at syllable 57, uses the return address to cause a jump to be made
to the second for list element.
This second element works in exactly the same way, and after the con
trolled statement has been obeyed using the value of this for list element
the operation FSE at syllable 34 is reached. This operation deletes the
stacked information of the block, and causes a jump to be made to
syllable 58, the first operation after the end of the for statement.

2.6.2.2 While Element

A while element uses the for operation
FORW (For While)

followed by subroutines corresponding to the arithmetic and Boolean ex
pressions contained in the element. FOR W causes the arithmetic expression
to be evaluated and assigned to the controlled variable in a similar way to
that described for FORA. Then the Boolean expression is evaluated, and
depending on its truth value, either the controlled statement or the next for
list element is obeyed.

Example
for V : = V + 1 while V < 10 do A [V] : = 0;

is translated into
Syl/ Op Par remarks
0 UJ (7)
3 TIA V

Controlled Variable 6 LINK
7 CFZ (32)
10 FORW
11 TIR V
14 TICl
15 +
16 LINK For List Element
17 TIR V
20 TIC '10'
27 <~

28 LINK

2.6 FOR STATEMENTS 131

Syll Op Par Remarks
29 FSE (47)
32 FBE (3,4), (3)
37 TRA A I

40 TIR V I
43 INDA ~ Controlled Statement
44 TICO

I

45 ST J
46 FR
47

After the operation FOR W has performed the assignment

V:= V+1;

the program counter will be set at 17 and the return address at 10. The
second subroutine is then evaluated, leaving its result, a Boolean value,
as the top accumulator. At this point the program counter will be set
at 29. The top accumulator is inspected, and if it contains the value true
the program counter is set to indicate the first operation of the controlled
statement (at syllable 37). Otherwise the return address is set up with
the value 29 (which is the program address of the next for list element,
or in this case the operation FSE). In either case the final action is to
delete the top accumulator. By this means the controlled statement will
be obeyed repeatedly, each time returning to FORW, whilst V < 10.
However, as soon as this condition no longer holds the operation FSE
will be used to finish the activation of the for block, and to jump to
syllable 47.

2.6.2.3 Step-Until Element

Since the publication of the original ALGOL Report there has been con
siderable discussion on section 4.6.4.2 which defines the action of the step
until element. Thjs matter has not been clarified in the Revised ALGOL Report
and, therefore, of the various suggested reformulations of section 4.6.4.2, a
somewhat arbitrary choice of the one given in ALGOL Bulletin 14 has been
made for KDF9 ALGOL.

is interpreted as

for V := A step B until C do S;

Sl := V:= A;
S2:= B;

LI: if sign (S2) X (Sl - C) > 0 then go to Element exhausted;
Statement S;
S2:= B;
Sf := V:= V + S2;
go to L1;

132 2 THE OBJECT PROGRAM

Thus the values of V, the controlled variable, and B, the step, are calculated
only once each time around the loop. The re-calculation needed for the orig
inal definition is avoided by the introduction of S] and S2.

In fact the basic system of implementation is not greatly affected by this
reformulation, except that a for block is given four working stores for the
storage of the accumulators for S] and S2. The step-until element uses two
for operations

The for list element

FORS] (For Step - 1st Entry)
FORS2 (For Step - 2nd Entry)

A step B until C

is represented in the object program by

FORSI
Take A
LINK
FORS2
Take B
LINK
Take C
LINK

The operation FORSI is used for the first call of the for list element, and
performs the initial setting of the controlled variable. FO RS2 is used on sub
sequent calls for the for list element, and increases the controlled variable
by the appropriate step. Both FORS] and FORS2 end by testing the value
of the controlled variable to find whether the action of the for list element is
complete, or whether the controlled statement is to be obeyed. The four
working stores set aside in the stack by the operation F BE are used as accu
mulators for the values of S] and S2.

FORSI avoids the FORS2 operation, after having used the subroutine for
evaluating the first arithmetic expression, by simply increasing the program
counter by one. However, the return address is set up to point at FORS2, and
therefore on any subsequent uses the controlled statement returns to the
operation FORS2.

Example

for i := j step - I until k do;

is translated into

2.6 FOR STATEMENTS 133

Syll Op Par Remarks
0 UJ (7)
3 TIA

Controlled Variable 6 LINK
7 CFZ (26)
10 FORSI
11 TIR j
14 LINK
15 FORS2
16 TIC1 I Step-Until Element
17 NEG
18 LINK I
19 TIR k

I 22 LINK J
23 FSE (32)
26 FEE (3,4), (3)
31 FR
32

The operation FORS] uses the controlled variable subroutine, and the
subroutine for the first arithmetic expression of the for list element, in
order to perform the assignment

SI := i :=j;

(SI uses the first two words of the working storage of the for block as
an accumulator.) After this has been done the program counter will have
the value 15, indicating the operation FORS2. This value is then placed
in the stacked return address. The program counter is then increased by
one, to avoid the operation FO RS2, and to allow the subroutine for the
second arithmetic expression of the for list element to be used, in order
to perform the assignment

S2:= - 1;

(S2 uses the third and fourth words of the working storage of the for
block.)
FORSI then uses the third subroutine in the for list element, to set the
value of k, and thus find the value of

sign (S2) X (SI - k) > 0

If the value is false the controlled statement is obeyed (the program
counter is set to indicate the first operation of the controlled statement
using information in one word of the result accumulator of the for
block). At the end of the controlled statement the operation FR (For
Return) sets the program counter to the value contained in the return
address, and hence causes a jump to be made to FO RS2.
On the other hand, if the value is true the return address is set up, using

134 THE OBJECT PROGRAM

the program counter, to indicate the next for list element (in this case
the operation FSE at syllable 23).
The operation FORS2, using the various object program subroutines,
performs the assignments

S2 := -1;
SI := i := i + S2;

(The subroutine for evaluating the address of i, the controlled variable,
is used twice, the second time in order to get the value of i.)
Then the operation FORS2 joins the machine code of the FORSI oper
ation and evaluates the third arithmetic expression and the test of SI
against k. The operation FO RS2 is used repeatedly, each time causing
an assignment to be made to the controlled variable, and the controlled
statement to be obeyed, until SI < k, when control is handed to the next
for list element.

2.7 CODE PROCEDURES

In section 5.4.6 of the Revised ALGOL Report it is stated that the body of a
procedure may be expressed in nOn-ALGOL language. In fact, other than by
extending ALGOL, it is only by the use of code procedures that such essential
facilities as the input of data and output of results can be provided.

It has been described in section 1.4 hmv the Whetstone Compiler is just
part of a twin-compiler system, and is designed to be compatible with a
multi-pass optimizing ALGOL Compiler being developed at Kidsgrove by the
Data Processing and Control Systems Division of the English Electric Com
pany. Naturally this compatibility must extend even to code procedures.
Therefore agreement has been reached on a set of rules for the incorporation
of code procedures into KDF9 ALGOL programs. These rules (see Randell,
Duncan and Huxtable [59]), form the required expansion of section 5.4.6 of
the Revised ALGOL Report.

The design of these rules has been guided by the fact that a KDF9 ALGOL
program containing code procedures must be acceptable to either of two
fundamentally different compilers. (In contrast to the Whetstone Compiler,
which produces an object program to be interpreted at run time, the Kids
grove Compiler produces a normal machine code object program.) The
most obvious consequence of this is that writers of code procedures must
not make use of any internal features of a particular compiler or of the 0 b
ject program it produces.

2.7.1 User Code Procedures in KDF9 ALGOL

A sequence of User Code instructions can be incorporated in a KDF9
ALGOL program by enclosing it by the symbols KDF9 and ALGOL, and pre
facing it by a normal procedure heading. (A brief description of KDF9
User Code is given in Appendix 3.) The main channel of communication
between the User Code and the surrounding ALGOL is via the parameters
given in the procedure heading. A User Code procedure body can include
'pseudo-instructions', which use a formal parameter enclosed in string quotes.

Formal parameters can be used this way in fetch, store and jump instructions.
The dynamic end of a User Code procedure is indicated by the symbol EXIT.

Example

procedure ADD (a, b, c); real a, b, c;
KDF9 'a';

'b';
+F;
='c';
EXIT

ALGOL;

136 2 THE OBJECT PROGRAM

This rather trivial example performs

c:= a + b;

The other method of communication is by means of the 'value' of a code
procedure, when called by a function designator. This value must be left in
the top cell of the nesting store, before reaching the symbol EXIT.

Example

real procedure ADD (a, b); real a, b;
KDF9 'a';

'b';
+F;
EXIT

ALGOL;

The pseudo-instructions using the formal parameters are converted into
normal User Code, by either the Whetstone or the Kidsgrove Compiler,
which allow a programmer to use the formal parameters as normal 'fetch',
'store', and 'jump' User Code instructions, without regard for the complexity
of the corresponding actual parameters.

Example

c : = 2 X ADD (a + b [i - 3], (c + d) t e);

Apart from the fact that a code procedure cannot be used recursively, the
full possibilities of use of parameters called by name or by value are available.
F or example it is possible to rewrite the Innerproduct procedure, given in
section 5.4.2 of the Revised ALGOL Report, in User Code so as to accumu
late the products in a double-length accumulator (see a paper by Duncan
[19]).

One detail which has been omitted in this brief description of User Code
procedures is that the first User Code instruction should be preceded by a
short description of the User Code. The description, composed of a set of
four integers, gives such details as number of Q-stores used, etc.

2.7.1.1 Types of Parameters

The full range of parameters, apart from switches and procedures, can be
used in a procedure with a body in User Code.

2.7.1.1.1 Real, Integer and Boolean Parameters. The pseudo-instructions 'a'
and ='a' have the effect of fetching or storing the corresponding actual para
meter, and can be used as if for a normal fetch or store of one number in core
storage. If the formal parameter is called by value then the corresponding
actual parameter will be evaluated before entry to the code procedure. In

2.7 CODE PROCEDURES 137

such a case the replacement of the instruction is fairly straightforward.
When the parameter is called by name, the instructions 'a' and ='a' must be
replaced by instructions which cause the evaluation of the object program
representations of the corresponding actual parameter. This again is made to
appear as a simple fetch or store instruction.

2.7.1.1.2 Label Parameters. The pseudo-instruction 1 'a' can be used to leave
the User Code procedure and jump to the label given by the corresponding
actual parameter. If the formal parameter is called by value then the actual
parameter is evaluated before entry to the code procedure.

2.7.1.1.3 Array Parameters. The pseudo-instruction 'a' can be used to fetch
the array word of the actual parameter array to the top of the nesting store.
The writer of the User Code procedure can then use the array word to locate
and use the storage mapping function of the array as described in section
2.3.1. If the array is called by value a copy is made of the array (with real
integer conversion, if necessary) before entry to the code procedure.

2.7.1.1.4 Strings. In section 2.5.4.9 it was described how a string is stored
as a set of basic symbols beginning with the opening string quote, and end
ing with the closing string quote. In this case the pseudo-instruction 'a' will
fetch the address of the word containing the opening string quote to the top
of the nesting store.

. 2.7.2 The Implementation of Code Procedures

In the Whetstone Compiler the implementation of code procedures needs a
system of communication between sequences of interpreted object program
operations, and User Code instructions. A somewhat similar situation was
described in section 2.6.1 in connection with the use of the For Routine to
control the operation of a for statement.

The heading of a code procedure is translated normally, and is followed
by the operation

DOWN

which has a one-syllable parameter m. This operation causes a descent to
the level of machine code, having preserved in the stack the contents of any
stores which are available to the writers of the code procedure. The para
meter m indicates which sequence of machine code is to be called.

At translation time the code body itself is copied into a backing store,
converting any pseudo-instructions into one or more normal User Code in
structions. At the end of translation a User Code version of the Control
Routine and the code procedures are processed by the User Code Compiler.
This is a standard assembly program, used to produce the actual machine
code from User Code. By this means the Control Routine and the code pro
cedures are formed into an integrated program.
F*

138 2 THE OBJECT PROGRAM

The sequence of User Code instructions which replace the pseudo-instruc
tions are in general complete in themselves. However, in the case of scalar
parameters called by name these User Code instructions use sequences of
object program operations as subroutines.

In the object program the code body is replaced by any such sequences of
operations as are necessary. These sequences end with one of the operations

UP],
UP2,

or GTA

UP] is used for returning to the code procedure with the value of an actual
parameter, which is placed at the top of the nesting store; UP2 is used when
it is required to store a value in the top cell of the nesting store at the address
given as an actual parameter. The operation GT A (Go To Accumulator) has
been described in section 2.4.1 and is used in the case of jumping to the label
given by an actual parameter.

This technique of using subroutines of object program operations is of
course only one of the various possible ways in which the User Code pro
cedure body could use parameters called by name. Its main merit is that it
involves the creation of only two extra object program operations (UP] and
UP2) and needs a minimum of expansion of the pseudo-instructions.

2.7.2.1 Real, Integer and Boolean Parameters

If the code procedure contains a pseudo-instruction for fetching the value
of a real parameter, called by name, then the sequence of instructions

is generated.

TFR (n,p)
UP]

If there is a pseudo-instruction for assigning to such a parameter, then the
sequence

TFAR (n,p)
UP2

is generated. (The dynamic address (n,p) is that of the corresponding formal
accumulator.)

Example

procedure CALC (a, b); value b; real a, b;
KDF9 'a'; 'b'; -F;

'a'; xF; ='a'; EXIT
ALGOL;

This procedure performs

a := (a - b) X a

2.7 CODE PROCEDURES 139

and is translated into

Syll Op Par Remarks
0 PE (n,4),2
4 CA
5 CSR
6 DOWN m
8 TFR (n,3)

Subroutine for 'a' 11 UP1
12 TFAR (n,3)

Subroutine for ='a' 15 UP2
16

After the procedure has been entered and the parameter list operations
have checked the actual parameter corresponding to a and evaluated
the actual parameter corresponding to b, the operation DO WN is
reached. This operation transfers control to the sequence of User Code
instructions which formed the code body. The instructions which replace
the pseudo-operations 'a' and ='a' use the sets of object program oper
ations starting at syllables 8 and 12 as subroutines. The instructions which
replace 'b' just fetch the contents of the formal accumulator to the top
of the nesting store.

The corresponding sets of object program operations for integer and
Boolean parameters, called by name, and used by pseudo-instructions 'a' and
='a', are:

2.7.2.2 Label Parameters

TFI (n,p) } Integer 'a'
UP1

TFAI (n p)}
UP2 ' Integer ='a'

TFB (n,p)
UP1 } Boolean 'b'

TFA (n,p) } Boolean ='b'
UP2

The pseudo-operation using a label parameter is J 'a'. When the parameter
is called by name the set of operations

TFL (n,p)
GTA

is generated. Thus, when this set is used by a subroutine, it is equivalent to a
go to statement which leaves the procedure.

3 THE TRANSLATOR

3.1 INTRODUCTION

The task of the Translator is to convert the ALGOL text into object program
operations, which will then be obeyed interpretively by the Control Routine.
A description of the object program has already been given, and a list of
operations is given in Appendix 7.

Various basic methods of translation have been briefly described in sec
tion 1.2.4. In the Whetstone Compiler a one-pass translation technique is
used, and translation takes place whilst the ALGOL text is being read in to
the computer. The object program is generated in the core storage and it is
complete and ready to be obeyed almost as soon as the reading of the ALGOL
is finished. The ALGOL program itself need not be stored in the computer
although in fact, for reasons of efficiency, a small amount of storage is used
for buffers associated with the input.

At the heart of the Translator is a routine called the 'basic cycle routine'.
This routine reads in the hardware representation of the ALGOL text and
converts it into ALGOL basic symbols.

The object program is essentially a form of 'Reverse Polish' notation, and
the Translator uses a stack (or push-down store) to perform the necessary
re-ordering of the ALGOL symbols.

Details concerning the declaration and use of the various identifiers are
kept in a 'name list', for use by the Translator during the generation of the
object program operations.

During translation an exhaustive series of checks is performed on the
legality of the ALGOL text. However, some checks which are difficult to carry
out at translation time, because of the nature of the one-pass techniques em
ployed, are deferred until run time.

3.1.1 One-Pass Translation
It is possible in ALGOL for identifiers to appear in expressions or statements

before the occurrence of their declaration.

Example

begin real procedure P; P : = x + y;
real x, y;

The procedure P uses the two variables x and y. They are declared in the
same block head as P, but their declaration occurs after that of P in the
ALGOL text.

Thus, if the translator is to generate the object program during a single scan
through the text of the ALGOL program, such possibilities must be allowed for.

144 3 THE TRANSLATOR

A given identifier may be used in different ways in an ALGOL program
(i.e. in the left part list of an assignment statement, in an expression, as an
actual parameter, etc.) and the appropriate object program operation must
be generated for each use of the identifier. For this reason it is not sufficient
to leave a space in the object program for an identifier which has appeared
in the ALGOL text before its declaration; it would then be very difficult to
decide which type of operation to put in the space when the declaration de
tails are available.

Example

x:=y+x-P(x);

(Assuming that y is known to be of type integer, P to be a real procedure,
and that no declaration details are available for x.) The object program
which would result when spaces are left for the operations generated
from each use of the identifier x would be

Syll Op Par Remarks
0 x
3 TIR y
6 x
9 +
10 UJ (17)
13 x
17 CF P,1
21
22 ST
23

When the declaration details for x become available, the spaces left for
the three uses of x must be filled in. However, it is impossible to know,
without working through the object program, that these three spaces
have to be filled in with the operations TRA, TRR and PR, respectively,
when x is found to be of type real.

Thus, it is necessary to place a bit pattern, giving details as to the type
of use of the identifier, in the space set aside in the object program. These
bit patterns are known as 'skeleton operations'.

3.1.1.1 Skeleton Operations

Four types of skeleton operations are sufficient to allow the correct opera
tion to be filled in when the declaration details become available. These are
listed below.

(i) AO (Address Operation)
This skeleton operation indicates that an operation of the form 'Take
Address' is required.

3.1 INTRODUCTION 145

AO could be replaced by any of the following operations

TRA TFA
TIA TFAR
TBA TFAI

(ii) RO (Result Operation)
The skeleton operation RO is used when an identifier appears in an ex
pression and indicates that the value of the quantity associated with the
identifier, rather than its address, is required. The identifier might prove
to be a scalar, when this skeleton operation would be replaced by an oper
ation of the form 'Take Result', or a function designator with no para
meters, when it would be replaced by CFZ or CFFZ.
RO could be replaced by any of the following operations

TRR
TIR
TBR
TL

(iii) PO (Parameter Operation)

TFR
TFI
TFB
TFL

CFZ
CFFZ

This skeleton operation is used to indicate that the identifier has been used
as an actual parameter and that it must be replaced by the appropriate
'actual operation'. Thus PO could be replaced by any of the following
'actual operations'

PR
PI
PB

PRA
PIA
PBA

(iv) FO (Function Operation)

PFR
PFI
PFB

PPR PF
PSW
PL

The skeleton operation FO is used for a procedure call when insufficient
details are available for the procedure identifier. This skeleton operation
will be replaced by either CF or CFF.

In some cases more information could be given in a skeleton operation
than is necessary for the four types given above.

Example

if B then

This use of B shows that it must be a Boolean scalar or function desig
nator.

However, for convenience, the number of different types of skeleton oper
ations has been kept to a minimum. Any additional information concerning
the use of an identifier is preserved in the name list (see section 3.3).

146 3 THE TRANSLATOR

3.1.1.1.1 Chaining of Skeleton Operations. An identifier may appear many
times in the ALGOL text before the occurrence of its declaration, resulting in
the generation of many skeleton operations. When the declaration details for
the identifier are available all of the skeleton operations must be replaced by
the appropriate operations. In order to be able to locate the positions of all
of the skeleton operations that have been generated for an identifier they are
linked together into a 'chain'. The part of the operation that is reserved for
its parameter is used for the chain link in the following way.

The first skeleton operation that is generated for an identifier is given an
empty parameter part. The object program address of the parameter of this
operation is preserved in the name list entry for this identifier (see section
3.3.2). At the next use of the identifier another skeleton operation is gener
ated, and its parameter space filled with the address of the parameter of the
first skeleton operation (taken from the name list). The address of the para
meter of this skeleton operation replaces that of the previous skeleton oper
ation in the name list. This process is repeated for each skeleton operation
generated for an identifier. In this way the skeleton operations which are
created for each identifier that has no declaration details available are linked
together into a chain, each operation enabling the previous one in the chain
to be found. The address of the last skeleton operation generated (i.e. the
start of the chain) is kept in the name list.

When the declaration details are available for an identifier the address of
the operation at the start of the chain is taken from the name list and the
skeleton operation at this address replaced by the appropriate object pro
gram operation. The parameter space of the skeleton operation will give the
address of the next skeleton operation to be replaced; this is noted and the
parameter of the operation is filled in. This process is repeated for the next
skeleton operation in the chain and so on through the chain until the last
skeleton operation in the chain (i.e. at the finish of the chain), which con
tains no address in its parameter position, is reached.

Example

x :=y+x;
y:=y+1/y;

The following object program will be generated (assuming that no
declaration details are available for x and y).

Syll Op Par Remarks
0 AO () x
3 RO () Y
6 RO (1) x
9 +
10 ST x :=y+x
11 AO (4) y
14 RO (12) y

3.1 INTRODUCTION 147

Syll Op Par Remarks
17 TIC1
18 RO (15) y
21 /
22 +
23 ST y:= y + 1/ Y
24

The chain of skeleton operations for x starts at syllable seven and finishes
at syllable one and the chain for y starts at syllable nineteen and finishes
at syllable four.
The addresses of the starting points of these chains (i.e. seven for x
and nineteen for y) are kept in the name list with the other information
about the types of uses of x and y respectively.

3.1.2 The Method of Translation

In order to find the extent of an identifier or a number the basic cycle
routine reads in the ALGOL text until a delimiter is reached. The basic cycle
routine then calls the appropriate 'delimiter routine' into operation. The
Translator consists mainly of these delimiter routines, together with a set of
'subroutines' which are used by the delimiter routines to do some of the
more common tasks.

Thus the basic cycle routine can be said to deliver the ALGOL a 'section' at
a time where a section will consist of either

(i) a delimiter;
(ii) an identifier and a delimiter; or

(iii) a constant (i.e. number or logical value) and a delimiter.

Example

if I true then I x : = I - I 3 else I go to I L;

Vertical lines have been used to show the segmentation of the above
statement into sections.

The basic cycle routine processes the characters forming an identifier or a
number into a coded form. For convenience the delimiters '+', '-', \0'
and '.' which occur within a number are dealt with by the basic cycle routine.

Example

y := I - \.08310 - 02 + /10 + 5/ I z;

During translation it is necessary to keep a record of certain features of the
ALGOL that has passed, in order to be able to translate the current section
of the ALGOL text correctly. Certain delimiters may be used for several differ
ent purposes, and in such cases it is necessary to be able to decide how the

148 3 THE TRANSLATOR

current delimiter is being used. For this reason a set of 'state variables' is
used by the delimiter routines. For example the state variable E (set to one
for statements, zero for expressions) will indicate whether the delimiter if
is being used for a conditional statement or a conditional expression.

The structure of ALGOL, which allows statements to be nested within state
ments, for instance, makes it necessary to preserve values of the state vari
ables corresponding to the various statements. Therefore it is not sufficient
to keep simply a single set of state variables, and so values of certain of the
state variables are preserved from time to time in the translator stack. More
details of the state variables and their uses are given in the description of the
translation stack and of the delimiter routines and a list is given in Appendix 8.

During the translation of expressions a certain amount of checking is per
formed on the types of identifiers and on the operators contained in the
expressions.

Certain features of ALGOL (e.g. the operator' t ') make it impossible to
carry out a full check on the types of identifiers used in expressions during
translation. As a result, a full set of checks has been incorporated in the
run time Control Routine and only such checks as can easily be performed
during one-pass translation are incorporated into the Translator.

Three state variables are used by the Translator to enable this checking to
be carried out. These are the state variables E, ARITH and TYPE. The first
of these has been mentioned earlier and is used to decide if an expression is
being translated; it is set to zero for the translation of an expression, other
wise to one.

The state variable ARITH is needed only for checking out the use of
relational and logical operators in arithmetic expressions. Since arithmetic
expressions can be conditional, the value of ARITH is stacked whilst the if
clause (which can contain relational and logical operators) is being trans
lated. To avoid undue complication, ARITH is ignored in this and succeed
ing sections, but is dealt with in full in Appendix 11.

The state variable TYPE is used to perform a partial check on the types of
identifiers used in expressions. At the start of an expression TYPE is set up
with a sequence of binary digits, representing the range of acceptable types
of identifiers. During the translation of the expression any additional in
formation which enables this range of acceptable types to be further re
stricted is incorporated into TYPE. The term 'arithmetic' is used to represent
real or integer. In order to reserve the term Boolean for the case when only
Boolean variables are allowed, the term 'algebraic' is used to indicate the
range of types allowable in a Boolean expression. Thus algebraic includes
real, integer and Boolean. The other possible setting of TYPE is 'designational',
used for the expression following go to, for example.

3.2 TRANSLATOR STACK

The translator stack is used as a holding store to enable expressions to be
converted into the Reverse Polish form required by the object program, and
to deal with the nested statement structure.

In the Reverse Polish form of an expression the variables and constants
appear in the same order as in the original expression but the delimiters have
been re-ordered to allow for the precedence of operators.

Example

a+bxc~3

is converted into

a, b, c, x, 3, ~, +

To re-order the delimiters they are stored temporarily in the translator stack
until they can be transferred to the object program. By allotting a priority to
each of the delimiters and stacking the priority along with the delimiter the
re-ordering into Reverse Polish can take place automatically.

In the examples given in this section, the translation process is demon
strated for the production of Reverse Polish and details of the corresponding
object program operations are ignored.

When an identifier or a constant is reached in the expression it is transferred
to the Reverse Polish. However, when a delimiter is reached it is placed in
the stack, after first un stacking into the Reverse Polish expression any de
limiters whose priorities are not less than that of the current delimiter.

3.2.1 Translation of Expressions

3.2.1.1 Simple Arithmetic Expressions

Dijkstra [16] uses the analogy of a railway shunting yard to explain this
technique of stacking delimiters with a priority to convert expressions into
Reverse Polish.

A set of priorities which would allow arithmetic expressions to be con
verted would be

Delimiter
+
x/~
t

Priority
o
1
2

150 3 THE TRANSLATOR

Output Input

Translator Stack

The shunting yard has the form of a 'T' junction with the translator stack as
the branch line to perform the 'shunting' or re-ordering. Identifiers or con
stants pass straight from input to output but in general the delimiters reach
the output via the translator stack. Before the delimiters are shunted into the
translator stack any delimiters at the top of the stack which have a priority
equal to or greater than that of the current delimiter, are allowed to pass to
the output.

Example

a+bxc73

The identifier a passes straight to the output and, as the stack is empty,
the delimiter '+' cannot cause any unstacking before being stacked.
Similarly the identifier b passes straight to the output and the diagram
of the shunting yard is then

a, b x, c, -.;-, 3

Delimiter Priority

+ 0

The delimiter 'x' with its priority of one cannot cause the ' +-' to be
unstacked before it, too, is stacked. The identifier C transfers straight to
the output and the picture is as follows

a, b, c

3.2 TRANSLATOR STACK

x

+

-:-, 3

Priority

1

o

151

The current delimiter' -:-', having a priority equal to that of ' x ' at the
top of the stack, causes the delimiter' x ' to be unstacked into the output.
The current delimiter '-:-' is then stacked. After the constant 3 has
passed to the output the picture shows the following

a, b, c, x, 3
((

+

Priority

J

o

Since there is no more input left the remaining items in the stack are
emptied into the output with the result that the expression has been re
ordered into Reverse Polish as follows

a, b, c, x, 3, -:-, +

The operation NEG replaces the delimiter' -' when this delimiter is used
as a unary operation. (e.g. when it appears immediately after a left round
bracket). By giving NEG the same priority as 'x', 'j' or' -:-' rather than that
of ' +' or '- ' the unary operation will be carried out as soon as possible at
run time. This allows the expression to be evaluated from left to right as
far as possible.

Example

(- a X b)

will be re-ordered into 'a, NEG, b, x' rather than 'a, b, x, NEG'.

The delimiter '+' used as a unary operation is ignored by the Translator
after checking the validity of its use and after checking whether it starts an
actual parameter expression.

152 3 THE TRANSLATOR

However, to allow for brackets in an arithmetic expression the set of
priorities given above must all be increased by one so that the delimiter 'C
can be given a lower priority, i.e. zero. In fact this delimiter must be stacked
without first doing any unstacking. The delimiter ')' is given a priority one
higher than that of '(' so that the stack will be emptied down to but not in
cluding the opening bracket when the closing bracket is being translated.
Thus the top of the stack may be inspected after the automatic unstacking
to check that the opening bracket is indeed there, whereupon it is unstacked
and discarded. The delimiter ')' is never stacked. The set of priorities then
becomes

Delimiter
(
+ -)
X j -:- NEG
t

Example

- a + b X c t (d -:- e) j f

Priority
o
1
2
3

This will be re-ordered, using the above set of priorities, into

a, NEG, b, c, d, e, -:-, t, x,j, j, +
At the delimiter '(' the contents of the generated Reverse Polish ex
pression consists of

a, NEG, b, c,

and the contents of the stack are

Delimiter
t
X

+

Stack Priority
3
2
1

The left round bracket is then stacked.
The part of the expression between the brackets causes d and e to be
added to the Reverse Polish and '-:-' to be stacked.
The closing bracket ')' with its priority of one unstacks into the Reverse
Polish the remaining delimiters belonging to the part of the expression
between the brackets. The delimiter '(" now at the top of the stack, is
unstacked and discarded. At this point the stack contains

Delimiter
t
X

+

Stack Priority
3
2
1

and the Reverse Polish consists of

a, NEG, b, c, d, e, -:-

Stack
Address

r

Algol
Section

REVERSE POLISH

a a a a a a a a a a a a a a a a a a a 0
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1

b b b b b b b b b b b b b b b b 2
c c c c c c c c c c c c c c c 3
- - - - - - - - - - - - - 4

X X X X X X X X X X X X >< X 5
+ + + + + + + + + + + + + + 6

i i i i i i i i i i i 7
j j j j j j j j j j 8
NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG 9

e e e e e e e e e 10
2 2 2 2 2 2 2 2 11
t t t t t t t t 12
/ / / / / / / / 13

b b b b b b 14
3 3 3 3 3 15

i i i i 16
X X X X 17
+ + + + 18

x X X 19
C C 20
+ + 21

X 22
23

6 X
5 + +
4 t (((
3 - NEG / / X X X X X +
2 ((((((((((((
1 X X X X X X X X X X X X X X X X
0 + + + + + - - - - - - - - - - - -

L...-- --1--
a+ 3x (b- e) - ix (- j/ let 2x (b+ 3x i) + c±J

STACK

FIG. 8. Pictorial representation of the use of a stack to re-order an arithmetic expression into R(~verse Polish.

Program w
Address tv

1
>-j

~
>
Z
t:Il
t"'"
>
>-j

0
~

t:Il
>-j

>
()

~

154 3 THE TRANSLATOR

The current delimiter 'f' with its priority of two will now cause the
delimiters 't' and 'x' to be unstacked into the Reverse Polish. When
the identifier fhas been transferred to the Reverse Polish expression the
delimiters 'f' and '+' still remain in the stack. Thus a 'closing bracket'
for the expression is needed to clear the remains of the expression from
the stack into the Reverse Polish.
The delimiter ';' is used for this task and, as its duties are similar to
those of the closing round bracket, it is given the same priority (i.e. one).
Like the closing round bracket this delimiter is not stacked and does not
appear in the Reverse Polish expression.

Example

a + 3 x (b - c) - i X (- j / e t 2 X (b + 3 X i) + C);

Figure 8 shows how the number of items in the stack fluctuates during
the re-ordering of the above arithmetic expression. The extent of the
Reverse Polish generated at each delimiter is also shown.

3.2.1.2 Simple Boolean Expressions

In order to translate Boolean expressions the logical and relational oper
ators must be fitted into the priority table.

A relation consists of a simple arithmetic expression on either side of a
relational operator (see Revised ALGOL Report section 3.4.1). Thus when the
relational operator is to be stacked its priority must be such as to first un
stack all delimiters belonging to the arithmetic expression which precedes it.
Therefore the relational operators must have a priority less than those of
any of the arithmetic operators. The relational operators may all have the
same priority.

Similarly a logical operator, which may be preceded by a relation, must
unstack any delimiters belonging to the relation before it is itself stacked.
As a result the logical operators have priorities lower than those of the
relational or arithmetic operators.

However, round brackets may be used to enclose Boolean expressions as
well as arithmetic expressions and so the priorities of the opening and closing
brackets must remain at zero and one respectively. The closing bracket will
then be able to unstack the remains of the part of the arithmetic or Boolean
expression contained within the brackets.

The table of priorities is thus expanded to include the operators of a Boolean
expression.

Delimiter
(
=)
:::)

V
A

Priority
o
J
2
3
4

3.2 TRANSLATOR STACK

Examples

Delimiter

»<:::;:=:;i:
+-
X / --;- NEG
t

1. +A-3>-CxDjE;

Priority
5
6
7
8
9

is translated into the following Reverse Polish

A,3, -, C, NEG, D, x, E, /, > (the unary + is ignored)

2. (-. A + B > 3 1\ C) V (A - G) = 1;

is re-ordered into

A, B, +,3, >," C, 1\, A, G, -,1, =, V

3.2.1.3 Subscripted Variables

155

Subscripted variables can be dealt with using the present table of priorities
by allowing the opening and closing square brackets to have the same
priorities as the corresponding round brackets.

However the delimiter',' used between the subscript expressions must act
as a closing bracket for the expression preceding it and then as an opening
bracket for the expression following it. In the first role as a closing bracket it
must unstack using a priority of one and never be stacked itself, but in the
second role as an opening bracket it must be stacked with a priority of zero
without first unstacking.

There are two ways in which this problem can be overcome.

3.2.1.3.1 First Method. The first method treats comma as two separate
delimiters and gives it two priorities. One is a 'compare' priority (in this case
a priority of one) to control the unstacking of the delimiters of the preceding
expression, the other is a 'stack priority' (i.e. zero) with which it may be
stacked as if it were an opening bracket. Then at the delimiter,], the number
of commas at the top of the stack give the number of dimensions of the sub
scripted variable.

Example

A [B - C, 2, D/ E] X F;

156 3 THE TRANSLATOR

At the first comma the stack contains

Delimiter Stack Priority
7
o

The compare priority of comma (i.e. one) causes the minus sign to be
un stacked into the Reverse Polish and the comma is stacked with its
stack priority of zero.
At the second comma the stack contains

Delimiter
,
[

Stack Priority
o
o

and the Reverse Polish generated so far is

A,B,C, -,2

Since the top item of the stack has a priority of zero no unstacking takes
place at the second comma. This comma is then stacked. At the closing
square bracket the Reverse Polish consists of

A,B,C, -,2,D,E

and the stack contains

Delimiter
/

Stack Priority
8
o
o
o

The priority of,], causes the delimiter '/' to be unstacked into the gener
ated expression and two commas are left in the stack above the corre
sponding opening bracket. A count is kept of the number of commas that
are cleared from the stack, to give the number of dimensions (i.e. the
number of commas plus one) for the subscripted variable. The delimiter
'[' is then unstacked and discarded.
Finally when the delimiter';' has been dealt with the completed Reverse
Polish expression will consist of

A,B,C, -,2,D,E,/,],F, X

No elements of the expression remain in the stack.

The delimiter,], appears in the Reverse Polish to indicate that the results
calculated for the preceding subscript expressions have to be processed to
enable the correct element of array A to be delivered to the expression. In
the object program the operation which is generated for this task is INDR.
The number of dimensions could be given as a parameter to the INDR oper-

3.2 TRANSLATOR STACK 157

ation for use by the Control Routine, but in fact in the Whetstone Compiler
the number of dimensions is determined dynamically (see section 2.3.2).

3.2.1.3.2 Second Method. The second method allows comma to have only
one priority (namely the compare priority of the first method) and does not
require that the comma be stacked. After the delimiters have been unstacked
under the control of the priority of one, the top of the stack must be the
opening square bracket. This is left in the stack and translation proceeds for
the expression following the comma. Thus the opening square bracket is
made to act as the opening bracket for each of the expressions of the sub~
scripted variable.

A disadvantage of this method is that at the closing square bracket there
is no way of knowing how many dimensions the subscripted variable contains.
However, this can be overcome by storing a counter along with the stacked
opening square bracket and updating the counter every time this delimiter
rises to the top of the stack because of the unstacking by a comma. Then at
the closing square bracket the counter will contain the number of dimensions.

Example

A [B - C, 2, DIE] X F;

The delimiter '[' is stacked along with its priority of zero and a dimen
sion counter set at one.
At the first comma the stack contains

Delimiter

[,1

Stack Priority
7
o

After this comma has been dealt with the stack contains

Delimiter
[,2

Stack Priority
o

After the second comma the stack contains

Delimiter
[,3

Stack Priority
o

and the reverse Polish generated is

A,B,C, -,2

At the closing square bracket the stack contains

Delimiter
I
[,3

Stack Priority
8
o

As before, the delimiter 'j' is un stacked using the priority of the closing

158 3 THE TRANSLATOR

bracket. The top of the stack contains '[' and its dimension counter,
which is used to check the number of dimensions. This delimiter is then
unstacked and discarded.
Finally the conversion of the expression is completed by the use of the
delimiter';' and the Reverse Polish generated is

A, B, C, -,2, D, E, /,], F, X

This second method has been chosen for the Whetstone Compiler. The
reason for this choice is to help the Translator to identify the particular use
to which the comma is being put. In ALGOL a comma has many uses and so if,
after unstacking, the item at the top of the stack turns out to be another
comma the preceding expression could have been a subscript expression, an
actual parameter expression or a for list element. However, if the top of the
stack was the delimiter '[' the preceding expression could only have been a
subscript expression.

A subscripted variable can be used in a designational, Boolean or arith
metic expression. In each case the conversion of the surrounding expression
is suspended whilst the arithmetic expressions forming its subscripts are con
verted. At the closing square bracket the conversion of the surrounding
expression is resumed. For checking purposes the Translator needs informa
tion regarding the type of this surrounding expression. This information must
be preserved, when the conversion of this expression is suspended, for use
when the subscripted variable has been dealt with. To do this the state variable
TYPE is used. This state variable contains details of the type of the expression
that is being converted. It is stacked along with the delimiter '[' and then
reset to arithmetic for the conversion of the SUbscript expression. Then at
the delimiter,], the value of TYPE stacked with the delimiter '[' (now at the
top of the stack) is returned to the state variable.

Example

A > B [C, D - E, 2] 1\ F;

the delimiter '[' will be stacked with the value of the state variable TYPE
(i.e. algebraic) and the counter set initially at one. The counter will be
updated at each comma and so at the closing square bracket the stack
contains

Delimiter
[, algebraic, 3
>

Stack Priority o -
6

The delimiter '[' is then unstacked and TYPE reset from the value
stacked with this delimiter. The counter is used to check the number of
dimensions at this use of the array identifier B against details of previous
uses of B, given in the name list entry for B. The Reverse Polish is

A, B, C, D, E, -, 2,], >, F, 1\

3.2 TRANSLATOR STACK

3.2.1.4 Conditional Expressions

159

The algebraic or arithmetic expressions considered so far can be further
complicated, as conditional expressions are allowed in ALGOL. The table of
priorities must therefore be expanded to include the delimiters if, then, and else.

The delimiter if acts as an opening bracket for the Boolean expression
following it and so if can be stacked with the same priority as the other open
ing brackets, namely zero. Since the conversion of the surrounding expression
is suspended whilst this algebraic expression is dealt with the current value
of TYPE is stacked with if. TYPE is then set to algebraic.

The closing bracket for the algebraic expression is then but this delirr..iter
is also the opening bracket for the expression following it. The delimiter then
plays a dual role similar to comma and the two methods discussed earlier to
deal with this problem are again considered to decide the one suitable here.
The one adopted for then is that which allows this delimiter to have two pri
orities. The compare priority controls the unstacking, leaving if at the top
of the stack. TYPE is reset from the value stacked with if, since the expression
following then must be of the same type as that which preceded if; the top of
the stack is replaced by then and its stack priority.

Similarly the delimiter else has a dual role as the dosing bracket of one
expression and the opening bracket of another. It is given two priorities and
after unstacking under the control of its compare priority the top of the stack
must be then which is replaced by else along with its stack priority. The de
limiter then must clear from the stack the remains of the preceding algebraic
expression and this expression could have been conditional. The compare
priority of then cannot therefore be greater than the stack priority of else.
This means that the compare priority of else has to be two and that the
priorities of the arithmetic, relational and logical operators have to be in
creased. The table of priorities now becomes

Delimiter Stack Priority Compare Priority
[(0 void
if 0 -';Tn~r1

YV!.U

then 0 1
else 1 2
]) , ; void 1

3 3
:::> 4 4
V 5 5
1\ 6 6

7 7
>:2:<:S:==i:= 8 8
+- 9 9
x / -:- NEG 10 10
t 11 11

The delimiters '[' and '(' have no compare priority as they are stacked without

160 3 THE TRANSLATOR

first clearing anything from the stack. Similarly the delimiters ,]" ')" ';' and
comma do not need a stack priority as they are never stacked. The conditional
expression uses the value of the algebraic expression (between if and then)
to choose one of two expressions, namely the one between then and else or
that between else and the delimiter at the end of the conditional expression.
It is not permissible to omit the delimiter else from a conditional expression.

Example

y + (if a > 0 then 3) ;

This is not legal ALGOL and in fact for negative values of a the following
incomplete expression would result

y+;

By allotting a stack priority of zero to then, the delimiter at the end of the
conditional expression is not able to unstack it and so the illegal ALGOL
shown in the above example will be discovered. However, the 'end of expres
sion' delimiter must be able to unstack else and for this reason the stack
priority of else must be at least equal to one.

The algebraic expression situated between if and then will have as its value
either true or false. If its value is true the expression following then must be
used and the expression following else bypassed. Similarly if its value is false
the expression following then is bypassed and that following else used.

Example

y + (if a > 0 then 3 else a);

At the delimiter if the contents of the stack are

Delimiter
(

+

Stack Priority
o
9

The delimiter if is added to the stack along with the current value of
TYPE (i.e. arithmetic) and the stack priority of zero. At the delimiter
then the stack contains

Delimiter
>
if, arithmetic
(

+

Stack Priority
8
o
o
9

The compare priority of then (i.e. one) causes the relational operator
'>' to be unstacked into the Reverse Polish, which then consists of

y, a,O, >

G

3.2 TRANSLATOR STACK 161

The delimiter if is unstacked and TYPE reset from the value preserved
at if.
The delimiter then is placed in the stack. An operation IFJ (If False
Jump) must now be added to the Reverse Polish expression to cause the
Reverse Polish expression following to be bypassed should the preceding
algebraic expression have the value faIse. It is not possible to complete
the operation IFJ as the extent of the expression between then and else
is not known. Thus an 'incomplete operation' IFJ is generated at this
point and the program counter is stacked with the delimiter then as a
record of the obligation to complete the operation later. The Reverse
Polish will then consist of

o Y
1 a
2 0
3 >
4 IFJ ()
5

Note: The position of each of the constituents of the Reverse Polish is
shown and no attempt is made here to allow for these constituents to
vary in size.

At the delimiter else the stack contains

Delimiter
then, 4
(
+

Stack Priority
o
o
9

The Reverse Polish generated is

() Y
1 a
2 0
3 >
4 IFJ()
5 3
6

The compare priority of else will not cause any unstacking for this
example as then is already at the top of the stack. Similarly, the size of
the expression following else is not known and so an incomplete UJ
(Unconditional Jump) operation is generated and a reminder to com
plete it will be stacked along with the delimiter else. The IFJ operation
at the program position preserved in the stack with then is completed to
the current program position and the delimiter then unstacked. The
Reverse Polish is

162 3 THE TRANSLATOR

0 Y
1 a
2 0
3 >
4 IFJ(7)
5 3
6 UJ ()
7

The delimiter else is stacked with its stack priority of one and the pro
gram position of the UJ operation (i.e. 6). The closing round bracket is
the closing bracket for the preceding conditional expression, and so,
after it has been dealt with, the generation of the Reverse Polish form
of the conditional expression will have been completed.
Then the delimiter else is unstacked under the control of the compare
priority of the closing bracket, and the UJ operation at the program posi
tion stacked with else is completed to the current program position.
Thus when the closing round bracket has been processed the Reverse
Polish consists of

0 y
1 a
2 0
3 >

-4 IF) (7)
5 3
6 UJ (8)-!

-+7 a J
8

The stack contains only the delimiter '+' with its priority of nine.
The delimiter';' completes the arithmetic expression. When it has been
processed the Reverse Polish form of the expression will have been com
pletely generated, as follows

0 y
1 a
2 0
3 >
4 IFJ (7)
5 3
6 UJ(8)
7 a
8 +
9

The system of using the translator stack to preserve obligations as well as

3.2 TRANSLATOR STACK 163

delimiters allows the most complex conditional expression to be converted
without requiring more than the current section of the ALGOL to be present.

Example

y + (if if a > 0 then b = 1 else c = 1 then 3 else if a > 1 then 4
else 5);

Here the value 3 or the value of the conditional expression 'if a > 1
then 4 else 5' is added to y depending on whether the conditional alge
braic expression 'if a > 0 then b = 1 else c = l' is true or false.
At the first then the stack contains

Delimiter
>
if, algebraic
if, arithmetic
(

+

Stack Priority
8
o
o
o
9

When this delimiter has been processed the Reverse Polish consists of

o Y
1 a
2 0
3 >
4 IFJ ()
5

and the stack contains

Delimiter
then, 4
if, arithmetic
(
+

Stack Priority
o
o
o
9

At the second then the stack contains

Delimiter

else, 8
if, arithmetic
(
+

Stack Priority
8
1
o
o
9

When this delimiter has been processed the Reverse Polish for the
conditional algebraic expression will have been generated as follows.

164

o
1
2
3
4
5
6
7
8
9
10
11
12
13

y
a
o
>
IFJ (9)
b
1

UJ (12)
c
1

IFJ()

3 THE TRANSLATOR

The stack will then contain

Delimiter
then, 12
(
+

Stack Priority
o
o
9

At the last use of if the following items will have been added to the
Reverse Polish.

13 3
14 UJ ()

The delimiter if is stacked and the stack will then contain

Delimiter
if, arithmetic
else, 14
(
+

Stack Priority
o
1
o
9

When the last then has been processed the following items will have been
added to the Reverse Polish

15 a
16 1
17 >
18 IFJ()

the stack contains

Delimiter
then, 18
else, 14
(
+

Stack Priority
o
1
o
9

3.2 TRANSLATOR STACK

When the last else has been processed the stack will contain

Delimiter
else, 20
else, 14
(

+

Stack Priority
1
1
o
9

165

The IFJ operation at position 18 in the Reverse Polish will have been
completed and the following items added

19 4
20 UJ ()

The closing round bracket acts as a closing bracket for the two condi
tional expressions. The compare priority of this delimiter causes both
else delimiters to be unstacked and their corresponding incomplete UJ
operation filled in with the current program position. Finally the delimi
ter ';' completes the arithmetic expression and when this delimiter has
been processed the complete Reverse Polish will have been generated
and is as follows

0 Y
1 a
2 0
3 >
4 IFJ (9)
5 b
6 1
7
8 UJ (12)
9 c
10 1
11
12 IFJ (15)
13 3
14 UJ (22)
15 a
16 1
17 >
18 IFJ (21)
19 4
20 UJ (22)
21 5
22 +
23

Figure 9 shows the generation of the Reverse Polish and the contents
of the stack at each stage of the re-ordering of the conditional expression
in this example.

Stack
Address

1

Algol
Section

4
3
2
1
0

~

y y

(

+ +

y+ (

y y

if
if if
((

+ +
-- -

if if

REVERSE POLISH

y y y y y y y y y y y

a a a a a a a a a a a

0 0 0 0 0 0 0 0 0 0

> > > > > > > > > >
IFJ() IFJ() IFJ(9) IFJ(9) IFJ(9) IFJ(9) IFJ(9) IFJ(9) IFJ(9) IFJ(9)

b b b b b b b b b

1 1 1 1 1 1 1 1

= = = = = = = =
UJO UJO UJ(12) UJ(12) UJ(12) UJ(12) UJ(12) UJ(12)

c c c c c c c
1 1 1 1 1 1

= = = = = =
IFJ() IFJ(15) IFJ(15) IFJ(15) IFJ(15) IFI(15)

3 3 3 3 3
UJ() UJO UJO UJO UJO

a a a
1 1
> >
IFJ() IFJ(2J)

4
UJO

> = = >
if then then else else if if then else

if jf jf if if then else else else else else

(((((((((((

+ + + + + + + + + + +

a> o then b= 1 else c= 1 then 3 else if a> 1 then 4 else

STACK

FIG. 9. Stylised Representation of Translator Stack and Reverse Polish.

y
a
0
>
IFJ(9)
b
1

=
UJ(12)
c
1

=
IFJ(15)
3
UJ(22)
a
1
>
IFJ(21)
4
UJ(22)
5

+

5)

y
a
0

>
IFJ(9)
b
1

=
UJ(12)
c
1
=
IFJ(15)
3
UJ(22)
a
1
>
IFJ(21)
4
UJ(22)
5

+

;

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

I-

Program
Address

1

-0\
0\

3.2 TRANSLATOR STACK 167

3.2.2 Translation of Statements

This section illustrates how the translator stack and the system of priori
ties can also be used to translate statements. The translation of procedure
statements and for statements are not considered in this section but are dealt
with in sections 3.4.3 and 3.4.4 respectively.

3.2.2.1 Assignment Statements

The value of the expression on the right hand side of the delimiter ': =' is
assigned to the simple or subscripted variable on the left hand side.

The state variable E is set to statement level for the translation of the left
hand side to ensure that object program operations ofthe form 'Take Address'
rather than 'Take Result' are generated for the simple or subscripted variable
preceding the delimiter ': ='. The state variable E is then set to expression
level for the translation of the right hand side.

The system of priorities developed for the translation of expressions can
be used for the translation of an assignment statement by including the
delimiter ': =' in the table of priorities. The priority of ': =' must be such
that it is unstacked only by the 'end of statement' delimiter (i.e. the delimiter
~ ;'). This is achieved by giving': =' a priority of two.

Example 1.

y:= a - 2;

The Reverse Polish form of this statement is

y, a, 2, -, :=

and at the delimiter';' the stack contains

Delimiter Stack Priority
9
2

The delimiter ';' with its priority of one causes these two items to be un
stacked into the Reverse Polish.

Example 2.

A [j, k] := 0;

At the delimiter,], the stack contains

Delimiter
[,2

Stack Priority
o

and the Reverse Polish consists of

A,j, k

168 3 THE TRANSLATOR

The delimiter '[' is unstacked after checking the number of dimensions
of the array identifier A. The delimiter,], is then added to the Reverse
Polish. In fact the operation INDA is used for this delimiter in the object
program whenever the subscripted variable appears on the left hand
side of an assignment statement. At the delimiter ': =' the stack does
not contain any elements of the statement to be unstacked before the
delimiter' : =' is stacked with its priority of two.
At the delimiter ';' the delimiter ': =' is unstacked and the Reverse
Polish generated is

A,j, k,], 0, :=

3.2.2.1.1 Multi-Assignment Statements. Multi-assignments are allowed in
ALGOL and the translation of these poses a slight problem which is solved by
means of the translator stack.

Example

a:= A:= 0;

Until the delimiter after the identifier A is reached it is not known
whether this identifier is in the left part list, so that its address is re
quired, or is on the right hand side, so that its value is required.

This presents no problem in the above example where A is a simple vari
able since 'A:=' forms one section of the ALGOL program.

However, this is not the case when A is a subscripted variable.

Example

a : = A [j, k] : = 0

At the delimiter']' the current section of the ALGOL contains this delimi
ter and the preceding identifier k. The stack contains

Delimiter
[,2

Stack Priority
o
2

The delimiter '[' is unstacked and the number of dimensions checked.
Then the delimiter,], is added to the Reverse Polish. However, it is not
known until the delimiter following the closing square bracket is reached
whether the object program operation for,], should be INDA or INDR.
If the delimiter following is ':=' INDA must be generated otherwise
INDR is required. As a result neither INDA nor INDR is generated at
this point but INDA is stacked with a high priority (i.e. twelve) as a
reminder to the delimiter following to generate the correct operation.
For this reason the delimiter' :=' is given a compare priority of twelve.

3.2 TRANSLATOR STACK

The Reverse Polish resulting from the example given above is

a, A, j, k,], 0, :=, :=

169

Two object program operations ST and ST A correspond to the delimiter
, : =' in the Reverse Polish. The operation ST is used for the last of the se
quence of ': =' delimiters and ST A for the others. Thus before stacking the
delimiter ':=' the top of the stack is inspected and if it is ':=' the current
delimiter is stacked as ST A, otherwise as ST.

Example

The contents of the stack at the delimiter';' in the example above are

Delimiter
:= (STA)
:= (ST)

Stack Priority
2
2

3.2.2.2 Go To Statements

A go to statement consists of the delimiter go to followed by a designational
expression, but the Reverse Polish form required by the object program has the
go to delimiter after the converted form of the expression. To achieve this
re-ordering the stack priority of go to must be sufficiently low for it to re
main in the stack throughout the designational expression following, and for
it to be unstacked by the 'end of statement' delimiter. Thus go to is given a
stack priority of two to enable it to act as the opening bracket of the desig
national expression.

Example

go to if b then L1 else L2;

The Reverse Polish form of this statement is

o b
1 IJ7J (4)
2 L1
3 llJ (5)
4 L2
5 go to
6

3.2.2.3 Conditional Statements

The earlier section on the translation of conditional expressions has shown
how ALGOL uses an if clause (i.e. if <Boolean expression) then) to decide
which of two expressions shall be obeyed at run time. Similarly an if clause
can be allowed to decide which one of two statements shall be obeyed. It can
G*

170 3 THE TRANSLATOR

also precede one statement and so decide whether this statement shall be
obeyed or bypassed. This means that the delimiter else may be omitted from
a conditional statement, thus forming an if statement.

Example

if a > 0 then x : = 0 else x : = 1;
if a > 0 then x : = 0;

Both of these statements are allowed in ALGOL. The second statement
acts as a dummy statement for negative values of a.

The end of statement delimiter';' may therefore expect to find either else
or then in the stack; it should be able to unstack then. For this reason the
stack priority of zero given to the delimiter then used in conditional expres
sions will not work here. A way out of this difficulty is to have two internal
representations for the delimiter then, namely 'then E' used for conditional
expressions and 'then S' for conditional statements. Similarly two representa
tions of else, namely 'else E' and 'else S', are used. The table of priorities
given in section 3.2.1.4 refers to 'then E' and 'else E'.

The delimiter then must be able to unstack back to its corresponding if
through an algebraic expression which might be conditional. Thus the com
pare priority of 'then S' has to be less than or equal to the stack priority
'else E' (i.e. one). Similarly the unconditional statement between then and
else may contain a conditional expression. Therefore the compare priority of
'else S' must be less than or equal to the stack priority of 'else E'. But the
stack priority of 'then S' must be less than the compare priority of 'else S',
as else should be able to unstack down to, but not including, its correspond
ing then.

To fit in the delimiters 'then S' and 'else S' to the existing table of priorities
and still obey the rules given above is not possible and so the priorities of
the delimiters are revised and given below.

Delimiter Stack Priority Compare Priority
[(0 void
],; void 1
) void 2
if 0 void
then S 1 2
then E 0 2
else S 1 2
else E 2 2
go to 2 void
- 2 12

3 3
::J 4 4

V 5 5

3.2 TRANSLATOR STACK

Delimiter
1\

Stack Priority
6
7

»<:::;::==F 8
I

T -

X / -:- NEG
t

9
10
11

Compare Priority
6
7
8
9
10
11

171

The compare priority of the closing round bracket has been increased to
two as round brackets may enclose only expressions, and ')' should not be
able to unstack 'then S' or 'else S'. Normally the state variable E (which dis
tinguishes between statement and expression levels) is used to disallow the
use of 'then S' or 'else S' whilst in an expression, but E is set to statement
level whilst an actual parameter list is being converted. This is because the
object program requires operations for finding the address of parameters
which are subscripted variables, rather than their values.

Example

P (A [1])

The actual parameter is converted into

A, 1,]

Since the state variable E is set to statement level the delimiter ']' will
appear in the object program as INDA.

The translation of conditional statements follows a similar pattern to that
of conditional expressions. The priorities allotted to each of the delimiters
ensure that the ALGOL is re-ordered into the correct Reverse Polish form.

3.2.2.4 Compound Statements

Several statements may be enclosed by the brackets begin and end. By this
means they appear to the surrounding ALGOL as a single statement. This can
be useful if, for instance, one of two sets of statements is to be executed.

Example

if a> 0 then begin x := 0;
y:= 1

end
else begin y := 0;

x:= 1
end;

The Translator treats these statement brackets in a similar way to arith
metic round brackets, using them to re-order the conditional statements

172 3 THE TRANSLATOR

into the correct Reverse Polish form without putting them into the object
program. The delimiter begin does not cause any items to be un stacked
(i.e. it has no compare priority). It is stacked with a priority of zero and
it shields the delimiter 'then S' below.

The last statement in a compound statement does not have to be followed
by a semi-colon. Thus the delimiter end takes over the duties of semi-colon
for this statement and is given a compare priority of one.

3.3 NAME LIST

The name list contains the names and details of all the identifiers with a
currently valid declaration. This list is divided into blocks so that when the
end of a block is reached the entries for identifiers declared within the block
can be discarded. Before being discarded a copy is preserved in a backing
store for use by the Control Routine, should a failure occur in the object
program at run time.

There is one entry in the part of the name list corresponding to the current
block for each identifier appearing in the block.

Example 1.

begin real a;
a:= 0;
go to L;

M:L:

begin integer b;

end;

b := a + 1;
go to M

Before processing the delimiter end the name list will contain

no name
1 a
2 L
3 b
4 a
5 M

At the occurrence of an identifier the name list is searched for an entry
corresponding to this identifier in order to obtain details concerning its declar
ation or previous use. However, only the part of the name list appertaining to
the current block is searched. This is because at the use of an identifier it cannot
be assumed to be non-local merely because its declaration has not yet been met.

Example 2.

L:x :=0;
begin real a;

go to L;

end

174 3 THE TRANSLATOR

At the statement 'go to L' it is not known whether the label L refers to
the label preceding the statement 'x := 0' in the outer block or whether
L will label a statement further on in the inner block. (The appearance
of a label preceding a statement and separated from it by a colon is said
to be the 'declaration' of the label.)

There are two types of entries in the name list. One is a 'declared entry',
showing that the identifier has been declared in the current block and giving
details of the declaration. The other is a 'used entry'; this shows that an
identifier has appeared, but has not been declared, in the current block and
gives information gleaned from the various uses of the identifier.

Example

The contents of the name list at the delimiter end in Example I above are
shown again with the type of each entry marked.

no name used/declared
1 a (declared)
2 L (used)
-3----j)-----(declared) --

4 a (used)
5 M (used)

The information giving the type of the entry is stored in a part of the name
list called the 'd column'. For a used entry this is set to zero and for a declared
entry it is set to one.

A used entry in the name list will also contain the program addresses of
the start and finish of the chain of skeleton operations associated with the
uses of the identifier.

Example

begin real x, y;

begin integer i;

end

y:= 2;
x:= i+l;
y:= x X x + y

The object program produced for the assignment statements is given
below. For comparison the corresponding Reverse Polish is given along
side.

3.3 NAME LIST 175

Reverse Polish Syll Op Par Remarks
y 50 AO ()
2 53 TIC '2' (assuming the program has
.- 60 ST reached 50 at this point and
x 61 AO () that the level of the inner
i 64 TIR (2,3) block is two)
1 67 TIC1

+ 68 +
.- 69 ST
y 70 AO (51) 1 ne cnam links the first
x 73 RO (62) syllable of the parameters
x 76 RO (74) of the skeleton operations
X 79 X

Y 80 RO (71)

+ 83 +
.- 84 ST

85

The chain of skeleton operations for x starts at program syllable 77 which
contains 74, the address of the next link in the chain. This chain finishes
at syllable 62. Similarly the chain for y starts at syllable 81 and finishes
at syllable 51.
The name list for the inner block will contain

no
1
2
3

name type d
i integer 1
y arithmetic 0
x arithmetic 0

np
2,3

start

81
77

finish

51
62

The information gleaned from the various uses of the identifiers x and y
show that they must be arithmetic (i.e. either a scalar or a function desig
nator with zero parameters and of type real or integer). The declared entry
for i gives details of the block level n, and p, the position reserved for i
in the first order working storage of the block. These are packed together
and stored in the 'np' column.

3.3.1 Declaration of an Identifier

At the declaration of an identifier the current part of the name list is
searched for an entry corresponding to the identifier.

(i) If no entry exists a declared entry is created and details concerning
the declaration are added to the entry.

(ii) If a used entry exists its type information, which shows the expected
type of declaration, is checked. It is also necessary to check that the
identifier has not been used in the bound expression of an array declaration
in the current block as this would indicate that a local variable had been
used in an array declaration (see Revised ALGOL Report, section 5.2.4.2).
To do this a marker called the 'exp' column is incorporated into used

176 3 THE TRANSLATOR

entries in the name list and this marker is set if the identifier is used in a
bound expression of an array declaration.

Example

begin array A [1: n];
integer n;

When the declaration of n is reached the current part of the name list
contains a used entry for n and this entry will have the exp marker set.
Thus a failure indication is given.

If the used entry is compatible with the declaration of the identifier the used
entry is changed into a declared entry by setting the d column marker, and
then the np column is filled in.
The chain of skeleton operations associated with the uses of the identi
fier must then be followed through and the skeleton operations replaced
by the appropriate object program operations. To do this the program
address of the start of the chain is taken from the name list. The address,
if any, given in the parameter position of this skeleton operation, which
points to the next skeleton operation in the chain, is noted. The operation
and its parameter are then replaced by the appropriate object program
operation. This process is repeated for each skeleton operation in the
chain. An example of this process of 'unchaining' is given in section 3.3.3.

(iii) If a declared entry already exists a failure indication is given as it
indicates that the identifier has already been declared in the current block.

3.3.2 Use of an Identifier

When an identifier is used the current part of the name list is searched.
(i) If no entry exists a used entry is created. Details of the expected type

of the identifier are put in the type column of this entry. The program
address of the skeleton operation generated for this use of the identifier is
placed in the position allotted for the start and finish of the chain of skele
ton operations. The 'chain' consists of only one element and the skeleton
operation just generated lies at both the start and finish of the chain.

Example

if B then

The expected type of B is Boolean and the skeleton operation generated
is

Syll
50

Op
RO

Par
()

The used entry created for B is

no
1

name
B

type
Boolean

d
o

start
51

finish
51

exp

3.3 NAME LIST 177

In this case the type of the identifier has been restricted to Boolean
although it is still not known whether B is a Boolean variable or a
Boolean procedure with no parameters. (This has been discussed in
more detail in section 3.1.1.1.)
If the identifier is being used in a subscript bound expression of an array
declaration the exp column of the used entry is set to one. Then if the
identifier later proves to be local a failure can be given.

(ii) If a declared entry is found, the type of use of the identifier is checked
against the declaration information contained in the entry. The appro
priate operation is generated in the object program. However, if the identi
fier is being used in an array declaration a failure must be indicated since a
local variable cannot be used in an array declaration (see Revised Report
section 5.2.4.2).

Example

procedure A (B); real B;
begin integer i;

array F [1: B, 1: i];

It is allowed to use B in the declaration of array F, but a failure is
indicated when i is reached.

(iii) If a used entry is founel the type of the current use of the identifier
is checked against the information contained in the entry, which has been
gleaned from previous uses. Also, if the current use increases the informa
tion concerning the expected type of the identifier this extra information
is placed in the type column of the entry. Thus the type column of a used
entry contains the 'logical sum' of all information concerning the various
uses of the identifier. A skeleton operation is generated and added to the
chain. This is done by giving in its parameter position the address given
in the chain start position of the entry. The address of the parameter of this
new skeleton operation is then stored in the chain start position of the
name list.

Example

-:- x;

The name list contains a used entry for x as follows

no
1

name type d
x arithmetic 0

np start
63

finish
14

exp

Now the expected type of this identifier can be further restricted from
arithmetic (i.e. real or integer) to integer.

178 3 THE TRANSLATOR

The skeleton operation generated for this use is
Syll Op Par
112 RO (63)

The name list entry for x is changed to
no name type d np
1 x integer 0

start
113

3.3.3 The End of a Block

finish
14

exp

The declared entries in the part of the name list corresponding to the cur
rent block are deleted from the name list. They refer to local identifiers, and
since the block is about to be left these identifiers have no further significance
in the program.

The used entries in this part of the name list refer to non-local identifiers.
These are dealt with in turn by searching the name list for the surrounding
block for a corresponding entry as follows.

(i) If there is no entry in the name list of the surrounding block, the
used entry is transferred to this part of the name list. The exp column of
the used entry is set to zero, if necessary, before transferring it. The identi
fier has been shown to be non-local and so there is no further need for the
marker denoting that the identifier has been used in a subscripted bound
expression. In fact if the marker is left in the used entry and the identifier
turns out to be local to the surrounding block a failure would be given.

Example
begin integer i, j;

end

begin real n;

end

begin integer procedure ADD;
ADD:= i+ j;

array B [1: j] ;

end

When the array declaration has been translated the name list contains
the following.

no name type d np syll dim exp
1 1 1,3
2 j 1 1,4
3 n r 1 2,3
4 ADD ip 1 4,0 50 0
5 arith 0 68 68
6 j arith 0 78 71 1
7 B ra 1 3,3 1

3.3 NAME LIST 179

It should be noted that two extra items of information have been intro
duced for the name list entries given above. The entry for the procedure
identifier ADD required a 'syll' column in which is stored the syllable
address of the object program for the start of the procedure body. The
second extra item of information is the 'dim' column which is required
for both the procedure identifier ADD and the array identifier B (it is
also required for a switch identifier). In this part of the name list the
number of dimensions (in the case of an array or switch identifier) or the
number of parameters (in the case of a procedure identifier) is stored.
At each use of an array identifier as a subscripted variable or each explicit
call of a procedure the number of dimensions or parameters is checked.
Entry number 5 has np and syll columns set to 68. In fact the start and
finish columns used in earlier examples are combined with the np and
syll columns.
This is possible because used entries do not require npand syll columns and
declared entries do not require start andfinish columns. Thus the start and
finish of the chain (consisting of a single operation, at syllable 67, say) for
i are given in the np and syll columns respectively of its name list entry.
For convenience, entries in the type columns have been abbreviated as
follows

type
integer
real

type column

r
procedure p
array a
arithmetic arith

Other possible abbreviations are
type type column

Boolean B
string st
switch sw
label I
algebraic alg

(i.e. real or integer)

(i.e. real, integer or Boolean)

When the inner block is left, the corresponding part of the name list is
collapsed. The declared entries for ADD and B are discarded; the used
entries for i and j are added to the name list of the surrounding block
after setting the exp column of the entry for j to zero. The name list
will then contain

no name type
1
2 j
3 n r
4 arith-
5 j arith

d
1
1
1
0
0

np
1,3
1,4
2,3
68
78

syll dim exp

68
71

180 3 THE TRANSLATOR

(ii) If a declared entry exists in the name list for the surrounding block,
its information is used to replace the skeleton operations in the chain
corresponding to the used entry in the current block. The type columns of
the declared and used entries are checked for compatibility.
The way in which the chain is followed through has been described in
section 3.3.1. However, in this case the exp column of the used entry can
be ignored as the identifier is non-local and can thus be used in a subscript
bound expression.

Example

begin real x;
begin real i;

end;

x:= i:= 1;
x:= x + i

Before processing the delimiter end the name list contains

no name
1 x
2
3

i
x

type
r

d
1

r 1
arith 0

np syll
1,3
2,3
27 15

dim exp

and the object program that has been generated is

Syll Op Par Remarks
0 CBL
1 UJ () Unconditional jump around

outer block
4 BE ()
7 CBL
8 VJ () Unconditional jump around

inner block
11 BE ()
14 AO () x
17 TRA (2,3)
20 TICI
21 STA i:= 1
22 ST x:= 1
23 AO (15) x
26 RO (24) x
29 TRR (2,3)
32 +
33 ST x:= x+i
34

3.3 NAME LIST 181

It will be noted that the parameters for the operation BE have been left
blank. These cannot be filled in until the end of a block, when the extent
of the first order storage is known. This is dealt with in more detail later
when the translation of blocks is discussed.
The delimiter end causes the name list for the inner block to be collapsed
as follows.

(a) The declared entry for i is discarded.
(b) The name list for the surrounding block is searched for an entry

for the identifier x. In this case a declared entry is found and the in
formation contained in it is checked against that contained in the corre=
sponding used entry for x in the inner block.
Using the information taken from the type and np columns of the de
clared entry the chain of skeleton operations is followed through. Each
element of the chain is checked before being replaced to ensure that each
use of the identifier is compatible with the type information now avail
able. The used entry gives the address of the start of the chain as 27. This
points to the parameter of the first skeleton operation in the chain, which
in tum points to the parameter of the next skeleton operation (i.e. 24).
The address of the next element in the chain is noted, then the operation
RO at address 26 is checked against the type information for x and
completed as TRR. The contents of the np column of the declared entry
are then stored as the parameter of this operation (i.e. at address 27).
Each element of the chain is completed in a similar fashion until the
last element has been dealt with.
When all the skeleton operations for x have been filled in the object
program will be

Syll
0
1
4
7
8
11
14
17
20
21
22
23
26
29
32
33
34

Op
CBL
UJ
BE
CBL
UJ
BE
TRA
TRA
TIC1
STA
ST
TRA
TRR
TRR
+
ST

Par

()
()

()
()
(1,3)
(2,3)

(1,3)
(1,3)
(2,3)

182 3 THE TRANSLA TOR

(iii) If a used entry exists in the name list for the surrounding block the
two used entries are checked for compatibility and then the two separate
chains (each used entry has a chain associated with it) are combined into
one chain.

Example

begin real X;
x:= y X y;
begin integer i;

y:=y-:..-2;

end;

At the delimiter end the name list contains the following entries for x,
yand i

no name type d np syll dim exp
1 x r 1 1,3
2 y arith 0 57 54
3 1 2,3
4 y 0 65 62

The chain of operations for the entry for y in the current block is

Syll
61
64

Op
AO
RO

Par
()
(62)

The chain of operations for the entry for y in the surrounding block is

Syll
53
56

Op
RO
RO

Par
()
(54)

After combining the two chains the single chain for y is

Syll
53
56
61
64

Op
RO
RO
AO
RO

Par
()
(54)
(57)
(62)

To do this, the information given in the np column of the entry for y for
the surrounding block is placed in the parameter at the program address
given in the syll column of the entry for y for the current block.
The contents of the np column of the entry for y for the current block
are transferred to the corresponding column of the other entry for y.

3.3 NAME LIST 183

Thus after the name list for the current blo:::k has been collapsed the
name list will contain

no name type d np syll dim exp
1 x r 1 1,3
2 y o 65 54

The used entry for y has its type column limited from arithmetic (i.e.
real or integer) to integer since the use of y in the inner block has pro
vided this further information.
It should be noted that by including in the name list entry for y the
addresses of both the start and finish of the chain, it was possible to
combine the two chains without having to follow through one of them
to find its finish.

3.3.4 The End of a Program

When the end of the program is reached the only used entries remaining
in the name list should be those referring to the standard functions. These
identifiers are allowed in an ALGOL program without explicit declaration.
The standard functions are used as if they have been declared in an outer
block inside which the ALGOL program is contained.

If, however, there are used entries for any other identifiers a failure is given.
A possible cause of this type of failure is the omission of a delimiter between
two identifiers.

Example

begin real procedure P (A, B); value A, B;
real A, B;
P:=AB;

In the body of the procedure P an implied multiplication sign has been
used between A and B. However the Translator assumes that the pro
cedure identifier has been assigned the value of a non-local variable AB.
It is not until the end of the program that this mistake is revealed, when
a used entry for an identifier AB will still remain in the name list.

A further item of information is stored in used entries in the name list
which is useful when the above type of mistake occurs. This is the 'line'
column which contains the line number of the ALGOL text where the identifier
was first used. The line column of a declared entry in the name list contains
the line number of its declaration, for use at a failure in the object program
(see Appendix 5).

184 3 THE TRANSLATOR

3.3.5 Procedure Block

A block is created for a procedure body regardless of whether the body
is a block or not. If, however, the procedure body is an unlabelled block there
is no need to create an extra block in the object program and so the formal
parameters to the procedure and the variables declared local to the body
occupy positions in the first order working storage of the same procedure
block.

It is possible in ALGOL to re-declare an identifier that has appeared in the
formal parameter part as a variable local to the procedure body and thus
render the particular formal parameter inaccessible. To allow for this the
formal parameters are separated from the local identifiers in the name list, thus
effectively creating an extra block in the name list for a procedure body
which is an unlabelled block.

Example

begin integer i;
real procedure A (a, b, c); value b, c; real b; integer a, c;
begin integer i, j; real B;

i:= a + c;

end;

After translating the statement 'i : = a + c' inside the procedure body
the name list contains.

no name type d np syll f v dim exp
1 i 1 1,3
2 A rp 1 2,0 65 3
3 a 1 2,3 1
4 b r 1 2,5 1
5 c 1 2,7 1
6 1 2,9
7 j 1 2,10
8 B r 1 2,11
9 a arith 0 75 75

10 c arith 0 78 78

The entries for the formal parameters contain extra information to show
that they are indeed formal parameters and also to indicate whether
they have been called by name or by value. This information is given in
two extra columns - the '/' column and 'v' column. The f column is set
to one for a formal parameter called by name, whilst the v column is set
to one for a formal parameter called by value. (In the case of a label called
by value both the f and the v columns of its name list entry are set since
the object program operation TFL is used for a formal label whether
called by name or by value - see section 2.5.6.3.) Although the formal

3.3 NAME LIST 185

parameters and the local identifiers are treated in the object program
as being local to the same block by having the same block level (in this
example '2'), the formal parameters are treated as non-local variables
during the translation of the procedure body. Then at the end of the
procedure body the name list entries for the procedure body and also
those for the formal parameters are collapsed.

If the formal parameters were not separated from the local variables in the
name list it would be possible to produce an incorrect translation.

Example

procedure P (a, b); real a, b;
begin switch S := if a> 0 then Ll else L2, L3;

integer a;

end

At the appearance of the identifier a in the switch declaration it would
be assumed that this was the formal parameter a and not the local vari
able a if the current part of the name list contained entries for the formal
parameters.

However, it is unlikely that a programmer would wish to render a formal
parameter inaccessible by declaring the identifier as a local variable in the
body of the procedure and so a warning message is printed when this is found
(i.e. when collapsing the name list for the procedure body block). The print
ing of this warning message does not affect the continuation of the translation
of the ALGOL text.

3.3.5.1 Assignment to a Procedure Identifier

If a procedure has been declared to be a type procedure (i.e. a real, integer
or Boolean procedure) one or more explicit assignments to the procedure
identifier may occur anywhere within the body of the procedure declaration.
For the procedure to be called by a function designator at least one such
assignment must have been made. The Translator can check whether the
procedure identifier has had a value assigned to it, but it cannot check that
this assignment is not bypassed at run time.

Example

real procedure P;
if B then P : = x + y

Here the procedure identifier P is assigned the value of the expression
'x + y' if, and only if, the non-local variable B has the value true.

186 3 THE TRANSLATOR

The following devices are used to enable the Translator to do as much
checking as possible on the legality of function designators.

(i) If, at the collapse of the name list for a type procedure block, no
assignment has been made to the procedure identifier a failure is given.
This means that in the Whetstone Compiler a restriction has been placed
on the ALGOL to the extent that a type procedure must be capable of being
called by a function designator (see Appendix 2).

(ii) An extra item is created as the first item of the part of the name
list for a block and this is not set up in the normal way. If the block is a
'procedure block' (i.e. the block which contains the formal parameters,
if any) the first item contains a duplicate copy of the entry for the corres
ponding procedure identifier. For other types of blocks the first item is left
blank.
In place of the line column for the duplicate entry another piece of inform a

tion, namely the 'FD' marker is stored. This marker is set up when an assign
ment to the procedure identifier occurs. The assignment may occur whilst
this block is being translated or during an inner block. For the first a declared
entry, namely the duplicate entry, will be found in the name list. In the second
case a used entry is either found or created in the name list corresponding
to the inner block. Eventually, the procedure block will be regained after
collapsing the name list for any inner blocks and the used entry will corre
spond to the duplicate entry at the head of the procedure block list. This will
cause the chain corresponding to the used entry to be followed through.
An assignment to the procedure identifier will have been marked by the
generation of an AO operation. If such an operation is found in the chain the
FD marker is set.

It should be noted that the special first item of the name list for a block
described here has not been shown on pictures of the name list for examples
given .earlier in this section.

Example

begin real procedure A (B, C); value C; real B, C;
begin real i;

end;

i:= B+ C;
begin real D;

end

D := i X i;
A:= D+i

Before processing the delimiter end the name list contains

no name type d np syll f v dim exp
1
2 A rp 1 2,0 10 2
3

-- -----A·
rp 1 2,0 10 2

4 B r 1 2,3 1

line

1
0
1

3.3 NAME LIST 187

no name type d np syll f v dim exp line
5 C r 1 2,5 1 1
6
7 i r 1 2,7 2
8 B arith 0 20 20 3
9 C arith 0 23 23 3
10
11 D r 1 3,3 4
12 arith 0 52 38 5
13 A alg 0 46 46 6

The object program that has been generated to this point is

Syll Op Par Remarks
0 CBL
1 UJ () Jump around outer block
4 BE ()
7 UJ () Jump around procedure body
10 PE (),2 Start of procedure A
14 CA
15 CSR
16 TRA (2,7)
19 RO () B
22 RO () C
25 +
26 ST i:= B+ C
27 CBL
28 UJ () Jump around inner block
31 BE ()
34 TRA (3,3)
37 RO ()
40 RO (38)
43 x
44 ST D := i x i
45 AO () A
48 TRR (3,3)
51 RO (41)
54 +
55 ST A:= D+i
56

At the collapse of the name list for the inner block the declared entry
for D is discarded, the used entry for A is placed in the name list for the
containing block and the used entry for i, which corresponds to a de
clared entry in the containing block, is discarded after unchaining and
replacing the skeleton operations for i. At the end of the block forming
the procedure body the skeleton operations for uses of the parameters

188 3 THE TRANSLATOR

Band C are replaced. The used entry for A is found to correspond with
a declared entry which is a duplicate entry (as the first entry in the name
list for that block) and this indicates that the identifier A is the pro
cedure identifier. Thus, on working through the chain of skeleton oper
ations for A any occurrence of the skeleton operation AO indicates that
an assignment has been made to the procedure identifier and the F D
marker is set in the duplicate entry. At the end of the procedure body
(in this case at the delimiter';' following the delimiter end) the name list
for the procedure block is collapsed. Before discarding the first item it is
inspected and if it is a duplicate copy of an entry for a type procedure
a failure is given if the F D marker has not been set.

The above example has shown how a duplicate copy of a procedure identi
fier can be used to check that an assignment has been made to a procedure
identifier inside the body of a type procedure. However, the Translator must
indicate a failure if an assignment is made to the procedure identifier outside
its body. This is done by giving a failure if a 'Take Address' operation is to
be generated for a procedure identifier whose declared entry is not the first
item of the current part of the name list.

Example 1.
begin real procedure P;

P:= y - x;
real x, y;
P:= x:= 0;

At the second assignment to P the name list for the procedure body has
been collapsed and so the name list contains

no name type d np syll f v dim exp line
1
2 P r p 1 2,0 10 0 1
3 y r 1 1,4 3
4 x r 1 1,3 3

Thus when 'P : = ' is encountered the name list is searched and a
declared entry for P is found. Since this entry shows P to be a real pro
cedure, and since this entry is not the first item of the current part of the
name list a failure is given.

Example 2.

begin real procedure P;
P:= y - x;

real x, y;
begin real z;

P :-----' z :'- 0
end;

3.3 NAME LIST 189

In this case the second assignment to P occurs in the inner block and
the operation AO will have been generated. At the delimiter end the
name list contains

no name type d np syll f v dim exp line
1
2 P rp 1 2,0 10 0 1
3 y r 1 1,4 3
4 x r 1 1,3 3

" .,/

6 z r 1 2,3 4
7 P arith 0 34 34 5

The object program generated to this point is

Syll Op Par Remarks
0 CBL
1 UJ () Jump around outer block
4 BE ()
7 UJ (26) Jump around procedure body
10 PE (2,0),0 Start of procedure P
14 TRA (2,0)
17 TRR (1,4)
20 TRR (1,3)
23
24 ST P:= y - x
25 RETURN
26 CBL
27 UJ () Jump around inner block
30 BE ()
33 AO () P
36 TRA (2,3)
39 TIeO
40 STA z:= 0
41 ST P:= 0
42

At the collapse of the inner block the chain of operations for P contains
an operation AO. The entry in the surrounding block shows that P is a
real procedure and, since this declared entry is not the first item of the
list for the surrounding block, the use of AO is not allowed and a failure
is given.

3.3.6 Dim Column

This part of the name list entry contains the number of dimensions or
parameters associated with the identifier (e.g. the dim column for a scalar is
set to zero). However, it is not always possible to fill in the dim column when

190 3 THE TRANSLATOR

an entry is created for an identifier. For example when a declared entry is
created for a formal parameter specified to be an array or a procedure it is
not known how many dimensions or parameters will be associated with the
formal parameter. Similarly, when a used entry is created for an identifier
which is being used as an actual parameter, no details are known as to the
type or number of dimensions or parameters.

F or this reason a value of ' -1' is stored in the dim column of an entry if no
details are available concerning the number of dimensions or parameters
associated with the identifier. This will be replaced as soon as details are
available from subsequent uses of the identifier. Thus the dim column is
used for checking the validity of the uses of an identifier.

Example

procedure P (A, B); array A; real procedure B;
begin integer i;

for i := 1 step 1 until n do A [i] := B (X, i)
end;

Declared entries are created for A and B when the procedure heading
is translated and' -1' is stored in the dim column of each entry. The
use of A as a subscripted variable in the procedure body gives informa
tion as to the dimensions of array A and so the value of ' -1' is replaced
by '1' in the dim column of the entry for A. Similarly 2 replaces '-1'
in the dim column of the entry for B when the procedure call for this
identifier is translated. A used entry is created for the actual parameter
X and '-1' is stored in its dim column.

3.3.7 U Column

For purposes of checking, an extra item of information called the 'u'
column is stored in name list entries (this item has not been shown on earlier
examples).

This part of a name list entry is used to indicate whether the identifier has
appeared in a statement or an expression. By this means it is possible to
print out a warning message if, at the end of a block, an identifier has been
declared but not used.

This check is not extended to labels which are often declared (i.e. precede
a colon) for the purpose of marking a section of the program and not used in
a designational expression.

When an identifier is used in a statement or an expression the name list for
the current block is searched for an entry corresponding to the identifier. If a
declared entry exists the u column marker is set in this entry. If no entry
exists a used entry is created and the u column marker is set.

At the end of a block the name list for the current block is collapsed (see
section 3.3.3). Before the declared entries are discarded the u column marker
is inspected; if it is not set and the declared entry refers to a non-label a

3.3 NAME LIST 191

warning message is printed. If a used entry in the current block corresponds
to a declared entry in the containing block, the u column marker is set on the
declared entry.

Example

Start of program: begin integer i,j; array A [1: 5];
for i := 1 step 1 until 5 do A [i] := i
end

Declared entries are created for the identifiers Start of program, i, j and
A. The u column markers are set on the entries for i and A when these
identifiers are used in the for statement. However, the identifier j is
declared but not used and so at the collapse of the name list for the block
a message is printed to warn the programmer of a possible error in the
program. In the case of the label Start of program no such message is
printed as this label is being used to identify the block.

3.3.8 Summary

The size of the name list fluctuates throughout the translation of the ALGOL.
At the end of a block all entries for identifiers local to that block are deleted.
Thus the name list contains entries only for those identifiers which have a
currently valid declaration.

At each occurrence of an identifier only the part of the name list which has
been set up for the current block is searched for an entry corresponding to
the identifier. Similarly, at the end of a block only the part of the name list
corresponding to the surrounding block is searched in order to deal with the
used entries of the current block.

The system of chaining employed in the Whetstone Compiler enables the
generation of the object program to proceed whether the declaration details
of an identifier are available or not. However, either of the following two
slight modifications to the method of translation used would eliminate the
need for chaining.

3.3.8.1 First Method

The first method uses a preliminary scan through the ALGOL whilst it is
being read on to a suitable backing store. During this scan, lists are con
structed of all identifiers that are used in a block giving declaration details
for those which are local. The ALGOL is then translated by means of a single
scan through the stored program using the appropriate list for the block that
is currently being translated. However, a label may be used to jump forward
to an unknown program address. In this case a pseudo-address is generated
in the object program and details of this pseudo-address are preserved in a
list. When the destination of the jump is known the list is used to change the
pseudo-address into an actual address.

192 3 THE TRANSLATOR

3.3.8.2 Second Method

The second method requires the ALGOL to be restricted slightly in order
that the declaration of any identifier other than a label should occur before
the identifier is used in a statement or in an expression. This can be achieved
by insisting on a certain ordering of the declarations at a block head (with
the scalar declarations first and the procedure declarations last) and by ban
ning various facilities such as mutual recursion of parallel procedures, and the
use of local function designators in a switch list.

The problem of a label being used to jump forward is solved after the
manner of the first method.

Example

begin procedure P;
begin

end;
procedure Q;

begin

end;

In this example P may be called from within the body of Q but the
procedure Q may not be called inside the body of P.

The method used in a one-pass translator for the ZEBRA Computer, which
has been described by van der Mey [69], is a cross between this second method
and the one used in the Whetstone Compiler. In the ZEBRA ALGOL 60
Translator scalar and array declarations must precede any switch or pro
cedure declarations in a block head. Each time a label, switch or procedure
identifier is used before the occurrence of its declaration a used entry (called
a 'contra-declaration' by van der Mey) is added to the name list. At the end
of a block the list of contra-declarations is processed to complete the skele
ton operations corresponding to those identifiers which have since been
declared.

3.4 TRANSLATION TECHNIQUES

3.4.1 Translation of Declarations

A compound statement consists of a set of statements preceded by begin and
followed by end. However, a block has one or more declarations between
the delimiter begin and the set of statements which are again followed by the
delimiter end. Thus at the delimiter begin it is not known whether a compound
statement or a block is to follow. A state variable V is used to discriminate
between the two. It is set to zero at the delimiter begin, to one whilst trans
lating declarations and to two whilst translating statements. Whenever a new
declaration occurs, the state variable V is inspected. If V is zero this declara
tion is the first of a block and so the corresponding object program operations
are generated for the start of the new block. If V is equal to one this declara
tion is not the first in the head of the current block and so the object program
operations for setting up the current block will have been already generated.
However, if V is equal to two a failure is given as declarations must be placed
before the first statement in a block.

To avoid unnecessary complication the examples given in this section
assume that no entries exist in the current part of the name list for the identi
fiers being declared.

3.4.1.1 Scalar Declarations

The state variable T is set up with a bit pattern which gives details of the
type of the declaration (i.e. either real, integer or Boolean) and the marker
D is set to one if it is an own declaration. At the end of the declaration (i.e.
at the delimiter' ;') the state variable T is cleared and D reset to zero.

H

Example

begin real A, B;
own integer C, D;

The various stages in the translation of this block head are shown below.

(i) The delimiter begin is stacked with its priority of zero and the state
variable V is set to zero.
(ii) At the delimiter real, T is set up accordingly after first checking that
it was zero. The fact that V is zero shows that this is the first declaration
of a block and so a subroutine called 'BLOCK BEGIN' is entered. This
subroutine causes the following object program to be generated

194 3 THE TRANSLATOR

Syll Op Par Remarks
0 CBL
1 UJ () Ajump around the block
4 BE ()
7

The delimiter begin at the top of the stack is replaced by the following
three items

Stacked Items
UJ, 2
2,L,NL
begin (bl)

Priority
13

o
The first of these shows that an incomplete unconditional jump has been
generated and the address (2) stacked with this item points to the para
meter of the incomplete UJ operation; the stack priority of the item is
thirteen so that when it is at the top of the stack it will be unstacked by
any of the delimiters which have a compare priority other than void.
The second of these items contains the values of V, Land NL. Land NL
are state variables which have not previously been mentioned. L is used
to count the number of local scalars and array words; when the end of
the block is reached L will give the extent of the first order working
storage (see section 2.2.3).
NL is always set to indicate the first item of the current section of the
name list.
Since the delimiter begin heralds the start of a statement the value of two
is stacked for V.
These state variables will then be used to hold information concerning
the translation of the current block. At the end of this block they are
reset from the stacked values so that the translation of the surrounding
block can proceed.
After stacking this item, L is set to zero, NL reset to point to the next
free entry in the name list (i.e. NLP), and V is set to one for the transla
tion of the declarations.
The third of these items consists of the delimiter begin with a marker to
show that a block is being translated.
Other duties performed by BLOCK BEGIN are the updating of the
block level count n and the reserving of a blank entry at the head of the
part of the name list for the current block.
(Ui) At the delimiter',' the state variable T shows that a scalar declaration
is being translated and that an identifier must precede this delimiter.
Since the current part of the name list contains no entry for the identi
fier A, a declared entry is made and its type column filled from the state
variable T. The values nand 'L + 3' are packed together and stored in
the np column of this entry (where 11 and L indicate the values of the
block level count 11 and the state variable L). The contents of L are then
increased by one.

3.4 TRANSLA nON TECHNIQUES 195

(iv) At the delimiter';' the identifier B is dealt with as in step (iii) above
and then the state variable T is cleared. The marker D will already be
zero as this is not an own declaration.
(v) At the delimiter own the marker D is set to one, after checking that
it was previously zero. The state variable T must also be zero. Since this
is not the first declaration of the current block (as shown by V) the sub
routine BLOCK BEGIN can be bypassed.
(vi) The delimiter integer causes the state variable T to be set up for the
current declaration.
(vii) .l~1t the delirrJter ',' the name list is searched for an entry corre
sponding to the identifier C in the current block. No entry is found and
so a declared entry is created and using the current value of T its type
column is set up to be integer. As C is declared to be an own variable,
'zero' (since block level n is given as zero for own variables) and Lp are
packed together and stored in the np column of its entry. (Lp is a state
variable which gives the extent of first order working storage for own
scalars and own array words.) Lp is then increased by one.
(viii) At the delimiter';' the identifier D is declared in a similar manner
to that described in step (vii) for the identifier C. The state variable T
and the marker D are then cleared.
The name list will then contain the following items for these identifiers
(assuming that these declarations are placed at the head of the program
block).

no name type d np syll f v dim exp line
1
2 A r 1 1,3 1
3 B r 1 1,4 1
4 C i 1 0,1 2
5 D i 1 0,2 2

3.4.i.2 Array Deciarations

An array declaration contains one or more array segments. Each segment
is treated as a separate declaration and is translated separately although all
the segments share the same type delimiters.

The state variable T is used to contain the bit pattern for the type of the
declaration (e.g. real array) and the marker D is set if it is an own array
declaration.

Thus at the end of an array segment, a delimiter ',' will indicate that
another segment is to follow and T and D will be needed for the translation
of this segment. A delimiter';' at the end of a segment indicates that it is also
the end of the array declaration and so T and D are cleared.

If the array declaration is the first declaration after the delimiter begin,
object program operations must be generated to set up the block. This has
been discussed in the previous section on scalar declarations.

196 3 THE TRANS LA TOR

3.4.1.2.1 Translation of an Array Segment. In the Whetstone Compiler,
translation of an own array segment is somewhat different to that of a non
own segment. Thus the two types of segments are considered in turn.

3.4.1.2.1.1 Non-Own Array Segment. The segment contains one or more
array identifiers which are to be declared. The name list entries which will
be generated for these identifiers need the type information, which is con
tained in the state variable T, and also details as to the number of dimensions,
which are not known until the bound pair list has been translated. Thus the
name list entry for the array identifier could be given the type details as soon
as the identifier has been reached in the array segment and then at the end
of the bound pair list have the dimension information added. However, this
means that details of the numbers of the name list entries for all of the array
identifiers in the segment must be kept until the dimension information is
available. For this reason, in the Whetstone Compiler, the array identifiers are
not 'declared' until the end of the segment when details of the type and the
number of dimensions are known. The names of the array identifiers are held
in the translator stack until the bound pair list has been translated.

The delimiter ',' can be used in many different ways in an array declaration
and the Translator must be able to differentiate between these uses.

Example

begin array A, B [0: 2, 1: 10], C, D [0: 5];

The way in which the Translator recognizes the various uses of comma is
listed below.

(i) The comma between array identifiers. At the start of the array seg
ment an operation MSF is stacked with a priority of zero and a counter
which is used to give the number of array identifiers in the current array
segment. Thus this use of comma is recognized by the fact that MSF is
at the top of the stack. The array identifier preceding the comma is placed
in the stack beneath the operation MSF. To do this MSF is unstacked, the
array identifier placed in the stack and then the operation MSF is re
stacked after its counter has been updated.

Example

array A, B, C [1: 10];

After the first comma the top of the stack contains

Stacked Item
MSF, 1
A

Priority
o

3.4 TRANSLA nON TECHNIQUES

Then, after the second comma, the top of the stack contains

Stacked Item
MSF,2
B
A

Priority
o

197

(ii) The comma between array segments. At the end of an array seg
ment the operation M SF and all the identifiers are unstacked and dealt
with. Thus the comma between array segments will find a delimiter begin
at the top of the stack.

(iii) The comma between bound pairs. This use can be recognized as the
top of the stack will contain neither M SF nor begin.

The delimiter '[' at the start of the bound pair list is stacked as '[D' to
distinguish it from the opening square bracket used in a subscripted vari
able. It has a stack priority of zero. A counter and a marker are also
stacked with this delimiter. The counter is used to give the number of
dimensions; it is initially set to one and then increased by one at each com
ma separating the bound pairs. The marker is used to ensure that the
delimiters':' and ',' are used alternately between the subscript bound
expressions of the bound pair list. The marker is set to zero at the delimiter
'[', changed from zero to one at the delimiter' :' and then reset to zero at the
delimiter ','. The delimiters ':' and ',' are not stacked and the delimiter' [' ,
stacked as '[D', is used as the opening bracket for the translation of all the
subscript bound expressions in a similar way to that described for sub
script expressions in section 3.2.1.3.2. However, for their role as the closing
bracket of a subscript bound expression the delimiters':' and ',' are given
a compare priority of one.

The subscript bound expressions are translated into object program
operations in the usual way.

Example

begin array A, B [-1: 0, + 1: 3];

The object program generated for the bound pair list of this declaration
is

Syll
o
1
2
3
4
11

Op
TIC1
NEG
TICO
TIC1
TIC

Par

'3'

At the closing square bracket of an array segment, after the last bound
expression has been dealt with, the top of the stack will contain '[D' with a

Stack
Address

I
Algol Sectio

I

I
,

I

I I

I I
I i

I
i

I

I
I

5
I

4
I

3

I
2 MSF,l

1 I MSF,O A
I

o I begin I begin

n'------I array A,

i
I

I
,

i

I
[0,1,0

I MSF,2

B

A

I
begin

B[

OBJECT PROGRAM

i TIC1 TIC1
I
I NEG NEG
I
I TICO
I
I
I

I

I

I
NEG

[0,1,0 [0, 1,1 [0,2,0

MSF,2 MSF,2 MSF, 2
I

B IB B

I

A IA A I

begin I begin I begin

I r 1: - 0,

STACK

i

TIC1 TIC1 TIC1 TIC1 7

NEG NEG NEG NEG 8

TICO TICO TICO TICO 9

TIC1 TIC1 TIC1 10

TIC '3' TIC '3' 11

MSF(1,6),2 MSF(1,6») 18

22

[0,2,0 [0,2,1

MSF,2 MSF,2

B B
I
,

A A

I I begin begin begin begin
I)-

I I; + 1: 3]

FIG. 10. Representation of Object Program and Stack at each stage during the translation of an array declaration.

Program
Address

1

3.4 TRANSLA nON TECHNIQUES 199

counter containing d, the number of dimensions of the segment, and a marker
set to one. The value d contained in the counter is noted and '[0' is deleted
from the stack. The top of the stack now contains MSFwith a counter giving
N, the number of array identifiers declared in the current segment. An oper
ation MSFis generated in the object program having as its two parameters the
np address of the last array identifier declared in the segment and the value
N. Thus, since the state variable L contains the number of scalars and array
words already declared in the current block, the following operation is
generated

MSF (n, L + 2 + N), N

The value N is noted and the item 'MSF,N' at the top of the stack is un
stacked, leaving N identifiers at the top of the stack to be declared.

The identifier at the top of the stack is declared using the type information
contained in the state variable T, the number of dimensions d and (n,L +
2 + N) as its np address. All the other array identifiers are declared in a
similar way and then the state variable L is increased by N.

Example

begin real x, y;
array A, B [-1: 0, + 1: 3];

Figure 10 shows how the stack is used to translate the above array
declaration. The translator stack and the object program are shown
after the completion of each delimiter routine. When the array declara
tion has been completed the name list will contain the following entries
(assuming that the block level is one).

no name type d np syll f v dim exp line
1
2 x r 1 1,3 0 1
3 y r 1 1,4 0 1
4 B ra j 1,6 2 2
5 A ra 1 1,5 2 2

3.4.1.2.1.2 Own Array Segment. The bound expressions of an own array
segment are restricted by the Whetstone Compiler to be signed or unsigned
integers. This is because the Translator must calculate the size of each own
array to enable the required amount of space to be set aside for it at run time.
It was not considered worthwhile allowing the bound expressions to be more
complicated constant expressions. The translation of an own segment is
similar to that described above for a non-own segment with the following
four exceptions.

(i) MOSF is used instead of MSF.
(U) The value zero is used as the block level for the np addresses instead

of the value of the state variable n, and the state variable Lp is used instead
of L to contain the number of own array words (N).

Stack

I

I

II!

AOA() AOA()

OBJECT PROGRAM

AOA() AOA() AOA() : AOA()
1

AOA() AOA()

TICl TICl TICl TICl

NEG NEG NEG NEG

TICO TICO TICO

TICl

I MOSF,2 MOSF,2 MOSF,2 MOSF,2 MOSF,2 MOSF,21

AOA() AOA(25) 7

TICl TIC1 10

NEG NEG 11

TICO TICO 12 Program
Address

TIC '3'

MOSF(O,2), 2 MOSF(O,2), 2 21 1
13

14

TICl TIC1

TIC '3'

25

Address 3 I I MOSF,l I B 8 B B n B I

r
Algol
Section

I I ~:;~F'O ~:~: I :: I :: __ I ~~: __ ~~: __ , :: J~~: J~:_ .
----1--[--- --------:---- --- i ----------1----.. + ... i amy ! A, I B [- 1, ; 0, I + : " 1 3 1 ! ;

2

o begin

STACK

FIG. 11. Representation of Object Program and Stack at each stage during the translation of an own array declaration.

3.4 TRANSLA nON TECHNIQUES 201

(Ui) At the delimiter array an incomplete operation 'AOA ()' is gener
ated and 'UJ, i - 2' is stacked as a reminder to fill in the parameter of the
AOA operation at the end of the own array declaration. (The counter 'i'
gives the extent of the generated object program and hence 'i - 2' gives
the syllable address of the parameter of the incomplete operation AOA.)

Thus the comma used between own array segments will find the item UJ
at the top of the stack instead of begin.

(iv) Since the bound pair list of an own array declaration has been
restricted and the size of the own array has to be calculated at translation
time, a single routine is used to translate it instead of using the normal
technique of a separate routine for each delimiter. Whilst translating the
bound pair list the size s of the array is calculated and then at the end of
the array segment the state variable Lo is increased by d, the number of
dimensions, to allow for the storage mapping function, and by's x N'to
allow for the N arrays each of size s that have been declared in this segment.

Example

begin real x, y;
own real array A, B [-1: 0, + 1: 3];

Figure 11 shows the generation of the object program and the contents
of the stack during the translation of the own array declaration.
At the end of the bound pair list the state variable Lo is increased by
(2 + 2 X 6) to allow for the storage mapping function containing two
items and for the two arrays each containing six elements. The name list
will contain the following entries for this block head, which is assumed
to be at level two, when the array declaration has been translated

no name type d np syll f v dim exp line
1
2 x r 1 2,3 0 1
3 y r 1 2,4 0 1
4 B ra 1 0,2 2 2
5 A ra 1 0,1 2 2

3.4.1.2.2 Translation of Comma Used Between Array Segments. When the
previous segment has been translated, the top of the stack will contain either
the delimiter begin or the operation UJ (if it is an own array declaration). In
both cases the state variable T and the own marker D will already have been
set up to deal with all segments of the current array declaration. Thus
'MOSF,O' is stacked if it is an own array declaration, otherwise 'MSF, 0' is
stacked. The translation of the next segment is similar to that of the previous
segment.

3.4.1.3 Switch Declarations

As with the scalar and array declarations the state variable T is used to
H*

202 3 THE TRANSLATOR

contain the bit pattern giving the type of the declaration. In this case the own
marker D must be zero as an identifier cannot be declared to be an own
switch.

At the start of the switch declaration an unconditional jump operation
UJ is generated so that the object program operations generated for the
declaration are bypassed upon entry to the block in which the declaration
occurs. However, since the extent of the switch declaration is not known at
its start, the operation UJ is generated as an incomplete operation and
'UJ, i - 2' is stacked as a reminder to complete the operation at the end of
the declaration. The switch declaration is treated as a block with one item
of first order working storage and so the following block entry operation is
generated

BE (n,l)

(where n gives the level of this block)

After the switch identifier has been declared as a switch the delimiter begin
is stacked with a priority of zero and a marker showing that it is a switch
block. This type of begin is unstacked at the delimiter ';' at the end of the
declaration whereas a normal begin requires the delimiter end to be unstacked.

Two program addresses are also stacked with the 'switch begin'. These are
used to point to the parameters of the last DSI and UJ operations, (these
operations are generated at the start and finish respectively of each desig
national expression). The operations DSI and UJ are generated as incom
plete operations and then filled in as soon as possible. In the case of the oper
ation DSI it can be filled in at the end of the current designational expression
before the next DSI is generated, but the unconditional jump operations
all point to the end of the declaration (i.e. the operation EIS). Therefore the
UJ operations are chained together and the address of the start of the chain
is stacked with the 'switch begin'.

Example

begin switch S : = Ll, L2, if a > 0 then L3 else Ll ;

Since this declaration is the first in the current block head, operations
are generated for setting up the block. At the delimiter' : =' the identifier
S is declared as a switch and the state variables E and TYPE are set to
show that a designational expression is to follow.
The item 'switch begin, , i + 4' is stacked with a priority of zero. The
first of the program addresses will contain the address of the parameter
of the operation UJ placed at the end of the first designational expression.
The second of the program addresses points to the parameter of the
first DSloperation to be generated.
The state variable n is increased by one to allow the switch declaration
to be treated as a block.

3.4 TRANSLATION TECHNIQUES 203

The following object program operations are generated

Syll Op Par Remarks
7 UJ () Unconditional jump around

switch declaration
10 BE (2,1)
13 DSI ()
16

At the first comma a skeleton operation RO is generated for L1, followed
by the operation DU.l"r1J1Y since the state variable TYPE shows the
type of expression to be designational. This is because this skeleton
operation (which is a three-syllable operation) will be replaced by the
four-syllable operation TL later and so the DUMMY operation will be
overwritten. An incomplete operation UJ is generated and the address of
its parameter stored with 'switch begin' at the top of the stack. The first
DSI operation can now be completed and a new incomplete DSI oper
ation is generated. Thus the object program generated is

Syll Op Par Remarks
7 UJ ()
10 BE (2,1)
13 DSI (23)
16 RO ()

L1 19 DUMMY
20 UJ () Jump to EIS
23 DSI ()
26

The item at the top of the stack is now

Stacked Item Priority
switch begin, 21, 24 0

i1..fter the operations 'RO ()' and DU},fll,.fY have been generated for L2
a further UJ will be generated. This is chained to the operation UJ
generated for the first designational expression by having as its para
meter the address of the parameter of the first UJ. The address of the
new parameter is stacked with the item 'switch begin' and the following
operations are added to the object program

Syll
26
29
30
33
36

Op Par
RO ()
DUMMY
UJ (21)
DSI ()

Remarks

} L2

The counters stacked with 'switch begin' now have the values 31 and
34 respectively.

204 3 THE TRANSLATOR

The conditional expression for the last designational expression is trans
lated in the normal way. The operation DUMMY is again used to leave
space for the extra syllable of the operation TL. Thus the following ob
ject program operations are generated for this designational expression.

Sy!! Op Par Remarks
36 RO () a
39 TICO
40 >
41 IFJ (51)
44 RO ()

} L3 47 DUMMY
48 UJ (55)
51 RO (17)

} Ll 54 DUMMY
55 UJ (31) Jump to EIS, chained to parameter

of last operation UJ to EIS
58

Since this is the last designational expression of the declaration the oper
ations ESL (End Switch List) and EIS (End Implicit Subroutine) are
generated. All the incomplete jump operations to the EIS operations are
then filled in and the last DSI operation filled in to point to ESL. The
item 'switch begin' is unstacked from the top of the stack and the un
conditional jump around the switch declaration can then be filled in.
Also the state variable n is decreased by one. Thus the object program
generated for the block head is

Sy!! Op Par Remarks
0 CBL
1 UJ ()
4 BE ()
7 UJ (60) Jump around switch declaration
10 BE (2,1)
13 DSI (23)
16 RO ()
19 DUMMY } Ll

20 UJ (59) Jump to EIS
23 DSI (33)
26 RO ()
29 DUMMY } L2

30 UJ (59) Jump to EIS
33 DSI (58)
36 RO () a
39 TICO
40 >
41 IFJ (51)

Syll
44
47
48
51
54
55
58
59
60

3.4 TRANSLATION TECHNIQUES

Op Par Remarks
RO ()
DUMMY L3

UJ (55)
RO (17)
DUMMY Ll

UJ (59) Jump to EIS
ESL
EIS

205

The switch declaration is made into a block but only the switch identi
fier can be declared within it and so there is no need to set up a separate
part in the name list for a switch block. Thus the name list will contain
the following entries for the switch declaration.

no name type d np syll f v dim exp line
1
2
3
4
5
6

S
Ll
L2
a
L3

sw
I
I
arith
I

1
o 52
o 27
o 37
o 45

10
17
27
37
45

1 1
1
1
1
1

The information contained in used entries has already been described
in section 3.3.
The declared entry for S contains the syllable address of the start of the
object program for the switch declaration; the dim column is set to one
since the switch designator is similar to a subscripted variable containing
one dimension.

3.4.1.4 Procedure Declarations

3.4.1.4.1 Translation of the Procedure Heading. The translation of a pro
cedure heading is handled by a single routine; this is the second departure
from the normal technique of using a separate routine for each delimiter (the
other being the translation of a bound pair list of an own array segment).
The main reasons for this are that a procedure heading cannot involve any
recursive definitions (i.e. a procedure heading cannot contain another pro
cedure heading) and to avoid confusion between specifications and declara
tions. A specification for arrays contains only the list of array identifiers but
the declaration must contain the bound pair list as well, and identifiers may
be specified to be labels or strings but cannot be declared as such.

Example

begin array A [0: 31];
procedure Q (X, Y, Z); array X; label Y; string Z;

206 3 THE TRANS LA TOR

A procedure declaration is treated as a block with the formal parameters
appearing as identifiers local to this block. If, however, the procedure body is
an unlabelled block a new block is not created and so the 'procedure block'
will contain both the formal parameters and the identifiers declared as local to
this block, (however, the formal parameters are separated from the local vari
ables in the name list as described in section 3.3.5).

Example

procedure Q (X,y); array X; label Y;
begin integer i, j;

end;

The procedure block created for Q contains the formal parameters X
and Y as well as the identifiers i and j.

As has been described in section 3.3.5.1 the first item of the name list for
the procedure block contains a duplicate copy of the entry for the procedure
identifier. The line column of this duplicate copy is used for the F D marker.
This marker is used for checking that an assignment to the procedure identi
fier has taken place in the case of a type procedure.

A procedure heading consists of up to four parts.
(i) The type delimiters and the procedure identifier. The name list entry

for the procedure identifier requires both the type information and the
number of parameters (stored in the dim column of the name list entry) and
so the declaration of the procedure identifier is held over until the formal
parameter part has been dealt with.

(ii) Formal parameter part. In this section of the procedure heading
declared entries are set up for the formal parameters in the name list
corresponding to the procedure block. The f and np columns are filled in
for these entries but the type column is left blank for specification details.
The procedure identifier is then declared using the type information given
in the state variable T and the number of parameters found from the trans
lation of the formal parameter part.

(iii) Value part. This section of the heading gives a list of identifiers
whose name list entries require the f column to be set to zero and the v
column to be set to one. There may be no value part in the procedure
heading.

(iv) Specification part. The type columns of the name list entries for the
parameters are filled in from the details given in the specifications. Each
specification is translated in turn and the state variable T is used to con
tain the bit pattern giving the type of the specification. At the end of the
specification part there should be no entries for the parameters with the
type column still blank. The dim columns of any parameters specified to be
arrays or procedures are set to '-1' as the number of dimensions or para
meters is not given in the specification part (see section 3.3.6).

3.4 TRANSLA nON TECHNIQUES 207

For a procedure with no parameters the formal parameter, value, and
specification parts are omitted.

At the end of the procedure heading the following object program oper
ations are generated

(i) An UJ operation is generated to enable the procedure declaration to
be bypassed at run time. Since the extent of the declaration is not yet
known this operation is generated as an incomplete operation and an item
is stacked as a reminder to complete it as soon as possible.

(ii) An operation 'P E (), m' is generated for the start of the procedure
block. As the first order storage for this block can include local variables,
the first parameter of this operation is left blank and then filled in with the
values of nand L at the end of the block. The second parameter contains
the number offormal parameters. A delimiter begin is stacked with a priority
of zero and a marker 'procedure' to show the type of the block that is being
translated. The program address of the parameter of the P E operation is
also stacked with the begin as a reminder to fill it in at the end of the block.

(iii) An appropriate parameter operation is then generated for each of
the formal parameters in turn. These operations have been described in
detail in section 2.5.6.
The f column of an entry corresponding to a label called by value is reset

to one. This is because the object program requires the formal operation
TFL to be used for labels whether called by name or by value. The reason
for the use of TFL for labels called by value has been discussed in section
2.5.6.3.

Example

begin real procedure R (U, V, W, X, Y, Z); value X, Z; real U, W;
real procedure V; integer X; label Y, Z;

The name list will contain the following entries at the end of the above
procedure heading

no name type d np syll f v dim exp line
1
2 R rp 1 2,0 10 6 1
3 R rp 1 2,0 10 6
4 U r 1 2,3 1 1
5 V rp 1 2,5 1 -1 1
6 W r 1 2,7 1 1
7 X 1 2,9 1 1
8 Y 1 2,11 1 1
9 Z 1 2,13 1 1 1

3.4.1.4.2 Translation of the Procedure Body. If the body of the procedure
is an unlabelled block the Translator does not set up a new block but a

208 3 THE TRANS LA TOR

marker (bl) is added to the begin at the top of the stack. Then a corresponding
end must be found to cancel this marker before the delimiter';' ending the
procedure declaration can be found. If the body of the procedure is a labelled
block the name list for the block created for the procedure will contain entries
for the parameters and this local label. A block will then be set up for the
body in the normal way.

Example

begin procedure P (A); value A; integer A;
L: begin real x;

The name list contains

no name type d np syll f v dim exp line
1

___ ~ __ ~ __ L_~ ______ 10
3 P P 1 10
4 A 1 2,3
5 L 1 2,0 15 ---6--------
7 x r 1 3,3

1 1

I
1 1

2

2

(The np column of a label is set up with the block level only, as oper
ations corresponding to a label require the block level and the contents
of the syll column as parameters.)
The following object program operations will have been generated when
the label L has been dealt with

Syll Op Par Remarks
0 CBL
1 UJ () Jump around block
4 BE ()
7 UJ () Jump around procedure
10 PE (), 1 Start of procedure P
14 CSI
15 Syll address of label L

If the top of the stack contains begin with the marker 'procedure' but not
the extra marker (bI) when a semi-colon is reached then the translation of a
procedure declaration has been completed. The P E operation can be filled in
using the address stacked with the item 'procedure begin' which is then deleted
from the stack. The jump operation UJ around the declaration can then also
be completed using the item now at the top of the stack.

3.4 TRANSLATION TECHNIQUES 209

3.4.1.5 Bypassing Switch and Procedure Declarations at Run Time

The previous two sections have shown how procedure and switch declara
tions can be bypassed at run time by means of an UJ operation. This is gener
ated as an incomplete operation at the start of the declaration and then com
pleted at the end of the declaration. However, this means that successive
switch or procedure declarations in a block head would have to be bypassed
one at a time.

Example

begin procedure P; begin

end;
switch S := Ll, L2, L3;
real procedure Q; begin

end;

The object program would be of the form

Syll Op Par
o eBL
1 UJ
4 BE
7 UJ
10

30
33

68
71

115

UJ

UJ

()
()
(30)

(68)

(115)

Remarks

Jump around block

Jump around P

} Procedure P

Jump around S

} Switch S

Jump around Q
\

} Procedure Q

If the incomplete UJ operation generated at the start of the declaration is
not filled in when the end of the declaration is reached it is possible to allow
this operation to bypass successive declarations in one jump. At the end of the
procedure or switch declaration the reminder to complete the UJ operation
is left at the top of the stack to be found by the next declaration or statement.
Thus, should the top of the stack contain UJ at the start of a procedure or
switch declaration, there is no need to generate a further incomplete UJ
operation in the object program. This means that at the start of an array
declaration (which cannot be bypassed) or the first statement of a block, the
top of the stack must be inspected. If it contains UJ the jump operation
around the last declaration or group of declarations must be completed.

210 3 THE TRANSLATOR

Example

Using a single UJ operation to bypass the three declarations given in the
previous example, the object program would be

Syl/ Op
0 CBL
1 UJ
4 BE
7 UJ

10

30

65

109

Par

()
()
(109)

Remarks

Jump around the three
declarations

} Procedure P

} Switch S

} Procedure Q

3.4.2 Translation of Switch Designators

A switch designator is written in a similar form to a subscripted variable
with one dimension.

Example

S [1]

If the declaration details of the switch identifier are not available it is not
always possible for the Translator to know whether a switch designator or a
subscripted variable of a vector is being translated.

Example

P (B [ID

Without checking the specification of the formal parameter of procedure
P the identifier B could be an array or a switch identifier.

Thus, the Translator will generate similar object program operations for
both a switch designator and a subscripted variable. The translation of sub
scripted variables has been discussed in section 3.2.1.3. The operation INDR
will be generated if the switch designator is used at expression level (i.e. in a
designational expression inside a switch declaration or go to statement)
otherwise IN DA will be generated (i.e. a switch designator used as an actual
parameter).

3.4 TRANSLA nON TECHNIQUES 211

Example

go to S [1];

At the delimiter go to the state variable TYPE is set to indicate that the
expression following is a designational expression. Thus in this case the
sUbscripted variable is recognized as a switch designator and S must
prove to be a switch identifier.

Example

P (B [1])

In this case the identifier B could be an array or a switch identifier. No
check is made on the correspondence between the type of the actual
parameter and the specification of the corresponding formal parameter.
The object program operations generated for this use of a switch desig
nator are

Syll
o

Op
TSA

3 TIC1
4 INDA
5

Par
B

Remarks
The parameter contains the
address of the switch B

However, the Translator checks that a switch designator has only one dimen
sion. It also checks that an array or switch identifier is used consistently.

Example

if A [0] > 0 then go to if b then A [1] else S [1, 2];

The above statement would fail for either of two reasons. The identifier
A is used both as an array identifier and as a switch identifier and the
switch designator'S [1, 2]' has two dimensions.

3.4.3 Translation of a Procedure Call

A procedure call may occur as a procedure statement or as a function
designator in an expression. The state variable E distinguishes between the
two types of procedure call. If the procedure is called by a function desig
nator it must be declared as a type procedure. The number of actual para
meters in the procedure call is checked against the number of formal para
meters in the heading of the declaration of the procedure identifier.

3.4.3.1 Procedure Call With no Parameters

A call of a procedure with no parameters by means of a procedure state
ment can be recognized as such by the Translator. But if a procedure with no

212 3 THE TRANSLATOR

parameters is called by a function designator it cannot be distinguished from a
simple variable without checking the type column of the name list entry for
the procedure identifier. If an entry for the procedure identifier exists in the
current part of the name list its type and dim columns are checked against
the current use. Otherwise a used entry is created and details of the current
use are inserted.

3.4.3.2 Procedure Call With Parameters

A call of a procedure with a non-empty parameter part is recognized by
the occurrence of a left round bracket immediately following an identifier.
The validity of this use of the procedure identifier cannot be fully checked
until the number of actual parameters is known. Thus, the procedure identifier
is preserved in the stack until the actual parameter part has been dealt with.
Then the validity of the current use is checked against the type and dim
columns of the entry for the procedure identifier.

Example

X : = X -:- P (A, 3, B + C);

The state variable E shows that this procedure call appears in an expres
sion. At the end of the actual parameter part it is found that the declar
ation for P must have three formal parameters. Thus, at this point the
name list for the current block is searched for an entry corresponding
to P. If an entry exists, the type and dim columns are checked against
details of the current use, otherwise a used entry is created and these
details added to the entry.

At the opening bracket of the actual parameter part an incomplete UJ
operation is generated and a reminder to complete it as soon as possible is
stacked. This UJ operation will lead to the CF or CFF operation to be gener
ated at the end of the operations for the procedure call. The name of the
procedure identifier is stacked (as described above) and finally the delimiter
'(' is also stacked. A state variable P ROC is used to indicate that a procedure
call is being translated.

Since an actual parameter can include another procedure call the current
value of P ROC (i.e. for the text surrounding this procedure call) is preserved
in the stack with the delimiter '('. Then the state variable P ROC is set for the
translation of this procedure call and reset at the end of this call using the
value stacked with the delimiter '('. Two other items are stacked with '("
namely the current values of the state variables E and TYPE. This is because
the translation of the surrounding expression is suspended whilst a function
designator contained in the expression is being translated (a similar situation
occurs for the delimiter if - see section 3.2.1.4). These two state variables
are then used to contain details of the type of the current actual parameter.

3.4 TRANS LA TION TECHNIQUES 213

Example

X:= X + P(A,3, B + C);

At the left round bracket an incomplete operation UJ () is generated
and the following items are stacked

Stacked Item Priority Remarks
UJ, i - 2 13
P
PROC, E, TYPE

o

The procedure identifier
The current values of the state
variables PROC, E and TYPE
packed together into a word.

3.4.3.2.1 Actual Parameter Part. An 'actual operation' is generated for
each actual parameter of a procedure call. If no declaration details are avail
able for an actual parameter the skeleton 'actual operation' PO is generated.
Since a procedure call is translated independently of the corresponding pro
cedure declaration it is not known which type of 'actual operation' will re
place the skeleton operation. If the actual parameter should prove to be a
label the skeleton operation will be replaced by

PL (a), m

However, this is a four-syllable operation and so four syllables must be allowed
for the skeleton 'actual operation' PO. To simplify matters each type of
'actual operation' is stored in the object program as a four-syllable operation
although only PL uses the fourth syllable. This does not cause any difficulties
for the Control Routine which inspects the 'actual operations' under the con
trol of the appropriate CF or CFF routine.

The 'actual operations' are preceded in the object program by operations
generated to calculate an actual parameter expression, the value of a
constant actual parameter, or the characters of a string parameter. Thus the
'actual operations' are stacked with a priority of zero until they can be un
stacked into the object program at the closing round bracket of the actual
parameter part. For this reason the 'actual operations' appear in the object
program in the reverse order to the actual parameters to which they refer.

Example

peA, B, C);

is translated into

Syll
o
3
7
11
15
19

Op
UJ
PR
PR
PR
CF

Par
(15)
C,
B,
A,
P,3

214 3 THE TRANS LA TOR

(It is assumed that A, Band C have been declared to be real.) In this
example all the actual parameters are single identifiers and so there is
no object program between the UJ operation and the first of the 'actual
operations' .

3.4.3.2.1.1 Implicit Subroutine. An implicit subroutine is generated when
ever an actual parameter is proved to be other than a single identifier, con
stant or string. Thus, if the state variable P ROC is set, the last delimiter was a
parameter delimiter and the current delimiter is not a parameter delimiter,
an implicit subroutine is generated. A state variable LD (i.e. the last delimiter)
contains the delimiter previous to the current delimiter. The end of an im
plicit subroutine is recognized if, at a parameter delimiter, the last delimiter
is not another parameter delimiter. However, the Translator must be able to
recognize whether a delimiter is in fact a parameter delimiter. The left and
right round brackets may be used as parameter delimiters or as expression
brackets inside a parameter expression; a comma may be used as a parameter
delimiter or as a delimiter between sUbscript expressions in a subscripted
variable which is used in an actual parameter part.

For this reason the value of PROC is preserved in the stack with '(" used
as an expression bracket, or '[' for a sUbscripted variable. PROC is then set
to zero for the translation of the expression between the round brackets or
the subscript expressions, respectively. (This has not been shown in earlier
examples.)

Since an implicit subroutine is treated as a block, the block level count n
is increased by one and the operation 'BE (n,O), is generated as the first oper
ation of the subroutine. This operation can be generated as a complete oper
ation as an actual parameter cannot have any identifiers declared within it and
so the working space required by the block is known to be zero. For this
reason it is not necessary to create a new block in the name list for an implicit
subroutine.

At the end of an implicit subroutine the operation EIS (End of Implicit
Subroutine) is generated.

3.4.3.2.1.2 Parameter Comment Convention. The basic cycle routine is used
to remove comments from the ALGOL text.

When the state variable PROC is set, this routine will deliver ',' as the
current delimiter instead of

) <letter string) : (

However, in the case of a subscripted variable used in an actual parameter
part it is not permissible to make use of this type of comment between the
subscript expressions.

This is a further reason for preserving the value of P ROC at a left square
bracket and setting PROC to zero for the translation of the subscript ex
pressions.

3.4 TRANSLATION TECHNIQUES 215

Example

P (A [0) this is the first element of matrix A : (0])

This is not legal ALGOL as a parameter comment is being used between
the two subscript expressions.

3.4.3.2.1.3 Types of Actual Parameter

3.4.3.2.1.3.1 Identifier. The appropriate 'actual operation' (see section
2,5) is stacked for this actual parameter.

This identifier is recognized as an actual parameter if the state variable
P ROC has been set and if two parameter delimiters are separated by only
this identifier.

If the current part of the name list contains a used entry for the actual
parameter identifier a skeleton 'actual operation' PO is stacked. The name
list entry number of the used entry for this identifier is also stacked with the
skeleton 'actual operation'. When this skeleton operation is added to the
object program the contents of the np column of the name list entry for the
identifier will be stored in the parameter position of this operation. By this
means the skeleton operation will point to the next element in the chain of
operations associated with this identifier. The address of the parameter of
this operation is then stored in the np column.

This skeleton 'actual operation' cannot be added on to the chain of used
entries when it is stacked as the position it will eventually occupy in the
object program is not known until the unstacking occurs. By stacking the
name list entry number, rather than the contents of the np column of the
name list entry of the identifier, the possibility of more than one use of the
identifier in the actual parameter part is allowed for.

Example

P (B, B + 1)

(Assuming that the np column of the used entry for B contains the
address 50 when this procedure call is reached.) If the skeleton 'actual
operation PO, 50' is stacked for the first use of B the np column cannot
be given the address in the object program that will be occupied by this
operation. Then at the use of B in the second parameter another skeleton
operation has to be generated but the np column has not yet been set up
with the address of the last skeleton operation in the chain (i.e. the skele
ton 'actual operation' still in the stack).

3.4.3.2.1.3.2 Constant. The six-syllable representation of the value of the
constant is stored in the object program. The appropriate 'actual operation'
('PRC, i - 6', 'PIC, i - 6' or 'PBC, i - 6') whose parameter gives the address
of the constant, is then stacked.

216 3 THE TRANSLATOR

3.4.3.2.1.3.3 Subscripted Variable. An implicit subroutine is generated for
the operations required to evaluate the address of the subscripted variable
and the appropriate 'actual operation' is stacked.

Normally the state variable E is set to expression level at the start of an
implicit subroutine but if the actual parameter is a subscripted variable, E
is left at statement level. This ensures that INDA will be generated for this
variable as the implicit subroutine is required to deliver the address rather
than the value of the subscripted variable.

Example

P (A [1, 2])

is translated into

Syll Op Par Remarks

° UJ (23)
3 BE (n,O)
6 TRA A Assuming A to be of type real
9 TIC1
10 TIC '2'
17 INDA
18 EIS
19 PSR (3), - This operation points to the

operation BE at the start of
the subroutine

23 CF P, 1
27

At the left square bracket an implicit subroutine is set up and the 'actual
operation PSR, 3' is stacked. Then at the right round bracket (which
is recognized as a parameter bracket since P ROC is set) the last delimiter
is ']' and so the operation EIS is generated in the object program.

3.4.3.2.1.3.4 Expression. An implicit subroutine is generated for an actual
parameter which is an expression, in a similar way to that shown in the pre
vious section, and an 'actual operation' P SR, whose parameter gives the
starting address of this subroutine, is stacked.

An actual parameter expression could be a designational, algebraic or
arithmetic expression and it is not always possible to decide the type of the
expression.

Example

P (if b then L1 else L2);

If the declarations for L1 or L2 are not available it is not possible to
decide the type of the above actual parameter expression without ref err-

3.4 TRANSLA nON TECHNIQUES 217

ing to the specification of the formal parameter corresponding to the
procedure P.

Thus any skeleton result operation RO that is generated for a parameter
expression of unknown type could be replaced eventually by the following
four-syllable operation

TL (a), m

rather than a more usual three-syllable operation, such as
TRR (n,p), TIR (n,p), etc.

To allow for this the normal three-syllable skeleton operation is generated
and followed by a one-syllable operation DUMMY. This operation will be
overwritten by the fourth syllable of a 'Take Label' operation or left as
DUMMY if the skeleton operation is replaced by any other form of 'Take
Result' or CFZ or CFFZ operation.

In the above example the object program that would result would be
(assuming skeleton operations are generated for Ll and L2)

Syll Op Par Remarks ° UJ (28)
3 BE (n,O)
6 TBR b
9 IFJ (19)
12 RO ()
15 DUMMY
16 UJ
19 RO
22 DUMMY
23 EIS
24 PSR
28 CF
32

(23)
()

(3), -
P,1

}

}

Ll

L2

If the identifiers Ll and L2 prove to be labels the skeleton operations will be
replaced by 'Take Label' operations and the object program for the above
statement becomes

Syll Op Par

° UJ (28)
3 BE (n,O)
6 TBR b
9 IFJ (19)
12 TL Ll,m
16 UJ (23)
19 TL L2,m
23 EIS
24 PSR (3), -
28 CF P, 1
32

218 3 THE TRANSLATOR

However, if the identifiers Ll and L2 are declared to be of type real the
object program for the procedure call becomes

Syll Op
o UJ
3 BE
6 TBR
9 IFJ
12 TRR
15 DUMMY
16 UJ
19 TRR
22 DUMMY
23 EIS
24 PSR
28 CF
32

Par
(28)
(n,O)
b
(19)
Ll

(23)
L2

(3), -
P,1

Any delimiter which could start an expression is checked to see if it is the
start of a parameter expression. In this case the state variable P ROC would
be set and the state variable LD would contain a left round bracket or comma.

The parameter delimiter comma is not stacked because the 'actual oper
ation' with its priority of zero, which was stacked for the parameter, acts as
the opening bracket for the parameter expression. The state variable E is set
to expression level as soon as possible in a parameter expression. This is done
at the first delimiter unless this delimiter is '['. However, should the sub
scripted variable be the first item in an expression the operation IN DR must
be generated instead of INDA as in the previous section. Thus, if the state
variable E is set to statement level neither INDA nor INDR is generated but
IN DA is stacked with a high priority (namely twelve). This item is found and
unstacked by the next delimiter and the appropriate operation (i.e. IN DA
or INDR) is generated. If the next delimiter is a parameter delimiter the oper
ation INDA is generated; otherwise INDR is generated and the state variable
E set to expression level for the translation of the remainder of the parameter
expression.

Example

; R (A [0] -1);

The left round bracket is recognized as a parameter bracket as it is pre
ceded by the identifier R. When this delimiter has been dealt with the
top of the stack will contain

Stacked Item Priority
(0
0,1,0

R
UJ, i - 2 13

Remarks

This item contains the values of the
state variables PROC, E and TYPE

3.4 TRANSLA nON TECHNIQUES 219

At the delimiter '[' an implicit subroutine is generated because the last
delimiter was 'C and P ROC is set. Since this actual parameter might be
a subscripted variable rather than an expression containing the sub
scripted variable as a first item, the state variable E is left at statement level.
The operation TICO is generated for the subscript expression and then at
the delimiter,], the item IN DA is stacked with a stack priority of twelve.
At the delimiter' - ' the state variable E is set to expression level, IN D A
unstacked and an INDR operation is generated (since the state variable
E indicates that an expression is being translated). The minus is then
stacked \vith its priority of nine.
The closing round bracket is recognized as a parameter bracket as
PROC is set. After unstacking the minus into the object program the
top of the stack contains 'PSR, 3'.
Since the last delimiter is not a parameter delimiter (i.e. either a left
round bracket or a comma) an operation EIS is generated to complete
the implicit subroutine for the previous parameter. The 'actual oper
ations' (in this case there is only one) are then unstacked, counted and
added to the object program and this leaves 'C at the top of the stack.
This is un stacked and discarded. The state variables P ROC, E and TYPE
are then reset from the values at the top of the stack. Using the type
information contained in TYPE and the information concerning the
number of dimensions given by the number of 'actual operations' un
stacked into the object program, the name list entry for the procedure
identifier R at the top of the stack is checked. The identifier R is then
unstacked and discarded and the UJ operation, at the object program
address given with the item UJ at the top of the stack, is completed to
the current program address (0. The item (UJ) at the top of the stack is
then un stacked and discarded. A CF operation is generated for R (unless
R is a formal parameter, when the operation CFF is generated) and the
parameters of this operation are the syllable address of the declaration
for R (this is given in the syll column of a declared name list entry for R)
and the number of actual parameters in this procedure call. Thus the
object program generated for this procedure call is

Syll

o
3
6
9
10
11
12
13
14
18
22

Op

UJ
BE
TRA
TICO
INDR
TICI

EIS
PSR
CF

Par

(18)
(n,O)
A

(3), -
R,l

220 3 THE TRANS LA TOR

It should be noted that an actual parameter which consists of a plus sign
followed by either a number or an identifier is treated as an expression and
an implicit subroutine is generated as described above. This is the only case
when the unary plus sign has an effect on the object program.

Example

P(+A, +2.510 1)

The object program produced from the procedure call is

Syll Op Par

° UJ (29)
3 BE (n,O)
6 TRR A
9 EIS
10 BE (n,O)
13 TRC '2.510 l'
20 EIS
21 PSR (10), -
25 PSR (3), -
29 CF P,2
33

3.4.3.2.1.3.5 String. An actual parameter which is a string is dealt with
by the delimiter routine STRING, which is entered when the opening string
quote is reached.

The basic symbols forming a string are stored in the object program as a
sequence of 8-bit characters. Before storing the opening string quote and
again after storing the closing string quote the syllable count i is increased
to point to the first syllable of the next word. In this way the author of a
procedure declaration requiring the string can use the appropriate number of
words of object program knowing that they contain only the basic symbols
comprising the string.

The 'actual operation' PST is stacked for this type of actual parameter.
The parameter of PST points to the first syllable of the word containing the
first string character (i.e. the opening string quote).

Finally a check is made that the closing string quote is immediately fol
lowed by a parameter delimiter or a closing round bracket.

3.4.3.2.2 Translation of Closing Parameter Bracket. Mter dealing with the
last parameter, the top of the stack will contain as many 'actual operations'
as there are parameters in this procedure call.

Whilst unstacking the 'actual operations' into the object program a note is
kept of the number of 'actual operations' unstacked; when the last 'actual
operation' has been un stacked the top of the stack will contain '(', and the
number of parameters (X) in this procedure call will be known. Any skeleton

3.4 TRANSLA nON TECHNIQUES 221

'actual operation' is dealt with as described in section 3.4.3.2.1.3.1. The
delimiter '(' is unstacked and discarded and then the state variables P ROC,
E and TYPE are reset from the values at the top of the stack. These values
are then unstacked and discarded.

The current part of the name list is checked for an entry corresponding to
the procedure identifier which is at the top of the stack. If an entry exists,
information concerning the current use of the procedure identifier (given by
the state variables E and TYPE and the number of parameters X) is checked
against the details given in the name list entry; if no entry exists, a used entry
is created and details concerning the current procedure call are placed in this
entry. The appropriate 'Call Function' operation is generated depending on
the type of name list entry for the procedure identifier.

(i) If it is a declared entry with the f column not set, the operation CF
is generated; this operation has as its two parameters the contents of the
syll column of the declared entry and the number of parameters (X) respec
tively.

(ij) If it is a declared entry with the f column set, the operation CFF is
generated; this operation has as its two parameters the contents of the np
column of the declared entry and the number of parameters (X) respectively.

(iii) If it is a used entry the skeleton operation FO is generated. The first
of the two parameters of this operation is used for the chain link by storing
the contents of the np column of the used entry in this parameter space and
then placing the address of this parameter in the np column. The number
of parameters (X) is stored as the second parameter of this skeleton oper
ation. The procedure identifier is then unstacked and discarded. If the state
variable E is set to statement level a further object program operation is
generated, namely REJECT. In this case the procedure has been called by
means of a procedure statement and so there should be no ALGOL between
this closing round bracket and the end of statement delimiter (i.e. ';', end
or else).

Example

; R (A, B [0, 1], C, 2.510 1, B [0, 1] + 1);

Figure 12 shows how the stack is used during the translation of this pro
cedure statement. The generation of the object program is also shown for
each stage of the translation.
It is assumed that A and B are of type real and that C is a formal para
meter.
A brief description is given below of the items that are stacked and the
operations that are generated at each delimiter (reference should be made
to the previous sections for the reasons for stacking the various items).

(i) The delimiter '('. At this point an UJ operation is generated as an
incomplete operation; its parameter will be filled with the address of
the CF operation at the corresponding closing bracket.
Four items are stacked; these are a reminder to complete the UJ opera-

Stack-
ed
items

Algol
Section

OBJECT PROGRAM

UJ UJ
UJ lUI UJ UJ UJ \UJ UJ UJ UJ UJ UJ(51) UJ(5J) 0
BE(n,O) BE(n,O) BE(n,O) BE(n,O) BE(n,O) BE(n,O) BE(n,O) BE(n,O) BE(n,O) BE(n,O) BE(n,O) BE(n,O) 3

TRA B TRA B TRAB TRAB TRAB TRAB TRAB TRAB TRAB TRAB TRAB TRA B 6

!
I TICO TICO TICO TICO TICO TICO TICO TICO TICO TICO TICO 9

TIC1 TIC1 TIC1 TIC1 TIC1 TIC1 TIC1 TIC1 TIC1 TIC1 10
INDA INDA INDA lNDA INDA INDA INDA INDA INDA 11
EIS EIS EIS EIS EIS EIS EIS EIS EIS 12

2.5101 2'5101 2'5101 2'5101 2.5101 2'5101 2.5101 13
BE(n,0) BE(n,O) BE(n,O) BE(n,O) BE(n,O) BE(n,O)

I

19
TRAB TRAB TRAB TRAB TRAB TRAB 22

TICO TICO TICO TICO TICO 25

!
TIC1 TICI TICI TICI 26

INDR INDR INDR 27
TICI TICI 28

+ + 29
I EIS EIS 30

PSR(l9) PSR(l9) 31

10 :
PRC(l3) PRC(l3) 35

[,1,0 [,2,0 PFC PFC 39
9 1,0,15 1,0,15 INDA + PSR(3) PSR(3) 43
8 PSR,19 PSR,19 PSR,19 PSR,19 PRA PRA 47
7 [,1,0 [,2,0 PRC, 13 PRC,13 PRC,13 PRC,13 PRC,13 CFR,5 CFR,5 51
6 1,0,15 1,0,15 INDA PF,C PF,C I PF,C

PF,C PF,C PF,C REJECT 55
5 PSR,3 PSR, 3 PSR,3 PSR,3 PSR,3 PSR,3 PSR,3 PSR,3 PSR,3 PSR,3

4 I I PR,A PR,A PR,A PR,A PR,A PR,A PR,A PR,A PR,A PR,A PR,A I
3

I ((
((((((((((

! 2 0,1,0! 0,1,0 0,1,0 0,1,0 0,1,0 0,1,0 0,1,0 0,1,0 0,1,0 0,1,0 0,1,0 0,1,0
1 R IR R R R R R R R R R R

I o I UJ,l! UJ,] UJ,] UJ,] UJ,I UJ,I UJ,l UJ,l UJ,l UJ,l UJ,l UJ,l

I

1T--B-[-I-o-, -1-1]--
----------------- --------. 1---

C, /2'5101. B [0, 1] + 1) , I

STACK

FIG. 12. Generation of the Object Program and use of the Stack for a procedure statement.

Object
Program

1

3.4 TRANSLATION TECHNIQUES 223

tion, the procedure identifier R, a word containing the values of the state
variables PROC, E and TYPE, and finally the current delimiter '('.

(ii) The first parameter comma. An 'actual operation' P R is stacked
for the actual parameter A.

(iii) Left square bracket. At the left square bracket an implicit sub
routine is created for the second parameter and a BE operation is gener
ated. The operation TRA is generated for the array identifier B. Three
items are added to the stack; these are the 'actual operation' PSR, a word
containing the values of P ROC, E and I (this contains the number of the
name list entry for the array identifier B, which is assumed to be fifteen, at
this point), and the delimiter '['.

(iv) The subscript delimiter comma. An operation is generated for the
preceding subscript expression (namely the constant zero) and the dimen
sion counter which is stacked with the delimiter '[' is increased by one.

(v) Right square bracket. The operation TICl is generated for the sec
ond subscript expression; '[' and the preserved values of PROC, E and I
are unstacked. Thus the operation IN DA is stacked to be found and un
stacked by the next delimiter.

(vi) The second parameter comma. At this point the item INDA is un
stacked into the object program and the operation EIS is generated to
complete the operations for the implicit subroutine.

(vii) The third parameter comma. The 'actual operation' P F is stacked
for the third actual parameter C.

(viii) The fourth parameter comma. The six-syllable representation of the
constant is added to the object program and the corresponding 'actual
operation' P RC is stacked.

(ix) Left square bracket. Similar to (iii).
(x) Subscript comma. Similar to (iv).
(xi) Right square bracket. Similar to (v).
(xii) The delimiter '+'. INDA is unstacked and the operation INDR is

generated. The current delimiter is then stacked.
(xiii) Closing parameter bracket. The operation TICl is generated for

the last item in the preceding actual parameter expression, the delimiter
'+' is unstacked into the object program and the operation EIS is gener
ated to complete the set of operations for the implicit subroutine.
The five 'actual operations' at the top of the stack are then un stacked into
the object program, a CF operation is generated and the four items stacked
at the opening parameter bracket are unstacked.

(xiv) The statement delimiter' ;'. At this point the operation REJECT
is generated.

3.4.4 Translation of For Statements

A for statement consists of a for clause followed by a statement (called the
controlled statement). The controlled statement is turned into a block by
the Translator even if it is a simple statement or a compound statement. This

224 3 THE TRANSLATOR

ensures that the controlled statement is always entered by means of the for
clause and cannot be entered by a go to statement (Revised ALGOL Report
section 4.6.6). If in fact this statement is an unlabelled block the Translator
does not create an extra block.

3.4.4.1 Translation of the For Clause

At the delimiter for the state variable E is inspected to ensure that it is set to
statement level. If the state variable V shows that a declaration has just been
translated, V is set to two to show that no more declarations are allowed in
the current block. Then if the top of the stack contains UJ, the incomplete
operation UJ at the address given in the stacked item is completed to cause
a jump to the current address in the object program.

A marker 'F'is used to indicate that a for clause is being translated. Since
the definition of a for clause is not recursive (i.e. a for clause cannot contain
another for clause inside it) the marker F is never stacked.

At the delimiter for the marker F is set and the delimiter for is stacked
with a stack priority of zero. The value of the object program counter i is
also stacked with for in order to indicate the start of the object program for
the controlled variable. An incomplete operation UJ is generated and its
parameter will be filled in when the delimiter ': =' is reached. The state
variable TYPE is then set to arithmetic for the translation of the controlled
variable since the controlled variable may be of type real or integer but not of
type Boolean.

The state variable E remains at statement level for the translation of the
controlled variable. This is to ensure that the object program operation gener
ated will cause the address, rather than the value, of the controlled variable to
be calculated.

At the delimiter ': =' the marker F shows that this delimiter follows the
controlled variable of a for clause. If the delimiter is preceded by an identi
fier, this is the controlled variable (which is a simple variable) and the appro
priate 'Take Address' operation is generated for it. Otherwise this delimiter
will be preceded by a right square bracket (as the controlled variable must
either be a simple or a subscripted variable); in this case the item INDA at
the top of the stack is unstacked into the object program.

The top of the stack will then contain for together with an address. The
parameter of the UJ operation at this address is filled in with the value 'i + l'
to cause the object program operations for the controlled variable to be by
passed upon entry to the for statement. The following object program oper
ations are generated.

Op Par
LINK
CFZ ()
FORS]

A second address 'i - 3' is added to the delimiter for at the top of the

3.4 TRANSLATION TECHNIQUES 225

stack as a reminder to fill in the parameter of the CFZ operation when the
delimiter do is reached.

The for list element following the delimiter ': =' is assumed to be a step
until type of element. A reminder to correct this assumption, if necessary, is
stacked (i.e. 'FORS], i - 1') with a stack priority of zero.

The state variable E is then set to expression level for the translation of the
for list elements.

3.4.4.1.1 Arithmetic Expression Element. The arithmetic expression is
translated in the normal way, using the stack to re-order it into the Reverse
Polish form required for the object program.

The for list element delimiter following this element (i.e. comma or do)
has a compare priority of two to complete the translation of the arithmetic
expression.

Since this for list element was assumed to be a step-until element the top of
the stack must now contain FORS] with the address of the FORS] operation
generated for this element. This operation is changed to FORA and the item
at the top of the stack is unstacked and discarded.

If the current for list element delimiter is a comma, the operations LINK
and FO RS] are generated. This is because the next for list element is also
assumed to be a step-until element and once again 'FORS], i - l' is stacked
as a reminder to correct the assumption, if necessary. If, however, the current
for list element delimiter is do only the operation LINK is generated as this is
the last for list element of the for clause.

Example

for V:= A +],

When the delimiter ':=' has been dealt with, the following object pro
gram operations will have been generated

Syll up Par Remarks
0 UJ (7)
3 TIA V V is assumed to be of type integer
6 LINK
7 CFZ ()
]0 FORS1
]]

The stack contains the following items for this portion of the for clause.

Stacked Item Priority
FORS],]O 0
for 3,8 0

The state variable E is set to expression level for the translation of the
arithmetic expression following the delimiter' :='. The state variable

226 3 THE TRANSLATOR

T YP E is left at arithmetic for the translation of this arithmetic expression.
At the delimiter ',' the delimiter '+' will be at the top of the stack and
the appropriate operations will have been generated for A and 1. The
comma acts as the closing bracket for the preceding arithmetic expres
sion and its compare priority of two clauses the' +' to be unstacked into
the object program, which will then contain

Syl/ Op Par Remarks
0 UJ (7)
3 TIA V
6 LINK
7 CFZ ()
]0 FORS]
11 TRR A A is assumed to be of type real
14 TICI
15 +
16

The top of the stack contains the reminder to replace the operation
FORSI at syllable]0 by the operation FORA.
The object program for this for list element is completed by the genera
tion of the operation LINK.
Since the comma precedes another for list element the operation FORS]
is generated and 'FORSI, i - l' is stacked as a reminder to change it,
if necessary.
The state variable TYPE is reset to arithmetic for the next for list element
as it may have been restricted to integer during the translation of the
current for list element.

3.4.4.1.2 Step-Until Element. This for list element consists of

<arithmetic expression) step <arithmetic expression) until
<arithmetic expression)

In this case the closing bracket of the first arithmetic expression is the delimi
ter step which will thus have a compare priority of two.

When step has dealt with the preceding arithmetic expression, the reminder
FO RSI at the top of the stack may be discarded as the assumption made at
the start of this for list element has proved to be correct. The operation
LINK is generated.

The delimiter step also acts as the opening bracket for the second arith
metic expression. FORSI is stacked with a stack priority of zero and the
operation FORS2 is generated.

This time a parameter of minus one is stacked with FORS] to indicate
that this item was stacked at step and that the secund arithmetic expression
in this for list element is to be followed by until.

The state variable TYPE is reset to arithmetic for the translation of the
second arithmetic expression.

3.4 TRANS LA TION TECHNIQUES 227

Similarly, the delimiter until has a compare priority of two since it is a
closing bracket of an arithmetic expression. After dealing with the preceding
arithmetic expression the top of the stack must contain 'FORSI, -1' to
show that the delimiter step preceded the expression. This item at the top of
the stack is then replaced by FO RS2 with a stack priority of zero.

The stacked FO RS2 acts as the opening bracket for the third and final
arithmetic expression of this for list element. Once again TYPE is reset to
arithmetic for the translation of the arithmetic expression following this
delimiter.

The action of the for list element deliIPiter, wpich follmvs tbis for list
element, is similar to that described for the arithmetic expression element
except that the item FO RS2 is left at the top of the stack. This item at the
top of the stack is then unstacked and discarded.

Example

, A [1] step x --:-- 2 until m X n - 2,

At the comma preceding this element the operation FORSI is generated
and 'FORSI, i - l' is stacked with a priority of zero. TYPE is also set
to arithmetic.
The translation of the subscripted variable has been described before.
In this case the operation INDR is generated as the state variable E is
already set to expression level and there is no doubt as to whether
INDA or INDR is required. The delimiter step causes no unstacking as
FORSI (with its priority of zero) is already at the top of the stack. This
item is replaced by 'FORSI, -1' also with a priority of zero and the
operations LINK and FORS2 are generated. TYPE is reset to arithmetic
although, in this example, it will still be at arithmetic at the end of the
preceding expression (i.e. the subscripted variable). The object program
for the for list element at this point contains

Syll Op Par
0 FORS]
1 TRA A
4 TICI
5 INDR
6 LINK
7 FORS2
8

At the delimiter' --:--' TYPE is restricted to integer as the operand follow-
ing must be of type integer. .
Thus, at until, operations for x and 2 will have been generated and'--:--'
will be at the top of the stack. The delimiter until causes '--:--' to be un
stacked into the object program, the operation LINK to be generated
and the item 'FORSI, -1' now at the top of the stack to be replaced
by FORS2, also with a priority of zero. The object program now contains

228 3 THE TRANSLATOR

Syll Op Par
0 FORSI
1 TRA A
4 TICI
5 INDR
6 LINK
7 FORS2
8 TIR x
11 TIC '2'
18
19 LINK
20

The state variable TYPE is once more reset to arithmetic and the last
arithmetic expression is translated in the normal way. At the comma
following this arithmetic expression the top of the stack will contain the
delimiter '-'. This delimiter is unstacked into the object program as
its stack priority is greater than the compare priority of the comma.
FO RS2, which is then at the top of the stack, is un stacked and discarded.
The operation LINK is generated to complete this for list element and
FORSI is generated as the first operation for the next for list element.
As before, a reminder to change this operation if necessary is stacked as
'FORSI, i - l' with a priority of zero.
The complete object program for this for list element is

Syll Op Par
o FORSI
1 TRA
4 TICI
5 INDR
6 LINK
7 FORS2
8 TIR
11 TIC
18
19
20
23
26
27
34
35
36
37

LINK
TRR
TRR
x
TIC

LINK
FORSI

A

x
'2'

m
n

'2'

3.4.4.1.3 While-Element. This type of for list element consists of
<arithmetic expression) while <Boolean expression)

3.4 TRANSLATION TECHNIQUES 229

Thus the delimiter while acts as a closing bracket to the arithmetic expression
and needs a compare priority of two.

When the arithmetic expression has been dealt with the top of the stack
will contain FORS]. This is the reminder that the operation FORS] was
generated as the first operation for this element. In this case the operation
FO RS] is replaced by FOR Wand the reminder is unstacked and discarded.

To complete the set of operations for the arithmetic expression a LINK
operation is generated.

FO R W is stacked to act as the opening bracket for the Boolean expression
following the delimiter while, and as such it has a stack priority of zero.

The state variable TYPE is set to algebraic to allow for the real, integer or
Boolean variables in the Boolean expression following the delimiter while.

The for element delimiter following this element has a compare priority
of two to enable the translation of the Boolean expression to be completed.

At this point, the top of the stack contains FOR W, which is un stacked and
discarded; the operation LINK is generated.

If the for list element delimiter is a comma, a FORS] operation is gener
ated for the start of the next for list element and once again a reminder to
change it; if necessary, is stacked.

Example

, V +] while V <]0,

FORS] has been generated as the first of the set of operations for this
element and the item FORS] stacked.
When the delimiter while is reached the operations for V and] will have
been added to the object program, which will then contain

Syll
o
]

4
5

Op
FORS]
TIR
TIC]

Par

V

The delimiter' +' will be at the top of the stack and this is un stacked by
while which has a compare priority of two. This leaves the following item
at the top of the stack

Stacked Item
FORS],O

Priority
o

Since this element has turned out to be a while-element the FORS]
operation, whose address is given by the item at the top of the stack,
is replaced by FOR W, and the item at the top of the stack is discarded.
A LINK operation is generated, FORWis stacked with a stack priority
of zero and the state variable TYPE is set to algebraic.
At the delimiter' <' , TYPE is restricted from algebraic to arithmetic as

230 3 THE TRANSLATOR

the identifier or constant preceding this delimiter cannot be of type
Boolean. An operation is then generated for V and the delimiter '<' is
stacked (no un stacking takes place before '<' is stacked as the item at
the top of the stack, FORW, has a stack priority of zero). At the delimi
ter comma, an operation is generated for 10, '<' is unstacked into the
object program and the operation LINK is generated.
Thus the object program for this element is

Syll Op Par
o FORW
1 TIR V
4 TIC1
5 +
6 LINK
7 TIR V
10 TIC '10'
17 <
18 LINK
19

The item FOR W is then unstacked and discarded and since the comma
signifies that this for clause contains another for list element FO RS1 is
stacked and generated in the usual way.

3.4.4.1.4 Translation of the Delimiter do. The first duty of do is that of a
closing bracket for the preceding for list element.

When the translation of this element has been completed the translation
of the for clause has also been completed and the marker F is cleared. The
item at the top of the stack must then be for. This item has two addresses
stacked with it. The first of these is required as the second parameter of the
operation FRE which is generated at this delimiter. The second is the address
of the parameter of the CFZ operation generated at the start of the for clause.
This enables the address of the FRE operation to be stored as the parameter
of the CFZ operation. The item for can then be discarded.

The following two incomplete operations are generated

Op
FSE
FRE

Par
()
(), (a)

Remarks

Where 'a' is the first of the
two addresses stacked with
for.

The FSE operation acts as an extra for list element and is used to jump to
the statement following the for statement when all the elements in the for
clause have been obeyed. Thus it requires, as a parameter, the address of the
first operation in the object program after the set of operations generated for
the for statement; this address is not known until the controlled statement
has been translated.

3.4 TRANSLA nON TECHNIQUES 231

The FBE operation is a special type of BE operation and it requires (n,L)
as its first parameter. Although the level n of the block created for the con
trolled statement is known, the extent of the first order working storage is
not and so this parameter is filled in when the controlled statement has been
translated. In fact the value of L will be known at the end of the declarations
for the block created for the controlled statement but for convenience the
FBE and FSE operations are both filled in at the end of the for statement.

Since the controlled statement is made into a block the following items are
stacked:

Stacked Item
V,L,NL
for begin, i - 4

Priority

o
The first of these items consists of a word containing the values of the state

variables V, Land NL which must be preserved whilst the block created for
the controlled statement is being translated.

The second of these items is the delimiter begin which has the marker for
attached to show the type of block that is being translated. The program
address of the first parameter of the FBE operation is also stacked with the
'for begin' so that FBE and the preceding operation FSE can be completed
at the end of the translation of the controlled statement. A new block is
created in the name list by setting NL equal to NLP. NLP is then increased
by one to ensure that the first entry for the new block is left blank since the
block created for the controlled statement is not a procedure block.

Finally, the state variable E is set to statement level and L is set to four
to allow space for the two accumulators required by step-until elements (see
section 2.6.2.3).

3.4.4.2 Translation of the Controlled Statement.

A block is created for the controlled statement and 'for begin' is stacked
regardless of whether the controlled statement is a single statement, com
pound statement or block.

3.4.4.2.1 A Single Statement as the Controlled Statement. In this case the
end of statement delimiter (i.e. ';' or end) must cause the block created for
the controlled statement to be collapsed and the item 'for begin' to be un
stacked and discarded.

Example

for i := 1 step 1 until n do A [i] := 0;

The delimiter';' completes the translation of the preceding assignment
statement and the top of the stack will then contain 'for begin', which
was stacked at the delimiter do. This shows that the current delimiter
';' must also complete the translation of a for statement as follows

232 3 THE TRANSLATOR

The operation FR is generated and the name list for the block created
for the controlled statement is collapsed (see section 3.3.3). Using the
address stacked with 'for begin' the parameter of the FBE operation is
filled in with the values (n,L) (i.e. the values of state variables nand L
packed together into sixteen bits). The parameter of the FSE operation
preceding the FBE operation is filled in with the value of the object pro
gram counter (i). The item 'for begin' is un stacked and discarded; the
top of the stack then contains the values of V, Land NL appertaining to
the surrounding block. These are unstacked and used to reset the state
variables.
Finally, the block level count (n) is reduced by one.

It is possible for several for statements to finish at the same end of
statement delimiter. Thus, after completing the translation of a for state
ment, the top of the stack must be inspected once more to see if it contains
another 'for begin'. If it does, the translation of this for statement must be
completed and the block set up for its controlled statement collapsed. This
process continues until the top of the stack no longer contains 'for begin'.

Example

for i := 1 step 1 until n do
for j := 1 step 1 until m do A [i,j] := 0;

In this case the delimiter';' is the end of statement delimiter for both
of the for statements. The delimiter ';' causes the translation of both
the inner and outer for statements to be completed.

3.4.4.2.2 An Unlabelled Compound Statement as the Controlled Statement.
If the first delimiter of a controlled statement is begin, the item 'for begin' at
the top of the stack has a marker (bl) added to it. This marker must be
deleted by the corresponding delimiter end before an end of statement delimi
ter can cause the translation of the for statement to be completed.

Example

begin
for i := 1 step 1 until n do begin A [i] := 0;

S:= S + B [i]
end

end

At the delimiter do the item 'for begin' is stacked. A marker (bl) is added
at the next delimiter, which is begin, to change 'for begin' into 'for begin
(bl)'. The delimiter';' separating the two statements in the compound
statement will find the item 'for begin (bl)' at the top of the stack after
dealing with the preceding assignment statement. Since the marker (bl)
is present on the 'for begin' the delimiter';' cannot cause the translation

3.4 TRANS LA nON TECHNIQUES 233

of the for statement to be completed. After the first delimiter end has
caused the translation of the preceding statement to be completed, the
top of the stack will be 'for begin (bl)'. The marker (bl) is deleted to
leave 'for begin' at the top of the stack.
The second delimiter end then finds the item 'for begin' at the top of the
stack. Since this item has no (bl) marker, the delimiter end must be the
end of statement delimiter for the for statement and so the translation
of the for statement is completed. As in the previous section, allowance
must be made for several for statements ending at the same delimiter.

3.4.4.2.3 An Unlabelled Block as the Controlled Statement. Since a block
has already been created for the controlled statement there is no need to create
an extra block when the controlled statement is an unlabelled block.

At the delimiter begin the marker (bl) is added to 'for begin' at the top of
the stack and the state variable V is set to zero.

At the first declaration in the block, V is changed from zero to one and the
translation of the declarations is commenced, since operations for setting up
the new block were generated at the delimiter do.

The delimiter end at the end of the block causes the marker (bI) to be
deleted from 'for begin (bl)' so that the end of statement delimiter following
can cause the translation of this for statement (and any other for statement
ending at this delimiter) to be completed.

3.4.4.2.4 A Labelled Block or Compound Statement as a Controlled State
ment. If the controlled statement is a labelled block, an extra block must be
created for it (the reasons for this are given in section 2.6.1). The name list
for the block created at the delimiter do will contain only one identifier,
namely the label.

The delimiter begin is treated in the normal way when it follows the delimi
ter ':'. Thus, the delimiter begin is stacked with a stack priority of zero and
the state variable V is set to zero.

If the delimiter following begin indicates a declaration, a new block is
created in the usual way (see section 3.4.1). Then at the end of the controlled
statement the delimiter end will find 'begin (bl)' in the stack and so cause the
translation of the block to be completed. However, if the delimiter following
begin indicates a statement, the controlled statement is a compound state
ment. The item begin is left unaltered in the stack, to be found and discarded
by the corresponding delimiter end at the end of the controlled statement.

The top of the stack will then contain the item 'for begin' so that the end
of statement delimiter following the delimiter end can cause the translation
of the for statement to be completed.

Once again, the translation of any other for statement ending at the same
delimiter must also be completed.

3.4.4.2.5 A Conditional Statement as the Controlled Statement. In the orig
inal ALGOL 60 Report the use of a for statement to control a conditional state-
1*

234 3 THE TRANSLATOR

ment could give rise to ambiguities. This situation has been remedied in the
Revised ALGOL Report by changes to the syntax given in sections 4.1.1 and
4.5.1.

Example

if bl then for i := a do if b2 then SI else S2;

According to the syntax of the original ALGOL Report it was not clear
whether this was equivalent to

or

if bl then for i := a do begin if b2 then SI
else S2 end;

if bl then begin for i := a do if b2 then SI end
else S2;

The Revised ALGOL Report makes it clear that the former is the correct
interpretation. The latter interpretation requires a construction

<if clause) <for statement) else <statement)

which implies that the construction

<if clause) <for statement)

is a valid if statement. This is not the case since a for statement is not an
unconditional statement.
The set of priority values which is used to control the stacking of
delimiters ensures the correct translation of such a statement. The delimi
ter for is stacked with a zero priority, so shielding then. At the delimiter
do the for is replaced in the stack by 'for begin', again with a zero pri
ority. This 'for begin' is unstacked by the';' after else has un stacked the
second then. Thus the controlled statement is correctly treated as a con
ditional statement.

3.4.5 Translation of Code Procedures

Section 5.4.6 of the Revised ALGOL Report states that procedure bodies
may be expressed in non-ALGOL code. In the Whetstone Compiler such code
procedures are written in KDF9 User Code, according to the rules described
earlier, in section 2.7.1.

Communication between the code procedure and the surrounding ALGOL
text is by means of pseudo-instructions, similar in form to normal User Code
instructions but referring to the formal parameters given in the heading of
the code procedure. The Translator replaces these pseudo-instructions with
normal User Code instructions which in the simplest cases fetch or store
the contents of the appropriate formal accumulator. In certain cases, notably
when the formal parameter is specified to be scalar and is called by name, the

3.4 TRANSLATION TECHNIQUES 235

Translator generates a short sequence of object program operations, and re
places the pseudo-instructions by normal User Code instructions which use
the object program operations as a subroutine.

The object program operations which are generated are placed after the
object program representation of the procedure heading, but the instructions
of the code procedure are stored separately. At the end of translation the
User Code Compiler is used to assemble together the various code procedures
and a User Code version of the Control Routine, replacing all symbolic
addresses by actual machine addresses, etc., thus forming an integrated
machine code program. In this way the code procedures are transformed into
subroutines of the Control Routine.

3.4.5.1 Procedure Heading

The procedure heading, which is written in ALGOL, is translated in the
normal way (see section 3.4.1.4.1); name list entries are set up for the formal
parameters, and PE and parameter list operations for the formal parameters
are generated in the object program.

3.4.5.2 Procedure Body

The first delimiter of the procedure body is the delimiter KDF9 and this
indicates that a code procedure is being translated.

3.4.5.2.1 Translation of the Delimeter KDF9. Since the only first order
working storage required for a code procedure is that required by the formal
parameters, the P E operation can be filled in at this point. The address of the
space reserved for the parameter of the P E operation is given with the item
'procedure begin' at the top of the stack; the values of the block level nand
the state variable L are packed together and stored as the parameter of P E.

An operation fDOWN m' is generated in the object program; at run time
this causes the Control Routine to enter the mth code procedure. The name
list entry for each formal parameter is then inspected in order to generate the
appropriate object program subroutines for the scalar or label parameters
that have been called by name. The addresses of these subroutines are stored
in the syll column of the name list entry. This can be done since the syll
column is not otherwise used for formal parameters of code procedures.

Details are given below of the object program subroutines generated for
these formal parameters.

3.4.5.2.2 Real Parameter Called by Name. Two subroutines are generated
for this type of parameter; one is used to fetch the value of the parameter
and the other to assign a value to the parameter. Each subroutine contains
two object program operations; the address of the first of the four opera-

236 3 THE TRANSLATOR

tions generated is stored in the syll column of the name list entry for the
parameter. The operations generated are

TFR (n,p)
UP1
TFAR (n,p)
UP2

The contents of the np column of the name list entry for the parameters
are stored in the parameter position of the operations TFR and TF AR.

3.4.5.2.3 Integer Parameter Called by Name. This is dealt with in a simi-
lar way. The four object program operations generated are

TFI (n,p)
UP1
TFAI (n,p)
UP2

3.4.5.2.4 Boolean Parameter Called by Name. This is also similar to a
real or integer parameter except that the four object program operations
generated are

TFB (n,p)
UP]
TFA (n,p)
UP2

3.4.5.2.5 Label Parameter Called by Name. One subroutine, comprising
two object program operations, is generated for this type of parameter. The
address of this subroutine is stored in the syll column of the name list entry
for this parameter.

The two operations generated for this subroutine are

TFL (n,p)
GTA

3.4.5.2.6 Translation of Remainder of Procedure Body. When the name list
entry for each of the formal parameters has been inspected and the appro
priate object program subroutine generated, the rest of the procedure body is
translated as follows.

Certain pseudo-instructions are allowed in the User Code procedure body
to refer to the formal parameters. They are as follows.

'a'
= 'a'
J'a'

The first of these signifies that the value of the parameter is required and
it is replaced by instructions for fetching this value either directly, or in the

3.4 TRANSLATION TECHNIQUES 237

case of a scalar called by name, using the subroutine of object program oper
ations.

The second of these instructions (=' a') indicates that an assignment is to be
made to the formal parameter and so the appropriate instructions are gener
ated to replace this pseudo-instruction.

Finally, J 'a' is replaced by instructions which will cause the procedure
body to be left by means of a jump to the parameter.

Another pseudo-instruction that is used in code procedure bodies is the
delimiter EXIT. This is replaced by instructions which will cause a return
to be made to the Control Routine.

The body of the code procedure, with its pseudo-instructions replaced as
shown above, is stored in a backing store. The end of a code body is indicated
by the delimiter ALGOL. At this point the name list for the procedure is
collapsed, the block level n is decreased by one and the item 'procedure begin'
at the top of the stack is unstacked and discarded. The state variables V, L
and NL are reset from the values which are then at the top of the stack before
these too are unstacked and discarded.

3.4.5.3 End of a Program Containing Code Procedures

At the end of the translation of an ALGOL program a check is made to
find whether it contained any code procedures; if it did, these are copied from
the backing store, where they were preserved, and are processed, along with
a User Code version of the Control Routine, by the User Code Compiler to
form a single integrated program.

3.4.6 Translation of a Program

3.4.6.1 Start of a Program

An ALGOL program may be a compound statement or a block (see section
4.1.1 of the Revised ALGOL Report). However, for convenience, a program
is always considered to be a block and so at the first delimiter of a program,
which must be begin or ':', the appropriate operations are generated and
items stacked for setting up the block. Thus the following operations are
generated

Syll
o
1
4
7

and the following items are stacked

Stacked Item
UJ, i + 2
x
begin (bl)

Op
eBL
UJ
BE

Par

()
()

Priority
13

o

238 3 THE TRANSLATOR

The item x contains the values of the state variables V, Land NL packed
together. If the first delimiter is ';' the program may be a labelled compound
statement or a labelled block. In the first case the program is made into a
block as described above but in the second case an extra block is created so
that the outermost block contains only the label or labels preceding the first
begin delimiter. In this way a jump to anyone of the labels will cause the inner
block to be left and re-entered again, and so causing, at run time, the storage
of the block to be collapsed and then set up again. To do this the delimiter
begin, which must follow immediately after the set of label declarations, is
stacked with a marker (1). Then, if the next delimiter indicates a declaration,
this item at the top of the stack has a marker (bl) added and operations for
setting up an extra block are generated. However, if the next delimiter indi
cates a statement the item 'begin (1)' is left in the stack as the opening bracket
for the compound statement and the compound statement is then translated
in the normal way.

3.4.6.2 End of a Program

The last delimiter of a program is end and its corresponding begin could
have been stacked in any of the following three forms

begin (bI)
begin (bl) (1)
begin (1)

In the first case the program is an unlabelled block (or an unlabelled com
pound statement which has been made into a block) and this block is term
inated. In the second case the program is a labelled block and so this delimiter
end must cause the termination of two blocks, the outer one containing the
label or labels of the program.

In the third case the program is a labelled compound statement and this
item is unstacked and discarded whereupon 'begin (bl)' will be at the top of
the stack and then the block, set up for the program, is terminated.

When the name list is collapsed for the program block the only used
entries should be those for standard functions.

3.4.7 Program Checking

The system of error checking has been briefly described in section 1.4.2.1.
The basis of the system is to scan through the rest of a block in which an
error has been found without doing any checking. Any inner blocks which
are encountered during this scanning process are checked, but on return to
the block being scanned the name list entries for the inner block are dis
carded, rather than collapsed in the normal way. At the end of the block con
taining the error, a full analysis of the ALGOL text is resumed. Thus a fairly
simple standard process, which is brought into action at the finding of any
kind of error, is used to enable a fair proportion of the errors in an ALGOL
program to be found, without producing any spurious error messages.

3.4 TRANSLATION TECHNIQUES 239

Further errors in the same block, or errors concerning identifiers not declared
or specified in any inner blocks, will not be found by this process.

When an error has been found, and the appropriate error message has been
printed, the following actions are taken

(i) The marker FAIL is set. This marker is checked when the end of the
program is reached, and if set, prevents entry to the Control Routine. It
also has the effect of inhibiting the printing of warning messages about
identifiers which have been declared but not used, and the checking that
type procedures contain an assignment to the procedure identifier.

(ii) Starting at the top of the stack, items are discarded until a 'begin
(bl)' is reached. During this process the number of begin items is counted,
and the result placed in the variable LEVEL. The name list entries for the
current block are also discarded, using the current value of NL and the
values of NL given with any 'for begin' or 'procedure begin' items that are
discarded from the stack.

(iii) The ALGOL text is scanned until a begin or end delimiter (other than
in a comment or a string) is reached.
If a begin is found, the next symbol is checked to find whether it is the start
of a block or a compound statement. If it starts a compound statement one
is added to LEVEL and scanning continues, otherwise LEVEL and a
'begin (hI)' are stacked, with a marker to indicate that the containing block
contains an error, and normal analysis of the ALGOL text is resumed.
When the end of this inner block is reached the marker indicates that the
name list is to be discarded rather than collapsed, and that the variable
LEVEL is to be reset using the stacked value, before resuming the scan.
If an end delimiter is reached during the scanning LEVEL is decreased by
one, and if it is then zero, normal analysis of the ALGOL text is resumed,
otherwise the scanning continues.

3.5 TRANSLATOR ROUTINES

The Translator considers an ALGOL program to be composed of sections which
are bounded by the delimiters. In general each different delimiter is processed
by a separate delimiter routine. A routine called the basic cycle routine is
responsible for reading in the ALGOL and delivering it, a section at a time, to
the appropriate routine.

Some of the tasks which are common to two or more delimiter routines
are dealt with by a further set of subroutines.

3.5.1 Basic Cycle Routine

ALGOL programs that are to be translated by the Whetstone Compiler are
prepared on a Flexowriter, which produces both a paper tape version and a
printed copy of the program. The code punched on the paper tape is a case
dependent six-bit code with underlined characters being used to form basic
symbols; the full character set of the paper tape code is given in Appendix 4.
The paper tape version of the program is used by the Compiler although the
ALGOL program is considered to be that shown on the printed copy. If this
printed copy is correct ALGOL the paper tape must be accepted by the Com
piler. This means that any hidden features on the paper tape such as super
fluous case definition characters are allowed for by the Compiler.

The six-bit input characters are converted by the basic cycle routine into a
case independent eight-bit code and this internal code is used by the delimiter
routines. The various typographical characters and any comments in the
ALGOL are eliminated by the basic cycle routine. Another of the tasks under
taken by this routine is the processing of the constituents of numbers and
identifiers.

3.5.1.1 Read Routine

This routine is responsible for reading in the ALGOL text, removing the
typographical features and delivering the next ALGOL basic symbol to the basic
cycle routine.

Two buffer areas are set aside in the core storage for use by the read routine
so that the six-bit input characters can be read into one buffer whilst those
already stored in the other buffer are processed. By this means it is possible to
translate the ALGOL whilst it is being read in, provided that the characters
stored in the one buffer can be processed in the same, or less, time than it
takes to fill the other buffer.

A one-bit 'case register' is used to keep a record of the case of the current
character and this register is adjusted whenever a case definition character is
processed. Similarly an 'underline register' is set by the underline character

3.5 TRANSLATOR ROUTINES 241

to determine whether the current character is underlined. Using the current
character and the values of the case and underline registers a table look up is
carried out to determine the equivalent eight-bit internal code. When the
equivalent code has been found for an underlined character the underline
register is cleared.

By means of the case and underline registers it is possible to allow for
superfluous case definition characters and multiple underlining of a character.
This is necessary if the ALGOL program is considered to be that shown on the
printed copy produced by the Flexowriter.

Example

'case shift b'

or

'case shift case normal case shift b'

Both appear on the printed copy as 'Q'.

The underline key on the Flexowriter is a 'dead key' (i.e. it does not move the
carriage on) and so an underlined character is produced by punching first the
underline and then the character. It is possible for a non-printing character
which also does not move the carriage, such as a case definition character,
to be punched between the underline and the character and this must be
allowed for.

Example

, case shift b'

This will appear as 'b' on the printed copy and so this arrangement of
input characters must be accepted as the constituents of £.

However a character which moves the carriage of the Flexowriter cannot
be punched between the underline and the character as this wouid not appear
to be correct on the hard copy.

Example

'CRLF CRLF b'

This is not allowed as the constituents of 'b' as these characters would
appear on the printed copy as -

b
(CRLF signifies 'Carriage Return Line Feed')
Similarly '_space b' is not allowed as this would appear on the printed
copy as

b

242 3 THE TRANSLATOR

Since the underline character is produced by a dead key on the Flexowriter
there is, allowing for spurious spaces, case shifts, etc., only one way to produce
a basic symbol composed of underlined characters (e.g. beg in). However,
if the ALGOL programs are prepared on a teleprinter which has an underline
key that is not a dead key, a back space key would have to be provided in
order to be able to produce an underlined character on the printed copy. The
use of a backspace leads to complications as it is difficult to interpret the paper
tape without reading to a CRLF and then creating a picture of the printed
line in the machine. This is because there are many ways of punching the
constituents of a basic symbol such as begin and, if the printed copy of the
program looks right, any of these combinations must be accepted. To reduce
the complications involved in the use of a backspace character it is possible
to give a rule as to the order in which the constituents of an underlined
character must be punched. This solves the problem for the Compiler but
creates a problem for the programmer who cannot tell whether this rule has
been obeyed by looking at the printed copy of the program. For this reason a
character code which includes a backspace character should be avoided if
possible, as should separate carriage return and line feed characters.

Example

If the underline key is not a dead key and a backspace key is used to
produce an underlined character the following show some of the ways
of producing the basic symbol if

if backspace backspace
backspace i backspace I = _ backspace backspace if

The result of the table look up routine is an eight-bit internal code. This
might be the code of a basic symbol such as '+' or merely that of a constitu
ent of a basic symbol such as an underlined letter. Thus, it is still not possible
to know which basic symbol is being processed in certain cases until the re
maining constituents have been dealt with. To allow for this a code buffer of
eight-bit codes is used. The latest code produced by the table look up routine
is put in at one end of the code buffer and all the codes in the buffer are moved
up so that the code that was at the other end of the buffer is taken out to be
processed. In this way a code is not processed straight from the table look up
routine but must first work its way to the other end of the code buffer. The
code buffer is of sufficient length to hold all the constituent underlined
characters of the longest basic symbol (i.e. pro c e d u r e). If the code
taken from the code buffer is an underlined character-tiien -the contents of
the code buffer can be checked against a list of the various underlined basic
symbols. This process is taken care of by another table look up routine called
the DICT routine, which produces a single eight-bit code for the basic symbol.
As the codes are taken out of the code buffer they are replaced by further

3.5 TRANSLATOR ROUTINES 243

codes at the other end by the table look up routine, which forms eight-bit
case independent characters from the input characters. The use of this code
buffer, which in fact holds twelve eight-bit codes, means that characters are
converted into their equivalent eight-bit code, stored in the code buffer and
then processed only when they arrive at the other end. If the code taken from
the code buffer is':' the next code in the buffer is inspected to see whether it is
'='. If this is the case these are the constituents of the delimiter ': =' and so
these two codes are replaced by the eight-bit code for' :='.

The read routine also deals with the parameter comment convention.
When the code taken from the buffer is ')' the state variable P ROC is checked
to find whether a parameter part is being translated. If this is so and if
the delimiter ')' is not a character inside a string, the next code in the buffer
is checked; if it is a letter then a parameter comment has to be ignored.
To do this a marker 'pc' is used to trace the passage through the comment.
The marker pc is set to one at the code ')' and this code is discarded.
Another character is then fetched from the input buffer, converted by the
table look up routine and added to the bottom of the code buffer. The code
which leaves the top of the code buffer must be either a letter or a ':' whilst
pc is set to one. If it is a letter it is discarded and the process is repeated to
fetch further characters until in fact a ':' emerges from the code buffer. This
code is also discarded and the next code in the buffer is inspected to make sure
that it is the delimiter '(' before it too is discarded. The codes which were
discarded are replaced by the single eight-bit code for the delimiter ','.

Although the read routine is used primarily as a subroutine within the basic
cycle routine it is also used as a subroutine by the delimiter routine STRING.
Characters inside a string are stored as basic symbols and the read routine is
used to deliver the basic symbols. For this reason care must be taken that the
read routine does not discard any basic symbols as part of a parameter com
ment when it is delivering string characters.

3.5.2 ALGOL Section Routine

This routine processes the ALGOL program a section at a time and uses
the read routine as a subroutine to produce the next basic symbol. The basic
symbol could be a delimiter or a constituent of an identifier or a number. If it
is a letter then it must be the first character of an identifier and so the read
routine is re-entered to fetch the remaining letters or digits of the identifier
and these are packed together in a 48-bit word. Although the internal code for
the basic symbols is an eight-bit code it is arranged for the letters and digits
to occupy codes in the range 0 - 63 so that the characters of an identifier can
be packed as a six-bit code. In this way eight characters can be packed into a
48-bit word to represent an identifier; if an identifier has more than eight
characters a message is printed to warn the programmer that only the first
eight characters are being used for the identifier. The characters are packed
into the identifier word from one end and when another letter or digit is to
be added to the identifier those already stored are moved up six places. Thus

244 3 THE TRANSLATOR

it is possible to distinguish between the identifier Xl and XIO, say, even if the
binary code for the digit 0 is zero.

Example
identifier Xl is stored as

I
X

I
I

I I

whereas the identifier Xl 0 is stored as

I
I I X I I 0

I I I I

If the basic symbol is a constituent of a number the rest of the constituents
are fetched and the number is evaluated and stored in a 48-bit word for use
by the delimiter routines. The delimiters '.' and \0' are processed by the num
ber conversion part of the ALGOL section routine as constituents of a number
instead of being treated as delimiters by a delimiter routine.

Another delimiter that is processed within the ALGOL section routine is the
delimiter comment. After checking the state variable LD (last delimiter) to
make sure that this delimiter follows either the delimiter begin or the delimiter
';' the delimiter comment causes the read routine to be entered to fetch the
next basic symbol. If this basic symbol is not the delimiter';' it is discarded
and the read routine is re-entered. This process is repeated until the delimiter
';' is delivered.

The ALGOL section routine sets the state variable m to indicate the type of
ALGOL section that is being delivered to the appropriate delimiter routine.
If the section consists of just a delimiter m is set to zero; if the section consists
of an identifier followed by a delimiter m is set to one; finally, if the section,
consists of a constant followed by a delimiter m is set to two. In the case of
the comment convention described above

comment < any basic symbol not including ; > ;
is reduced to the delimiter';' and m is set to zero since the section consists
of just the delimiter.

One final task is performed by the ALGOL section routine before delivering
the next ALGOL section to the appropriate delimiter routine and that is to
check the type of the ALGOL section. The basic cycle routine has a parameter
p associated with it; when the basic cycle routine is called from within a
delimiter routine to fetch the next ALGOL section the parameter p is set to
indicate the value that the state variable m must have before returning to the
delimiter routine.

3.5 TRANSLATOR ROUTINES 245

Example

After the delimiter procedure has been processed the basic cycle routine
is entered to fetch the next ALGOL section. It is known that this section
must consist of an identifier (i.e. the procedure identifier) and a delimiter
(i.e. either '(' or ';') and so the parameter p is set to one. Thus before
returning to the 'procedure heading' routine the state variable m is check
ed to make sure that it is equal to one also.

The parameter p is allowed to have two further values, namely three and
four. If p is set to three there is no check on the type of the ALGOL section.
The central loop of the translator consists of a call on the basic cycle routine
with the parameter p set to three and in general a delimiter routine returns to
this central loop when it has finished it tasks. The value of four is used for the
parameter p to indicate that the basic cycle routine has been entered from
the end delimiter routine to allow for the end comment convention. If p has
the value four any constituents of identifiers or numbers are discarded
immediately without wasting time processing them.

The end comment convention is not dealt with completely within the basic
cycle routine as are the other comment conventions. This is because a common
form of error in ALGOL programs is the omission of the delimiter';' after the
last of a series of one or more end delimiters, causing the statement following
to be treated as a comment.

To draw attention to this possibility a message is printed to warn a pro
grammer if a comment after an end contains a delimiter, before continuing
the process of translation. The more usual forms of end comment, namely
identifiers and letter strings, thus do not cause the printing of a warning
message. The checking and discarding of any end comments is done by the
end delimiter routine, using the basic cycle routine with the parameter p set to
four.

3.5.2.1 DIeT Routine

The DICT routine is a table look up routine, which compares the charac
ters in the code buffer with the sets of characters given in a table of basic sym
bols and their constituent underlined characters. When the code buffer is
found to contain the constituent characters of a basic symbol, these charac
ters are removed from the buffer, and an eight-bit representation of the basic
symbol is used in their place.

The items in the list are stored as double-words with the internal code for
the basic symbol given in the least significant eight bits of the second word,
and the constituent underlined characters starting at the most significant end
of the first word.

Considering the contents of the items in the list to be double-length integers
(i.e. integers which are stored in a double-word store), the items are listed in
descending order of magnitude. The content of the code buffer is also con
sidered as a double-length integer and as such it is compared with each of the

246 3 THE TRANSLATOR

Example

I

I I I

I I I H I I
f.

I

I
i

I
-

I I
procedure i

I

E r 0 c

I
e d u r e - - - - - - - -

items in the list in turn until the list item is reached that is less than the integer
value of the code buffer. This is the list item that is required and the code
buffer should contain the underlined constituent characters of this basic
symbol. These characters are taken from the code buffer one at a time and
checked against the equivalent character in the list item before being discarded.
Finally the eight-bit representation of the basic symbol is taken from the
least significant part of the second word of the list item for delivering to the
ALGOL section routine.

Example

The code buffer might contain

I

I
I I

I I

I

I
r

!

e a I l! r 0

I

c e d u r - - - - - - - - - - -
I

This is compared with each of the items down the list until the follow
ing item is reached and recognized as the required item

:
I I

,

I I
I

I
I

r e a I I real - - - - i I
I I I I I I i

Underlined characters are taken from the code buffer and the list item
one at a time and compared until there are no underlined characters
remaining in the list item. The eight-bit code for the basic symbol real is
then extracted from the list item for use by the ALGOL section routine.
Since the code buffer is refilled from the other end as the underlined
characters forming the delimiter real were removed the buffer might
now contain

E. r I 0 c e d u r e P (A -
i

- - - - - - -

3.5 TRANSLATOR ROUTINES 247

It is possible to allow for two different versions of a basic symbol (e.g.
Boolean or boolean) by storing each different form as a separate list item.

Naturally, spaces, changes to a new line, spurious case definition characters,
etc., are allowed between the underlined characters of any basic symbol. In
fact these are removed before the underlined characters are added to the
code buffer, as described earlier.

3.5.3 Delimiter Routines

In general each delimiter is dealt with by a separate routine; the exceptions
being the procedure heading routine which deals with the complete procedure
heading, the own array routine which deals with the whole of the bound pair
list of an own array segment and the delimiters comment, '.' and \0' which
are dealt with inside the basic cycle routine.

The delimiter routines are entered from the central loop of the Translator,
which consists of a call of the basic cycle routine for the next ALGOL section
and then an exit to the appropriate delimiter routine. Brief descriptions of the
translator routines are given with the flow diagrams in Appendix 11.

REFERENCES

1. Allmark, R. H. and Lucking, J. R. (1963). Design of an Arithmetic
Unit incorporating a Nesting Store. "Information Processing 1962", Pro
ceedings of IFIP Congress 62, pp. 694-698. North-Holland Publishing Co.,
Amsterdam.

2. Arden, B. and Graham, R. (1959). On GAT and the Construction of
Translators. Comm. A.C.M. 2, 7, pp. 24-26.

3. Arden, B. and Graham, R. (1959). Letter to the Editor. Comm. A.C.M.
2, 11, pp. AIO-All.

4. Arden, B., Galler, B. A. and Graham, R. M. (1961). Criticisms of ALGOL
60. Comm. A.C.M. 4, 7, p. 309.

5. Arden, B., Galler, B. A. and Graham, R. M. (1962). An Algorithm for
Translating Boolean Expressions. J. A.C.M. 9, 2, pp. 222-239.

6. Backus, J. W. et al. (1957). The FORTRAN Automatic Coding System.
"Proceedings of the WJCC", pp. 188-198. Institute of Radio Engineers,
New York.

7. Backus, J. W. (1959). The Syntax and Semantics of the Proposed In
ternational Algebraic Language of the Zurich ACM-GAMM Conference.
"Information Processing", Proceedings of ICIP Paris, pp. 125-132.
UNESCO, Paris.

8. Barton, R. S. (1961). A New Approach to the Functional Design of a
Digital Computer. "Proceedings of the WJCC", pp. 393-396. Association
for Computing Machinery, New York.

9. Baumann, R. (1961, 1962). ALGOL-Manual der ALCOR-Gruppe.
Elektronische Rech. 5/6 (1961) and 2 (1962).

10. Bottenbruch, H. (1962). Structure and Use of ALGOL 60. J. A.C.M. 9, 2,
pp.161-221.

11. Bottenbruch, H. and Grau, A. A. (1962). On Translation of Boolean
Expressions. Comm. A.C.M. 5, 7, pp. 384-386.

12. Dahlstrand, I. and Naur, P. (1960). Integers as Labels. ALGOL Bulletin
No. 10. Regnecentralen, Copenhagen, 10.3.

13. Davis, G. M. (1960). The English Electric KDF9 Computer System.
Compo Bull. 4, 3, pp. 119-120.

14. Dijkstra, E. W. (1960). Recursive Programming. Num. Math. 2, 5, pp.
312-318.

15. Dijkstra, E. W. (1961). An ALGOL 60 Translator for the Xl (translated
from the German in MTW 2 (1961), pp. 54-56 and MTW 3 (1961), pp.
115-119, by M. Woodger.) ALGOL Bull. Suppl. No. 10.

16. Dijkstra, E. W. (1961). Making a Translator for ALGOL 60. A.P.I.C.
Bull. 7, pp. 3-11.

17. Dijkstra, E. W. (1961). Defense of ALGOL 60. Comm. A.C.M. 4, 11,
pp. 502-503.

REFERENCES 249

18. Dijkstra, E. W. (1962). "A Primer of ALGOL 60 Programming". Aca
demic Press, London.

19. Duncan, F. G. (1962). Implementation of ALGOL 60 for the English
Electric KDF9. Compo J. 5,2, pp. 130-132.

20. Duncan, F. G. (1963). Input and Output for ALGOL 60 onKDF9. Compo
J. 5,4, pp. 341-344.

21. Evans, A., Pedis, A. J. and van Zoeren, H. (1961). The Use of Threaded
Lists in Constructing a Combined ALGOL and Machine-Like Assembly
Processor. Comm. A.CM. 4, 1, pp. 36-41.

22. Floyd, R. W. (1961). An Algorithm for Coding Efficient Arithmetic
Operations. Comm. A.CM. 4, 1, pp. 42-51.

23. Floyd, R. W. (1961). A Descriptive Language for Symbol Manipulation.
J. A.CM. 8, 4, pp. 579-584.

24. Floyd, R. W. (1962). On Syntactic Analysis and Operator Precedence.
Report CA-62-2, Computer Associates, Inc., Woburn, Mass.

25. Genuys, F. (1962). Commentaires sur Ie langage ALGOL. Chiffres, 5, 1,
pp.29-53.

26. Grau. A. A. (1961). Recursive Processes and ALGOL Translation. Comm.
A.CM. 4, 1, pp. 10-15.

27. Grau, A. A. (1962). A Translator-Oriented Symbolic Programming
Language.J.A.C.~f.9,4,pp.480-487.

28. Halstead, M. H. (1962). "Machine-Independent Computer Program
ming". Spartan Books, Washington D.C.

29. Hamblin, C. L. (1957). Computer Languages. Austr. J. Sci. (Dec), pp. 135-
139.

30. Hamblin, C. L. (1962). Translation to and from Polish Notation. Compo
J. 5, 3, pp. 210-213.

31. Hawkins, E. N. and Huxtable, D. H. R. (1963). A Multi-Pass Translation
Scheme for ALGOL 60. "Annual Review in Automatic Programming", vol.
3, pp. 163-205. Pergamon Press, Oxford.

32. Higman, B. (1963). Towards an ALGOL Translator. "Annual Review in
Automatic Programming", vo1. 3, pp. 121-162. Pergamon Press, Oxford.

33. Higman, B. (1963). What EVERYBODY Should Know about ALGOL.
Compo J. 6, 1, pp. 50-56.

34. Hill, U., Langmaack, H., Schwarz, H. R. and Seegmliller, G. (1962).
Efficient Handling of Subscripted Variables in ALGOL 60 Compilers. "Pro
ceedings of the Symposium on Symbolic Languages in Data Processing,
Rome", pp. 331-340. Gordon & Breach, New York.

35. Huskey, H. D. (1961). Compiling Techniques for Algebraic Expressions.
Compo J. 4, 1, pp. 10-19.

36. Huskey, H. D. and Wattenburg, W. H. (1961). Compiling Techniques for
Boolean Expressions and Conditional Statements in ALGOL 60. Comm.
A.CM. 4, 1, pp. 70-75.

37. Ingerman, P. Z. (1961). Thunks-A way of compiling procedure state
ments with some comments on procedure declarations. Comm. A.CM. 4,
1, pp. 55-58.

250 REFERENCES

38. Ingerman, P. Z. (1961). Dynamic Declarations. Comm. A.C.M. 4, 1, pp.
59-65.

39. Irons, E. T. (1961). A Syntax Directed Compiler for ALGOL 60. Comm.
A.C.M.4, 1, pp. 51-55.

40. Irons, E. T. (1963). The Structure and Use of the Syntax Directed Com
piler. "Annual Review in Automatic Programming", vol. 3, pp. 207-227.
Pergamon Press, Oxford.

41. Irons, E. T. and Feurzeig, W. (1961). Comments on the Implementation
of Recursive Procedures and Blocks in ALGOL 60. Comm. A.C.M. 4, 1,
pp.65-69.

42. Jensen, J., Mondrup, P. and Naur, P. (1961). A Storage Allocation Scheme
for ALGOL 60. Comm. A.C.M. 4, 10, pp. 441-445.

43. Jensen, J. and Naur, P. (1961). An Implementation of ALGOL 60 Proce
dures. Nord. Tidskr. Inform.-Behand. 1, 1, pp. 38-47.

44. Kanner, H. (1959). An Algebraic Translator. Comm. A.C.M. 2, 10, pp.
19-22.

45. Knuth, D. E. (1959). RUNCIBLE-Algebraic Translation on a Limited
Computer. Comm. A.C.M. 2, 11, pp. 18-21.

46. Knuth, D. E. and Merner, J. N. (1961). ALGOL 60 Confidential. Comm.
A.C.M. 4, 6, pp. 268-272.

47. Ledley, R.S. and Wilson, J.B. (1962). Automatic-Programming-Language
Translation through Syntactical Analysis. Comm. A.C.M. 5, 3, pp. 145-155.

48. Lucas, P. (1961). The Structure of Formula-Translators. ALGOL Bull.
Suppl. No. 16.

49. Lynch, W. C. (1960). Coding Isomorphisms. Comm. A.C.M. 3, 2, pp.
84--85.

50. McCarthy, J. (1961).A Basis for a Mathematical Theory of Computation,
Preliminary Report. "Proceedings of the WJCC", pp. 225-238. Association
for Computing Machinery, New York.

51. McCracken, D. D. (1962). "A Guide to ALGOL Programming". Wiley,
New York.

52. Milnes, H. W. (1957). Logical Programming and Algebraic Interpreta
tion. Indust. Math. 8, pp. 17-26.

53. Naur, P. (ed.). (1960). "Report on the Algorithmic Language ALGOL 60".
Regnecentralen, Copenhagen.

54. Naur, P. (1961). "A Course of ALGOL 60 Programming". Regnecentra1en,
Copenhagen.

55. Naur, P. (ed.), with amendments by Woodger, M. (ed.). (1962). "Revised
Report on the Algorithmic Language ALGOL 60". International Federa
tion for Information Processing. (Also in Comm. A.C.M. (1963) 6, 1, pp.
1-17, Compo J. (1963) 5, 4, pp. 349-367, and Num. Math. (1963) 4,5, pp.
420-453.)

56. Perlis, A. J. and Samelson K. (ed.) (1958). Preliminary Report-Inter
national Algebraic Language. Comm. A.C.M. 1, 12, pp. 8-22.

57. Perlis, A. J. and Thornton, C. (1960). Symbol Manipulation by Threaded
Lists. Comm. A.C.M. 3, 4, pp. 195-204.

REFERENCES 251

58. Randell, B. (1964). The Whetstone KDF9 ALGOL Translator. "Intro
duction to System Programming" (ed. by P. Wegner). Academic Press,
London.

59. Randell, B., Duncan, F. G. and Huxtable, D. H. R. (1963). KDF9
ALGOL Note 1. Data Processing and Control Systems Division, The
English Electric Company Ltd., Kidsgrove, Staffordshire.

60. Randell, B. and Russell, L. J. (1963). Single Scan Techniques for the
Translation of Arithmetic Expressions in ALGOL 60. (To be published.)

61. Rutishauser, H. (1952). Automatische Rechenplanfertigung bei Pro
grammgesteuerten Rechenmaschinen (Automatic Programming of Pro
gramme-Controlled Computers). Mitt. Inst. Angew. Math. ETH Zurich,
No.3.

62. Samelson, K. and Bauer, F. L. (1959). Sequentielle Formeltibersetzung.
Elektronische Rech. 1, pp. 176-182. (Published in English as-Sequential
Formula Translation. Comm. A.C.M. 3, 2, pp. 76-83.)

63. Samelson, K. and Bauer, F. L. (1962). The ALCOR Project. "Proceedings
of the Symposium on Symbolic Languages in Data Processing, Rome",
pp. 207-217. Gordon & Breach, New York.

64. Sattley, K. (1961). Allocation of Storage for Arrays in ALGOL 60. Comm.
A.C.M.4, 1, pp. 60-65.

65. Sheridan, P. B. (1959). The Arithmetic Translator-Compiler of the IBM
FORTRAN Automatic Coding System. Comm. A.C.M. 2, 2, pp. 9-21.

66. Steel, T. B. (1961). A First Version of UNCOL. "Proceedings of the
WJCC", pp. 371-377. Association for Computing Machinery, New York.

67. Strong, J., Wegstein, J., Trittee, A., Olsztyn, J., Mock, O. and Steel, T.
(1958). The Problem of Programming Communication with Changing
Machines-A Proposed Solution. Report of the Share Ad-Hoc Committee
on Universal Languages. Comm. A.C.M. 1, 8, pp. 12-18; Comm. A.C.M.
1, 9, pp. 9-15.

68. Takahashi, S., Nishino, H., Yoshihiro, K. and Fuchi, K. (1962). Systems
Design of the E.T.L. Mk6 Computer. "Information Processing 1962", Pro
ceedings ofIFIP Congress 62, pp. 690-693. North-Holland Publishing Co.,
Amsterdam.

69. van der Mey, G. (1962). Process for an ALGOL Translator. Report 164
MA. Dr Neher Laboratorium, Staatsbedrijf der Posterijen, Telegrafie en
Telefonie, Leidshendam.

70. van der Poel, W. L. (1962). The Construction of an ALGOL Translator
for a Small Computer. "Proceedings of the Symposium on Symbolic
Languages in Data Processing, Rome", pp. 229-236. Gordon & Breach,
New York.

71. Wegstein, J. H. (1959). From Formulas to Computer Oriented Language.
Comm. A.C.M. 2, 3, pp. 6-8.

72. KDF9 ALGOL Manual (1963). Data Processing and Control Systems
Division, The English Electric Co. Ltd., Kidsgrove, Staffordshire.

73. KDF9 Programming Manual (1963). Data Processing and Control
Systems Division, The English Electric Co. Ltd., Kidsgrove, Staffordshire.

252 REFERENCES

Publishers of the Journals listed in the References are as follows:
A.P.l.C. Bull. The Automatic Programming Information Centre, Brighton

College of Technology, England.
Aust. J. Sci. Australian National Research Council, Sydney, Australia.
Chiffres. The Association Fran<;aise de Calcul et de Traitement de l'Informa-

tion, Paris, France.
Comm. A.C.M. The Association for Computing Machinery, New York, U.S.A.
Compo Bull. The British Computer Society, London, England.
Compo J. The British Computer Society, London, England.
Elektronische Rech. Oldenbourg, Munich, Germany.
Indust. Math. Industrial Mathematics Society, Detroit, U.S.A.
J. A.C.M. The Association for Computing Machinery, New York, U.S.A.
Mitt. Inst. Angew. Math. ETH Zurich. Eidgenossischen Technischen

Hochschule, Zurich, Switzerland.
Nord. Tidskr. Inform.-Behand. Regnecentralen, Copenhagen, Denmark.
Num. Math. Springer-Verlag, Berlin, Germany.

APPENDIX 1

A Worked Example

'A brief case history of one job done with a system seldom gives a good
measure. of its usefulness, particularly when the selection is made by the

Backus [6]

The single example chosen to illustrate the workings of the Whetstone ALGOL

Compiler is based on the procedure GPS (General Problem Solver) in the
article 'ALGOL 60 Confidential' by Knuth and Merner [46]. In this article the
possibilities of recursive procedures and parameters called by name are
demonstrated by using GPS in several assignment statements, one of which
has the effect of multiplying two matrices together, and which is presented as
a challenge to compiler writers.

Thjs use of the procedure GPS, whjch is rightly described by Knuth and
Merner as 'just ALGOL for ALGOL'S sake', nevertheless demonstrates several
fundamental features of ALGOL which are of great practical value, and hence
is worth using to demonstrate translation techniques. In order to reduce the
task of description to more manageable proportions, the working of the
Whetstone Compiler is demonstrated on a program using GPS to set up a
matrix A, in which the element 'A [i,j], has the value 'i + p. In addition the
full object program representation of the assignment statement which uses
GPS to perform matrix multiplication is given. Though it is not claimed that
the method of implementation is in any way optimum, the example shows that
the standard mechanisms of the Whetstone Compiler for handling recursive
procedures and parameters called by name can easily deal with the apparent
complications of General Problem Solver.

begin real i, j;

end

array A [1: 2, 1: 3];
real procedure GPS(I,N,Z, V); reaII,N,Z, V;
begin for I := 1 step 1 until N do Z := V;

GPS:= 1
end;
i := GPS (j, 3·0, i, GPS (i, 2·0, A [i,j], i + j))

The translation of this program is best illustrated by showing the contents
of the stack and name list at various stages during translation. (The abbrevi
ations used are as described in section 3.3.3.)

254 APPENDIX 1

(i) At the end of the array declaration. Operations have been generated
to enter the program block and to set up the storage mapping function for
the array. Fig. 13(a) shows the contents of the stack and the name list.

NAME LIST

! I

type I d exp I no name np syll f v dim line
- ---- - ---- - - ------

1
2 i r 1 1,3 1
3 j r 1 1,4

I

1
4 A r a 1 1,5 2 2

I
I

2 begin (bI) I 0
1 1,0,1 I
0 UJ,2 I 13 I

I

no Stacked Item I Stack Priority I
I

STACK

FIG. 13 (a). At the end of the array declaration.

The object program contains

Syll Op Par
0 CBL
1 UJ ()
4 BE ()
7 TIC1
8 TIC '2'
15 TIC1
16 TIC '3'
23 MSF (1,5), 1
27

(ii) At the end of the procedure heading. The name list, shown with the
stack in Fig. 13(b), now contains entries for the procedure identifier and
the formal parameters.

i
I

APPENDIX 1

NAME LIST

no name type d np syll l
- ---- - ---- -

1
2 i
3 j
4 A
5 GPS

- I I 0 I <iP::'
7 I
8 N
9 Z
10 V

5
A I;

12
, 1

0

no

r 1 1,3
r 1 1,4
r a 1 1,5
r p 1 2,0

- , -
r p I 1 I 2,U
r 1 2,3
r 1 2,5
r 1 2,7
r 1 2,9

procedure begin,
1,3,1
VJ, 28
begin (bI)
1,0,1
VJ, 2

Stacked Item

30
r.

I 30 I I

30

STACK

1
1
1
1

v dim exp
- ----

2
4

I 4 I

0

13
0

13

line
--

1
1
2
3
o
3
3
3
3

Stack Priority

FIG. 13(b). At the end of the procedure heading.

The following operations have been added to the object program
Syll Op Par
27 UJ ()
30 PE (),4
34 CA
35 CA
36 CA
37 CA
38

255

(iii) At the end of the procedure body. The for statement has been
translated and the name list and stack are as shown in Fig. 13(c). The formal
parameter identifiers have been discarded from the name list and the
'procedure begin' items unstacked. The parameters nand L of the P E
operation at syllable 30 have been filled in with (2,8) and the following
operations added to the object program.

256

I I I
no name type d

APPENDIX 1

NAME LIST

I
np syll f d · t· I v 1m exp me

-------1-------------
1
2
3
4
5

3
2
1
0

no

r 1 1,3
j r 1 1,4
A ra 1 1,5
GPS rp 1 2,0

UJ, 28
begin (bI)
1,0,1
UJ,2

Stacked Item

30

STACK

2
4

13
0

13

Stack Priority

FIG. 13(c). At the end of the procedure body.

Syll Op Par
38 UJ (45)
41 TFAR (2,3)
44 LINK
45 CFZ (61)
48 FORSI
49 TICI
50 LINK
51 FORS2
52 TICI
53 LINK
54 TFR (2,5)
57 LINK
58 FSE (74)
61 FBE (3,4) (41)
66 TFAR (2,7)
69 TFR (2,9)
72 ST
73 FR
74 TRA (2,0)
77 TICI
78 ST
79 RETURN
80

1
1
2
3

K

APPENDIX 1 257

(iv) Before processing the first closing round bracket of the assignment
statement. The name list has remained unchanged, but a large number of
items have been stacked (Fig. 13(d)). These items include those stacked

NAME LIST

~ ~ame type I~:~ syll ~~ dim exp linje

I ~ I l I r 1 I 1 ,:5

3 j r 1 1,4 1
4 A r a 1 1,5 2 2
5 GPS r p 1 2,0 30 4 3

20 + 9
19 PSR,118 0
18 PSR,104 0
17 PRC,98 0
16 PR, (1,3) 0
15 (,1 0
14 0,0,0
13 GPS
12 UJ,96 13
11 PSR,92 0
10 PR, (1,3) 0
9 PRC,86 0
8 PR, (1,4) 0
7 (Il fl

\, v u

6 0,0, (ABG)
5 GPS
4 UJ,84 13
3 ST 2
2 begin (bl) 0
1 1,0,1
0 UJ,2 13

no Stacked Item Stack Priority

STACK

FIG. l3(d). Before processing the first closing round bracket of the
assignment statement.

258 APPENDIX 1

at each opening procedure bracket, and the two sets of 'actual operations'.
The object program operations that have been added are

Syll Op Par
80 TRA (1,3)
83 UJ ()
86 '3·0'
92 BE (2,0)
95 UJ ()
98 '2·0'
104 BE (3,0)
107 TRA (1,5)
110 TRR (1,3)
113 TRR (1,4)
116 INDA
117 EIS
118 BE (3,0)
121 TRR (1,3)
124 TRR (1,4)
127

(v) After processing the final end. This delimiter completes the program;
when it has been processed the name list and the stack will be empty.
Various operations have been added to the object program, including the
two sets of 'actual operations'. The complete object program is

Syll Op Par Remarks

° CBL
1 UJ (172)
4 BE (1,3) Program entry
7 TICI
8 TIC '2'
15 TICI Array declaration
16 TIC '3'
23 MSF (1,5),1 A
27 UJ (80) Jump around procedure
30 PE (2,8),4 Entry to procedure GPS
34 CA
35 CA
36 CA
37 CA
38 UJ (45)
41 TFAR (2,3) I
44 LINK
45 CFZ (61)
48 FORSI

APPENDIX 1 259

Syll Op Par Remarks
49 TICI
50 LINK
51 FORS2
52 TICI
53 LINK
54 TFR (2,5) N
57 LINK
58 FSE (74)
61 FBE (3,4), (41) Entry to for statement
66 TFAR (2,7) Z
69 TFR (2,9) V
72 ST Z:= V
73 FR
74 TRA (2,0) GPS
77 TICI
78 ST GPS:= 1
79 RETURN
80 TRA (1,3)
83 UJ (166)
86 '3-0'
92 BE (2,0) Entry to subroutine

for 'GPS (i, 2-0, A [i,j], i+j)'
95 UJ (145)
98 '2-0'
104 BE (3,0)
107 TRA (1,5) A 1 Subroutine
110 TRR (1,3)
113 TRR (1,4) j
116 INDA A [i, j] for 'A [i,j],
117 EIS ~ 118 1)-,:;' (~ n\

.1J.J..j \J,V)

121 TRR (1,3)
124 TRR (1,4) j J Subroutine
127 + i+j for 'i + j'
128 EIS
129 PSR (118), -
133 PSR (104), -
137 PRC (98), -
141 PR (1,3), - i
145 CF (30),4 GPS
149 EIS
150 PSR (92), -
154 PR (1,3), -
158 PRC (86), -
162 PR (1,4), - j

260

Syll
166
170
171
172

Op
CF

APPENDIX 1

Par
(30),4.

ST
RETURN
FINISH

Remarks
GPS

The working of this object program is demonstrated by showing the contents
of the stack at various selected points.

Figure 14(a) shows the contents of the stack after the following actions
have been performed

(1) Entry to the program.
(2) Setting up of the array A.
(3) Stacking of an accumulator, containing the address of i.
(4) Entry to procedure GPS.
(5) Checking of the four parameters to GPS.

Figure 14(b) shows the stack when the controlled statement of the for state
ment has been entered. This has caused the assignment of 1·0 to j, the stack
ing of an accumulator containing the address of i, and entry to a subroutine
which has caused a recursive activation of GPS, whose parameters have been
checked.

In Fig. 14(c) the for statement has been activated recursively, the value 1·0
has been assigned to i, and the subroutine for evaluating the address of
'A [i,j]" which corresponds to the formal parameter Z, has been entered. The
next operation, INDA, will replace the top three accumulators with an accum
ulator containing the address of 'A [1, 1]'.

In Fig. 14(d) the result of the subroutine, i.e. the address of 'A [1,1]" is given
in what was the result accumulator of the subroutine, and a second sub
routine, for evaluating 'i+j', has been entered. Accumulators containing the
current values of i and j are at the top of the stack.

Finally, in Fig. 14(e) this second subroutine has been completed, and at the
top of the stack are two accumulators, ready for the operation ST which will
perform the assignment

A [i, j] := i + j;
i.e. A [1,1] := 2·0;

The assignment
A [2, 1] := 3·0;

(for i = j = 1)

is performed next, as a result of an assignment of 2·0 to i by the for statement
and a second call on the two subroutines. The for block and the recursive
activation of GPS are left and the outer for statement then assigns 2·0 to j;

Stack
Address

APPENDIX 1

Stack

261

Remarks

AP: 29

PP:

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

s r
GPS(. ..)

0,92

r a

3 Formal Accumulators

r r

3·0

r a
................................. j

4
j

3·0

170, L1)

......... ~ .. ~~, .. ~9............ Lmk Data of GPS

I
I·········~·~····················

Result Accumulator

Address of i
3

2

6

8,5,6

A [2,3]

A [1,3]

A [2,2]

A [1,2]

A [2,1]

A [1,1]

Storage Mapping Function

A (array word)

j

1, L1)

......... ~ .. ~4, ... 3............. Link Data of Program

FIo. 14(a). After completing checking of parameters at
first entry to GPS.

262

Stack
Address

APPENDIX

Stack Remarks

AP: 58

PP:

57 s r
i+ j

56 42,118

55 s r A [i, j]

54 42, 104
Formal Accumulators

53 r r
2·0

52 2·0

51 r a

50 3

49

48

47

149, L1)

.......... ~:.~~: .. 5~.......... Lmk Data of GPS

46
Result Accumulator

45

44

43

42

72, L4)

.......... ~:. ;;: .. 4S........... Lmk Data of lDlp. subroutlDe 'GP S (..•)'

41
Result Accumulator

40

39 r a
Address of i

38 3

37 i r
S2

36 1

35 r r
Sl

34 1·0

33

32

31

51, L28)

........... ~i,~~~ .~~.......... Lmk Data of for block

30 49
Result Accumulator

29 41,66

FIG. 14(b). After completing checking of parameters at
second entry to GPS.

Stack
Address

Stack

APPENDIX 1 263

Remarks

AP: 78

77 r r
........................... j

76 1·0

7, r r I..J

...........................
74 1·0

73 r a
........................... A

72 5

71

70

PP: 69

68

69, L2 1
3, 72, 72 r Lmk Data of Imp. subroutme 'A [i,j],

I

, .. ,"",',· .. ·'··········· J
42,60

Result Accumulator
67

66 i r
S2

65 1

64 r r
Sl

63 12·0

62 51, L28

61 3, 67, 63 > Link Data of for block

60 47,47

59 49
Result Accumulator

58 41,66

FIG. 14(c). About to calculate the address of 'A [1,1],.

264

Stack
Address

Stack

APPENDIX 1

Remarks

AP: 78

77 r r
........................... j

76 1·0

75 r r
...........................

74 1·0

73 72, L4
...........................

72 3, 74, 74 >- Link Data of imp. subroutine 'i+j'
...........................

PP: 71 42, 60

70 I

........................... Result Accumulator
69

68 r a
............................ Address of 'A [1,1],

67 8

66 i r
........................... S2

65 1

64 r r
........................... S1

63 1·0

62 51, L28
...........................

61 3, 67, 63 Link Data of for block
...........................

60 47, 47

59 49
........................... Result Accumulator

58 41, 66

FIG. 14(d). About to calculate 'i+j'.

Stack
Address

APPENDIX 1

Stack Remarks

AP: 71

70 r r
2·0

69 2·0

68 r a
Address of 'A [1,1]'

67 8

66 i r
S2

65 1

64 r r
SI

63 1·0

PP: :: I i: i;;:. } Lmk Dam offor block

59 49
Result Accumulator

58 41, 66

FIG. i4(e). About to perform 'A [I,}] := 1+1', for I =} = 1.

265

the process of activating GPS and the for statement recursively is repeated,
to perform

A [1,2] := 3·0;
A [2,2] := 4·0;

The third and final assignment to j by the outer for statement eventually
causes the assignments

to be made.

A [1,3] := 4·0;
A [2,3] := 5·0;

Then the for statement and the original activation of GPS are left, and the
value of GPS (i.e. 1·0) is assigned to i. Finally, when the end of the program
K*

266 APPENDIX 1

is reached the values of the elements of array A are lost, since no output
statements have been included in the program.

The assignment statement given by Knuth and Merner is

1:= GPS (I, 1·0, C [1, 1], 0·0)

X GPS(I, (m-I) X GPS(J,(p-I) X GPS(K,n, C[I,J],

C [/, J] + A [I,K] X B[K, J]), C[I,J+I], 0·0), C[I + 1,1],0·0);

which multiplies the array 'A [1: m, 1: n]' by 'B [1: n, 1: p]' and stores the
result in 'C [1: m, 1: p]'.

The object program representation of this assignment statement is

Syll Op Par Remarks
0 TRA I
3 UJ (44)
6 '1·0'
12 BE (2,0)
15 TRA C
18 TICI
19 TICI
20 INDA C [1,1]
21 EIS
22 '0·0'
28 PRC (22), - 0·0 "1

32 PSR (12), - C [1,1] } 'actual operations'
36 PRC (6), - 1·0
40 PR I, - I
44 CF GPS,4
48 UJ (225)
51 BE (2,0)
54 TRR m
57 TICI
58 m -1
59 UJ (183)
62 BE (3,0)
65 TRR P
68 TICI
69 p-I
70 UJ (139)
73 BE (4,0)
76 TRA C
79 TRR I
82 TRR J
85 INDA C [I, J]
86 EIS

APPENDIX 1 267

Syll Op Par Remarks
87 BE (4,0)
90 TRA C
93 TRR 1
96 TRR J
99 INDR C [I, J]
100 TRA A
103 TRR 1
106 TRR K
109 INDR A [I, K]
110 TRA B
113 TRR K
116 TRR J
119 INDR B [K, J]
120 X
121 +
122 EIS
123 PSR (87), - C[[,J]+A[[,K]XB[K,J]) , t 1
127 PSR (73), - C[l J] ac ua
131 PR n - ' oper-n . ,

K atlOns' 135 PR K-,
139 CF GPS,~4
143 X
144 EIS
145 BE (3,0)
148 TRA C
151 TRR 1
154 TRR J
157 TIC1
158 +
159 INDA C[I, J+1]
160 EIS
161 '0,0'
167 PRC (161), - 0·0
171 PSR (145), - C [I, J+1]) 'actual
175 PSR (62), - (P-1) X GPS(...) operations'
179 PR J- J ,
183 CF GPS,4
187 X
188 EIS
189 BE (2,0)
192 TRA C
195 TRR 1
198 TIC1
199 +
200 TIC1

268 APPENDIX 1

Syll Op Par Remarks
201 INDA C [1+1, 1]
202 EIS
203 '0·0'
209 PRC (203), -

0·0 1 213 PSR (189), - C [1+ 1, 1] 'actual
217 PSR (51), - }m-1) X GPS(...) operations'
221 PR 1 -,
225 CF GPS,4
229 X
230 ST 1 := GPS (...) X GPS (...)

APPENDIX 2

Restrictions Imposed on ALGOL 60 in KDF9 ALGOL

KDF9 ALGOL is being implemented using two separate compilers. The
writers of each compiler have placed slight restrictions on ALGOL 60-the
logical sum of these restrictions forms the complete set of restrictions used to
define the subset of ALGOL 60 which is called KDF9 ALGOL. These restric
tions are detailed below, together with a brief description of the reasons for
each restriction, and remarks on the changes necessary to the Whetstone
Compiler in order to remove the restrictions.

(i) All Formal Parameters must have Specifications

This restriction allows the Whetstone Compiler to generate, at each use of
an identifier, the appropriate object program operations, in which information
regarding the type of use being made of the identifier is given implicitly.

Example

procedure P (x, a, b); real x; integer a; real procedure b;
x:= a + b;

The body of this procedure is translated into

Syll Op Par Remarks
0 TFAR x (Take Formal Address Real)
3 TFI a (Take Formal Integer)
6 CFFZ b (Call Formal Function Zero)
9 +
10 ST
11

If parameters did not have specifications the Translator would have to
produce less detailed operations, whose action is dependent on the contents
of the appropriate formal accumulator.

The above example would be translated into

Syll Op Par Remarks
0 TA x (Take Address)
3 TR a (Take Result)
6 TR b (Take Result)
9 +

10 ST
11

270 APPENDIX 2

Thus the indecision (with regard to the meaning of identifiers) at transla
tion time, which is resolved when a set of skeleton operations are unchained,
would in this case be carried forward into the Control Routine.

(ii) Labels must not be Unsigned Integers

The reason for this is concerned with the use of a designational expression
as an actual parameter.

Example

procedure Pop (Q); procedure Q; begin ... Q(3); ... end;
procedure Pip (A); label A; begin ... go to A; ... end;
procedure Pap (B); real B; begin ... := B; ... end;
Pop (Pap);
Pop (Pip);

(Taken from ALGOL Bulletin No 10-October 1960 [12].)

The number 3 appearing within the body of procedure Pop will in the first
of the procedure statements be used as a number, while in the second it will
be used as a label.

Integer labels could be allowed if the Translator, in cases of doubt, pro
duced operations which could be used either as 'Take Integer Constant' (or
'Parameter Integer Constant') or 'Take Label' (or 'Parameter Label') oper
ations. The result of such an operation would be an accumulator containing
both the integer and the (PP,a) representation of the label. If such an accumu
lator was used by a GT A (Go To Accumulator) operation the integer would be
ignored; alternatively the (PP,a) would be ignored.

(iii) Go To an Undefined Switch Designator Produces an Error
Indication

A technique for allowing a go to statement, which uses a switch designator
whose value is undefined because of an out-of-range switch index, to act as
a dummy statement, has been described in section 2.4.2.

(iv) A Type Procedure must Contain an Assignment to the
Procedure Identifier

This restriction prevents the extremely trivial case of the declaration of a
procedure which is not intended for use by a function designator being pre
ceded by a type declarator.

Example

real procedure P; x : = 3;

APPENDIX 2 271

This procedure could only be called by a procedure statement, and hence
the delimiter real is redundant. The reason for the restriction is to facilitate
the checking, by the Translator, of whether a given procedure can be called
by a function designator; the easiest way of removing the restriction would be
to relax this checking.

(v) The Actual Parameters Corresponding to a Formal Parameter Speci
fied to be a Procedure must be Procedures with Identical Specifica
tion Parts

This restriction arises from the system of procedure classification used in
the Kidsgrove Compiler (see section 1.2.4.1). This restriction is not neces
sary to the Whetstone Compiler, and in fact cannot be checked.

(vi) Dynamic Own Arrays are not Allowed

This restriction arises because the size of own arrays is determined at
translation time, in order that storage space for the elements can be allocated
at the start of the run time stack.

The difficulty of implementing dynamic own arrays is that the size and
shape of an own array, whose elements must be retained when the block in
which it is declared is left, may change on subsequent entries to the block.
A proposed technique for implementing dynamic own arrays is described in
a paper by Ingerman [38].

APPENDIX 3

The KDF9 Computer

The KDF9 Computer has been designed and manufactured at the Data Pro
cessing and Control Systems Division of the English Electric Company,
Kidsgrove, England. It is a medium-sized computer, with a magnetic core
storage of up to 32,768 words, each of 48 binary digits. The basic input/output
medium is 8-hole paper tape. Magnetic tape is also used for input/output and
as backing storage. Other input/output devices can include line printers,
punched card equipment, etc.

One of the most distinctive features of the KDF9 is its 'nesting store accum
ulator' which allows the evaluation of arithmetic expressions to be pro
grammed in what is essentially a Reverse Polish notation. The nesting store
(a form of push-down store or stack) comprises 16 cells. In general,
arithmetic operations, logical operations, shifts, etc., are all addressless and
work on the top one or two words of the nesting store. A similar set of 16
cells, comprising the 'subroutine jump nesting store' is used for the storage
of links during the activation of subroutines. Finally, there is a set of 15 Q
stores (index registers) which can be used to modify fetch and store instruc
tions, control shifts, etc., and which can also be used as fixed point accumu
lators. Fetch and Store operations are used to transmit information between
the core store and the top cell of the nesting store.

The KDF9 Computer has an extensive order code, made up of one-, two
and three-syllable instructions (a syllable is 8 binary digits). An assembly
language, called User Code, is used to prepare programs for conversion into
binary, and can be regarded, for most purposes, as being the actual machine
code of KDF9.

Example

42 ; Y6; (Fetch contents of store Y6 to top of nesting store)
Y106 ; (Fetch contents of store Y106 to top of nesting store)
+ F; (Floating point addition of top two cells of nesting

store)
= Y7 ; (Store contents of top cell of nesting store in Y7)
J42; (Jump to instruction with reference 42)

This example demonstrates a repeated loop, each time forming

Y7:= Y6 + Y106

A full description of User Code is given in the KDF9 Programming Manual
[73], and a more complete description of the KDF9 Computer itself has been
given by Davis [13].

APPENDIX 4

KDF9 ALGOL Hardware Representations

Basic Symbol 8-Channel 5-Channel
(Reference (Flexowriter) (Creed)
Language) Version Version

o to 9 o to 9 o to 9
A toZ AtoZ A to Z
a to z a to z
+ + +

X X X

/ / /
*DIV

t t **
< < *>
< < *>

:2: > :2:
> > >

"* "* "* ~9~ *EQV
:::::> !mp *IMP
V or *OR
1\ and *AND not "'NOT

10 10 V

-7

* ,
.- .- *=

* £
(((
)))
[[*(
]] *) ,

[*Q
j *U

begin ~~~!!! *BEGIN

274 APPENDIX 4

The KDF9 Flexowriter produces 8-hole paper tape, using 6 holes as in-
formation channels, according to the following table

Value
Dec. Octal Function

0 00 Space
1 01
2 02 CRLF
3 03
4 04 Tab
5 05
6 06 Case shift
7 07 Case normal
8 10
9 11
10 12
11 13
12 14
13 15
14 16

Symbol
Normal Shifted

15 17 /
16 20 0 t
17 21 1 [
18 22 2]
19 23 3 <
20 24 4 >
21 25 5
22 26 6 X
23 27 7
24 30 8 (
25 31 9)
26* 32
27 33 10 :£
28** 34
29 35 + "* 30 36 *
31 37
32 40
33 41 A a
34 42 B b
35 43 C c

* Non-escaping key (i.e. no carriage motion).
* * Separator symbol.

APPENDIX 4 275

Value Symbol
Dec. Octal Normal Shifted

36 44 D d
37 45 E e
38 46 F f
39 47 G g
40 50 H h
41 51 I
42 52 J j
43 53 K k
44 54 L 1
45 55 M m
46 56 N n
47 57 0 0

48 60 P P
49 61 Q q
50 62 R r
51 63 S s
52 64 T t
53 65 U u
54 66 V v
55 67 W w
56 70 X x
57 71 Y y
58 72 Z z
59 73
60 74
61*** 75
62**** 76
63 77

* * * End Message character.
**** ESCAPE character.

APPENDIX 5

Implementation of Program Testing Facilities

The position identifiers which are used to provide the trace and retroactive
trace facilities are placed in the object program as parameters to a special
operation 'TRACE'. This operation is generated at each procedure or label
declaration if the ALGOL program was preceded by the appropriate message
to the Translator.

At run time the action of this operation is to place its parameter, i.e. a
representation of the characters forming the position identifier, in a 'circular
store' (a 32-word vector which is addressed cyclically). The value of the store
used by the procedure TEST controls whether this position identifier is also
printed; at a failure the contents of the circular store are printed, thus giving
a retroactive trace.

The standard failure information (line number, last position identifier,
etc.) and the post-mortem facility use the information stored on the 'failure
tape' as a byproduct of translation. Two sets of information are stored on the
failure tape; the first is a table of line number or position identifier against
object program counter. Intermingled with the entries to this table are blocks
of information, containing name list entries, which are produced when the
Translator collapses the name list.

At a failure the failure tape is scanned, in order to perform a table look-up,
using the current value of the program counter. This enables the line number
and last position identifier corresponding to the point in the ALGOL text at
which the failure occurred to be found and printed out. Scanning of the tape
then continues until a group of name list entries with block levels equal to
the current value of BN (Block Number) is encountered. These entries will be
for the current block, and allow the identifiers corresponding to all the scalars
in the current first order working storage to be found. These identifiers and the
values of the scalars are printed out. By scanning the tape until the next group
of name list entries with block levels which are less than the current value of
BN is found, the process can be repeated for the containing block. This tech
nique is used to provide post-mortem information for as many block levels
as have been requested.

APPENDIX 6

Implementation of Segmentation

A 'complete procedure' which contains no own variables can be translated
without any need for reference to the program in which it is contained as at
the end of the procedure both the name list and the translator stack will have
returned to the state they were in before translation of the procedure was
started. Furthermore the generated object program will be complete, and will
not contain any skeleton operations that need unchaining. Hence such a
procedure could be translated in isolation from the program in which it is
embedded.

However, if this is done the object program addresses and the block levels
(used in parameters to the object program operations) will be given relative
to the start of the procedure, or 'segment', instead of to the start of the pro
gram. This will not matter if the Control Routine makes the appropriate
corrections to program addresses during the activation of the procedure
(block levels need not be modified since there can be no access to non-locals).
Since the Control Routine must modify object program addresses in this way,
the position at which the sequence of object program operations generated
from the procedure is placed is no longer of importance. Thus this sequence
of operations can be kept on magnetic tape, to be brought down into core
storage only when needed, and placed wherever convenient, in fact at the top
of the stack.

At the call of a segment its object program operations are placed at the
top of the stack, before allocating space for its working storage. At the com
pletion of the activation of the segment both its operations and its working
storage are deleted from the stack. The address at which the first syllable of
the sequence of object program operations is stored is used to modify all the
object program addresses used within the segment.

Since a segment can itself contain further segments it is necessary to be
able to have several segments in the stack at anyone time, and to be able to
use the appropriate address modifier. This is done by storing these modifiers
in the stack, and setting up chains linking the positions at which the modi
fiers are stored. Two chains are needed, one for ordinary exit from a segment
by reaching its end, the other for temporary exit during use of a parameter
called by name, or for exit by means of a go to statement. (These two chains
may be compared with the dynamic and static chains for ordinary blocks and
procedures.) This technique could be extended, so that segments called re
cursively would not be stored repeatedly, using a second DISPLA Y vector
to give details of the segments that are already in the stack.

APPENDIX 7

Object Program Operations

Parameters Section No.

AOA Avoid Own Array (a) 2.3.3
BE Block Entry (n,L) 2.2.3
CA Check Arithmetic 2.5.6.1
CAB Check Array Boolean 2.5.6
CAl Check Array Integer 2.5.6
CAR Check Array Real 2.5.6
CB Check Boolean 2.5.6.2
CBFA Copy Boolean Formal Array 2.5.6.4
CBL Call Block 2.2.3
CF Call Function (a), m 2.2.3
CFB Check Function Boolean 2.5.6
CFF Call Formal Function (n,p), m 2.5.5.6
CFFZ Call Formal Function Zero (n,p) 2.5.5.6
CFI Check Function Integer 2.5.6
CFR Check Function Real 2.5.6
CFZ Call Function Zero (a) 2.2.2.3
CIFA Copy Integer Formal Array 2.5.6.4
CL Check Label 2.5.6.3
CPR Check Procedure 2.5.6
CRFA Copy Real Formal Array 2.5.6.4
CSB Check and Store Boolean 2.5.6.2
CSI Check and Store Integer 2.5.6.1
CSL Check and Store Label 2.5.6.3
CSR Check and Store Real 2.5.6.1
CST Check String 2.5.6
CSW Check Switch 2.5.6
DOWN m 2.7.2
DSI Decrement Switch Index (a) 2.4.2
DUMMY 2.5.4.3
EIS End Implicit Subroutine 2.5.4.3
ESL End Switch List 2.4.2
FBE For Block Entry (n,L), (a) 2.6.1
FINISH 2.2.8
FORA F or Arithmetic 2.6.2.1
FORS1 For Step-1st Entry 2.6.2.3
FORS2 For Step-2nd Entry 2.6.2.3
FORW For While 2.6.2.2

APPENDIX 7 279

Parameters Section No.

FR For Return 2.6.1
FSE For Statement End (a) 2.6.1
GTA Go to Accumulator 2.4.1
IFJ If False Jump (a) 2.1.5
INDA Index Address 2.3.2
INDR Index Result 2.3.2
LINK 2.6.1
"AII'"lC'D 1\1ake O""'TI. Storage Function (VI \ ..." ,,~~
.lY.lViJ.l' V',j/j,'H ~.-' • ..J

MSF Make Storage Function (n,p), m 2.3.1.1
NEG Negate 2.1.1
PB Parameter Boolean (n,p) , - 2.5.4.1
PBA Parameter Boolean Array (n,p), - 2.5.4.4
PBC Parameter Boolean Constant (a), - 2.5.4.2
PE Procedure Entry (n,L),m 2.2.3
PF Parameter Formal (n,p), - 2.5.4.10
PFB Parameter Function Boolean (a), - 2.5.4.8
PFI Parameter Function Integer (a), - 2.5.4.8
PFR Parameter Function Real (a), - 2.5.4.8
PI Parameter Integer (n,p) , - 2.5.4.1
PIA Parameter Integer Array (n,p), - 2.5.4.4
PIC Parameter Integer Constant (a), - 2.5.4.2
PL Parameter Label (a),m 2.5.4.6
PPR Parameter Procedure (a), - 2.5.4.8
PR Parameter Real (n,p), - 2.5.4.1
PRA Parameter Real Array (n,p), - 2.5.4.4
PRC Parameter Real Constant (a), - 2.5.4.2
PSR Parameter Subroutine (a), - 2.5.4.3
PST Parameter String (a), - 2.5.4.9
PSW Parameter Switch (a), - 2.5.4.7
RRJECT 2.2=6
RETURN 2.2.4
ST Store 2.1.1
STA Store Also 2.1.1
TBA Take Boolean Address (n,p) 2.1.4
TBCF Take Boolean Constant False 2.1.4
TBCT Take Boolean Constant True 2.1.4
TBR Take Boolean Result (n,p) 2.1.4
TFA Take Formal Address (n,p) 2.5.5.2
TFAI Take Formal Address Integer (n,p) 2.5.5.1.1
TFAR Take Formal Address Real (n,p) 2.5.5.1.1
TFB Take Formal Boolean (n,p) 2.5.5.2
TFI Take Formal Integer (n,p) 2.5.5.1.2
TFL Take Formal Label (n,p) 2.5.5.4
TFR Take Formal Real (n,p) 2.5.5.1.2

280 APPENDIX 7

Parameters Section No.

TIA Take Integer Address (n,p) 2.1.1
TIC Take Integer Constant 'const' 2.1.2
TICD Take Integer Constant Zero 2.1.2
TIC] Take Integer Constant One 2.1.2
TIR Take Integer Result (n,p) 2.1.1
TL Take Label (a),m 2.4.1
TRA Take Real Address (n,p) 2.1.1
TRC Take Real Constant 'const' 2.1.2
TRR Take Real Result (n,p) 2.1.1
TSA Take Switch Address (a) 2.4.3
UJ Unconditional Jump (a) 2.1.5
UP] 2.7.2
UP2 2.7.2

+ Add 2.1.1
Subtract 2.1.1

x Multiply 2.1.1
/ Divide 2.1.1

Integer Divide 2.1.1
t Power 2.1.1.1
> Greater Than 2.1.4
> Greater Than or Equal 2.1.4

Equal 2.1.4

* Unequal 2.1.4
< Less Than or Equal 2.1.4
< Less Than 2.1.4
---. Not 2.1.4
1\ And 2.1.4
V Or 2.1.4
::> Implies 2.1.4

- Equivalent 2.1.4

Here 'Section No.' gives the section where the action of the operation is
described. The notation used for parameters is as follows:

(a)
(n,p)
(n,L)

m
'const'

two-syllable program address
two-syllable dynamic stack address
block number, and extent of working storage,
packed into two syllables
one-syllable parameter
six-syllable (i.e. one word) representation of a
constant
one-syllable space

APPENDIX 8

State Variables

Details of the state variables mentioned in section 3 of the book are given
below, together with the number of the section in which they were introduced.

Name

E

V

T

TYPE

D

m

n
NLP

NL
L
Lp
Lo
ARITH
F
LD

Section No.

3.1.2

3.4.1

3.4.1.1

3.1.2

3.4.1.1

3.5.2

3.4.1.1
3.4.1.1

3.4.1.1
3.4.1.1
3.4.1.1
3.4.1.2.1.2
3.1.2
3.4.4.1
3.4.3.2.1.1

Description

Statement/Expression marker. Set to one for
statements and to zero for expressions.
Declaration/Statement marker. Set to zero at
begin, to one for declarations and to two for
statements.
Contains a bit pattern representation of the type
of the current declaration.
Contains a bit pattern representation of the type
of expression, etc.
Own marker. Set to one whilst an own declara
tion is being processed.
ALGOL section marker. Set to zero if the section
contains merely a delimiter, to one if it contains
an identifier and a delimiter, and to two if it
contains a constant and a delimiter.
Block level count.
Name List Pointer. This points to the next free
space in the name list.
Value of NLP at the start of the current block.
First order storage count.
First order storage count for own identifiers.
Second order storage count for own identifiers.
Arithmetic expression marker.
For clause marker.
Last Delimiter (i.e. the delimiter preceding the
delimiter currently being processed).

Details of further state variables and markers are given with the Translator
flow diagrams in Appendix 11.

APPENDIX 9

Details of the VariOllS Implementations of the
Whetstone Compiler

In this Appendix a few brief details are given of the four versions of the Whet
stone Compiler which have been written to date (July, 1963). These are for the
English Electric KDF9 and DEUCE, the Ferranti PEGASUS and the N.P.L.
ACE computers. (Work has just started on a fifth version, for the Ferranti
MERCURY computer, at the Systems Engineering Department of Associated
Electrical Industries, Ltd, Manchester.)

No estimates are given of the speed of translation and of running of trans
lated programs on the various computers since they would not be very mean
ingful without detailed knowledge of the computers. However, a paper by
Ryder, describing experience with the PEGASUS version of the compiler
(which was the first to be completed), and giving detailed comparisons of its
speeds and capabilities with those of other methods of programming the
computer, is to be published shortly.

(i) KDF9
A brief description of the KDF9 computer has been given in Appendix

3. The Control Routine and the Translator are essentially as described in
sections 2 and 3 of this book, and occupy 2500 and 1100 48-bit words,
respectively. (There are on average 3 instructions per word.)
(ii) DEUCE

The DEUCE version of the compiler was written as a joint project by
Liverpool University and English Electric Co., Ltd. The Translator was writ
ten by J. M. Watt, D. S. Collens and G. M. Gillow of the Computer
Laboratory, Liverpool University, and the Control Routine by M. A.
Batty of the Atomic Power Division, The English Electric Co., Ltd.

The compiler accepts KDF9 ALGOL, subject to the following restric
tions:

(a) no own arrays;
(b) no strings (but there is a facility for copying strings from the input

to the output);
(c) code procedures are allowed in a restricted form but require a

knowledge of the internal workings of the Control Routine.
Three different paper tape hardware representations of ALGOL are

allowed - a 5-hole modified Telex code can be used in addition to the 5 and
8-hole representations given in Appendix 4. Data input and output is on
5-hole tape, using a set of procedures which are available without explicit
declaration. The Translator and Control Routine (including input/output
and standard functions) occupy approximately 6000 and 4000 32-bit
words, respectively (one instruction per word).

APPENDIX 9 283

(iii) PEGASUS
The PEGASUS ALGOL compiler was written by K. L. Ryder and Miss

M. J. MacDonald of the Mathematical Services Section, De Havilland
Aircraft Co., Ltd.

The compiler accepts KDF9 ALGOL subject to the following restrictions:
(a) no own variables or arrays;
(b) no strings (but there is a facility for copying strings from the input

to the output);
(c) array parameters can only be called by name, and not by value;
(d) as with the DEUCE ALGOL compiler, a knowledge of the internal

workings of the Control Routine is required in order to write code
procedures.
The compiler accepts the 5-hole ALGOL representation given in Appen

dix 4. Procedures for data input and output, which use 5-hole tape, and
also the standard functions, are provided by means of code procedures.
The Translator and the Control Routine occupy approximately 3100 and
1100 39-bit words, respectively (two instructions per word).

(iv) ACE
The ACE ALGOL compiler has been written by M. Woodger and C. W.

Nott of the Mathematics Division of the National Physical Laboratory.
The compiler is intended as a very close copy of the KDF9 version, for

use until a KDF9 computer is installed at the N.P.L.
The main difference is that code procedures have to be written in ACE

machine code.
The compiler accepts the 8-hole ALGOL representation given in Appendix

4. Input and output is provided on 80-column punched cards using code
procedures. The Translator and Control Routine occupy approximately
3900 and 2400 48-bit words, respectively (one instruction per word).

APPENDIX 10

Control Routine Flow Diagrams

The flow diagrams consist of a set of separate routines corresponding to the
various object program operations, and a set of subroutines.

The subroutines are headed by the name of the corresponding object pro
gram operation and its parameters. In general, each routine ends by reaching
'Control' which causes the routine corresponding to the object program oper
ation indicated by the current value of the program counter to be obeyed.

Subroutines are headed by a name in a rectangular box, followed by a list
of any parameters to the subroutine. Each subroutine ends by reaching
'EXIT'. A subroutine is called by giving its name and any parameters, and
returns at EXIT to the instruction following the one that called the sub
routine.

In general all quantities which are manipulated are stored in a complete
word and are ~"~al to the routine or subroutine in which they appear. Packing
and unpacking items into parts of words is given explicitly.

Quantities which have a global scope rather than being local to a routine
or subroutine are:

i program counter (in terms of syllables)
AP accumulator pointer
PP procedure pointer
Lp initially extent of first order own working storage,

then used by the MOSF operation
Lo extent of second order own working storage
S the stack (a vector)
prog the object program (a vector)
DISPLA Y (a vector)

Certain other quantities temporarily retain their values between different
routines and subroutines - when this is the case it is mentioned explicitly.
The parameters to operation routines are automatically expanded to full
words, and both they and the parameters to subroutines are regarded as being
'called by value', (i.e. the parameters are evaluated on entry to the routine or
subroutine and thereafter used as local variables).

The identifiers Ll, L2, etc., are used to label certain instructions in the
routines.

Notation

Advantage is taken of the fact that mUltiple subscripting is not used in order
to compress instructions such as

S [AP] := X; S [AP-l] := Y

APPENDIX 10 285

into the single instruction

S [AP, AP-1] := X, Y

A vertical line is used to separate a set of alternatives. For example at a
branch point controlled by the test

S [AP] = 'real' I 'integer' ?

the path labelled 'YES' would be followed if'S [APr contained the bit pattern
representing either 'real' or 'integer'.

The function designator D is such that

D (n,p) - DISPLAY En] + p

The following notation is used to denote the expansion of a section of a
word into a complete word

The notation

hI (X)
h2 (X)
sl (X)
s23 (X)

1 st half of word X
2nd half of word X
1st syllable of word X
2nd and 3rd syllables of word X

word (X, Y) or word (X, Y, Z)

denotes the word made by combining the parameters, as two half-words or
three double-syllables, respectively. The reverse process uses the notation

words (X, Y) or words (X, Y, Z)

For example

words (a, b) := S [AP]

indicates that the contents of'S [APr are split into two half-words which are
expanded into complete words and assigned to a and b.

Bit Patterns

The various bit patterns and their meanings are

011000000
001000000
000100000
011001000
001001000
000101000
111001000
101001000
100101000
011001001

'real'
'integer'
'Boolean'
'real address'
'integer address'
'Boolean address'
'real proc. address'
'integer proc. address'
'Boolean proc. address'
'real array'

286

001001001
000101001
011000100
001000100
000100100
000010000
000010001
000000100
000000110
000000000

APPENDIX 10

'integer array'
'Boolean array'
'real procedure'
'integer procedure'
'Boolean procedure'
'label' or 'formal switch'
'switch'
'procedure'
'implicit subroutine'
'string'

The term 'arith' (arithmetic) is used to mean 'real' or 'integer' and the term
'alg' (algebraic) to mean 'arith' or 'Boolean'.

Index to Control Routine Flow Diagrams

Routines Page
AOA 301
AT ENTRY TO CONTROL ROUTINE 289
BE, PE 289
CA,CB,CL,CAR,CA~CAB,CPR,CFR,CF~

CFB, CST, CSW 301
CBL, CF, CFZ 289
CBFA, CIFA, CRFA 297
CFF, CFFZ 289
CSB 295
CSI 295
CSR 295
CSL 295
DSI 301
DUMMY 291
EIS, RETURN 291
ESL 301
FBE 315
FORA 315
FORS1, FORS2 317
FORW 315
FR 315
FSE 315
GTA 291
IFJ 291
INDA,INDR 313
LINK 315
MOSF, MSF 311
NEG 303
REJECT 291

APPENDIX 10 287

Page
ST,STA 309
TBA, TIA, TRA 299
TBCF, TBCT 301
TBR, TIR, TRR 299
TFA 293
TFAI 293
TFAR 293
TFB 293
TFf 293
TFL 293
TFR 293
TIC, TRC 299
TICO, TICl 301
TL 299
TSA 301
UJ 291
+,-,x 303
/ 303

303
t 305
<,<,=,;:>,>,=F 307
/\, V,:::),_ 307

307

Subroutines:

COND TAKE 323
ENTER 321
GO 319
GO FORMAL 321
LEAVE 321
TAKE FORIviAL 321
TYPE CHANGE 323
UDD 321

288 APPENDIX 10

AT ENTRY TO CONTROL ROUTINE

This uses the values contained in Lo and Lp , which have been set up by the
Translator. The program counter i, PP and 'DISPLAY [0]' are set to zero.
AP is set up to indicate the extent of own storage. The final action is to reach
'Control', which causes the routine corresponding to the operation given in
the first syllable of the object program to be obeyed.

CBL (Call Block)

This uses the subroutine GO, and uses the local variable a to contain the
address of the corresponding BE operation before this is placed in the object
program counter. The machine code link LI (the address of 'Control') is
stacked.

CF (Call Function)

Similar to CBL, but hands the value of its parameter m to the subroutine
GO, and places its parameter a in the object program counter.

CFZ (Call Function Zero)

A version of CF, in which m is automatically set to zero.

CFF (Call Formal Function)

This routine uses its (n,p) parameter (evaluated using the local variable
s)to locate the appropriate formal accumulator, and then uses the subroutine
GO FORMAL.

CFFZ (Call Formal Function Zero)

As CFF, but m is automatically set to zero.

BE (Block Entry)

All the work of this routine is performed by the subroutine ENTER.

PE (Procedure Entry)

After checking that its parameter m is equal to the variable m', which
has been set up by the subroutine GO in the operation which called the P E
operation, the routine uses the subroutine ENTER.

APPENDIX 10

AT ENTRY TO CONTROL ROUTINE

CBL

i:= 0
PP := DISPLAY [0] := 0
AP:= Lo + Lp

Control

289

CF(a), m
i := i + 1

AP:= AP - 2
a := i + 3

CFZ (a)
i 0= i + 3 i := i + 4

I

L

CFFZ (n,p)
i:= i + 3

s:= D(n,p)
m:= 0

J,

m:= 0

i:= a

h2(S[PP+2]) := L1
L1: Control

words (P,a) := S[s]

CFF(n,p), m
i:= i + 4

s':= D(n,p)

1

I GO FORMAL I (m,P,a,L1)

L1: Control

BE (n,L) P E (n,L), m
i := i + 3 i := i + 4

l~ .L-___ YE~S __ ------m =~m' ?

I ENTER I (n,L) NO .

Control '
FAIL

290 APPENDIX 10

RETURN
This routine, which uses the subroutine LEAVE, has a local variable LINK

which is set up with the machine code link given in the current set of stacked
link data. The final action of RETURN is not to call 'Control' for the next
operation, but to jump to the machine code instruction whose address is given
in LINK.

EIS (End Implicit Subroutine)

After copying the contents of the top accumulator into the current result
accumulator, this routine joins RETURN.

REJECT
Removes the top accumulator, by decreasing AP by two.

GT A (Go To Accumulator)

This routine uses two local variables q and a (set up with the value of PP
and the program address, respectively) which characterize a stacked label.
When GT A causes the current block to be left, the subroutine UDD is used
and AP and PP are reset. The final action is to reset the program counter.

DUMMY

Performs no action.

IFJ (If False Jump)

The routine checks that the top accumulator contains a Boolean value, and
resets the program counter using the value of the parameter a, if the accumu
lator has the value false.

UJ (Unconditional Jump)

Resets the program counter, using the value of its parameter a.

RETURN
i:= i + J

APPENDIX 10

EIS
i:= i + 1

S[PP-2,PP-J]:= S[AP-2,AP-J] 1
~

i := hJ(S[PP+2])
LINK:= h2(S[PP+2])

I LEAVE I
EXIT TO LINK

GTA

i:= i+ J
words (q,a) := S[AP-2]

q =PP?

J,

~
AP:= AP - 2

i:= a
Control

IFJ (a)

i:= i + 3
S[AP-J] 7

.}

I UDDI (q,sJ(S[PP+J]))

PP:=q
AP := s23(S[PP+J])

1 Boolean

S[AP-2] = true?

~ i:~YFS
AP:= AP-2

Control

291

REJECT

i:= i + J
AP:= AP-2

Control

DUMMY

i:= i + J
Control

UJ(a)

i:= i + 3
i:= a
~.

292 APPENDIX 10

TFR (Take Formal Real)
This routine uses the subroutine TAKE FORMAL, which in simple cases

will act as a normal subroutine, producing either a value or an address in the
top accumulator and returning directly to the point at which the routine
calls the subroutine COND TAKE. In more complicated cases TAKE
FORMAL will involve the use of a subroutine of object program operations
or a call on a procedure. In such a case a return is made to the routine TFR
from the operation EIS or RETURN, at the position L4 (the address of the
machine code instruction calling the subroutine COND TAKE) which had
been stacked by TAKE FORMAL. Thus in all cases COND TAKE is reached,
and finally the contents of the top accumulator are checked and, if neces
sary, converted to type real. The local variable s is used during the evaluation
of the (n,p) address of the formal accumulator.

TFI (Take Formal Integer)
As TFR, except that the conversion is to type integer.

TFB (Take Formal Boolean)
As TFR, but without the need for any conversion.

TFL (Take Formal Label)
As TFB, but does not call COND TAKE.

TFA (Take Formal Address)
In this case, as the action of the routine after calling TAKE FORMAL

is to return to 'Control', Ll (the address of 'Control') is given as a parameter
to TAKE FORMAL.

TFAR (Take Formal Address Real)
After calling TAKE FORMAL, the routine checks that the resulting top

accumulator contains a real address.

TFAI (Take Formal Address Integer)
As TF AR, but checks that the top accumulator contains an integer

address.

TFR (n,p)

i:= i+3
s:= D(n,p)

APPENDIX 10

TFI(n,p)

i:= i+3
s:= D(n,p)

293

ITAKE FORMAL! (s,JA)

L4: ICOND TAKE

/TAKE FORMAL! (s,L5)

L5: ICOND TAKE I
S[AP-1] ? S[AP-1] ?

t
I integer
t

Float S[AP - 2]
S[AP-1] := 'real'

Control

I real
t

Contr~l

TFB(n,p)

;:= ;+3
s := D(n,p)

I other
..v

FAIL

I integer
t

Control

-1-
I real I other
t -}

Fix S[AP-2] FAIL
S[AP -1] : = 'integer' -

Control

TFL (n,p)

;:= i+ 3
s:= D(n,p)

ITAKE FORMAL I (s,L6)

L6:lcOND TAKE

ITAKE FORMAL! (s,L7)

L7: S[AP-1]?

lother

FAIL

TFA (n,p)

;:= i + 3
s:= D(n,p)

S[AP-l] ?

*

ITAKE FORMAL! (s,Li)

L1: Control

lBoolean

Control

TFAR(n,p)

i:= i + 3
s;= D(n,p)

J other

FAIL

ITAKE FORMAL! (s,L2)

L2; S[AP-l]?

~real
FAIL Control

* llabel

Control

TFAI(n,p)

i:= i + 3
s:= D(n,p)

ITAKE FORMAL! (s,L3)

L3: S(AP-l]?

~mte~
FAIL Control

294 APPENDIX 10

CSR (Check and Store Real)
This routine is similar to the operation TFR in that it uses the subroutines

TAKE FORMAL and COND TAKE to evaluate an actual parameter which
might be represented by a subroutine of object program operations. How
ever CSR uses the stacked formal pointer (FP) to address the required formal
accumulator. The final actions, after any necessary conversion to type real,
are to store the value of the actual parameter in the formal accumulator,
and to increase FP by two, using the local variable s.

CSI (Check and Store Integer)
As CSR, except that the conversion is to type integer.

CSB (Check and Store Boolean)
As CSR, but without the need for any conversion.

CSL (Check and Store Label)
As CSB, but does not call COND TAKE, and replaces the bit pattern in

the second word of the formal accumulator with the bit pattern from the
accumulator produced by TAKE FORMAL.

APPENDIX 10 295

C~ C~

i := i + 1 i := i + 1

ITAKE FORMAL/Ch2(S[PP+ID.L8) I TAKE FORMALI (h2(S[PP+1]). L9)

U: ICOND TAKE

S[AP-1] ?

Float S[AP-2]

real

s := h2(S[PP+ 1])
S[s] := S[AP-2]
AP:= AP - 2

h2(S[PP+J]) := s + 2
Control

CSB

other

i:= i + 1

ITAKE FORMAL! (h2(S[PP+ 1]), LI0)

LIO: ICOND TAKE

S[AP-1] ?

1
lBoolean

s := h2(S[PP+1])
S[s] := S[AP-2]
AP:= AP-2
h2(S[PP.+l]) := s + 2

Control

L9: I COND TAKE

S[AP-I] ?

integer

Fix S[AP-2]

s := h2(S[PP+l])
S[s] := S[AP-2]
AP:= AP-2
h2(S[PP+l]) := s + 2

Control

CSL

i:= i + 1

i lAKE FORMAL! (h2(S[PP+i]), Lil)

Lll: S[AP-J]?

J other

FAIL

1
tabel

s := h2(S[PP+J])
S[s,s+1]:= S[AP-2,AP-J]
AP:= AP - 2
h2(S[PP+J]) := s + 2

Control

296 APPENDIX 10

CRFA (Copy Real Formal Array)
This routine copies an actual parameter array into local working storage,

and sets up a suitable array word in the space occupied by the formal para
meter.

Variables local to the routine are

s set up with the value of the formal pointer
C used to control any possible conversions from type integer to

type real
W starting address of the array
w address of the storage mapping function of the array
b base address of the array
W' starting address of the new copy of the array
m number of elements in the array
A temporary store for array elements
j counter used during copying of the array

CIFA (Copy Integer Formal Array)
As CRFA, but with possible conversions from type real to type integer.

CBFA (Copy Boolean Formal Array)
As CRF A, but without any conversions.

L*

APPENDIX 10

CRFA CIFA

i:= i + 1 i:= i + 1
s := h2(S[PP+l])

S[s+l] ?
s := h2(S[PP+l])

S[s+l] ?

other

FAIL

CBFA

i:= i + 1
s := h2(S[PP+l])

S[s+l] ?

1

real
array

C:=O
J,

tOlean
array

c:= 0

integer
array

C:=l C:=2
I

J,

words (W,w,b) := S[S[s]]
m := hl(S[w])

W' := s23(S[PP+l]) jf
j=m?

NO~YES

C:= 0 FAIL
J,

/ ~
A := S[W+j] AP:= W' + m

C? s23(S[PP+l]) := AP

297

.-------'f
O

2 S[s] := word(W',w,b+ W' - W)
h2(S[PP+l]) := s + 2

...

,II
S[W'+j]:= A
j :=j+ 1

J

Control

Fix A

298 APPENDIX 10

TRA (Take Real Address)
This routine sets up an accumulator with an evaluated address calculated,

using the local variable s, from the dynamic stack address given as a para
meter to the TRA operation, and the bit pattern 'real address'. If p is zero,
then the address is adjusted to be that of the result accumulator, and the bit
pattern to 'real procedure address'.

TIA (Take Integer Address)
Similar to TRA.

TBA (Take Boolean Address)
Similar to TRA.

TRR (Take Real Result)
Stacks an accumulator with the contents of the word whose dynamic

address is given as a parameter, and the bit pattern 'real'.

TIR (Take Integer Result)
Similar to TRR.

TBR (Take Boolean Result)
Similar to TRR.

TRC (Take Real Constant)
Stacks an accumulator containing the constant given in the six syllables

following the operation TRC.

TIC (Take Integer Constant)
Similar to TRC.

TL (Take Label)
Stacks an accumulator containing the (PP, a) representation of a label.

APPENDIX 10 299

TRA (n,p) TIA (n,p) TBA (n,p)

i := i + 3 i := i + 3 i := i + 3
s := D(n,p) S := D(n,p) s := D(n,p)

S[AP+J]:= 'real address' S[AP+J]:= 'integer address' S[AP+J]:= 'Boolean address'

~~--_f:r---__ ----"l
p=o?

~ NO~: SS[A~+Il + 'proc

TRR (n,p)

i:= i + 3
s:= D(n,p)

S[AP+J] := 'real'
J

TRC 'const'

i:= i+ 7
S[AP+J] := 'real'

1
J

S[AP]:= s
AP:=AP+2
Control

TIR (n,p)

i:= i + 3
s:= D(n,p)

S[AP+J] := 'integer'

1
S[AP] := S(s]
AP:=AP+2

Control

TIC 'const'

i:=i+7
S[AP+J] := 'integer'

1
S[AP] := const
AP:=AP+2
COIltrol

TBR (n,p)

i:=i+3
s:= D(n,p)

S[AP+J] := 'Boolean'

1

TL (a), m

i:=i+4
S[AP+l] := 'label'
S(AP]:= word (DISPLAY[m],a)

AP:=AP+2
Control

300 APPENDIX 10

TICl (Take Integer Constant One)

Stacks an accumulator with the value']'.

TICO (Take Integer Constant Zero)

Similar to TICl.

TBCT (Take Boolean Constant True)

Stacks an accumulator with the value 'true'.

TBCF (Take Boolean Constant False)

Similar to TBCT.

TSA (Take Switch Address)

Stacks an accumulator with a switch address.

DSI (Decrement Switch Index)

Uses the local variable x whilst decreasing the switch index by one. If the
switch index is then zero the program counter is replaced by the value given
as a parameter to DSf.

AOA (Avoid Own Array)

This operation replaces itself by the operation UI.

ESL (End Switch List)

This operation, reached in the case of an out-of-range switch index, leads
to the fajlure routine.

Check operations

These operations check the bit pattern of the appropriate formal accumu
lator, addressed (using the local variable s) by means of the stacked formal
pointer, according to the following table

CA
CB
CL
CAR
CAl
CAB
CPR
CFR
CFI
CFB
CST
CSW

'arith' I 'arith address' I 'arith procedure' I 'imp. s.r.'
'Boolean' I 'Boolean address' I 'Boolean procedure' I 'imp. s.r.'
'label' I 'imp. s.r.'
'real array'
'integer array'
'Boolean array'
'procedure'
'real procedure'
'integer procedure'
'Boolean procedure'
'string'
'switch'

. APPENDIX 10 301

TICl TICO TBCT TBCF

i:= i + 1
S[AP] := 1

i:= i + 1
S[AP] := 0

i:= i + 1
S[AP] := true

i:= i + 1
S[AP] := false

{

J
S[AP+1] := 'integer'

AP :=AP+2
Control

TSA (a)

i:= i + 3
S[AP+1] := 'switch'
S[AP] := wor.d (O,a)

AP:= AP+2
~

ADA (a)

i:= i+3
prog [i-3] := 'VJ'
Control

J 1
1

S[AP+1] := 'Boolean'
AP:= AP !- 2

Control

DSI(a)

i:= i + 3
x := S[AP + 3] - 1
x = O?

1

YF£ r---NO----,.
I S[P13]:= x
~,,~a

Control

ESL

i:= i + I
FAIL

CA,CB,CL,CAR,CALCAB,CPR,CFR,CFLCFB,CS~CSW

Jother

fA!1

i:= i+ 1
s := h2(S[PP+ 1])

S[s+1] ?

!
lsee table

h2(S[PP+l]) := s + 2
Control

302 APPENDIX 10

+,-,x
The routines for these three operations are given together, using the no

tation 'op' to indicate where the appropriate operation is required. The
subroutine TYPE CHANGE, which is used to set up the operands in the stores
X and Y, has two different exits, according to the type of the two operands.

NEG

In this operation, which uses the local variable X, a failure is indicated if
the top accumulator is not arithmetic.

/
The local variables X and Yare used to contain the values of the two

operands, converted to type real if necessary. A failure is indicated if either
operand is not real or integer.

This operation, which performs integer division, using the top two accumu
lators as operands, indicates a failure if either of the accumulators does not
contain an integer.

APPENDIX 10

+,-,x
i:= i + 1

/
X:= Xop Y(fl.pt.) X:= Xop Y

~-

real

real

S[AP-2]:= X
Control

i:= i + 1
X:= S[AP-4]
S[AP-3] ?

integer

Float X
S[AP-3] := 'real'

Y:= S[AP-2]
S[AP-J] ?

Float Y

other

FAIL

other

FAIL

S[AP-4] := X/Y(fl. pt.)
AP:= AP-2
~

NEG

i:= i + 1
X:= S[AP-2]
S[AP-l] ?

{,
I real

~
X:= - X (fl. pt.)

}
S[AP-2]:= X
Control

;:= i+ 1
S[AP-l, AP-3]?

{,
linteger

303

I integer t -
X:= - X

I

S[AP-4] := S[AP-4] 7 S[AP-2]
AP:= AP - 2

304 APPENDIX 10

t (Exponentiation)
This routine performs exponentiation according to the rules given in

section 3.3.4.3 of the Revised Algol Report. The routines exp (exponential)
and In (natural logarithm), which operate on either real numbers or integers,
are used. The subroutine 'Power (a, b)' performs the repeated multiplication

a X a X •• X a (b times)

where a is of type real or integer and b is a positive integer, by repeated
shifting down of the exponent and squaring of the base.

The local variables X and Yare used to contain the two operands, and the
local variables Ml and M2 to contain bit patterns representing the type of
X and Y, respectively.

The routine reaches FAIL if X and Yare such that 'X t Y' is undefined
according to section 3.3.4.3 of the Revised Algol Report.

Float X

APPENDIX 10

t

i:= i + 1
X, M I , Y, M2 := S[AP-4,· ., AP-I]

MI = 'arith' ?

1'""1
MI='integer' ?

NO

X=O?

roteger

Y=O?

S[AP - 3] := 'real'

~
FAIL Ml = 'integer' ?

l=o

X?

*
--- ~YES

X:= 1·0 X:= 1

FAIL Y<O? X:=exp(Yx!n(X»)

~
FAIL X:= 0·0

y> O?

~

305

X := Power ex, - y) X:= Power (X, Y)
Ml = 'integer' ?

S[AP-4] := X
AP:= AP - 2

Control

Float X
S[AP-3]:= 'real'

X:= llX

306 APPENDIX 10

<,<,=,>,>,,*
The routines for the various relational operations have been combined,

using the notation 'op' to indicate the particular operation required. The local
variables X and Yare set up by the subroutine TYPE CHANGE.

1\, V, =>, =
The routines for these Boolean operations have been combined in a similar

way. A failure is indicated if either of the operands is not Boolean.

This routine indicates a failure if the top accumulator is not of type Boolean,
otherwise it replaces it with the opposite Boolean value.

APPENDIX 10

<.., <,=,;;>, >,:f.

integer

X:= X - Y(fi. pt.)

S[AP-l] := 'Boolean'
X op O?

~
X:=X- Y

S[AP-2] :=true
Control

S[AP-2] := false
Control

A, V,::J,_

i := i + 1
S[AP-l, AP-3] ?

'it
tBoolean

307

tother

FAIL S[AP-4] := S[AP-4] op S[AP-2]
AP:= AP - 2-

J other

FAIL

i:= i + 1
S[AP-l] ?

t

Control

1 Boolean

S[AP-2] := --, S[AP-2]
Control

308 APPENDIX 10

ST (Store)

That part of the flow diagram which is common to both ST and ST A is
referred to elsewhere as STORE. The variables X and Yare used for the values
of the top two accumulators, and Ml and M2 for their accompanying bit pat
terns. Of these Yand M2 are retained for use outside STORE.

The notation 'alg (a, b)' denotes a Boolean function designator, which has
the value true when the sections of the bit patterns a and b which denote type
information both represent 'Boolean' or both represent 'arithmetic' (i.e. real or
integer). Similarly 'arith (a, b)' has the value true if the type information
sections of the bit patterns are identical, but has the value false if one represents
a real quantity and the other an integer quantity.

Using these function designators, STORE checks that the contents of the
top two accumulators are acceptable, and determines whether any real
integer conversions are necessary, before performing the required storage.

STA (Store Also)

After using STORE the operation ST A moves the top accumulator down
one place, and checks that the next variable in the left part list is of identical
type.

APPENDIX 10

ST STA

1
J

t
i:= i + 1
Ml := S[AP-3]
Ml = 'alg address' ?

YES~NO

~ ~~
M2 := S[AP-l] FAIL
M2 = 'alg'? --

X:= S[AP-4]
Y:= S[AP-2]

FAIL

arith (M}>MJ = true?

M2 = 'rea1/?

/o _________ ~
Float Y Fix Y
M2 := 'real' M2 := 'integer'

S[X]:= Y
Ml = 'alg proc address' ?

AP:= AP - 4

t
lSTA

S[AP];= Y
S[AP+lJ := M2
AP:= AP+2

309

arith (M2, S[AP-3]) = true?

310 APPENDIX 10

MSF (Make Storage Function)
This routine sets up a storage mapping function and the array words for m

arrays, the last one of which has the dynamic address (n,p), given with this
operation. The various counters which are local to this routine are

j addresses the stacked accumulators
b base address
w set up with the value of the working storage pointer
y storage position for the mapping function
d used in the calculation of the mapping function
N number of dimensions
W starting address
s used in the evaluation of the address of the array word
u upper bound
I lower bound

The various checks incorporated in the routine are that the stacked
accumulators contain integers or real numbers, and that no lower bounds
exceed the corresponding upper bounds.

MOSF (Make Own Storage Function)
Most of this routine is common to MSF, but the storage mapping function

and space for the arrays are set up in own storage under control of the
pointer Lp , rather than in local working storage.

. ,,, ~,

APPENDIX 10

MSF(n,p), m MOSF(n,p), m

i := i+4 i := i+4
s := D(n,p) s := D(n,p)
w := s23(S[PP+1]) w:= s23(S[PP+ID
y:= w

I

Jreal
Fix I

real

fuu

\j/
d:= 1

N:= (AP-w)/4
j:= b .:= 0

I := S[w+4 xj]
S[w+4xj+l] ?

integer

u := S[w+4xj+2]
S[w+4 xj+3] ?

y:=Lp
I

other
FAIL

integer other

x:= u - I
x"> O?

~

FAIL

b : = b + I X d FAIL
d:=dx(x+1) -
j=N-l?

S[y] := word (d,N)
W:=y+N
b:= W - b

m=O?

311

MSF
s23(S[PP+ 1]) := W
AP:=W

S[s] := word(W,y,b)
W:= W+d
b:= b + d
m :=m-1

Control s:= s - 1

312 APPENDIX 10

IN DA (Index Address)
The local variable n is used to determine the number of accumulators

containing integers or real numbers at the top of the stack. If an accumulator
containing an algebraic address is found then the operation is being used for
a subscripted variable. The local variables W, wand b are set up with the
starting address of the array, the address of the storage mapping function,
and the base address of the array, respectively. Two further local variables, A
and j, are used in the calculation of the stack address of the array element
specified by the subscripted variable, and for controlling the loop of instruc
tions used for the case of a multi-dimensional array, respectively. Checks are
made that the resuItingaddress is within the confines of the array,.and that the
subscripted variable has the correct number of subscript expressions.

In the case of the operation being used for a switch designator, an
accumulator containing the address of a switch or a formal switch wiIl be
found. The local variables P and a are used for the value of PP and the pro
gram address, which characterize the switch. The subroutine GO or GO
FORMAL is used to activate the switch block.

INDR (Index Result)
The flow diagram of IN DR is almost identical with that of IN DA, except

that finally, in the case of its being used for a subscripted variable, the value
rather the address of the subscripted variable is stacked, and the accompany
ing bit pattern modified accordingly.

INDA

1

.real integer

'if

APPENDIX 10

\11
i:= i + J
n:= 0

J
'1
'f

S[AP-l] ?

!
alg address

,

INDR

1

other

313

switch I
formal switch

Fix S[AP-2]
L

words' (W,w,b) := S[S[AP-2]]
j:= J

t'
n:= n + J

AP:=AP- 2

0< A - W < hl(S[w]) ?

S[AP-2]:= A

~

A:= b + S[AP]
n = h2(S[w]) ?

YES

,
S[AP+3] := S[AP]
words (P,a) := S[AP-2]

AP:=AP- 2
S[AP+l] = 'formal switch' ?

i:= a
h2(S[PP+2]) := L1

~----------------~ Control

J=n?

A := A + S[AP+2xj] X S[w+j]

INDR

S[AP-2] := SeA]
S[AP-J] := S[AP-J] - 'address'

Control

314 APPENDIX 10

FOR W (For While)
The start of this routine is similar to FOR A. However after using STORE

the second subroutine of object program operations is used to evaluate the
Boolean expression F. If this has the value true then the program counter is
set so that the controlled statement will be obeyed, otherwise the current
value of the program counter (which indicates the next for list element) is
stored.

FOR A (For Arithmetic)
This routine stores the program counter in'S [PP-l], whilst it uses the

subroutine of object program operations to obtain the address of the con
trolled variable. The program counter is then reset so that the value of the
arithmetic expression can be found. After using the subroutine STORE to
perform 'V := A' the program counter is set up with the address of the first
operation of the controlled statement.

FBE (For Block Entry)
In addition to performing the tasks of BE (Block Entry) this routine stores

the addresses of the first of the set of object program operations generated
from the controlled variable and the controlled statement, and resets the
program counter to point at the first for list element.

FSE (For Statement End)
This routine causes the for block to be left, and a jump to be made to the

operation following the FR (For Return) operation.

FR (For Return)
This routine resets the program counter to point at the current for list

element.

LINK
This routine jumps to the machine instruction whose address has been

stored by a for list element operation.

APPENDIX 10 315

FORW

i:= i + I
S[PP-l]:= i
i:- hl(S[PP-2])
h2(S[PP+2]) := L22

Control
rTake Address of Vl
L LINK J

L22: i:= S[PP-l]
h2(S[PP+2]) := L23

Control

[
Take E]
LINK

L23: lSTORE/
h2(S[PP+2]) := L24

Control

[
Take F J
LINK

L24: S[AP-I] = 'Boolean'?

~YES
FAIL S[AP-2] = true?

--~

j'~"2(S~'~j

AP:= AP - 2

FR

i:= i + I
i := hl(S[PP+2])

QuurQ!

LINK

i:= i+ 1
LINK:= h2(S[PP+2])
~

FORA

i:= i + I
S[PP-l]:= i
i:= hI(S[PP-2])
h2(S[PP+2]) := L20

Control r Take Address of V I
L LINK J

L20: i:= S[PP- I]
h2(S[PP+2]) := L21

[
~~:~r~l]
LINK

L2I: h/(S[PP+2]):= i
lSTOREI

i := h2(S[PP-2])
Control

FSE(a)

i:=i+3
i:=a
I LEAVE I

AP:=AP- 2
Control

FBE (n,L), (a)

i:= i +5
S[PP-2] := word(a,i)
i:= hl(S[PP+2])

IENTERI (n,L)
Control

316 APPENDIX 10

FOR S1, FOR S2 (For Step, 1st and 2nd Entries)

These routines use the notation

{81} for 8 [PP + 3,PP + 4]
{82} for S [PP + 5,PP + 6]
{R} for S [AP - 2,AP -1]

The subroutine STORE (the common part of 8T and 8TA) has values of
Yand M2 as byproducts. The subroutines' +' and' - ' perform addition and
subtraction, respectively, on their two parameters (accumulators) and re
place the top accumulator, ({R}), with the result.

FOR S1 performs

81:= V:= A; 82:= B;
if sign (82) X (81- C) > 0 then go to exit;

FOR S2 performs

82 := B; 81 := V := V + 82;
if sign (82) X (S1- C) > 0 then go to exit;

FORS]

i:= i + 1
S[PP-f] := i
i := h]CS[PP-2])
h2CS[PP+2]) := L25

Control

[
Take Address of V]

LINK

L25: i:= S[PP- 1]
h2(S[PP+2]) := L26

Control

[
Take A]
LINK

L26: ISTOREI
{Sf} :'= Y,M2

hf(S[PP+2D := i
i:= i + 1
h2(S[PP+2]) := L27

Control

[
Take BJ
LINK

L27: {S2}:= {R}
AP:= AP - 2

1

APPENDIX 10

FORS2

i:= i + f
h2(S[PP+2]) := L29

Control

[
Take B J
LINK

L29: {S2}:= {R}
AP:= AP - 2
S[PP-lJ := i
i := hI(S[PP-2])
h2(S[PP+2]) := L30

Control

[
Take Address of V]

LINK

LSO: i:= hf(S[PP-21)
h2(S[PP+2]) := L31

Control

[
Take Address of V]

LINK

L31: ICOND TAKEI

317

I + I ({R}, {S2})
I STORE I

L28:

\lI
h2(S[PP+2]) := L28

Qm!rQl

[Take ~
LINK

I I ({Sf}, {R})
sign (S2) =1= sign (R) ?

NO

{Sf} := Y, M2
i := S[PP~I]

t

hf(S[PP+2]) := i

i:~ h2<fP- 2Jl 1
AP:= AP - 2

Control

318 APPENDIX 10

GO
This subroutine sets up various items of stacked link data, and then pro

cesses the 'actual operations' in order to set up the formal accumulators.
Variables that are local to this subroutme are

q set up with the value of PP on entry to the subroutine
PAR contains each of the 'actual operations' in turn
b set up with a program address, if an 'actual operation' has such

a parameter
s set up with a stack address, evaluated from the dynamic

address, if an 'actual operation' has such a parameter

The Boolean function designator 'type (n,p)' has the value true if PAR con
tains an 'actual operation' which has an (n,p) parameter. (The fact that n
occupies 6 bits and p occupies 10 bits has been ignored in using the pro
cedure words to unpack them into complete words).

Each 'actual operation' causes the storing of a bit pattern in the appropriate
formal accumulator, according to the following table

PR
PI
PB
PRC
PIC
PBC
PRA
PIA
PBA
PFR
PFI
PFB
PL
PSW
PPR
PSR
PST

'real address'
'integer address'
'Boolean address'
'real'
'integer'
'Boolean'
'real array'
'integer array'
'Boolean array'
'real procedure'
'integer procedure'
'Boolean procedure'
'label'
'formal switch'
'procedure'
'implicit subroutine'
'string'

APPENDIX 10

IGO I (m)

m':=m
h2(S[AP+2]) := PP
q:=PP
PP:= AP+2
hJ(S[PP+2]) := i
AP:= AP+5
i:= i- 8

m=O'l

NO~
1 ~

PAR:= prog [11.

~

319

words (n,p) := prog [i+1,;+2] b:= prog[i+1.i+2J
8:= D(n,p) PAR?
PAR = 'PF'? /lm

S[AP, AP+l]:= S[8, s+1] S[AP]:= s

I I

PL other

S[AP] := wor (q,b)

S[AP+J] := Bit Pattem

AP:= AP+2
m:=m-J
i:=i-4

I

PRCj
PIC I
PRC

SlAP] := prog [b,. • ·,b+5]

I

320 APPENDIX 10

UDD (Update DISPLA y)

This subroutine, which is used to ensure that DISPLA Y coincides with the
static chain, uses the local variable k to contain the value of the block level
of each set of link data in turn until EXIT is reached.

ENTER
This subroutine completes the setting up of stacked link data.

LEAVE
This subroutine resets AP and PP and then calls the subroutine UDD.

GO FORMAL
This subroutine uses the subroutine GO and UDD, resets the program

counter and finally stacks the machine code link given as its final parameter.

TAKE FORMAL
This subroutine either stacks the contents of the formal accumulator

(addressed by the parameter s), or uses the contents of the formal accumulator
to provide the P and a parameters for GO FORMAL. In the former case
the notation 'mask (x)' indicates the operation of deleting the final two digits
of the bit pattern x, thus changing 'real array' into 'real address', etc.

APPENDIX 10

IUDD! (P,l)

p=o?

~NO
EXIT k:= sJ(S[p+J])

-- ~k------------~
t

DlS'PLA Y [kj = p ?

~
k>l? DISPLAY[k] :=p

I ENTER I (n,L)

AP:= PP--T-L+3
sJ(S[PP+ 1]) : = n
s23(3[PP+l]) := AP
hl(S[PPJ) := D1SPLA Y [n -1]
D1SPLAY[n] := PP
h2(S[PP+IJ) := PP + 3
EXIT

I GO FORMAL! (m,p,a,LINK)

00 (m)
IUDD! (p, sJ(S[q+ J]»
i:=a

p := hJ(S[P])
k:= k - J

AP:= PP
PP := h2(S[PP])
I UDD I (PP, sJ(S[AP+IJ)
EXIT

I TAKE FORMALI(s,LINK)

S[s+ 1] = 'imp. S.L' I 'alg proc'?

~ h2(S[PP+2]) := LINK
EXIT

words(P,a) := S[s] S[AP] := S[s]

321

I GO FORMALI (O,P,a,LINK) S[AP+l] := mask (S[s+l])
Control AP:= AP --T- 2

EXIT

322 APPENDIX 10

TYPE CHANGE

This subroutine sets up the stores X and Y with the contents of the top
two accumulators, and if one of them is of type real, converts the other to be
also of type real (the local variable t is used to control type conversions).
A failure is indicated if either accumulator contains other than a real or
integer result.

COND TAKE

This routine checks the top accumulator, indicates a failure unless it con
tains either an algebraic result or an algebraic address, and in the latter
case replaces the accumulator with the contents of the address, altering the
bit pattern appropriately.

lother

r:' A TT
rfiLL

alg

APPENDIX 10

ITYPE CHANGE I
X:= S[AP-4]
S[AP-3] ?

treal
~

t:= I

}

t = 0 ?

1 integer

t:= 0

linteger

t = 0 ?

~

323

Float X Float y EXIT (INTEGER)
S[AP-JJ := 'real' I --

1---""";;-) --+-l-<~-----I
EXIT (REAL)

ICOND TAKE I
S[AP-J] ?

alg address

S[AP-2] := S[S[AP-2]] FAIL
S[AP-l] := S[AP-J] - "address'

EXIT

APPENDIX 11

Translator Flow Diagrams

The flow diagrams consist of a set of separate routines corresponding to the
various delimiters, and a set of subroutines.

The routines are headed by the corresponding deli..-rniter; in general each
routine ends by reaching 'our which signifies a return to the central loop of
the Translator in order to fetch the next ALGOL section. However certain
routines, which deal with more than one ALGOL section, end by reaching 'OUT
2', rather than 'out'. This indicates that the last delimiter fetched has not been
dealt with, and that the routine corresponding to this delimiter is to be entered.

The flow diagrams use the same basic notation as the Control Routine
flow diagrams, given in Appendix 10. Quantities which have a global scope,
rather than being local to a particular routine or subroutine, are

i
SP

~EVEL }

FAIL
I
X
Delimiter
identifier
constant
CONS
PROC

EM
case
u
posn

object program counter (syllables)
Stack Pointer
markers for use when an error has been found in the
ALGOL text

set to indicate a name list entry of current interest
used to contain number of dimensions or parameters
current delimiter
current identifier
current constant
indicates type of current constant
set to one whilst processing the parameters of a
procedure
End Message marker
case marker
underline marker
used to indicate whether any printed characters
have appeared on the current line

line no. current line number
reI. line no. line number relative to the last position identifier
posn. identifier last position identifier
Y used in conjunction with TYPE to set up type

item [I]
syll [I]

column of name list entries
name list entry I
syll column of name list entry I

Similarly, the other constituent parts of name list entry I are indi
cated by

326 APPENDIX 11

type [I], np [I], f [I], v [I], u [I],
exp [I], dim [I], FD [I], line [I],
name [I] and d [I].

The state variables listed in Appendix 8 are also treated as global variables.
As with the Control Routine flow diagrams, details of any quantities which,
though not global, temporarily retain their values between different routines
and subroutines, are given in the accompanying text.

Notation

The action of taking the item at the top of the stack and distributing the
various constituent parts of the item into fixed locations is denoted by the
procedure 'restore'. The parameters to this procedure correspond to some or
all of the constituent parts of the item at the top of the stack. Those parts
which are to be stored in fixed locations are indicated by a parameter, en
closed in square brackets, giving the name of the location. The final action of
restore is to decrease SP by one.

For example

If the item at the top of the stack is

switch begin, 31, 34, Q
then

restore (switch begin, [x], [aJ)

deletes this item, having set x to be 31 and a to be 34.

The procedure 'prestore' is a variant of restore which does not decrease
SP.

The notation TS is used to indicate the item at the top of the stack.
The bit patterns indicating type are split into 12 columns, denoted by the

letters a, b, c, A, B, ... , H, J. One or more columns of a bit pattern can be
specified using the appropriate letters.

For example

ABG (TYPE) := 1

sets columns A, Band G of the state variable TYPE to one, and

aG (type [IJ) = 1

has the value true if columns a and G of the type column of name list entry I
are equal to one.

The subroutine STACK has, as parameters given on separate lines and
enclosed in square brackets, any items which are to be added to the top of
the stack. The stack priorities are indicated by underlining.

APPENDIX 11

For example

I STACK I [UJ, i - 2, 13]
MOSF, 0, 0

will stack the item 'UJ, i - 2, 13' and then the item 'MOSF, 0, 0'.

327

The subroutine COMPILE Uses a similar notation to indicate any oper
ations (and their parameters) to be added to the object program. The list
of operations is preceded by an integer (enclosed in round brackets) which
gives the total number of syllables to be added to the object program.

ICOMPILEI (9) [LINK]
FSE ()
FBE (), (a)

Bit Patterns

The various bit patterns and their meanings are

abcABCDEFGHJ
100111000100
100 1 1 101 0 1 0 0
100110100100
010111000100
010111010100
010110100100
001111000100
001111010100
001110100100
001000000100
100111000101
100111010101
100110100101
100000000101
010100001000
100100001000
000000000010

'real'
'integer'
'Boolean'
'real array'
'integer array'
'Boolean array'
'real procedure'
'integer procedure'
'Boolean procedure'
'procedure'
'real procedure zero'
'integer procedure zero'
'Boolean procedure zero'
'procedure zero'
'switch'
'label'
'string'

The bit patterns used for the internal representations of the delimiters,
stacked items and object program operations can be chosen in order to
facilitate the various manipulations and tests on the bit patterns used in the
Compiler. However, the choice of bit patterns is largely governed by the
facilities in the order code of the particular computer on which the compiler
is being implemented; therefore the bit patterns used in the Whetstone
Compiler are not given here.

328 APPENDIX 11

Index to Translator Flow Diagrams

Routines:
array
AT ENTRY TO TRANSLATOR
begin
do
else
end
for
go to
if
own
procedure
real, integer, Boolean
step, until, whlle
switch
then

[
]
(
)
+, -, x,/,...;-, t
<,<,=,:>,>,-:j::.
-,=>,V,I\,-.

Subroutines:
ACTOP
ADDRESS
ARRAY BD
BCR
BEGIN STATE
BLOCK BEGIN
CHECK OP
COLLAPSE
COMBINE
COMPARE
CONSTANT
DEC
DECL
DICT

Page
333
331
331
359
355
365
357
351
351
333
335
333
357
333
353
337
339
341
343
345
347
349
349
355
359
361
363

401
409
389
367
391
377
381
407
409
369
395
393
379
371

DIM
END BLOCK
END STATE
ENTRY
ERR
EXP
FOR ','
FS END
FUNCTION
GENERATE
IDENTIFIER
IMP SR
NUMBER
OWN ARRAY
PARAM ENTRY
PARAMETER
PROC CALL
PROC HEADING
READ
RESULT
SCAN
SPECIFIER
TAKE

APPENDIX 11

TAKE IDENTIFIER
UNCHAIN
UNSTACK
UPDATE BUFFER
VALUE

Page

391
405
391
381
405
389
403
403
A11
"tIl

393
371
403
373
387
385
411
399
383
369
411
413
385
395
397
409
393
375
385

329

330 APPENDIX 11

AT ENTRY TO TRANSLATOR
As this routine is the first one entered at the start of a translation its first

task is to set the various markers and state variables to their initial values.
The markers referred to by the statement 'Zero markers' are

R, LEVEL, FAIL, buffer, line buffer, i, EM, case, u, posn identifier, rei. line no.,
line no., ARITH, Lo, n, F, PROC, D, Tand TYPE.

The routine then checks that the program commences either with begin,
or begin preceded by one or more labels. The local variable x is set up for use
in the subroutine BLOCK BEGIN, which forms the program block in the
stack, name list and object program (even if the ALGOL program is a com
pound statement). The subroutine BLOCK BEGIN is entered by means of
its second entry point to avoid any checking of the contents of the top of
the stack.

begin

This routine uses the subroutine BEGIN STATE to check whether the
delimiter begin starts the first statement of a block.

If the begin is found to be the start of a controlled statement which is a
labelled block or compound statement a marker (bl) is attached to the item
'for begin' at the top of the stack (using the local variable x). The routine
checks the validity of the use of begin from the current values of state variables.
An extra check has to be made to ensure that begin does not follow the
delimiter' : = ' .

j

APPENDIX 11 331
AT ENTRY TO TRANSLATOR

Zero markers
posn := Lv := SP := NLP := E := ABG(TYPE) := a(y),:= 1

I BCRI (3)
Delimiter?

I begin I ':'

t

x : = word (J ,0,1)

I BLOCK BEGIN (entry 2)1

~
Delimiter := ';' aAF(T):= 1

W X{O

lother

FAIL

posn. identifier := identifier
reI. line no. := 0

IDECLI (1)

1 BCR I (3)

Delimiter?

U':' j~
I STACK I [begin (I), .0]

T:= V:=O
2.!!!

lother

FAIL

begin

~YES
FAr t

LD=':'?

NO

IBEGIN STATE 1

V:=O
TS = for begin ?

restore (for begin, [x])

I STACK I [for begin (bl),x,Q]

out

332 APPENDIX 11

real, integer, Boolean
These routines, after checking that the state variable T is zero, set it up

with the appropriate bit pattern (using the local variable y). The subroutine
DEC is then used to check whether the current delimiter indicates the start
of the first declaration of a block.

switch
Similar to the above routines. The state variable D is also checked, and

TYPE is set up to indicate a designational expression.

own

Mter checking the validity of the use of this delimiter the state variable D
is set.

array
The subroutine DEC is used as described above. The subroutine UN

STACK completes the parameter of an UJ operation if this declaration fol
lows a procedure or a switch declaration.

A check is made that the delimiter is not immediately preceded by own.
The state variable D is inspected to decide whether to stack the operation
MSF or to generate AOA and to stack the operations UJ and MOSF.

real

y:= 0
aABCG(y) : = 1

i

APPENDIX 11
integer

y:=O
aABCEG(y) := J

t
T= O?

YF$~~
I ~

'V
T:=y

IDECI
out

333
Boolean

y:=O
aABDG(y) := 1

.J,

----------------------,----------------------

own
(T = 0) 1\ (D = 0) ?

yES~~AIL
D:= 1

IDECI
out

1 oilier

F IL

array

I DEC I
I UNSTACK I (13)

T?

to
bABCG(T) := 1
D=1 ?

switch
(T=O) 1\ (D = O)?

YES~ NO

t ~AIL
bAF(T):= 1
TYPE:= 0
AF(TYPE) := 1

IDEC)
out

taG(T) = 1

a(T):= 0
b(T):= 1
D=l ?

ICOMPILE 1(3) [AOA ()]

ISTACKI rUJ, i-2, 131
lMOSF,O,QJ

ont

334 APPENDIX 11

procedure
After using various state variables to check the validity of use of this

delimiter, a procedure block is set up in the stack.
If the procedure has no parameters the procedure identifier is· 'declared'

using the subroutine DECL, and the operation PE is added to the object
program. The next delimiter is then fetched in order to check whether the
procedure body is in ALGOL or in User Code.

On the other hand, if the procedure has parameters the procedure identifier
is not declared until the formal parameter part has been processed, when the
number of parameters will be known (a check is made that an identifier does
not appear twice in the list of formal parameters). The local variables a and
b are used to preserve details of the name list entry for the procedure identi
fier, found using the subroutine ENTRY, until the identifier is 'declared'
in the subroutine PROC HEADING, which also deals with the value and
specification parts.

The subroutine CODE BODY processes a procedure body which is in
User Code up to and including the semi-colon following the delimiter
ALGOL (no flow diagram is given for this subroutine, since it is highly
machine-dependent).

" ,

APPENDIX 11
procedure

IDECI
IBCRI (1)

((T = 0) V (aG(T) = 1) 1\ (D = 0) ?

1"
a(T):= 0
cG(T):= 1

IENTRYI
a.:=x
b:= i
NL:= NLP
NLP:= NLP-tl
PROC:= 1

I BCWRI (1)

IENTRyl
x = O?

n:= n -+ 1
V:=2

Delimiter?

tOiliN

Ym~
line rIl := line no. FAIL
d[/(:~ f[I] := 1 --
np[/]:= (n,L-t3)

L:=L-t2
X:= X-+ 1
Delimiter?

other

Delimiter = KDF9 ?

335

1';'
aGJ(T):= 1

I DECLI (2)

NL:=NLP
NLP:= NLP-+l
item [NL] := item [I]
line [NL] := 0

[COMPILE 1(4) [PE(), 0]

T:=O

BCR (3)

336 APPENDIX 11

This routine deals with the three possible uses of the delimiter ': =' .
In the case of a switch declaration the switch block is set up in the stack

and the object program, and the switch identifier is 'declared'.
If the delimiter is used in a for clause, operations are generated for the con

trolled variable, and the parameter of the UJ operation (generated as an
incomplete operation at the delimiter for) is completed to the CFZ operation,
using the local variable a. The state variables E and ARITH are set for the
arithmetic expression which must follow the current delimiter.

The third possible use of the delimiter is in an assignment statement. A
failure is given if the delimiter is used inside a procedure call. Mter using the
subroutine TAKE to deal with the variable (simple or subscripted) which
precedes this delimiter, the top of the stack is inspected to decide whether
ST or ST A is to be stacked.

APPENDIX 11

(m=:~vl~
FAIL

bF(T) = I

n :=n+ 1
E:=O

IGENERATEl

T?

o

I STACK I [switch begin, , i+4,Q1
X:=l
~(l)

ICOMPILE!c6) rBE(n,l)1
IPSI()j

ill!!
F=O?

(TAKE I (0) PROC=O?

TS= fOl'?

NO~
~ restore (fO~, [a])

FAIL prog[a-2,a-I]:=i+l

I COMPILE I (5) [LINK j
CFZ()
FORSI

(STACKI fror, a, i-3,g]
lfORSI, i-I,ll

E:=O
ARITH:= 1

337

other

338 APPENDIX 11

This routine deals with the use of this delimiter for a subscripted variable
(or a switch designator) or as the start of a bound pair list in an array declara
tion.

In the first case the array or switch identifier is processed by the subroutine
TAKE, after setting column b of the global variable Y, and the delimiter is
stacked with certain state variables. Finally the state variables E, TYPE and
ARITH are set up for the arithmetic subscript expression which must follow.

In the second case the array identifier is preserved in the stack beneath the
MSF or MOSF item, using the local variable x. In the case of an own array
the bound pair list is dealt with by the subroutine OWN ARRA Y, which
returns direct to the central loop of the Translator. For a non-own array the
delimiter is stacked, with a marker D to identify its current use.

APPENDIX 11 339

(LD =')' ! ']') V (m * 1) ?

NO~ES
1__ ~AIL

T=O? --

I BEGIN STATE I
1 UOlher
~

lIMP SR I
Y:=O
beY) := 1

I TAKE 1(0)

b(type [ID := 1
y:=o
a(Y) := 1

IMSF

restore (MSF, [xD

I STACK I fidentifier]
MSF,x+1,0
'[D', 1,0,2 -

j
=IS=TA-'-C=K""-'I -lWOrd(ARITH, E, TYPE)l

'[',1, PROC, I,Q J
PROC:= 0

E:=TYPE:=O
ABCG(TYP E) : = 1
ARITH:= 1

out

TS?

J, 1 MOSF

restore (MOSF, [x])

ISTACKI [identifier]
MOSF,x+1,Q

IOWN ARRAYI

340 APPENDIX 11

After dealing with the completion of the expression before this delimiter,
the top of the stack indicates whether a subscript expression or an array bound
pair list has been completed.

In the case of a subscript expression the number of dimensions is put into,
or checked against, the dim column of the name list entry for the array or
switch identifier. (A check is made that a switch designator contains only a
single sUbscript expression.)

For an array declaration, the identifiers in the array list, which have been
preserved in the stack beneath the MSF or MOSF items, are unstacked and
'declared', using the local variables Nand Nb and the information given in
the state variables T and X. A check is made, using the local variable y, that
the final sUbscript bound was preceded by the delimiter' :'. The subroutine
OWN ARRAY, which processes the bound pair list of an own array declara
tion, reaches this routine via entry 2 in order to declare the identifiers in the
array list. The variable q is set up by OWN ARRA Y for use by this routine.

ENTRY 2

I
I

APPENDIX 11

~(l)
I UNSTACKI (I)

TS'/
I I othtt

restore ('£0', [X], [y)) FAIL

~~.
C(TYPE) := 0 FAIL

E:= J
ARJTH:=O

TS?

I[
restore ('['. [X]. [PROC). [I])
restore ([A RlTH]. [E]. [TYPE])

IDlMI (X)

(bF(type [I]) = J) A (X =F- J) '/

NO~
t '1AIL

E= I '/

341

=~
I STACKI [IND.lll ICOMPILEI(l) [INDR] IMOSF lMSF

J,

restore (MOSF, [N]) restore (MSF. [N»

Lo:= La + q X N + X ICOMPILE I (4)[MSF(n. L+N+2), N]
ICOMPlyl (4) [MOSF (O.Lp+N-l),N] 1

NO

restore ([identijier])

IDECLI (3)
N:=N-/

'lI
N1:=N
m :=1

1
N=O?

YES

342 APPENDIX 11

(

The state variable m indicates whether this delimiter is being used as an
expression bracket or in a procedure call.

The expression bracket can be used in a statement or in an array or switch
declaration. In the former case the subroutine EXP is used to change the state
variable E from statement level to expression level if necessary. In the latter
case a failure is indicated if E is set to statement level, unless P ROC shows
that an actual parameter is being processed. In either case the subroutine
IMP SR is used to check whether this delimiter is the start of an actual para
meter expression. Finally the delimiter is stacked.

In the case of a procedure call bracket, a check is made that the state
variable TYPE is not set to 'designational'. An incomplete operation UJ is
generated, to be completed later to the 'Call Function' operation, and four
items are stacked. These are (i) a reminder to complete the UJ operation,
(ii) the procedure identifier, (iii) values of the state variables ARITH, E and
TYPE, and (iv) the current delimiter with the value of the state variable
P ROC. Finally these state variables are set to deal with the actual parameters
of this procedure call.

APPENDIX 11

(m=2) V (LD='), I 'J') ?

~NO
FAIL T?

/' Jb(T)~ 1

(E=1) /\ (PROC=O) ?

~NO
FAIL m = 1 ?

r F(TYPE) = 1?

NO

lIMP SRI

ISTACKI ['C, PROC, 0]

PROC:= 0
out

343

(3)

344 APPENDIX 11

)

The state variable P ROC indicates whether this delimiter is an expression
bracket or a procedure call bracket.

In the case of an expression bracket the translation of the preceding ex
pression is completed by the subroutines TAKE and UNSTACK. The top
of the stack should then contain the corresponding opening bracket, which is
unstacked and discarded, after restoring the value of the state variable P ROC
stacked with it.

In the case of a procedure call bracket the translation of the preceding
actual parameter is dealt with by the subroutine ACT OPe The 'actual oper
ations' are unstacked into the object program, whereupon the stack should
contain the corresponding opening bracket. During this unstacking the chain
ing of any skeleton 'actual operations'is dealt with, using the local variable a.
The subroutine PROC CALL processes the procedure identifier and generates
the appropriate 'Call Function' operation. Finally, if the state variable E is
set to statement level the operation REJECT is generated and the next delim
iter is checked to ensure that it is an 'end of statement' delimiter.

APPENDIX 11 345

PROC= I?

ENTRY 2 ~

~ACTOPI E=l?
YES~NO

~ FAt[~~
X : ~ 0 rriRID (I)

TS?

actual PO
operation

I COMPILE I (4) [(TS)] restore (PO,[lJ)
SP := SP-I a := np[l]

np[I]:= i+ I
(d[I] = 0) 1\ (syll [I] = 0) ?

NO

syll[I] := i + 1

~
I COMPILE 1(4) [PO (a)J

X:=X+I
I
W

other '('

1
I PROC CALL I

E= I?

I UNSTACKI (2)

TS= '(' ?

YES~ 1 fAlL

restore ('(', [P ROC])
out

~ I COMPILE I (1) [REJECT] out

I BCR 1(0)

Delimiter = ';' I end I else?

~
OUT 2 FAIL

346 APPENDIX 11

+, -, x, /, -:-, t
After setting up the local variable y with the appropriate stack priority

for the current delimiter the validity of its use is checked by the subroutines
COMPARE and EXP. If this delimiter is not preceded by an identifier or a
constant the last delimiter is checked, and if the current delimiter proves to
be a unary operator it is ignored in the case of '+' (after using IMP SR to
check whether an implicit subroutine needs to be generated) and changed to
NEG in the case of '-'. The subroutine UNSTACK is used, with the para
meter y, to unstack any operators, with priorities greater than or equal to that
of the current delimiter, into the object program. Finally the current delimiter
is stacked.

+,-

y:=9

t

APPENDIX 11

x , /, -;- t

y:= 10 y:= 11

t t
I COMPARE I (TYPE, (A BCG))

Delimiter = '--:-' ?

NO

E(TYPE):= 1

~
I Expi (3)

m=O?

lIMP SRI LD?

)

Delimiter?

I IMP SR I E:=O

J
I T.kI(J) I - +

P':=JO out
E(TYPE) := 0 Delimiter := NEG

IUNSTACKI (y)

I STACK I [Delimiter,]]

out

347

1 arith operator

FAIL

other

FAIL

348 APPENDIX 11

<,<,=,>,>,=/:-
After testing the state variable ARITH, and using the subroutine COM

PARE to check the validity of use of the current delimiter the subroutine
EXP is used to change from statement to expression level, if necessary. The
subroutine IMP SR is used to check whether it is necessary to set up an im
plicit subroutine, and then TAKE is used to process any identifier or con
stant preceding the delimiter. Finally UNSTACK is used to unstack any
operators with priorities greater than or equal to the priority of the current
delimiter, which is then stacked.

=,:::::>, V, A, ---.
Except in the case of the delimiter' ---.' the action of these routines is similar

to those for the relational operators (the local variable y being used to give
the priority of the current delimiter). However extra checks as to the validity
of use of' ---.' are incorporated in its routine. Finally the state variable TYPE
is set to indicate 'algebraic' for the expression following.

y:=3

t

APPENDIX 11

<,<,=,>,>,=F-

ARITH= I?

'-=-'=~= (TYPE, (ABCG))

J V 1\

y:=4 y:=5 y:=6

t i t
ARITH= I?

~NO
FAIL I COMPAREI (TYPE, (ABG))

~ (3)

lIMP SRI
Delimiter = '-.' ?

349

y:=7

t

~(1)
IUNSTACKI (y)

LD = '-.' ! arith operator I reI operator I ']' /')' ?

NO~
m = O? FAIL

FAIL

out

350 APPENDIX 11

if
After checking the validity of use of the delimiter, the subroutine EXP is

used to change the state variable E to expression level if the current delimiter
follows the delimiter' : ='. The state variable E then differentiates between the
use of the current delimiter in a conditional expression or a conditional
statement. (The special case of a conditional expression as an actual para
meter is recognized by the subroutine IMP SR.) In the former case further
checks are made on the use of the delimiter. Finally the delimiter is stacked,
together with the values of ARITH, E and TYPE, before these state variables
are set up for the algebraic expression following.

go to
After checking that this delimiter is not preceded by an identifier or con

stant, EXP is used to check that the delimiter occurs at the start of a state
ment, and BEGIN STATE to check whether it is the first statement of a block
or a compound statement. The delimiter is then stacked and the state vari
ables E and TYPE are set up for the designational expression following.

APPENDIX 11 351

if
(LD='), I T I then) V (m =1= 0) ? ..

NO~
I EXP I (1) F AlJ:
E= I?

~
T ? LD = arith operator I reI operator I log operator?

beT) = 1 o

IBEGIN STATE I

I IMP SRI

t
I STACK I [word (ARITH, E, TYPE~

if, !J. J
TYPE:=O

ABG(TYPE):= 1
ARITH:=E:=O

out

go to
m=O?

NO

352 APPENDIX 11

then
This routine completes the object program for the algebraic expression

following the corresponding delimiter if. It then unstacks the item if and
restores the values of the state variables ARITH, E and TYPE stacked with
it. The state variable E is then used to decide whether the delimiter should
be stacked as 'then S' or 'then E'. An incomplete IF) operation is generated
and a reminder to complete it at the delimiter else is stacked with the item
'then S' or 'then E'.

N

APPENDIX 11

then
E = 1 ?

NO

\

TS = if I else I iog operator?

NO~

ITAKEI (I)

I UNSTACKI (2)

TS = if?

YES

SP:= SP - 1

D(TYPE) := 1

restore ([ARITH],[E],[TYPEJ)
E= I?

I COMPILE 1(3) [lFJ ()]
out

353

354 APPENDIX 11

else
This routine completes the object program of the statement or expression

preceding the current delimiter, and then checks that the top of the stack
contains 'then S' or 'then E'. (The special case of a procedure identifier with
zero parameters between the then and else, shown by the occurrence of 'then S'
at the top of the stack when this routine is entered, is dealt with by the sub
routine END STATE.) The incomplete IFJ operation is completed, using the
local variable a, and an incomplete UJ operation is added to the program.
Finally 'else S' or 'else E' is stacked, with an obligation to complete the UJ
operation when the end of the statement or expression following the current
delimiter is reached.

The state variable T is used to decide whether the current delimiter follows
a label or a lower bound in an array declaration.

In the former case EXP is used to check the validity of the use of the label,
which is then declared using the subroutine DECL, after BEGIN STATE
has checked whether the label precedes the first statement of a block or
compound statement.

In the latter case the current ALGOL section is processed by the subroutine
ARRAYBD.

thenS

lEND STATE I

/ r thenS

SP:= SP - 1

APPENDIX 11

else
TS?

other

I TAKE I (1)

D(TYPE) := 0

IUNSTACKI (2)
TS = thenS I thenE?

YES

prestore (then, [aD
prog [a, a + 1] : = i + 3
ICOMPILEI (3) [Ul()]

TS?

logical operator

D(TYPE):= 1

FAIL

I thenE

'¥
SP:= SP - 1

! STACK I [elseS, i-2,1]

E:= 1

Ir.::S=T:-:-A--::C=K~1 [else E, i - 2, £]

ARITH:= TYPE:= 0
ABG(TYPE):= 1

out

! bG(T)=1

I ARRAY BD I
out

IEXpl (2)

aAF(T) := 1

I BEGIN STATE!
X:=O

IDECL! (1)

posn. identifier := identifier
ref. line no. := 0

T:=O
out

out

lother
FAIL

355

356 APPENDIX 11

step, until, while
After checking that these delimiters are used only in a for clause the

arithmetic expression preceding the current delimiter is dealt with by the
subroutines TAKE and UNSTACK. The top of the stack should then be
FORSI. The local variable a is set up with the address stacked with the item
FORSI. This is used to change the operation FORSI in the object program
to FO RW if necessary.

In the case of the delimiter step, FO RS I is restacked with '-1' as the
'address' to indicate that the delimiter until is required. In the case of the
delimiter while the state variables TYPE and ARITH are set up for the algeb
raic expression following.

for
After using the state variables m and F and the subroutine EXP to check

that the delimiter is used at the start of a statement, the subroutine BEGIN
STATE is used to check whether this is the first statement of a block or com
pound statement. An incomplete UJ operation is generated, and the item for
is stacked with a reminder to complete the UJ operation at the delimiter
':='. The state variable TYPE is set to 'arithmetic' for the simple or sub
scripted controlled variable following the current delimiter, and the for clause
marker F is set.

1 ,rep

a=-1 ?

~NO

APPENDIX 11

step, until, while

F= I?

FAI?1=
ITMm (1)

IUNSTACKI (2)

TS=FORSI ?

~lYES
FAIL

restore (FORSl, [aJ)
Delimiter?

TYPE:= 0
ABG(TYPE) := 1
ARlTH:= 0

357

FAIL ~ [FORSl,-I,Q]

I COMPILE I (2)[LINKJ
FORS2

out

STACK [FORS2,..Q] I a =-1 ?

t~NO

for

(m=O) 1\ (F=O) ?

~>m
FAIL ~ (2)

IBEGIN STATE I

F~ l
-- prog [a] := FORW

ISTACKI [FORW,g]

I COMPILE I (1) [LINK]
out

I COMPILE I (3)[UJ()]

I STACKI [for, i,g]

C(TYPE):= 1
F:=1

out

358 APPENDIX 11

do
The subroutine FOR ',' completes the object program for the preceding

for list element, and a block is set up for the controlled statement. The local
variable x is used to complete the parameter of the CFZ operation generated
at the delimiter': =', and the local variable a is used to contain the address
of the first of the sequence of one or more operations generated from the con
trolled variable. The for clause marker is cleared, the state variable L set to
four to allow for the two accumulators required at run time, and the state
variables E, ARITH and TYPE are set up as for the start of a block.

After checking that this delimiter appears as the first symbol of an actual
parameter the local variable s is set to one, and the object program counter
is advanced by a sufficient number of syllables to allow the first character of
the string to be stored in the first syllable of a new word, using the function
designator new word. The 'actual operation' PST is stacked, and the symbols
of the string are changed into the standard 8-bit representation, using the
subroutine CONVERT, and added to the object program. (An 8-bit repre
sentation of ALGOL basic symbols which is common to both KDF9 ALGOL
compilers, is used, so that code procedures using strings can be used with
either compiler).

The characters of the string are fetched using the subroutine READ, the
local variable s being used to allow for nested string quotes. The state variable
P ROC is cleared whilst the characters are being fetched in order that the
symbols in a parameter delimiter are not ignored inside the subroutine READ.

After the final string quote has been converted and added to the object
program PROC is reset, and the object program counter is increased in order
to point at the next word. Finally the next delimiter is fetched to ensure that
the closing string quote is the last symbol of the actual parameter.

s :=s+ 1

APPENDIX 11

do

IFOR','I
n :=n+ 1

restore (for, [a], [x])

ICOMPILEI(9) [LI. NK J
FSE()
FBE(), (a)

prog[x,x+1]:= i-5

ISTACKlfword (V,L, NL) 1
Ifor be2in, i-4, 0 I

E:~ 1 - - ---

L:=4
AR1TH:= F:= 0 -;.'

TYPE:= 0
ABG(TYP E) : = 1

NL:=NLP
NLP:= NLP+l
item [NL] := 0

out

m=O?

YES~
(PROC=1) 1\ (LD=','! '(') ? FAIL
~YES _.-

FAIL s:=1
-- i : = new word (i)

char?

s:= s - 1

I STACK I [PST, i,Q]
char : = Delimiter

I CONVERT I
I COMPILE I (1) [symbol]

s= O?

other

TYPE:= 0
out

i : = new word (i)

~(O)
Delimiter?

t r other

FAIL

359

1 ')'
I ')' (entry 2) I

360 APPENDIX 11

This routine deals with various uses of the delimiter ','.
(i) If the state variable P ROC is set the subroutine ACT OP is used to

process the current ALGOL section.
(ii) If the for clause marker is set, the subroutine FOR',' is used to

distinguish between the use of comma between for list elements or between
subscript expressions of a variable used in a for list element. In the former
case the operation LINK is generated to complete the preceding for list
element, FORS] is generated and stacked, and the state variables TYPE
and ARITH set up for the for list element following the current delimiter.
In the latter case the current ALGOL section is dealt with completely by the
subroutine FOR',' which returns directly to the central loop of the Trans
lator.

(iii) If the state variable T is zero the current delimiter is being used
between subscript expressions, and is processed by the subroutine ARRAY
BD.

(iv) If T has been set by a scalar declaration the comma is being used
between identifiers, and the subroutine DECL is used to 'declare' the pre
ceding identifier.

(v) If T shows that a switch element is being translated the subroutines
TAKE and UNSTACK are used to complete the processing of the expres
sion preceding the current delimiter, whereupon the top of the stack indi
cates whether the comma is being used between subscript expressions of a
variable or between elements of the switch list. In the former case the
dimension counter stacked with the item '[' is increased by one, using the
local variable y. In the latter case the local variable a is used to complete
the nSIoperation generated for the preceding switch list element, and the
corresponding address stacked with the item 'switch begin' is updated to
point to the incomplete nSI operation generated for the next switch list
element. An incomplete UJ operation is generated and is chained to the
previous UJ operation, if any, using the local variable x.

(vi) Finally, the top of the stack is used to differentiate between various
uses of the comma in an array declaration. If the top of the stack contains
MSF or MOSF the comma is being used between identifiers in the array
list, and after checking that the current ALGOL section contains an identi
fier, this identifier is stacked under the item MSF or MOSF, whose counter
is increased by one (using the local variable x). If the top of the stack con
tains UJ or a begin item the comma is being used between array segments,
and after checking the own marker D the appropriate item (MSF or
M 0 SF) is stacked. Otherwise the comma is being used between subscript
expressions and the subroutine ARRAY BD is used to process the current
ALGOL section.

N*

APPENDIX 11

PROC=l ?

NO~
F!l? ~

~
ES NO \ACTOP\

TYP1""= n I ... ~" -
y out

[fQB3J T=~O? y
I COMPILEI (2) [LINK] NO ES

FORSI

I STACK I [FORSI, i-I,ll] IARRAY Bol
TYPE:= 0

ABCG(TYPE):= I out
ARITH:= 1 aG(T) = 1 ?

E= I?

~
FAIL X:= 0

bF(T) = I? - IOECLI(O)

NO out

~(l)
I UNST ACKI (1)

restore ('[', [y J) FAIL

1 switch begin

restore (switch begin, [x], [aJ)
prog[a, a+l] := i+3

361

1
J T I,~"

I STACK I ['[',j+l,lI]
out

TS?

~ [switch begin, i+ 1, i-l...4,Q]

I COMPILE I (6) [UJ(X) 1
DSJ()J

out t

362 APPENDIX 11

This routine deals with various uses of the delimiter' ;'.
(i) If the state variable T is set to indicate a scalar declaration the sub

routine DECL is used to declare the current identifier, and the state vari
ables T and D are cleared.

(ii) If T indicates an array declaration a check is made that the current
delimiter is immediately preceded by ,]" the state variables T and Dare
cleared, and UNSTACK is used to complete the AOA operation generated
at the start of an own array declaration.

(iii) If T indicates a switch declaration the subroutines TAKE and
UNSTACK are used to complete the processing of the final designational
expression, whereupon the top of the stack should be the item 'switch begin' .
The addresses stored with this item are preserved in the local variables x
and a; these are then used to complete the last DSloperation to the oper
ation ESL and to unchain and complete the UJ operations to the operation
EIS. Finally, the block level n is reduced by one and the state variables T,
TYPE and E are set for the start of the next declaration or statement.

(iv) Finally, if T is clear, the delimiter is being used to complete a
statement. The subroutines END STATE and UNSTACK are used to com
plete the processing of the constituents of the statement. The top of the
stack is then inspected to determine whether the subroutine FS END must
be used to complete one or more for statements, or whether this delimiter
completes a procedure body, in which case the subroutine END BLOCK
is used. Otherwise the top of the stack should contain one or other of the
items in the following table

begin
begin (bl)
begin (1)
begin (bl)(1)
for begin (bl)
proc begin (bl)

APPENDIX 11 363

aG(T) = 1 ?

NO

bG(T) = I?

(LD=']') 1\ (m=O) ?

x:=O
IDECLI (0)

D :=T:=O
out

bF(T)=l ? YES1~
FAIL

T:=D:=O --

IUNSTACKI (13) ~(I)
T= O? IUNSTACKI (1)

~YES

FA~ t
lEND STATEI

>1 I
I TS?

1 r---j ----.-_._--.------lJ'----1
T rOrbegin

bEND'

IUNSTACK I (1)

out

FAIL ~ :tch begin ?

restore (switch begin, [x], [aJ)
prog [a, a+1] := i +3

IcorLEI (~[~fr)l
.--------:JI'tt

x = O?

~
a:=prog[x,x+1] n:=n-1
prog[x,x+J] :=i-1 T:=TYPE:=O

E:=l
ABG(TYPE) := 1

.Q!!!

364 APPENDIX 11

end
A check is made that this delimiter does not complete a declaration and

then the subroutines END STATE and UN STACK are used to complete the
processing of the constituents of the preceding statement. If the top item ofthe
stack is 'for begin', FS END is used to complete one or more for statements.
The second entry to this routine (used by SCAN) is at the point where the
begin item at the top of the stack is inspected to determine the course of action
to be taken.

(i) If the top of the stack is begin, indicating a compound statement, it
is discarded, then n is inspected to decide whether the current delimiter
marks the end of the program, in which case the operation FINISH is
generated; the next delimiter is checked to be the end message symbol' -+',
and if FAIL indicates that no errors have been detected, the Control
Routine is entered. Otherwise the local variable x is used, whilst allowing
for a possible comment after the current delimiter, to print a warning mes
sage if the comment contains a delimiter.

(ii) If the top of the stack contains 'begin (1)' or 'begin (bl)' the sub
routine END BLOCK is used (after unstacking the 'begin (1)' if necessary).
The block level n is then inspected as in (i) above.

(iii) If the top of the stack is 'begin (bl)(1)' the subroutine END BLOCK
is used twice to complete the two blocks set up for this program, which is
a labelled block.

(iv) If the top stack item is 'for begin (bl)' the (bl) marker is removed
from this item, using the local variable x.

(v) If the top stack item is 'proc begin (bl)' the subroutine COLLAPSE is
used to collapse the name list for the procedure body, the (bl) marker is
removed using the local variable x, and the state variable NL is reset from
the stacked value.

APPENDIX 11

end

ENTRY 2

I
I

TS?

begin (bl)(I) begin (bl) proc begin (bl)

I END BLOCK I I

+ lEND rOCKI

n=O?

Delimiter = '-+' ?

~
print error message FAIL = 0 ?

~YES

restore (proc begin (bl), [xl)
restore (0,0, [NLl)

I STACK I [proc begin, x, OJ
I

x:= 0

iBCRI(4)

Delimiter?
t

FINISH EXIT TO CONTROL ROUTINE 1 M·I·~I';'
m:=O

print message
x:= 1

365

for begin (bl)

l
restore (for begin (bl), [x])

1ST ACKI [for begin, x, QJ

NO

t _____ -7 ____ ~ __ ~--~

366 APPENDIX 11

BCR
This subroutine is used to fetch the next section of ALGOL text, and to

allow for comments after the delimiters begin and';'.
The subroutine BCR in turn uses the subroutine READ to fetch the next

ALGOL symbol, and the subroutines IDENTIFIER and NUMBER to process
the constituents of identifiers and numbers.

The function of BCR is controlled by its parameter p as follows:
If p = 0, 1 or 2, a certain type of ALGOL section is expected, and this is

checked by comparing the final value of the state variable m with the value
of p; if p = 3 no check is made on the type of ALGOL section; finally, if
p = 4, the constituents of identifiers and numbers need not be processed, as
the subroutine BCR is being used to allow for an end comment, or during
scanning after an error.

APPENDIX 11

IBCRI (p)

m :=0

+ IRE~DI
.... 1
-~

char = comment ?

char = 'letter' I 'digit'I '.' I \0' ?

YES

p=4 ?

NO

m=O?

~YES
FAI'; ~

char = 'letter'?

~
identifier : = 0

!IDENTIFIER I
constant: = 0

I NUMBER I

(m=O) A (Delimiter = begin 1';') ?

F~?1=
I READ I

char =';'?

char = true I false ?

p =4?

NO

m =O?

~NO
constant := char FAIL
m:=CONS:=2 --

LD : = Delimiter
Delimiter := char

p>3?

~
:~ Em

367

l
1

368 APPENDIX 11

READ
This subroutine uses the subroutine UPDATE BUFFER, which produces

an ALGOL symbol, or a constituent of an ALGOL symbol, to form the next
ALGOL symbol. The subroutine DICT is used if the constituent is an under
lined character. If the state variable PROC is set, an extended parameter
delimiter is replaced by a comma. In order to fill the code buffer at the start
of translation the subroutine UPDATE BUFFER is entered repeatedly until
a non-blank character is produced.

In the case of the composite ALGOL symbol': =' or a parameter comment
the second item of the code buffer (A2) is inspected.

COMPARE
This subroutine checks the compatibility of the two bit patterns given as

its parameters, and is used to check that successive occurrences of an identifier
are consistent with regard to the information known or deduced about its
type. The bit patterns which are used to give type information (given at the
start of this Appendix) are designed such that two bit patterns are com
patible if they are identical or if one can be formed from the other simply
by adding in extra bits.

The function designator 'or (x, y)' gives the bit pattern containing digits
where either x or y has digits. The function designator 'dec (x)' has the value
true if x is a declared entry in the name list.

In general, the subroutine COMPARE updates the first bit pattern if it
contains less information than the second bit pattern. However, if the first
bit pattern is the type column of a declared entry in the name list a failure
is indicated for any of the following reasons.

(i) The two bit patterns differ in columns A, B, .. , J. (e.g. if an identifier
is declared to be real and is used as an integer.)

(ii) If updating would cause columns a, band c to contain more than one
bit.

(iii) If column b needs to be updated. (e.g. if a formal parameter specified
to be a procedure (which has columns a, band c left blank until it is known
whether it is used with any parameters) is used as an array or switch.)

u/lined char

APPENDIX 11

IUPDATE BUFFER I
char?

YES~
A2 = 'letter' ? EXIT

YES

I UPDATE BUFFERI
char?

10th

" l'
FAIL I UPDATE BUFFERI

char = '('?

~
FAIL char := ','

EXIT

ICOMPARE I(x, y)

or (X,y) = x?

~
EXIT or (x,y) = y ?

char:= ':='

~
dec (x) ? FAIL
~ --

0_ A ° oJ(x) = A ° oJ(y)?
xo-y ~

EXIT abc(x) = 0 ?.. FAIL
~+ --

FAIL c(y) = 1 ?

-- ~
a(y) = 1 ? x := y

~ EXIT

FAIL J(y) := 1
x:=y
EXIT

369

370 APPENDIX 11

DICT
This subroutine is used to compare the underlined characters in the code

buffer with a table (diet) of x basic symbols formed from underlined charac
ters, and their constituent characters.

The local variable a is used to refer to successive items in the table. Having
selected an item from the table the individual constituents of the basic symbol
are compared in turn with the characters produced by the subroutine up
DATE BUFFER, using the local variable b, and the notation 'cell [b]' to
indicate the various constituents. If it is found that the item from the table
agrees with a set of characters produced from the code buffer the representa
tion of the corresponding basic symbol is obtained from the last cell of the
item. Otherwise a failure is indicated, after using UPDATE BUFFER re
peatedly until the end of the sequence of underlined characters is reached.

IDENTIFIER
This subroutine uses the subroutine PACK (whose flow diagram is not

given) to form an identifier from its constituent letters and digits.
The local variable I is used to check the length of the identifier; a warning

message is printed if the identifier contains more than eight characters, and
the remaining characters are read and ignored. During the scanning of the
ALGOL text after an error has been detected the printing of the warning
message is inhibited by the global variable R.

(

APPENDIX 11

a:= 0

buffer> diet [a] ?

no YES

a:= a + 1
a=x?

~
b:= 1

cell [b] = char?

371

char = u/lined char ?

NO~

JIDENTIFIERJ

m:=l
1 :=8

1
I PACK I
I READ I

char = 'letter' I 'digit' ?

~

FAIL

1:= /- 1 EXIT
I=O? --

char = 'letter' I 'digit' ?
NO

EXlT

372 APPENDIX 11

NUMBER
This subroutine (by C. W. Nott of N.P.L.) uses the subroutine READ and

processes the constituents of a number.
Quantities local to the subroutine are

LC
Sign
Number
Store
Exp
Point
Dec

Max

last character read.
set to one if the exponent part is negative
used for the partially computed number
used during the computation of the number
set to one at the character' 10'

set to one at the character '.'
used to count number of decimal places and for any
exponent
set to one if the integer or exponent part of the number
exceeds capacity

APPENDIX 11 373

I NUMBER I

m:=2
LC := 'blank'

Sign := Number := Exp := Dec := Point.:= Max := 0

.-------:{
char = 'digit' ?

Y~
Max~? ~,.'?

YES

Store:= lOx Number+char
Store>]39 ?

~

~
(ExP;!>N°)? L;o~?

Number := Store Max: = 1
t fAIL t ~

Exp=O? Point:= 1 char = 'to' ?

NO

Exp=O?

~
FAIL Max:=O

Point = O? LC = 'blank' ?

YES ~
Dec:= Dec + 1 Constant:= Number Constant:= 1

r I
Number:= 0
Exp:= 1

I

LC = \ij'? YE,SS __ ----- NO

char = '-' ? Exp = 0 ?

~ ~
Sign := 1 char = '+' ? Point O? Sign - 0 ?

FAIL V:ax ~ ° ? ~NO ~wnbe' ~ ~£S •

LC:= char

I READ I

Number: = Constant
YEsr:AIL Dec := Dec - Number

CONS:= /

Constant : = Number
EXIT

CONS:= 0
Constant : = Number X /0 t (- Dec)

EXIT

374 APPENDIX 11

UPDATE BUFFER
This subroutine produces an 8-bit character, having allowed for case shifts,

underlining, etc. The subroutine INPUT, whose flow diagram is not given,
produces the next 6-bit tape input character, which it assigns to the local
variable code.

The subroutine uses a buffer of twelve characters (Ab .. , A12), and after
rotating the buffer to remove the character in Ab stores the newly-formed
character in A12, and produces as output in char the contents of AI.

The variable case is modified appropriately by Case Shift (CS) and Case
Normal (CN) characters. The variable u is set at an underline, and is cleared
by any character which moves the typewriter carriage. The variable posn is
set by any printed character and cleared at the end of a line. The variables
line no. and ref. line no. are increased by one for each line which contains
printed characters, by the subroutine STORE. Using the line buffer (Sb .. ,
SI2), STORE, whose flow diagram is not given, stores entries in a table of
object program counter against line no., for use by the Control Routine at a
failure.

Provision is made for a single underlined space occurring between go and
to. The end of message character '~' causes the variable. EM to be set, in
order to avoid the subroutine INPUT, whereupon further uses of the sub
routine UPDATE BUFFER simply deliver the characters already in the
buffer.

The subroutine TABLE, whose flow diagram is not given, performs a table
look up using the current code and the values of case and u in order to pro
duce a corresponding 8-bit internal representation.

APPENDIX 11

I UPDATE BUFFER I
S1 = I?

NO 1>
:~

;----~~-----------_3>i)1 rotate buffers
i' A12 := 'blank'

NO

I INPUT I char := Al
code? EXIT

u/line other

case:= 0 case:= 1 u:= posn:= 1

code?

tab I space 1 CRLF I page throw

posn=l? EM:=l

YES

posn:= 0
S12: = 1

char:= '-..'

u = I?

YES

~~~'£')' 

m!; char:= 'space' 

posn:= 1 
u:=O 

rotate buffers 
Au:= char 
char:= Al 

EXIT ""I 

lother 

'TABLE i(case, u) 

char? 

other ignored 

print message 

375 

illegal 



376 APPENDIX 11 

BLOCK BEGIN 
This subroutine is used to set up a block in the object program, stack and 

name list. 
If the top of the stack is begin this item is unstacked; the top of the stack 

is again inspected and if it is 'proc begin' the value of NL is stacked, a (hI) 
marker is added to the item 'proc begin', using the local variable a, and a new 
block is set up in the name list. Otherwise, a block is set up in the normal way, 
using the local variable x. (In order to set up a program block, the second 
entry to the subroutine is used, x being set up outside the subroutine.) 

If the top of the stack is 'begin (1)' an extra block is set up for a program 
which is a labelled block. 



ENTRY 2 

APPENDIX 11 

IBLOCK BE91ffi 

TS? 

begin (bI) 1 for begin (bI) begin 

V:=l 

EXIT 

SP :=SP-I 

TS = proc begin ? 

377 

begin 0) 

yO,d(2,L, NLl 

1 ST ACJ( I rUJ, i ;- 2, ill 

restore (proc begin, [aD jl 
ISTACJ(I[O,O,lVL J 

proc begin (bI), a,Q 

l begin (bI), Q J 
'-;=1 C=O'-;M=PI;-;-'L"=EI(7) [CBL 1 

UJO 
. BE() 

L:=O 
n :=n+ 1 

I 

t ) I 

x:= word(2,L, lVL) 
SP :=SP-I 

ISTACJ('rUJ, i~2'il l 
lbegin (bI) (1), QJ 

r-I C--O-:CM--:-P--I-LE='-(7) rCBL 1 
UJ() 

LBEO.J 

L:=O 
n :=n + 1 

( 

lVL:= lVLP 
item [lVL] := ° 
lVLP:= lVLP+ 1 
V:=l 
EXIT 



378 APPENDIX 11 

DECL 
This subroutine is used to 'declare' the current identifier, by adding type 

and dim information into its name list entry (the position of which is found 
by the subroutine ENTRY). The parameter y of the subroutine controls the 
setting up of the np and syll columns. 

The subroutine ENTRY sets up the variable x to indicate the type of name 
list entry for the current declaration (x has the value 0 if a new entry has been 
created, 1 if a declared entry was found, 2 if a used entry was found). If a 
new entry has been created, the type and dim columns are set up using the 
state variables T and X. The line and d columns are set up and then y and the 
own marker D are used to control the setting up of the np and syll columns. 
If a used entry was found, the contents of the np column are stored in the 
variable x, and a failure is indicated if the exp column has been set, since this 
identifier, now proved to be local, has previously been used in an array declar
ation. The subroutines COMPARE and DIM are used to check the compati
bility of the previous uses of this identifier with the current declaration. 
Then, after setting up the line, d, np and syll columns of the name list entry, 
the skeleton operations generated for previous uses of the identifier are com
pleted, using the subroutine UNCHAIN. 



APPENDIX 11 

IDECLI (y) 

ENTRY 2 m=J? 

I I:C-~Z~h 
*-~1 

1° 
type[I] := T 
dim[J] := X 

x? 

t 
12 

x := np[I] 
exp[I] =O? 

379 

I ~ 

y=3? 

I COMPARE I (type [J], T) FAIL 

IDIM I (X) 

line [1] := line no. 
d[J]:= J 

D=O? 

y? 

YES~O 
~ np[J] ,~ (O,L,) 10 * r 1!2 13 

np[I]:= (O,Lp+N-J) Lp :=Lp+J 

np[I] := (n,L+3) 
L:=L+1 

x=O? 

np[I] := (n,O) np[J]:= (n,L+N+2) 
syll[1] := i 

~ 
EXIT I UNCHAIN I (x, 0) 

EXIT 



380 APPENDIX 11 

CHECK OP 
This subroutine is used by the subroutine PROC HEADING to compile 

the appropriate parameter list operations. The current part of the name list 
consists of a duplicate entry for the procedure identifier and entries for the 
formal parameters. A failure is indicated if a parameter has not been specified, 
or if a parameter specified to be a switch, a string or a procedure, has been 
called by value. In the case of a label called by value, the f column is reset to 
one, in order that the operation TFL will be generated at subsequent uses of 
the parameter. The type column is used to control the generation of the 
parameter list operations, according to the following tables. 

Table 1 Table 2 

(call by name) (call by value) 

aABCG CA aABCG CSR 
aABCEG CA aABCEG CSI 
aABDG CB aABDG CSB 
bABCG CAR bABCG CRFA 
bABCEG CAl bABCEG CIFA 
bABDG CAB bABDG CBFA 
aAF CL aAF CSL 
bAF CSW 
H CST 
G CPR 
ABCG CFR 
ABCEG CFI 
ABDG CFB 

ENTRY 
This subroutine is used to search the current part of the name list for an 

entry corresponding to the current identifier. If no entry is found, a new 
entry is created, and NLP is increased by one. The variable x is set to 0 if a 
new entry has been created, to 1 if a declared entry has been found, or to 2 
if a used entry has been found. 



APPENDIX 11 

I CHECK opl 
1:= NL+1 

I=NLP? 

381 

NO~ 
type [I] = 0 ? EXIT 

~NO 
FAIL f[l] = 1 ? 

-- NO~ 

(abc(type[I]) = 0) V (bAF(type[1]) = 1)? I COMPILE I (1) [(see table 1)] 

~NO 
FAIL I COMPILE I (1) [(see table 2)] 

aAF(type[l]) = 1 ? 

NO 

1:=1+1 

I ENTRY I 
1:= NLP-1 

name [ I] = identifier? 

I=NL? 

NO~ 
1 : = 1 - 1 1 : = NLP 

item[I] := 0 
name [I] : = identifier 

NLP:= NLP+1 
x :=0 
EXIT 

f[I] := 1 

d[l] = O? 

N°K 
x:= 1 x:= 2 
EXIT EXIT -- --



382 APPENDIX 11 

PROC HEADING 
This subroutine is used by the routine procedure to declare the procedure 

identifier and to process the value and the specification parts of the pro
cedure heading. 

The value of x and I for the name list entry of the procedure identifier 
are reset from the local variables a and b, respectively, and the procedure 
identifier is declared using DECL (the second entry is used since the name 
list has already been searched for an entry corresponding to the procedure 
identifier). The entry for the procedure identifier is duplicated as the first 
entry of the current section of the name list, and the line column of this entry 
is cleared. After checking that the closing bracket of the formal parameter 
part is followed by ';', the next delimiter is fetched. If it is value the sub
routine VALUE is used to process the value part. Otherwise the subroutine 
SPECIFIER is used to check that the delimiter can start a specification part, 
and to set up the state variable T accordingly. The next ALGOL section is 
fetched. If this contains a constant a failure is indicated. If it contains an 
identifier the subroutine PARAM ENTRY is used with a parameter of one, 
to add the specification details to the name list entry for the identifier. Other
wise, if the section contains only a delimiter this is checked to ensure that 
it is either procedure or array, following real, integer or Boolean, and the 
next ALGOL section is fetched (using BCR with a parameter of one, since the 
section must contain an identifier). This process is continued until a semi
colon is reached, whereupon the state variable T is cleared. The next ALGOL 
section is fetched and inspected to decide whether a further specification part 
is to be processed or whether the end of the procedure heading has been 
reached. Finally the subroutine CHECK OP is used to generate the para
meter list operations. 



I oilier 

RATT 
~ 

o 

APPENDIX 11 

IpROC HEADING 1 

x :=a 
I:=b 

IDECL (entry 2)1 (2) 

I COMPILE I (4)[PE(), X] 
item[NL] := item [I] 
line [NL] := 0 
PROC:= T:= 0 

I BCRI (0) 

Delimiter = ';' ? 

Yffi~ 
IBCR I (0) FAIL 

Delimiter = value? 
NO 

I SPECIFIER 1 

IBCRI (3) 

m? 

2 

aG(T) = 1 ? FAIL 

YFS~-
aCT) := 0 . FAIL 
Delimiter? --

t procedure 1 array 

b(T):= 1 

" , 

IBCR I (I) 

Delimiter? 

T:=O 
I BCR 1(3) 

(m=O) 1\ (Delimiter = 'specifier') ? 

383 



384 APPENDIX 11 

VALUE 
This subroutine is used by the subroutine PROC HEADING to process 

the value part of a procedure heading. The subroutine P ARAM ENTRY is 
used to clear the f column and set the v column of the name list entries for the 
identifiers appearing in the value list. At the delimiter';' the next ALGOL 
section is fetched, using BCR with a parameter of zero, since this section 
should contain only a delimiter. 

PARAM ENTRY 
This subroutine is used by the subroutine VALUE, with a parameter of 

zero, as described above (a failure is indicated if an identifier appears more 
than once in a value list), and by the subroutine PROC HEADING, with a 
parameter of one, to add in the specification details to the name list entry for 
a formal parameter (a failure is indicated if an identifier appears more than 
once in the specification part). In the case of a parameter specified to be a 
switch, the dim column is set to one, and in the case of a parameter specified 
to be an array or procedure, it is set to '-1' (since the number of dimen
sions or parameters is not known). 

SPECIFIER 
This subroutine is used by the subroutine PROC HEADING to check that 

the current delimiter can start a specification, and then to set the state vari
able T accordingly. 



o 

I',' 
I I 
W 

/[I]= 11 

APPENDIX 11 

I VALUE I 

IBCRI (1) 

IPARAM ENTRY I (0) 

t 
IBCRI (0) 

EXIT 

IPARAM ENTRY I (y) 

IENTRYI 
y=O? 

I other 

~ 
FAIL 

type[l] =O? 

~YES 
FAIL fII] := 0 

,,[1] := I 

YE~~ 
fype[l] := T. FAIL 
bF(T) = I? 

EXIT ~YES 
aCT) = 0 ? dim[I] := I 

NO~ EXIT 
~ ~YES --

~ dim[l]:=-/ 

EXIT 

I SPECIFIER I 

Delimiter? 

real integer Boolean array switch label string 

'1/ ~ 
aABCG(T):= I aABDG(T):= I bAF(T) := 1 H(T):= 1 

EXIT EXIT EXIT EXIT 

'it 
aABCEG(T) : = 1 bABCG(T):= 1 

EXIT 

aAF(T):= I 

EXIT EXIT 

procedure 

G(T):= I 

EXiT 

385 

other 

FAIL 



386 APPENDIX 11 

OWN ARRAY 
This subroutine is used to process the bound pair list of an own array 

declaration. (The upper and lower bounds are limited to being signed or 
unsigned integers.) 

The local variable y is used as a marker to ensure that the delimiter':' is 
used alternately with the delimiters ',' or ']'. The local variables d and q are 
used in the calculation of the size of the array. The global variable X is set 
up with the number of dimensions of the array. Finally the routine ']' is 
entered, by the second entry point, instead of returning to the routine '[' 
from which this subroutine was called. 



0* 

P 
LD='+'I'-' ? 

APPENDIX 11 

IOWN ARRAY I 

x:=o 
y :=q:= 1 

dt 
"+' 

IBCR 1(3) 

FAIL 

~NO 
FAIL Delimiter = '+' I ' -' ? ',' I 'J' 

NO YES 

I CONSTANT I 
Delimiter? 

other 

FAIL LD = '-'? 

~NO 

387 

d : = d + constant d : = d - constant 
\COMPILEI (1) [NEG] 

LD= '-'? 

~NO 
d := d - constant d := d + constant 

I COMPILE 1(1) [NEG] I y=o? 

~ FA?1:0~ I 
X:= X+ 1 

(y = 1) V (d < 1) ? 

~ 
FAIL q :=q X d 

Delimiter = ']' ? 

~ 
y := 1 I] (entry 2) I 



388 APPENDIX 11 

EXP 
This subroutine is used to check the validity of use of the current delimiter, 

and to change the state variable E from statement to expression level, if 
necessary. 

The action of the subroutine is controlled by its parameter p; if p = 1 the 
delimiter can only be used at expression level; if p = 2 the delimiter can 
only be used at statement level; if p = 3 the delimiter can be used at either 
statement or expression level. The subroutine UNSTACK is used to un stack 
the item IND if necessary (the parameter p being used by UNSTACK to 
decide whether INDA or INDR is to be generated). 

ARRAY BD 
This subroutine is used by the routines for the delimiters':' and ',' to 

check the validity of their use (using the local variable x), and to complete 
the processing of the preceding subscript bound expression (using the sub
routines TAKE and UNST ACK). Finally the dimension counter stacked 
with the item '[' or '[n' is increased by one using the local variable y. 



APPENDIX 11 

I UNSTACKI (12) 
TS=STISTA? 

- ~ ----

IEXP 1 (p) 

E=1 ? 

389 

p=2? 

NO~~ 
l' :::a. 

~ ~ EXIT FAIL 

(p=3) 1\ (PROC=O)? p=2? 

YES~ NO~ 
FAIL EXIT E:=O FAIL 

EXIT --

IARRAY BDI 

I TAKE I eJ) 
IUNSTACK 1(1) 

TS? ! oilier 

restore ('[D', [y], [x]) FAIL 
Delimiter = ':' ? 

x=O? x=O? 

YES 

x : = 1 FAIL x : = 0 
y:=y+1 

restore ('[', [y]) 
Delimiter = ' :' ? 

NO~IL 
""""1 S=TA"""-C=-K""""I ['[',y + 1,Q] 

EXIT 



390 APPENDIX 11 

BEGIN STATE 
This subroutine is used at a delimiter which could start a statement, to 

check whether this is the first statement of a block or compound statement. 
If the state variable V is zero this is the first statement of a compound state
ment and V is set to two. If V is one this is the first statement of a block; the 
subroutine UNSTACK is used to complete, if necessary, an UJ operation 
around the last declaration or set of declarations, and a check is made that 
the last declaration ended with a semi-colon. 

END STATE 

This subroutine is used to complete the processing of a statement. The 
subroutine BEGIN STATE is used for the case of a statement which con
sists of a single identifier (a procedure call with no parameters), and EXP is 
used to change the state variable E to expression level if necessary. If E is then 
zero the subroutine TAKE is used to generate the appropriate 'Take Result' 
operation, and the state variables E, TYPE and ARiTH are set up for the 
processing of the next statement. Otherwise, if the current section contains 
an identifier, which must be a procedure identifier, TAKE is used to generate 
the appropriate CFZ or CFFZ operation. After checking the validity of this 
use of the identifier the operation REJECT is generated and the state variable 
TYPE is set up for the processing of the next statement. 

DIM 

The subroutine DIM is used to compare the dim column of the name list 
entry of the current identifier with the global variable X, and to set up the 
dim column with the value of X if it was previously '-1 '. 



APPENDIX 11 

IBEGIN STATE I 
V? 

o 1 J 

I UNSTACK 1(13) EXIT 

V:=2 
EXIT 

TYPE:=O 
G(TYPE) :=1 
I TAKE 1(1) 

d[I]=O? 

YES 
(E= 1) 1\ (LD = ';')? 

lEND STATE I 

IBEGIN STATE 1 

1 EXP 1(1) 
E=1 ? 

~ 
J(type[J]) := 1 J(type[I]) = 1? 

t y~~ 
t EMb 

~I C~O-M--P---IL~E"""I (1) [REJ EeT] 

AB(TYPE) := 1 
EXIT 

IDIMI (X) 

(dim[J] = X) V (X= -1)? 

FAIL 

I TAKE I (1) 

E:= 1 
TYPE:=O 

ABG(TYP E) := 1 
ARITH:=O 

EXIT 

~ dim[I] = -1? 

391 

dim[J] := X FAIL 
grr 



392 APPENDIX 11 

UNSTACK 
This subroutine is used to unstack items from the top of the stack, until 

an item is reached whose stack priority is less than the value given by the 
parameter x, or until the stack is empty. In general, items are unstacked 
directly into the object program; with the following exceptions 

(i) If the item at the top of the stack has a priority of twelve, the variable 
p (set up by the subroutine TAKE or EXP) determines whether the oper
ation INDA or INDR is to be generated. 

(ii) If the item at the top of the stack has a priority of eight, and the 
parameter x has the value eight a failure is indicated, since relational oper
ators have been used incorrectly (e.g. 'x < y + z < 3'). 

(iii) If the top stack item is else or has a priority of thirteen, the address 
stored with this item is used to complete an UJ operation, unchaining and 
completing any other UJ operations if necessary, using the local variables 
a and b. 

(iv) If the top stack item is then, the address stored with this item is 
used to complete an IFJ operation. 

GENERATE 
This subroutine is used to generate an UJ operation around a procedure 

or switch declaration. If the top stack item is UJ on entry to the subroutine 
no action is taken, thus combining the UJ operations around successive pro
cedure or switch declarations into a single operation. 

DEC 
This subroutine is used by a delimiter which starts a declaration, to check 

the validity of its use, and to set up a block if this is the first declaration after 
a begin. 



o 

12 

't' 
p? 

APPENDIX 11 

IUNSTACKI (x) 

(SP= 1) V (spr < x)? 
~ 

N°I ~YES 

~ ~ 
spr? 

other 

x=8? TS? 

393 

13 

:M~jUJ,[a]) 

restore (else, [a]) 

ICOMPILE 1(1) [(TS)] 

113 prog[a,a+1] = O? 

~ 
prog[a,a+1] := i b := prog[a,a+1] 

I COMPILE I (1) [INDA] I COMPILE I (1) [INDR] 
prog[a,a+1] := j 
a:=b 

SP:= SP-1 

IGENERATEI 

1 other 

~[UJ,i+1,1l] 
I COMPILE I (3) [UJ( )] 

EXIT 

TS? 
J, 

l' 
EXIT 

IDECI 

(m = 0) 1\ (E = 1) ? 

YES~ 
V? FAIL 

to 12 
IBLOCK BEGIN I ~ 

EXIT 



394 APPENDIX 11 

TAKE 
This subroutine is used to process an identifier or constant that is used in 

a statement or an expression. However, if the current ALGOL section does not 
contain an identifier or a constant, TAKE is used to check the validity of 
the section and, if the last delimiter is ,]" to check the type of the array or 
switch identifier, and to generate INDA or INDR. 

If the current ALGOL section contains an identifier it is dealt with by the 
subroutine TAKE IDENTIFIER. If the section contains a constant, checks 
are made on the type of the constant, and that it is not being used where a 
'Take Address' operation would have been generated. The appropriate object 
program operation is then generated by the subroutine CONSTANT. 

CONSTANT 
The state variable CONS is used to determine the type of the current 

constant, and the appropriate 'Take Constant' operation is generated. 



APPENDIX 11 

\TAKEI (P) 

m? 

J: 12 
p=i? IT AKE IDEt~TIFIER; 

iT t otho< 1 '1' EXIT 

p= I? FAIL ICOMPARE!(type[/],TYPE) 

~YES 
FAIL CONS=2'! 

YES~O IUNSTACKI(I2) 
EXIT 

EXIT F IL 

I 

10 

\.-: C=O~M=P=IL:-:E:-='·I (1) [TRC] 

1 other 

Ie:: C""'OC:-M:;-;:P::":IL""=E'"'i (I) [TIC] 

I CONSTANT 1 

CONS? 

t, 
'VI 

cons/ant? 

l' 1
0 

I CONSTANT I 
EXIT 

=IC=OM:-:CP=I-::-::LE="'I (1) [TICl] I COMPILE 1 (1) [TICO] 

EXIT EXIT 

395 

1 COMPILE 1(6) [(cons/alii)] 

EXIT 

constant = 'true' ? 

~NO 
r-I C=O"""M-:-::P=IL=-=E::-li (1) [TBCT] 1 COMPILEI (1) [TBCF] 

EXIT EXIT 



396 APPENDIX 11 

TAKE IDENTIFIER 
This subroutine is used by the subroutine TAKE to process the identifier 

in the current ALGOL section. It uses the subroutine ENTRY to search the 
current part of the name list for an entry corresponding to the identifier. 

(i) If a new entry was created (x = 0) the u, syU, line, type and np 
columns of the entry are set up. If the parameter p (handed over from the 
subroutine TAKE) is zero, indicating that a 'Take Address' operation is 
required, the dim column is set to ' -1', since the identifier cannot be proved 
to be scalar. If the identifier is being used in an array declaration the exp 
column is set. The appropriate skeleton 'Address' or 'Result Operation' is 
then generated. If the skeleton 'Result Operation' could later be replaced 
by a 'Take Label' operation the operation DUMMY is generated. 

(ii) If a used entry is found (x = 2) the value of the np column is preserv
ed in x, to be given as a parameter to the skeleton operation which is gen
erated. The type column is checked using COMPARE, and if p = 1, the 
dim column is checked using the subroutine DIM. 

(iii) If a declared entry is found (x = 1) a check is made that the identi
fier is not being used in an array declaration. The type column of the entry 
is checked, and the u column is set. If p = 0 the type column is inspected 
to decide whether an assignment is being made to a procedure identifier. 
If this is the case the name list entry should be the duplicate entry for the 
procedure identifier (the first entry of the current part of the name list); the 
F D column is set and the appropriate 'Take Address' operation is generated, 
using Table 3 (see page 398). Otherwise Table 1 is used to decide which 
'Take Address' operation should be generated. If p = 1 a check is made 
that the identifier has not been declared to be a procedure with parameters, 
or a procedure which cannot be used by a function designator. Then either 
a 'Take Label' operation, or a 'Take Result' operation (from Table 2) is 
generated, using the local variables a and z. 

Table 1 Table 2 
type column fcolumn operation type column fcolumn operation 
aABCG 1 TFAR (x) aABCG 1 TFR (x) 
aABCG 0 TRA(x) aABCG 0 TRR(x) 
aABCEG 1 TFAI(x) aABCEG 1 TFI(x) 
aABCEG 0 TIA (x) aABCEG 0 TIR (x) 
aABDG 1 TFA (x) aABDG 1 TFB (x) 
aABDG 0 TBA (x) aABDG 0 TBR (x) 
bABCG 1 TFA (x) aAF 1 TFL (x) 
bABCG 0 TRA(x) aGJ 1 CFFZ (x) 
bABCEG 1 TFA (x) aGJ 0 CFZ (a) 
bABCEG 0 TIA (x) aABCGJ 1 CFFZ (x) 
bABDG J TFA (x) aABCGJ 0 CFZ (a) 
bABDG 0 TBA (x) aABCEGJ 1 CFFZ (x) 
bAF 1 TFA (x) aABCEGJ 0 CFZ (a) 
bAF 0 TSA (a) aABDGJ 1 CFFZ (x) 

aABDGJ 0 CFZ (a) 



dim[I] :=-1 
type[I] := TYPE 

J 

1° 
~ 

urI] :=1 
syl/[I]:= i+1 
line [I] := line no. 

p=O? 

APPENDIX 11 

ITAKE IDENTIFIERI 

1 ENTRY I 

x? 

'f 
x:= np[J] 

p=O? 

I' 
bC{T)=l ? 

~NO 
~YFS 

IDIMI (0) ab(type [I]) = 0 ? 
FAlt----fCOMiiAREl(tY~[I], TYPE) 

x:= np[I] 
a:= syl/[I] 
u[I] :=1 
p=O? 

ICOMPARE[(type[I], (Y, TYPE» COMPARE (type[I],::~ 

> t · ! / r 
bG(T) = 1? (c(type[1])=J) V (J(type[I])=/)? c(type[J]) = J ~ 

exp[I] :q-,= '~COMPlLEIC3J [:tabk 1») "" ~ NO 

EXIT 
-- I=NL? 

NO .-----1 YES 
np[I]:=i+1 ~ t 

p=O? FAIL FD[I]:=1 

~NO I COMPILE 1(3) [(see table 3)] 

~ ~ EXIT 
I COMPILE 1(3) [AO(x)] ICOMPILEI (3)[RO(x)] -- ab(type[I])=O? 

EXIT (F(TYPE) = 1) V (BCDEFG(TYPE)=O)? YES~NO 

YES~.NO ~ ~ 
~ {. aJ(iype [I]) ;= 1 a(/ype[!]) :=! 

Ir::C::;;O~M7.P""I"'LE:;::;1 (1) [DUMMY] EXIT I ~[I]) = J ? 

mill ~ r 

397 

(A(type[ I)) = 0) 1\ (E = 0) ? (aAF(type[ I)) = 1) 1\ (f[ I] = 0) ? 

I COMPILE I (3) [(see table 2)] x,z := np[ 1] 

mr I COMPILE 1(4) [TL(a),x] 

EXIT 



398 APPENDIX 11 

TAKE IDENTIFIER (continued from p. 396) 

Table 3 

PROC CALL 

type column 
cABCG 
aABCGJ 
cABCEG 
aABCEGJ 
cABDG 
aABDGJ 

operation 
TRA (x) 
TRA(x) 
TIA (x) 
TIA (x) 
TBA (x) 
TBA (x) 

This subroutine is used by the routine for the delimiter ')'. The corre
sponding opening bracket is unstacked, and the state variables P ROC, 
ARITH, E and TYPE are reset from the stacked values. The procedure 
identifier is also unstacked and the subroutine UNSTACK is used to com
plete the UJ operation to the 'Call Function' operation. The subroutine 
ENTRY is used to search the current part of the name list for an entry 
corresponding to the procedure identifier. If a new entry has been created 
its syll, dim and line columns are set up, otherwise its dim column is checked. 
Then the u column is set and, if the procedure call occurs in an array declara
tion, the exp column is also set. The type column is checked and the appro
priate 'Call Function' operation is generated. A failure is indicated if a pro
cedure which cannot be used by means of a function designator occurs when 
the state variable E is set to expression level. 



APPENDIX 11 

IPROC CALLI 

restore ( '(', [P ROC]) 
restore ([ARITH], [E], [TYPE]) 
restore ([identijier]) 

I UNSTACK I (13) 

lENTRYI 

x=O? 

~ 
syU[1] := i + J IDIMI (X) 
dim [I] := X I 
line:c := line no. t 

J 
u[I] := 1 

exp[I~~:I1 
--------J 

E=O? 

YES 

I COMPARE I (type [1], TYPE) 

(a(type [I]) = 1) V (b(type [I]) = 1) ? 

YES NO 

x := np[I] 
I"""C=O~M=PI=-LE=-tl (4) [FO(x), X] 

np[I] := i - 3 

EXIT 

x:= np[I] 

'-:1 C=O==M-==P=IL=-=E::""11 (4) [CFF(x), X] 

EXIT 

t 
x=1 ? 

f[I] =1? 

x :=syll[J] 

I COMPILE I (4) [CF(x), X] 

EXIT 

399 

FAIL 



400 APPENDIX 11 

ACTOP 
This subroutine is used to generate the appropriate 'actual operation' if an 

actual parameter is a constant or an identifier, or to complete the processing 
of an implicit subroutine. 

If the state variable E is set to expression level, the subroutines TAKE and 
UNSTACK are used, after setting the state variable TYPE if necessary, to 
complete the implicit subroutine. Otherwise the last delimiter is inspected; 
this should be']' (in which case the actual parameter is a subscripted variable), 
comma used as a parameter delimiter or '('. If the current section contains 
a constant the appropriate 'actual operation' is generated. If the current 
section contains an identifier the subroutine ENTRY is used to search the 
current part of the name list for an entry corresponding to this identifier. 

(i) If a new entry is created the line and u columns of the entry are set, 
and '-1' placed in the dim column. The skeleton operation PO is stacked 
together with I, the number of the name list entry for this identifier. 

(U) If a used entry is found the skeleton operation PO is stacked as in 
(i) above. 

(iii) If a declared entry is found the u column is set and the appropriate 
'actual operation' is generated, using the local variables a and y. 

fypecolumn 

aABCG 
aABCEG 
aABDG 
bAF 
bABCG 
bABCEG 
bABDG 
G 
aGJ 
cG 
ABCG 
aABCGJ 
cABCG 
ABCEG 
aABCEGJ 
cABCEG 
ABDG 
aABDGJ 
cABDG 

Table 

item to be stacked 

PR(x),O 
PI (x), 0-
PB(x),-O 
PSW(a),O 
PRA(x),O 
PIA (x),O
PBA (x),O 
PPR (a), 0 
PPR (a),O 
PPR(a),O 
PFR(a),O 
PFR (a), (5 
PFR (a),O 
PFI(a),O 
PFI(a), ° 
PFI(a),O 
PFB(a),-O 
PFB(a),O 
PFB(a),Q 



APPENDIX 11 401 

IACTOpl 

E=1? 

~
TS~logi"":mto,? Lf 

TYPE := 0 I 'r ','1'(' 
ABDG(TYPE) := 1 t 
-~ ICOMPILEI(J) [INDA] I 

~(J) SP:=SP-1 1 
I UNSTACK I (2) 

TS=PSR? m = ().? 

~ 
FAIL E:=1 

m=2? 

YES 

CONS? 

1" iJ r 
x? 

v 

I J 1ST ACKI [PRC(Q,Q] 1ST ACK I [PlC(i),Q] 

t ~ i 
I STACK I[PBC(i),Q] 

I 
line[I] := line no. 

u[I] := 1 
dim[I]:= - J 

I STACKI [PO,l,Q] 

EXIT 

YI 

u[I] := 1 ICOMPILEI (6)[(collstant)] 
f[I] = 1 ? EXIT • 

y~~ 
.x := np[I] a := syll[I] 

ISTACKj[PF(x),Q] aAF(type[I]) = 1? 

NO~ 
x := np[I] x,y := np[I] 

ISTACKI [(seetab\e)] I STACK I [PL(a),x,Q] 

EXIT EXIT 



402 APPENDIX 11 

FOR',' 
This subroutine uses the subroutines TAKE and UNSTACK to complete 

the processing of either the preceding for list element or of a subscript expres
sion in a subscripted variable used in a for list element. The top of the stack 
is then inspected. 

(i) If the top stack item is '[' the current delimiter is checked and the 
dimension counter stacked with the item '[' is increased by one, using the 
local variable y. A return is then made direct to the central loop of the 
Translator. 

(U) If the top stack item is FORW or FORS2, it is unstacked; the top 
of the stack should then contain the item for. 

(iii) If the top stack item is FO RSI the value stored with it is inspected, 
using the local variable a. If it is '-1' a failure is indicated since the 
delimiter step has not been followed by the delimiter until. Otherwise the 
object program operation at the address a is changed from FORS] to 
FORA. . 

FS END 
This subroutine is used to complete the processing of a for block, and 

uses COLLAPSE to deal with the name list entries for this block. The address 
stored with the item 'for begin' at the top of the stack is used to complete the 
parameters of the FBE and FSE operations, using the local variable a. 

IMP SR 
This subroutine is used at any delimiter which could start an implicit 

subroutine. If the state variables LD and P ROC show that the delimiter does 
start an implicit subroutine the item PSR is stacked and a block is set up. 
Unless the current delimiter is '[' the state variable E is set to expression level. 



APPENDIX 11 403 

IFOR ','1 

TS? 

FOR W I logical operator other 

D(TYPE):= 1 

1'[' 
Delimiter = do? 

~NO 
FAIL restore ('[', [y]) 

I STACK/ ['[',y+1,QJ 

out 

IFS END I 

1 COMPILE 1 (1) [FR] 

1 COLLAPSE 1(0) 

restore (for begin, [a]) 
prog[a,a+1] :=(n,L) 
prog[a-3,a-2] :=i 
restore ([V], [L], [NL]) 
Il :=n-1 

EXIT 

~ 
~(1) 
IUNSTACKI (2) 

TS? 

r other 

FAIL 

r FORWI FORS2 IFORSI 

SP := SP -1 restore (FORS1, raJ) 
a= -1? 

~ 
prog[a] := FORA FAIL 

TS=for? 

EXIT FAIL 

lIMP SR I 

(PROC=1) 1\ (LD='('I',') ? 

YES~ 
t ~IT 

I STACK I [PSR,i,Q] 

n :=n+1 
ICOMPILEI (3) [BE(n,O)] 

Delimiter = '['? 

YES~=O 
t :~IT 

EXIT 



404 APPENDIX 11 

END BLOCK 
This subroutine is used to complete the translation of a block. If the top 

stack item is a begin which does not have a non-zero value of LEVEL stacked 
with it the name list entries for the current block are collapsed. Then the top 
stack item indicates whether a procedure block or an ordinary block is being 
completed. In the former case the address stored with 'proc begin' is used to 
complete the parameter of the P E operation; in the latter case the top item is 
unstacked and the next two items are used to restore V, Land NL, and to 
complete the parameter of the BE operation, using the local variables x and 
a. The subroutine UNSTACK is used to complete the UJ operation around 
the block. 

If, however, the item at the top of the stack has a non-zero value of LEVEL 
stacked with it the name list entries for the current block are discarded, as a 
return is being made to a block in which an error has been detected. In this 
case SCAN is entered, instead of returning to the routine from which this 
subroutine was called. 

ERR 
This subroutine is used by SCAN to print an error message and to unstack 

items until a 'begin (bl)' item is reached, taking account of any values of NL 
stacked with 'proc begin' or 'for begin' items, in order to discard the appro
priate name list entries. If the item begin, 'proc begin (bl)' or 'for begin (bl)' is 
found, LEVEL is increased by one to allow for the corresponding delimiter 
end. Finally R is set to one so that no further error messages are printed whilst 
the current block is being scanned. 



APPENDIX 11 

lEND BLOCK I 
I COMPILE I (1) [RETURN] 
TS = proc begin ? 

prestore (begin, [LEVEL]) 
LEVEL=O? 

SP:=SP-] 

ICOLLAPSE 1(0) 
TS? 

restore ([V], [x], [NL]) 
prestore(UJ, [aD 
prog[a+3,a+4] :=n,L 
L :=x 
I UNSTACK 1(13) 

proc begin 

restore (proc begin, [a]) 
prog[a,a+]] :=n,L 
restore ([V], [L], [NLD 

n:= n-] 

EXIT 

print error message 

,1 
TS? 

J, 

NLP:=NL 

n :=n-1 
i SCAN (entry 2) i 

proc begin (bI) for begin (bI) for beginJ other begin 

SP:=SP-] 

LEVEL:= LEVEL +] 

SP:=SP-] 
prestore(V,L, [NL]) 

SP:=SP-] 

proc begin 

NLP:=NL+l 
R:=l 
EXIT 

LEVEL := LEVEL + 1 

405 



406 APPENDI x 11 

COLLAPSE 
This subroutine is used at the end of a block to deal with its name list en

tries. 
The entries in the current part of the name list are examined in turn, 

starting with the first entry, which can either be a blank, which is ignored, or 
the duplicate entry for a procedure identifier, which is ignored after checking that 
its FD column has been set in the case of a type procedure (this check is avoid
ed if an error has been found earlier in the ALGOL program). Thereafter any 
declared entries are discarded, but warning messages are printed if an 
identifier (other than a label) has not been used, or if a formal parameter has 
been rendered inaccessible. This latter check is carried out, by searching 
the name list for the containing block, whenever the parameter h of the sub
routine has the value one, indicating that the containing block is a procedure 
block. 

When a used entry is found, the block level counter n is checked, and if 
this indicates that the program block is being collapsed, the subroutine 
LIBRARY (for which no flow diagram is given) is used to check that the 
identifier is one of the standard functions. Otherwise the name list for the 
containing block is searched for an entry corresponding to the same identifier; 
if an entry is found the subroutine CO MBINE is used, otherwise the used entry 
is added to the list of entries for the containing block. 

The local variables used in this subroutine are 

d used to preserve the top stack item, and then to contain 
the dim column of each used entry in the current block, 
for use by the subroutine COMBINE 

g set up with the value of NL for the containing block 

f used to indicate the extent of the name list of the con
taining block, and is increased by one for each entry 
transferred from the current to the containing block 

t, x, y, j, e set up with the entry number, and the contents of the 
name, type, np and syll columns, respectively, of each 
used entry in the current block, for use by COMBINE. 



APPENDIX 11 

I COLLAPSE I (h) 

d:=TS 
SP:= SP-1 
prestore(V,L, [g]) 

I STACKI[d] 

I:=/:=NL 
(name [I] = 0) V (A(type [I]) = 0) ? 

YES~ 
I (FD(I] =0) /\ (FAIL=O)? 

ILlBfi1~; 
y:= type[I] 
j:= np[l] 
e:= syll[I] 
d:= dim[/] 
1:= NL-1 

1:= 1+1 
1= NLP ? 

NO~ 
x:= name [I] NLP :=/ 
t:= I EXIT 
d[I]=O? 

NO 

h=1 ? 

YES 

1:= NL-1 

name [I] =x? 

NO 

~ print message 

YES 

I :~me0=x? ~ 

t ~n~ :;~g? NO J 
LJ 

ICOMBINEI 

I:=t 1f.; 1:=1-1 

1:=1 -1 1:=1 

1:= t 
expel] := 0 
/:=/+1 
1=/-I? 

NO 

u[I] =O? 
YES 

407 

aAF(type[I]) = 1 ? 

item [f - 1] : = item [I] NO 



408 APPENDIX 11 

COMBINE 
This subroutine, used by COLLAPSE, compares the type and dim columns 

of the two corresponding name list entries in the current and containing block, 
and then inspects the d column of the entry for the containing block. 

(i) If the d column shows that the entry is a declared entry, its u column 
is set, and the subroutine UNCHAIN is used to unchain the skeleton 
operations corresponding to the used entry in the current block. 

(ii) If the entry in the containing block is a used entry the chains of 
skeleton operations associated with each used entry are combined into a 
single chain. 

UNCHAIN 

This subroutine traces through the chain of skeleton operations associated 
with a used entry in the name list, and calls the appropriate subroutine to 
process each skeleton operation. The parameter x (which is used in each of 
the inner subroutines) contains the address of the first skeleton operation 
in the chain; the local variable e is used to store the addresses of any further 
skeleton operations. The parameter y indicates whether UNCHAIN has been 
called by the subroutine DECL or COMBINE. 

ADDRESS 
This subroutine is used to replace a skeleton 'Address Operation'. Checks 

are made that a 'Take Address' operation which corresponds to an assign
ment to a procedure identifier only occurs within the procedure body of a 
procedure which is declared to be a type procedure. Table 1 is used to select 
the appropriate operation if the f column of the corresponding name list entry 
is set, otherwise either TSA is generated or Table 2 is used. 

Table 1 Table 2 

type column operation type column operation 
aABCG TFAR aABCG TRA 
aABCEG TFAI aABCEG TIA 
aABDG TFA aABDG TBA 
bABCG TFA bABCG TRA 
bABCEG TFA bABCEG TIA 
bABDG TFA bABDG TBA 
bAF TFA cABCG TRA 

cABCEG TIA 
cABDG TBA 
aABCGJ TRA 
aABCEGJ TIA 
aABDGJ TBA 



APPENDIX 11 

I COMBINE I 

[lliMJ (d) 

I COMPAREI (type [I],y) 

d[I] = O? 

prog[e, e+1] := np[I] urI] := 1 
np[I] :=1 I UNCHAIN! (j,g) 

EXIT EXIT 

IRO 
I RESULT! 

-} 

IUNCHAIN I (x,y) 

e := prog[x,x+ I] 
prog[x-1] ? 

~ 

I PARAMETER! 

t 
{ 

e=O? 

~ 
EXIT x:=e 

jFUNCTIONI 

t 

- I 
~--------.~------~ 

IADDRESS I (y) 

bB(type [I]) = O? 
NO 

(ab(type [I]) = 0) V (J(type [ID = 1) ? FAIL 

~~ 
(y=O) V (A(type [I]) = 0) ? -,l:.. 

f[I] = 1? 

~o 

409 

FAIL 1= y? 

~YES 
prog[x-J] :=(seetablel) 
prog[x,x+1] := np[l] 

EXIT 
FAIL FD[I] := 1 bF(type [I]) = 1 ? 

~ 
prog[x- I] := (see table 2) prog[x-1] := TSA 
prog[x,x+1] := np[I] prog[x,x+1] := syll[l] 

EXIT EXIT 



410 APPENDIX 11 

RESULT 
This subroutine replaces a skeleton 'Result Operation' by the appropriate 

'Take Result' or 'Call Function Zero' operation. For an identifier which is 
declared to be a procedure with no parameters a check is made, using the 
operation following the skeleton operation, that a non-type procedure is 
called by a procedure statement, rather than a function designator; then the 
skeleton operation is replaced by a CFZ or CFFZ operation. Otherwise the 
type and! columns are used to decide whether the operation TL is to be 
generated (using the local variables a and z), or whether Table 1 or Table 2 
is to be used. 

Table 1 

type column 

aABCG 
aABCEG 
aABDG 
aAF 

PARAMETER 

operation 

TFR 
TFl 
TFB 
TFL 

Table 2 

type column 

aABCG 
aABCEG 
aABDG 

operation 

TRR 
TlR 
TBR 

This subroutine replaces a skeleton 'Parameter Operation' by the appro
priate 'actual operation'. The type and! columns of the corresponding name 
list entry are used to decide whether a P For PL operation is to be generated 
(using the local variables a and z) or whether the following table is to be used. 

type column 

aABCG 
aABCEG 
aABDG 
bABCG 
bABCEG 
bABDG 
ABCG 
cABCG 
ABCEG 
cABCEG 

FUNCTION 

operation 

PR 
PI 
PB 
PRA 
PIA 
PBA 
PFR 
PFR 
PFl 
PFI 

Table 3 

type column 

ABDG 
cABDG 
G 
cG 
bAF 
aABCGJ 
aABCEGJ 
aABDGJ 
aGJ 

operation 

PFB 
PFB 
PPR 
PPR 
PSW 
PFR 
PFl 
PFB 
PPR 

This subroutine is used to replace a skeleton 'Function Operation' by either 
a CF or a CFF operation. A check is made that a non-type procedure is called 
by a procedure statement and not by a function designator. 



APPENDIX 11 

I RESULT I 

a(type [I]) = 0 ? 

NO~,-
~ rAIL 

J(type[J])=J? --

f[l] = I? 

~--------~ 
A(type [1]) = J ? 

411 

aAF(type[l]) = J ? prog[x-/] := (see table 1) 
YESr---~ 

prog[x+2] = REJECT? 
NO y~~ 

a,z := np[J] prog[x-J]:= (see table 2) FAIL 
prog[x-l] := TL 
prog[x, x+ I] := .syll[l] 
prog[x+2] := a 

f[I]=l? 

~ 
EXIT prog[x,x+iJ := np[J] 

EXIT 

prog[x-J]:= CFFZ prog[x-J]:= CFZ 
prog[x,x+l]:= np[J] prog[x,x+l] := syll[J] 

EXIT EXIT 

I PARAMETER I 

f[1] = l? 

prog[x-l] :=PF 

prog[x-l] := (see table) prog[x-l] := PL 
prog[x,x+J] := syll[I] 
a,z:= np[J] 
prog[x+2] := a 

(J(type [1])= 1) V (bF(type [J]) = I) V (ab(type [J])=O)? 

prog[x,x+iJ := np[lJ 

EXIT 

ab(type[J]) = O? 

prog[x-l]:= CFF 
prog[x,x+I] := np[I] 

EXIT 

prog[x,x+l] := syll[I] 

EXIT 

lFUNCTIONI 

A(type [1]) = 0 ? 

prog[x+3] = REJECT? 

E2QI 

FAIL 

prog[x-J] := CF 
ptog[x,x+l] := syll[J] 

EXIT 



412 APPENDIX 11 

SCAN 
The normal entry to this subroutine is after an error has been found in the 

ALGOL text. The global variable FAIL is set and the subroutine ERR is used 
to print an error message and to discard stack and name list entries for the 
current block. The ALGOL text is then scanned until the end of the block or 
the start of an inner block is reached; the delimiters begin and end appearing 
within string quotes are ignored, using the local variable s. 

When a begin which starts a block or compound statement is reached, the 
counter LEVEL is increased by one and the next delimiter is checked. If this 
delimiter indicates that a compound statement has been reached the scan 
continues. Otherwise the item 'begin (bl)' is stacked, together with the value of 
LEVEL, and, after setting up the state variables as for the start of a block, 
the block is processed in the normal way. 

When the delimiter end is reached the value of LEVEL is checked. If it is 
non-zero it is decreased by one and scanning continues, after allowing for a 
possible end comment. Otherwise the end of the block containing the failure 
has been reached and the begin item is unstacked from the top of the stack 
and LEVEL is reset from the value stacked with the begin. If LEVEL is now 
non-zero, the containing block has also been found to contain an error, and 
so LEVEL is decreased by one and scanning continues; otherwise the state 
variables are set up as for the start of a block, and the end routine is entered 
(the second entry is used because there is no need to complete the processing 
of a preceding statement). 

After completing the processing of any inner blocks a return is made to 
SCAN via its second entry, to continue the scanning of the block which con
tains an error. If an error is found by the BCR subroutine whilst scanning 
the ALGOL text, the subroutine ERR is avoided since the global variable R 
is non-zero. 

Table 

own 
real 
integer 
Boolean 
array 
procedure 
switch 



APPENDIX 11 

s:= 0 
FAlL:= J 
R = O? 

~ ERR 

) 

begin 

YES 

LEVEL := LEVEL + I 
ISCRI (3) 

other 

(m=O) 1\ (Delimiter = (see table) ? 

I STACK I [begin (bl),LEVEL,Q] 

LEVEL := L := R := 0 
II :=11+1 
E:= V:= I 

ARITH:=F:=PROC:= D:=T:=TYPE:=O 
ABG(TYPE) := I 

OUT2 

ENTRY 2 

! HeR !(4) 

Delimiter? 

end 

LEVEL=O? 
YES NO 

prestore (begin, [LEVEL]) 
LEVEL=O? 

NO YES 

TYPE:= R:= D:= T:=O 
E:= V:= J 

ARITH := F:= PROC := 0 
ABG(TYPE) := I 

I END (entry 2) I 

SP:= SP-J 

LEVEL:= LEVEL- J 

IBCRI (4) 

Delimiter = end' else ";' ? 

413 





A 

accumulator, 49 
accumulator pointer, 49 
ACE, vii, 35, 282, 283 
actual operation, 98 
address accumulator, 51 
ALCOR, 14, 15, 16 
algebraic, 148 
algebraic compiler, 7 
ALGOL library, 34 
ALGOL list, 21 
ALGOL section, 147 
ALGOL 58,15 
ALGOL 60 compiler, 6 
algorithm, 3 
algorithmic matrix, 26 
Allmark, R. H., 32 
Arden, B., 12,26,27, 58 
arithmetic, 148 
array word, 53 
assembly language, 9 
assembly program, 9 

B 

B5000, 32 
Backus, J. W., 11, 253 
Backus Normal Form, 11 
Barton, R. S., 32 
base address, 82 
basic cycle routine, 143 
Batty, M. A., 282 
Bauer, F. L., 14--15, 29-30, 33, 56 
Baumann, R., 14 
Block Number, 64 
block structure, 12 
B6hm, c., 33 
Bottenbruch, H., 5, 58 

case register, 240 
CDC 1604,15 
cellar, 14 

C 

Index 

chain, 146 
circular store, 276 
Collens, D. S., 282 
compare priority, 155 
compiler, 6 
complete procedure, 41 
contra-declaration, 192 
control push-down store, 19 
Control Routine, 35 
correspondence matrix, 18 

D 

d column, 174 
Davis, G. M., 272 
dead key, 241 
declared entry, 174 
delimiter routine, 16 
DEUCE, vii, 32, 35, 282, 283 
diagram, 21 
dialects of ALGOL, 12 
Dijkstra, E. W., 3, 5, 12, 16, 18, 30, 31, 

35, 149 
dim column, 179 
discrimination vector, 16 
DISPLAY, 65 
dope vector, 83 
dlliTuny label, 93 
Duncan, F. G., 34,41, 135, 136 
dynamic address, 65 
dynamic array, 63 
dynamic chain, 65 
dynamic chain element, 71 
dynamic storage allocation, 63 

error message, 36 
E.T.L. Mk. 6, 32 
Evans, A., 20 
exp column, 175 

E 

expression level number, 22 
expression routine, 22 



416 INDEX 

f column, 184 
failure tape, 276 
FD marker, 186 
Feurzeig, W., 63 

F 

first order working storage, 73 
Floyd, R. W., 11,21,28, 30 
for block, 126 
for operation, 128 
For Routine, 125 
formal accumulator, 98 
Formal Pointer, 119 
formal recursion, 124 
formal switch, 118 
FORTRAN,7,23 

G 

Galler, B. A., 12, 58 
GAT, 20, 26 
generator, 15 
Genuys, F., 11, 16 
GIER,17 
Gillow, G. M., 282 
Graham, R., 12, 26, 27, 58 
Grau, A. A., 10, 19, 58 

H 

Halstead, M. H., 15 
Hamblin, C. L., 32 
Hawkins, E. N., 18, 32, 56, 69, 125 
Higman, B., 12, 16-17 
Hill, U., 56, 125 
Huskey, H. D., 30, 58 
Huxtable, D. H. R., 18,32,56,69, 125, 

135 

IBM 650, 26, 27 
IBM 704, 7, 15 

I 

implicit subroutine, 214 
incomplete operation, 161 
indexing routine, 53 
Ingerman, P. Z., 101,271 
integrated translation system, 22 
intermediate language, 9 
International Federation for Informa

tion Processing, 3 
Irons, E. T., 21, 63 

J 
Jensen, J., 63, 101 

K 

Kanner, H., 25, 30 
KDF9, vii, 3, 32, 34, 35, 38,42,49,52, 72, 

272,282,283 
KDF9 ALGOL, 34 
KDF9 ALGOL Manual, 5 
KDF9 ALGOL System, 34 
KDF9 Programming Manual, 272 
Kidsgrove Compiler, 34 
Knuth, D. E., 27, 253, 266 

L 

label procedure, 92 
Langmaack, H., 56, 125 
Ledley, R. S., 21 
level (of a block), 64 
lexicographic, 64 
line column, 183 
link data, 71 
list structure, 20 
Lucas, P., 20 
Lucking, J. R., 32 
Lukasiewicz, J., 31 
Lynch, W. c., 27 

M 

M-460, 15 
MacDonald, Margaret J., 283 
McCarthy, J., 10 
McClacken, D. D., 5 
Merner, J. N., 253, 266 
metalanguage, 20 
metametalanguage, 20 
Milnes, H. W., 24, 28, 31 
Mondrup, P., 63 
multi-pass translation, 9 

N 
name list, 143 
Naur, P., 5, 63, 101 
NELIAC, 15, 17 
nesting store, 28 
nesting store accumulator, 32 
Nott, C. W., 283, 372 
np column, 175 
number cellar, 29 



o 
object program, 6 
object program operation, 35 
one-pass translation, 9 
optimisation, 9 
own working storage, 87 

P 

parameter list operation, 101 
PEGASUS, vii, 35, 282, 283 
Perlis, A. J., 20 
position identifier, 39 
post-mortem, 41 
precedence ranking, 26 
procedure block, 186 
procedure classification, 18 
Procedure Pointer, 65 
production, 21 
program counter, 47 
pseudo-instruction, 135 
push-down store. 28 

Randell, B., 135 
recogniser,20 

R 

result accumulator, 51 
retroactive trace, 41 
return address, 71 
Reverse Polish, 31 
RUNCIBLE, 27 
Rutishauser, R., 22 
Ryder, K. L., 282, 283 

S 
Samelson, K., 14-15, 29-30, 33, 56 
SAP, 24 
Sattley, K., 83 
Schwarz, R. R., 56, 125 
second order working storage, 73 
Seegmilller, G., 56, 125 
segment, 23 
segment (of an ALGOL program), 277 
semantics, 11 
Sheridan, P. B., 23, 30 
side effect, 11 
skeleton operation, 144 
source program, 6 

INDEX 

stack, 16 
stack pointer, 31 
stack priority, 155 
state, 19 
state variable, 148 
statement-at-a-time language, 8 
statement-at-a-time translator, 22 
statement routine, 19 
static address, 65 
static chain, 65 
static chain element, 71 
Steel, T. B., 101 
storage mapping function, 53 
Strong, J., 10 
subroutine block, 105 
subset of ALGOL, 12 
super-quote, 17 
switch block, 93 
switch index, 92 
syll column, 179 
syllable, 47 
symbol cellar, 29 
syntax, 11 

Takahashi, S., 32 
Thornton, c., 20 
threaded list, 20 
trace, 39 

T 

translation matrix, 27 
translation table, 19 
translator, 6 

417 

Translator (part of Whetstone Com-
piler),35 

transition matrix, 15 
triple, 23 
type column, 175 

U 

u column, 190 
unchaining, 176 
UNCOL,1O 
underline register, 240 
used entry, 174 
User Code, 34 
User Code Compiler, 137 



418 

v 
v column, 184 
van der Mey, G., 13, 17, 192 
van der Poel, W. L., 17 
van Zoeren, H., 20 

W 

warning message, 37 
Watt, J. M., 282 
Wattenburg, W. H., 58 
Wegstein, J. H., 25-26, 28, 30 
Whetstone Compiler, 3 
Wilson, J. B., 21 
Woodger, M., 283 

INDEX 

working storage, 63 
Working Storage Pointer, 70 

x 
Xl, vii, 16, 35 

y 

yo-yo list, 28 

Z 

ZEBRA, 13, 17-18, 192 
Zonneveld, J. A., 35 


	Foreword
	Preface
	Contents
	1 Algol Compilers
	1.1 Introduction
	1.2 Algol Translation Techniques
	1.3 Translation of Arithmetic Expressions
	1.4 The Whetstone Compiler

	2 The Object Program
	2.1 Assignment Statements
	2.2 Blocks and Procedures
	2.3 Arrays
	2.4 Labels and Switches
	2.5 Parameters
	2.6 For Statements
	2.7 Code Procedures

	3 The Translator
	3.1 Introduction
	3.2 Translator Stack
	3.3 Name List
	3.4 Translation Techniques
	3.5 Translator Routines

	References
	Appendices
	1 A Worked Example
	2 Restrictions ... in KDF9 Algol
	3 The KDF9 Computer
	4 KDF9 Algol Hardware Representation
	5 Implementation of Program Testing Facilities
	6 Implementation of Segmentation
	7 Object Program Operations
	8 State Variables
	9 Details of the Various Implementations of the Whetstone Compiler
	10 Control Routine Flow Diagrams
	11 Translator Flow Diagrams

	Index

