begin;
    comment  eigenvalues of a real symmetric matrix
    by the QR method. Algorithm 253, P.A. Businger, CACM 8 (1965) 217
    ;
    integer N;
    N := READ;
    begin;
        integer I, J;
        real array A[1 : N, 1 : N];
        procedure SYMMETRICQR1(N, G); 
          value N;
          integer N;
          array G;
        comment  uses Housholders's method and the QR algorithm to
        find all n eigenvalues of the real symmetric matrix whose lower
        triangular part is given in the array g[1:n,1:n]. The computed
        eigenvalues are stored as the diagonal elements g[i,i]. The
        original contents of the lower triangular part of g are lost during
        the computation whereas the strictly upper triagular part of g
        is left untouched;
        begin;
            real procedure SUM(I, M, N, A); 
              value M, N;
              integer I, M, N;
              real A;
            begin;
                real S;
                S := 0;
                for I := M step 1 until N do S := S + A;
                SUM := S;
            end SUM;
            real procedure MAX(A, B); 
              value A, B;
              real A, B;
            MAX := if A > B then A else B;
            procedure HOUSHOLDERTRIDIAGONALIZATION1(N, G, A, BQ, NORM); 
              value N;
              integer N;
              array G, A, BQ;
              real NORM;
            comment  nonlocal real procedure sum, max;
            comment  reduces the given real symmetric n by n matrix g
            to tridiagonal form using n - 2 elementary orthogonal trans-
            formations (I-2ww') = (I-gamma uu'). Only the lower tri
            angular part of g need be given. The diagonal elements and
            the squares of the subdiagonal elements of the reduced matrix
            are stored in a[1:n] and bq[1:n-1] respectively. norm is set
            equal to the infinity norm of the reduced matrix. The columns
            of the strictly lower triagular part of g are replaced by the
            nonzero portions of the vectors u
            ;
            begin;
                integer I, J, K;
                real T, ABSB, ALPHA, BETA, GAMMA, SIGMA;
                array P[2 : N];
                NORM := ABSB := 0;
                for K := 1 step 1 until N - 2 do
                  begin;
                    A[K] := G[K, K];
                    SIGMA := BQ[K] := SUM(I, K + 1, N, G[I, K] POWER 2);
                    T := ABSB + ABS(A[K]);
                    ABSB := SQRT(SIGMA);
                    NORM := MAX(NORM, T + ABSB);
                    if SIGMA NOTEQUAL 0 then begin;
                        ALPHA := G[K + 1, K];
                        BETA := if ALPHA < 0 then ABSB else -ABSB;
                        GAMMA := 1 ÷ (SIGMA - ALPHA TIMES BETA);
                        G[K + 1, K] := ALPHA - BETA;
                        for I := K + 1 step 1 until N do
                          P[I] := GAMMA TIMES (SUM(J, K + 1, I, G[I, J] TIMES G[J, K]) + SUM(J, I + 1, N, G[J, I] TIMES G[J, K]));
                        T := 0.5 TIMES GAMMA TIMES SUM(I, K + 1, N, G[I, K] TIMES P[I]);
                        for I := K + 1 step 1 until N do
                          P[I] := P[I] - T TIMES G[I, K];
                        for I := K + 1 step 1 until N do
                          for J := K + 1 step 1 until I do
                          G[I, J] := G[I, J] - G[I, K] TIMES P[J] - P[I] TIMES G[J, K];
                    end ;
                end K;
                A[N - 1] := G[N - 1, N - 1];
                BQ[N - 1] := G[N, N - 1] POWER 2;
                A[N] := G[N, N];
                T := ABS(G[N, N - 1]);
                NORM := MAX(NORM, ABSB + ABS(A[N - 1]) + T);
                NORM := MAX(NORM, T + ABS(A[N]));
            end HOUSHOLDERTRIDIAGONALIZATION1;
            integer I, K, M, M1;
            real NORM, EPSQ, LAMBDA, MU, SQ1, SQ2, U, PQ, GAMMA, T;
            array A[1 : N], BQ[0 : N - 1];
            HOUSHOLDERTRIDIAGONALIZATION1(N, G, A, BQ, NORM);
            EPSQ := 2.25 mod -22 TIMES NORM POWER 2;
            comment  The tollerance used in the QR iteration depends
            on the square of the relative machine precision. Here 2.25%-22
            is used which is appropriate for a machine with a 36-bit
            mantissa
            ;
            MU := 0;
            M := N;
            INSPECT: if M = 0 then goto RETURN else I := K := M1 := M - 1;
            BQ[0] := 0;
            if BQ[K] < EPSQ then begin;
                G[M, M] := A[M];
                MU := 0;
                M := K;
                goto INSPECT;
            end ;
            for I := I - 1 while BQ[I] > EPSQ do K := I;
            if K = M1 then begin;
                comment  treat 2 * 2 block separately
                ;
                MU := A[M1] TIMES A[M] - BQ[M1];
                SQ1 := A[M1] + A[M];
                SQ2 := SQRT((A[M1] - A[M]) POWER 2 + 4 TIMES BQ[M1]);
                LAMBDA := 0.5 TIMES (if SQ1 > 0 then SQ1 + SQ2 else SQ1 - SQ2);
                G[M1, M1] := LAMBDA;
                G[M, M] := MU ÷ LAMBDA;
                MU := 0;
                M := M - 2;
                goto INSPECT;
            end ;
            LAMBDA := if ABS(A[M] - MU) < 0.5 TIMES ABS(A[M]) then A[M] + 0.5 TIMES SQRT(BQ[M1]) else 0.0;
            MU := A[M];
            SQ1 := SQ2 := U := 0;
            for I := K step 1 until M1 do
              begin;
                comment  shortcut single QR iteration
                ;
                GAMMA := A[I] - LAMBDA - U;
                PQ := if SQ1 NOTEQUAL 1 then GAMMA POWER 2 ÷ (1 - SQ1) else (1 - SQ2) TIMES BQ[I - 1];
                T := PQ + BQ[I];
                BQ[I - 1] := SQ1 TIMES T;
                SQ2 := SQ1;
                SQ1 := BQ[I] ÷ T;
                U := SQ1 TIMES (GAMMA + A[I + 1] - LAMBDA);
                A[I] := GAMMA + U + LAMBDA;
            end I;
            GAMMA := A[M] - LAMBDA - U;
            BQ[M1] := SQ1 TIMES (if SQ1 NOTEQUAL 1 then GAMMA POWER 2 ÷ (1 - SQ1) else (1 - SQ2) TIMES BQ[M1]);
            A[M] := GAMMA + LAMBDA;
            goto INSPECT;
            RETURN: ;
        end SYMMETRICQR1;
        for I := 1 step 1 until N do
          for J := 1 step 1 until I do
          A[I, J] := READ;
        SYMMETRICQR1(N, A);
        for I := 1 step 1 until N do
          begin;
            NLCR;
            ABSFIXT(2, 0, I);
            PRINT(A[I, I]);
        end ;
    end ;
end;