begin
comment library 1;
boolean
a,
b,
c;
integer
i,
j;
a := b := c := true;
i := j := 1;
a := i = j;
b := i \= j;
c := a := b;
c := a = b;
c = a = b;
outreal(1, if a then 0 else if b then 2 else 3);
end
algol
begin
comment library5;
real procedure p(q);
real procedure
q;
p := abs(q( - 6.4));
outreal(1, p(abs))
end
algol
begin
comment library 1;
real
x;
x := 0;
x := (x + 1.1) / 3.3;
x := (x + 2.2) / 6.6;
x := (x + 3.3) / 9.9;
x := (x + 4.4) / 13.2;
x := (x + 5.5) / 16.5;
x := (x + 6.6) / 19.8;
x := (x + 7.7) / 23.1;
x := (x + 8.8) / 26.4;
x := (x + 9.9) / 29.7;
x := (x + 11.0) / 33.0;
x := (x + 12.1) / 36.3;
x := (x + 13.2) / 39.6;
x := (x + 14.3) / 42.9;
x := (x + 15.4) / 46.2;
x := (x + 16.5) / 49.5;
x := (x + 17.6) / 52.8;
x := (x + 18.7) / 56.1;
x := (x + 19.8) / 59.4;
x := (x + 20.9) / 62.7;
x := (x + 22.0) / 66.0;
x := (x + 23.1) / 69.3;
x := (x + 24.2) / 72.6;
x := (x + 25.3) / 75.9;
x := (x + 26.4) / 79.2;
x := (x + 27.5) / 82.5;
x := (x + 28.6) / 85.8;
x := (x + 29.7) / 89.1;
x := (x + 30.8) / 92.4;
x := (x + 31.9) / 95.7;
x := (x + 33.0) / 99.0;
x := (x + 34.1) / 102.3;
x := (x + 35.2) / 105.6;
x := (x + 36.3) / 108.9;
x := (x + 37.4) / 112.2;
x := (x + 38.5) / 115.5;
x := (x + 39.6) / 118.8;
x := (x + 40.7) / 122.1;
x := (x + 41.8) / 125.4;
x := (x + 42.9) / 128.7;
x := (x + 44.0) / 132.0;
x := (x + 45.1) / 135.3;
x := (x + 46.2) / 138.6;
x := (x + 47.3) / 141.9;
x := (x + 48.4) / 145.2;
x := (x + 49.5) / 148.5;
x := (x + 50.6) / 151.8;
x := (x + 51.7) / 155.1;
x := (x + 52.8) / 158.4;
x := (x + 53.9) / 161.7;
x := (x + 55.0) / 165.0;
x := (x + 56.1) / 168.3;
x := (x + 57.2) / 171.6;
x := (x + 58.3) / 174.9;
x := (x + 59.4) / 178.2;
x := (x + 60.5) / 181.5;
x := (x + 61.6) / 184.8;
x := (x + 62.7) / 188.1;
x := (x + 63.8) / 191.4;
x := (x + 64.9) / 194.7;
x := (x + 66.0) / 198.0;
x := (x + 67.1) / 201.3;
x := (x + 68.2) / 204.6;
x := (x + 69.3) / 207.9;
x := (x + 70.4) / 211.2;
x := (x + 71.5) / 214.5;
x := (x + 72.6) / 217.8;
x := (x + 73.7) / 221.1;
x := (x + 74.8) / 224.4;
x := (x + 75.9) / 227.7;
x := (x + 77.0) / 231.0;
x := (x + 78.1) / 234.3;
x := (x + 79.2) / 237.6;
x := (x + 80.3) / 240.9;
x := (x + 81.4) / 244.2;
x := (x + 82.5) / 247.5;
x := (x + 83.6) / 250.8;
x := (x + 84.7) / 254.1;
x := (x + 85.8) / 257.4;
x := (x + 86.9) / 260.7;
x := (x + 88.0) / 264.0;
x := (x + 89.1) / 267.3;
x := (x + 90.2) / 270.6;
x := (x + 91.3) / 273.9;
x := (x + 92.4) / 277.2;
x := (x + 93.5) / 280.5;
x := (x + 94.6) / 283.8;
x := (x + 95.7) / 287.1;
x := (x + 96.8) / 290.4;
x := (x + 97.9) / 293.7;
x := (x + 99.0) / 297.0;
x := (x + 100.1) / 300.3;
x := (x + 101.2) / 303.6;
x := (x + 102.3) / 306.9;
x := (x + 103.4) / 310.2;
x := (x + 104.5) / 313.5;
x := (x + 105.6) / 316.8;
x := (x + 106.7) / 320.1;
x := (x + 107.8) / 323.4;
x := (x + 108.9) / 326.7;
x := (x + 110.0) / 330.0;
outreal(1, x);
end
algol
begin
comment library 1;
procedure p(st1, st2);
string
st1,
st2;
;
p( [ 1.1], [ 3.3] );
p( [ 2.2], [ 6.6] );
p( [ 3.3], [ 9.9] );
p( [ 4.4], [ 13.2] );
p( [ 5.5], [ 16.5] );
p( [ 6.6], [ 19.8] );
p( [ 7.7], [ 23.1] );
p( [ 8.8], [ 26.4] );
p( [ 9.9], [ 29.7] );
p( [ 11.0], [ 33.0] );
p( [ 12.1], [ 36.3] );
p( [ 13.2], [ 39.6] );
p( [ 14.3], [ 42.9] );
p( [ 15.4], [ 46.2] );
p( [ 16.5], [ 49.5] );
p( [ 17.6], [ 52.8] );
p( [ 18.7], [ 56.1] );
p( [ 19.8], [ 59.4] );
p( [ 20.9], [ 62.7] );
p( [ 22.0], [ 66.0] );
p( [ 23.1], [ 69.3] );
p( [ 24.2], [ 72.6] );
p( [ 25.3], [ 75.9] );
p( [ 26.4], [ 79.2] );
p( [ 27.5], [ 82.5] );
p( [ 28.6], [ 85.8] );
p( [ 29.7], [ 89.1] );
p( [ 30.8], [ 92.4] );
p( [ 31.9], [ 95.7] );
p( [ 33.0], [ 99.0] );
p( [ 34.1], [102.3] );
p( [ 35.2], [105.6] );
p( [ 36.3], [108.9] );
p( [ 37.4], [112.2] );
p( [ 38.5], [115.5] );
p( [ 39.6], [118.8] );
p( [ 40.7], [122.1] );
p( [ 41.8], [125.4] );
p( [ 42.9], [128.7] );
p( [ 44.0], [132.0] );
p( [ 45.1], [135.3] );
p( [ 46.2], [138.6] );
p( [ 47.3], [141.9] );
p( [ 48.4], [145.2] );
p( [ 49.5], [148.5] );
p( [ 50.6], [151.8] );
p( [ 51.7], [155.1] );
p( [ 52.8], [158.4] );
p( [ 53.9], [161.7] );
p( [ 55.0], [165.0] );
p( [ 56.1], [168.3] );
p( [ 57.2], [171.6] );
p( [ 58.3], [174.9] );
p( [ 59.4], [178.2] );
p( [ 60.5], [181.5] );
p( [ 61.6], [184.8] );
p( [ 62.7], [188.1] );
p( [ 63.8], [191.4] );
p( [ 64.9], [194.7] );
p( [ 66.0], [198.0] );
p( [ 67.1], [201.3] );
p( [ 68.2], [204.6] );
p( [ 69.3], [207.9] );
p( [ 70.4], [211.2] );
p( [ 71.5], [214.5] );
p( [ 72.6], [217.8] );
p( [ 73.7], [221.1] );
p( [ 74.8], [224.4] );
p( [ 75.9], [227.7] );
p( [ 77.0], [231.0] );
p( [ 78.1], [234.3] );
p( [ 79.2], [237.6] );
p( [ 80.3], [240.9] );
p( [ 81.4], [244.2] );
p( [ 82.5], [247.5] );
p( [ 83.6], [250.8] );
p( [ 84.7], [254.1] );
p( [ 85.8], [257.4] );
p( [ 86.9], [260.7] );
p( [ 88.0], [264.0] );
p( [ 89.1], [267.3] );
p( [ 90.2], [270.6] );
p( [ 91.3], [273.9] );
p( [ 92.4], [277.2] );
p( [ 93.5], [280.5] );
p( [ 94.6], [283.8] );
p( [ 95.7], [287.1] );
p( [ 96.8], [290.4] );
p( [ 97.9], [293.7] );
p( [ 99.0], [297.0] );
p( [100.1], [300.3] );
p( [101.2], [303.6] );
p( [102.3], [306.9] );
p( [103.4], [310.2] );
p( [104.5], [313.5] );
p( [105.6], [316.8] );
p( [106.7], [320.1] );
p( [107.8], [323.4] );
p( [108.9], [326.7] );
p( [110.0], [330.0] );
outreal(1, 0)
end
algol
begin
comment library 1;
integer
i;
procedure p(a, b);
value
a;
value
b;
integer
a,
b;
i := a + b;
p(3, 4);
outreal(1, i);
end
algol
begin
comment library 1;
integer
i;
procedure p(a, b);
integer
a;
integer
b;
i := a + b;
p(3, 4);
outreal(1, i);
end
algol
begin
comment library 1;
boolean b;
real x;
integer array a[ + 1 : .6@2];
integer i, n;
b := false;
n := @+2 * .6;
x := 0;
comment ;
begin
comment ;
own real array c0[0 : 1];
procedure p(a, b, c);
value a;
integer a;
string b;
boolean array c;
begin
begin
c[(1)] := true or .8 > c0[if true then 0 else
1];
c[ - ( - 2)] := false and .4 >= x + 500@-2;
c[.3@1] := .3 \= (0) and (if @1 \= @4 then true
else false );
if false then
p(a, [string], c)
else
end;
;
for i := 1 step 1 until 3 do
begin
if .3 <= 6 div 2 then
goto out;
out :
end
end;
real procedure a0l;
a0l :=
if x < x then
@4
else
.6;
integer procedure ii;
ii := + 1 * (3 div (4)) - @2 + a0l;
begin
boolean array c[ii + ii div ii / ii : 1^ii + 3];
c0[0] :=
if b and (1) = (2) then
0
else
0;
p( + 1)l : ( [] )m : (c);
i := - n - i * n div n^1;
goto
if 1 - .9 = ii / 6 and ii <= a0l then
l
else
l1;
l :
l1 :
for i := i step n until ii do
;
if + .3 + @2 = + (.3) then
b := not b equiv false
else
b := @1 > 3 equiv true;
for i := ((1)) step + (1) until + 60 do
begin
a[@1 - 9] := 1 / .1 - 0.1;
a[i] :=
if (true ) or a[1] - 1 \= a[@1 - 9] * 1 impl
false then
+ 1
else
- 1
end;
for i := 1,
- 9 + a[1] step - 9 + a[1] until .6@1 do
n :=
if + a[1] + 0 = a[1] then
0
else
@1 - 9 + n;
if + n \= + 1 equiv n = - n or 0 < + n and 0 + n >= 0
then
else
goto l2;
b := b impl n > + 0 equiv 0 < - a[1] / @1 or true;
l2 :
goto (l3);
l3 :
b := true and false or false
impl true equiv + 0 \= - 1;
n := 1^n * 1 + (@1) * @-2^(1) / (2) + n;
b := true equiv - (0) div 1 > - a[1] or
not true equiv not true;
b := not false equiv .1 = 1 impl true
impl 0 \= 1;
for i := 1 while true do
goto exit;
exit :
for i := i while false do
if - 0 >= + 6 then
for n := 1 while 0 >= - 1 or + n <= + (1) do
for n := 1 do
;
b := 0 < @1 impl + 1 <= .1 or - 3 <= - 6 and true
and + 1 <= @1;
b := b impl - (1) < (2) equiv @1 = .1 and - (1) <= 0;
if c[1] impl not + 1 = @1 then
;
x := a[1]^.5^@1 + (if not n >= .1 or (if true then
false else true ) then - 1 else + 2);
begin
integer procedure a0(b, c);
boolean b, c;
a0 :=
if b impl not c then
(1)^2
else if c and not b then
(1)
else
(2);
x := x + a0(true , false ) + a0(false , true impl .4
< .6);
n := x * a0( not 0 = @1, 1 >= @2) - a0( not - 1 >
.1, not .1 <= (1))
end;
begin
goto l4;
l4 :
begin
for i := i step if 1 < 2 then 1 else 2 until
- 10 do
end;
if
if b then
.1 > @1
else
not @1 \= .6 then
begin
x := x + 100
end
else
for i := 1 step .3@1 until if not (false )
then 1 else a[1] do
b := true
end;
b := false
end;
begin
real y;
array d[c0[0] : + a[1] div 1 + 1 + c0[0]];
boolean procedure b1;
begin
own boolean x;
x :=
if d[0] < 0 then
not d[0] <= (0) impl (d[0] >= (1))
else
b;
b := x and @1 + d[0] > (1) equiv (d[0] \= 0);
b1 := b or @1 + d[0] = d[0] equiv (1) > d[0]
end;
switch s := l10, l11;
d[0] := 0;
b := b1 impl @1 + (1) \= d[0] and b;
l10 :;
l11 :;
end;
begin
switch ss := la, lb;
own integer p;
procedure q(l);
label l;
begin
array r[(0) : - ( - 1)], s[1 : @1];
for i := 0,
+ 1,
.3,
@1,
(2),
if b then 0 else 1 do
begin
end;
for i := 1 while i + (0) >= 9,
i + 1 while + i < 10 do
s[i] := 0;
for i := 1 + s[2] while - i > 0,
i + (1) while not i >= 10 do
if b then
end;
q(la);
la :;
lb :;
end;
begin
procedure p;
begin
;
for i := 1 while if 1 < 2 then 0 = a[1] else (a[1]) >
0
do
end;
array d[1 : if 1 < 2 then 2 else 1];
for i := 1 while .1 < - 3,
i + 1 while (i) < 3 do
d[i] := i;
for i := d[2],
1 step (1) until (1) do
if 1 < 2 then
l :
else
begin
end;
p;
for i := 1 step @1 - 9 until @1 - 9,
1 while @1 > 11 do
x := x + n
end;
outreal(1, x + n);
end
end
algol
begin
begin
real a;
goto l;
l: while
end
end
algol
begin
procedure p(a);
value a: ;
p(1)
end
algol
begin
procedure p(a);
real a: ;
p(1.0)
end
kdf9