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ABSTRACT
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The X1 did not support ALGOL 60 implementation at all. Its ALGOl 60 system was
designed by Dijkstra and Zonneveld and completed in 1960. Although developed as an
academic exercise it soon was heavily used and appreciated.

The X8, successor of the X1 and (almost) upwards compatible to it, had a number of
extensions chosen specifically to support ALGOL 60 implementation. The ALGOL 60
system, developed by Nederkoorn and Kruseman Aretz, was completed even before the
first delivery of an X8.

In this document we describe the two systems, demonstrating the progress in both hard-
ware and software in a relatively short period.
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Preface

In this document we compare two ALGOL 60 implementations, one for the Electrologica
X1, completed in 1960, the other for the Electrologica X8, completed in 1965.

To give the flavour of the difference, we present below the results of some measurements,
carried out with the help of emulations of the two machines, for one and the same program,
a Runge-Kutta integration program applied to the calculation of planetary orbits.

X1 X8
compiling instructions executed 1 145 895 2 270 261

compile time 61.9 sec 8.92 sec
average instruction time 54.1 µsec 3.93 µsec

execution instructions executed 9 450 329 1 705 131
execution time 557.3 sec 10.36 sec
average instruction time 52.6 µsec 6.08 µsec

Where the El X8 is about 12 times faster than the El X1, we see that program execution
is more than 50 times faster. This is due to the fact that the X1 was developed for ad-
ministrative applications in the first place, whereas the (upwards compatible) instruction
set of the X8 was chosen with ALGOL–like languages in mind.

In this report we compare the two machines, the two compilers and the object codes they
generate, in order to explain the figures given above, as well as many others. Moreover
go we in somewhat deeper in aspects of the ALGOL 60 implementation of the X8 that
have not been described elsewhere.
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Chapter 1

Introduction

1.1 The Mathematical Centre

The Mathematical Centre (or shortly: the MC) was founded in 1946 in order to promote
the application of mathematics in the Netherlands. The ideas for such an institute were
developed during world war II and many parties, among which ZWO (Foundation for
Pure Scientific Research), the city of Amsterdam, CBS (Central Bureau for Statistics),
Philips Gloeilampen Fabrieken (now Philips Electronics) and the Bataafse Petroleum
Maatschappij, contributed to its foundation.

Soon it had four departements: for pure mathematics, applied mathematics (mainly ap-
plied analysis), statistics, and numerical computation. The latter department was from
1947 to 19731 headed by Adriaan van Wijngaarden (who was president of the board of
directors of the institute from 1961 until his retirement in 1981). After a study tour to
the UK and the US the decision was taken to build a first computer, based on relay tech-
nology. The ‘ARRA’ was developed by C.S. Scholten and B.J. Loopstra and completed in
1952, but it never functioned satisfactorily and was broken down shortly after its official
inauguration.

The structure of the next MC computer, called ‘ARRA II’, was highly influenced by
G.A. Blaauw, who joined the MC from 1952 until 1955 and learned the profession in the
US with Howard Aiken. It was completed in 1955 and worked successfully. It had a
drum store of 1024 words of 30 bits (revolution time 20 msec). The basic software for

1The department for numerical computation was split into two departments Januari 1st 1973, each
with a new head.
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2 CHAPTER 1. INTRODUCTION

the ARRA II was written by E.W. Dijkstra, who entered the MC in 1952. A slightly
improved version of the machine, called FERTA, was build for Fokker, the Dutch aircraft
factory.

The third computer of the MC was the ARMAC, again developed by Scholten and Loop-
stra. Its main store was again on drum, 3584 words (112 ‘pages’ of 32 words) of 34 bits,
revolution time 13.3 msec. But in addition it had 2 pages of 32 words core store, with
cycle time of 20 µsec. One of these pages was free addressable and used as working area,
the other contained permanently a copy of the drum page to which the instruction counter
pointed (this copy was automatically loaded from drum whenever the instruction counter
changed page). This meant that it was efficient to program loops in such a way that
all its instructions were contained in one and the same page and its data resided in the
free–addressable core page as much as possible. The ARMAC was set to work in 1956.

1.2 Electrologica

For the design of MC’s next machine, for which the Dutch assurance company Nillmij
showed great interest, a company, Electrologica, was founded in 1956, with capital from
the Nillmij and the know–how of the MC: some 45 people moved from MC to Electrologica.
The first El X1 was delivered to the Nillmij in 1958. The Mathematical Centre got its
copy in 1960. The X1 was fully transistorized, had core store (in units of 4096 words
of 27 bits), cycle time 32 µsec, an index register and an interrupt system for I/O. More
details are given in Chapter 2. The basic software of the X1, including interrupt handling
and the assembler, was again designed by Dijkstra. A full description of the X1 and of
its basic software is given in Dijkstra’s thesis, defended in 1959 ([5]). The first ALGOL
60 implementation in the world that was operational was designed by Dijkstra and J.A.
Zonneveld ([8]).

As a successor to the El X1, Electrologica designed the El X8. The first copy was (months
too late) delivered in 1965 to the University of Utrecht, the MC got its copy in 1966. The
development of software for the X8 was partly contracted out to the initial purchasers: the
assembler to the Dr. Neher Laboratory of PTT, the Dutch post and telephone company,
the ALGOL 60 implementation to the MC, a Fortran implementation to the Technical
University of Kiel (Germany), whereas the Technical University of Eindhoven undertook
the development of a multi–programming system. Most of these parties were represented
in the Z8 committee (Z8, ‘zacht’, meaning soft, for software).

The El X8 was to a certain degree upwards compatible with the X1. The extension of the
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instruction set was directed to the implementation of ALGOL 60; it contained floating–
point hardware, stack instructions, an addressing mode fit for the access of local variables
in a block structure, and an execute instruction for a fast parameter mechanism. It had
core store (in units of 16384 words of 27 bits, cycle time 2.5 µsec); a drum store (of 512
tracks of 1024 words) could be ordered as backing store.

Another aspect in which the X8 differed from the X1 was the treatment of I/O. In the
X8 input/output was handled by a separarate processor, ‘Charon’, on the basis of cycle
stealing of the memory. For details on the X8 we refer to Chapter 4.

1.3 ALGOL 60

ALGOL 60 (ALGOL is an abbreviation of ALGOrithmic Language) was the result of the
work of an ad–hoc international committee. This commitee consisted of famous scientists
like Backus (yes, the founder of BNF), Bauer, John McCarthy (LISP), Naur, Rutishauser,
Samelson, Van Wijngaarden, and Woodger. The final report was edited by Peter Naur.

The language was developed in the period from 1957 to 1960. It had ALGOL 58 as an
early forerunner, in 1960 came the ALGOL 60 report (edited by Naur[1]), and in 1962
the final ‘Revised Report on the programming language ALGOL 60’ [18] was published.

ALGOL 60 was the first language whose grammar was defined in Backus Normal Form
(BNF). It was of a great generallity, thanks to the recursive definitions of BNF. It had
(nested) block structure and an advanced parameter mechanism for procedures. It in-
troduced the ‘boolean’ type as a full fledged citizen, with boolean variables, boolean
constants, boolean expressions, and boolean procedures. Although it was designed in the
first place as a language to express and communicate numerical algorithms, it lent itself
also to express non–numerical algorithms in.

It had much success in Europe, where ALGOL 60 implementations were developed for
numerous (commercial) computers, among which KDF9, TR4, Zebra, EL X1, and EL X8.
Also some American companies developed ALGOL 60 systems: Burroughs, Honeywell.
The succes in the US was, however, hampered by the fact that IBM refused to support
ALGOL 60, and that the physisists already had too much invested in FORTRAN, which
was, from a scientific view point, inferior to ALGOL 60.

An aspect of ALGOL 60 that is not present in most other higher–order programming lan-
guages is the use of mixed–mode arithmetic expressions. ALGOL 60 does not have sepa-
rate expressions of type integer and of type real, and in arithmetic expressions operands
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of both types may occur. There are, however, strict rules stating under what conditions
the result of an arithmetic expression is exact, i.e. of type integer. For exponentiation,
e.g., the type of ‘ <primary> ↑ <primary>’ is integer provided that both operands have
integer type and the exponent is non–negative.

In assigning a real result to a variable declared to be of type integer that result is rounded
to an integral value. The same occurs at other places where an integral value is needed,
e.g. for an index in a subscripted variable.

The aspect of mixed–mode arithmetic expressions has some consequences for its imple-
mentation.

1.4 ALGOL 60 implementation on the MC

Where the MC was, rather early, involved in the development of the language ALGOL 60,
it was almost self–evident that the MC would try to implement it. The work started
November 1959 and already in August 1960 the first ALGOL 60 programs were compiled
and executed. A formidable achievement! The work was done by four people. The
compiler was written by Dijkstra and Zonneveld and was about 2000 instructions short,
whereas the organisational and arithmetic subroutines supporting program execution (the
‘complex’) were written by Miss Römgens and Miss Christen (another 2000 instructions).
The system was written for the EL X1 and could work in a machine with only 4K words
memory. In 1961 a library containing more input/output procedures and some numerical
subroutines were added to the system and in the middle of 1962 about 70% of machine
time of the X1 was allocated to the compilation and execution of ALGOL 60 programs.

When I joined the MC in September 1962 the original crew of the ALGOL 60 project
for the X1 was dissolved. Soon the ‘maintenance’ of the system became one of my tasks.
Autumn 1963 I completed a load–and–go version of the system, greatly reducing paper–
tape handling.

In 1962 a second ALGOL 60 implementation was completed, developed by Nederkoorn
and Van de Laarschot[16, 17]. In contrast with the Dijkstra–Zonneveld system the
Nederkoorn–Van de Laarschot system did a complete syntax check of the ALGOL 60
program. It produced rather compact object programs for a machine with variable word
length, which could be executed by an interpreter for that machine written in X1 code.
Consequently program execution was much slower than that with the Dijkstra–Zonneveld
system and soon the Nederkoorn–Van de Laarschot system was used for syntax check
only.
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In the course of the year 1963 the MC ordered an Electrologica X8, the successor of the
El X1, and undertook the task to develop an ALGOL 60 implementation for it. In Juli
1963 a working group was formed consisting of Zonneveld, Van de Laarschot, Barning,
Nederkoorn, and myself. Nederkoorn, Van de Laarschot, and I defined the mapping
from the source text in ALGOL 60 to the object code for the EL X8 and coded the
subroutines necessary for the support of object code execution (where Van de Laarschot
soon dropped out, this work was mainly done by Nederkoorn and myself). The result of
this work, completed in 1964, was documented by Nederkoorn and by Kruseman Aretz
and Nederkoorn but these internal reports were never published officially.

Barning contributed to the project in two ways. First he developed an emulator for the
X8, to be run on the X1. This work was completed in 1963[2]. This emulator made it
possible for Nederkoorn and myself to test object code of hand–translated ALGOL 60
programs and the execution–support subroutines already in an early stage of the project.

Barning’s second task was the development of subroutines for the standard numerical
functions of ALGOL 60 (sqrt, sin, cos, ln, exp, arctan[3]). Also he was able to test these
functions with the X8–code emulator.

The compiler for the X8 was written by me. I decided to use ALGOL 60 itself as design
language, in order to arrive at a well–structured and clear design. After some experiments
I discovered that it was possible to use recursive procedures to carry out syntax analysis[9],
a method that later was baptized ‘recursive descent’. Having availble a running ALGOL
60 implementation on the X1, it was possible to test large portions of this version of the
compiler for the X8 (the size of the program nescitated to apply the Nederkoorn–Van de
Laarschot implementation for this work). Work started in 1964 and was completed in
1965. The coding of the compiler into ELAN, the assembly language of the X8, took only
one or two months[11]. In 1973 also (an updated version of) the ALGOL 60–text of the
compiler was published[12].

Since the ELAN assembler under construction by the Dutch PTT was not ready in time
it was good luck that the University of Utrecht (i.e. Van der Meulen), not satisfied with
the developments in PTT, constructed another ELAN assembler. It was that one that
operated early enough for me to test the compiler with.

Also the Electrologica operating system was not ready in time. It promised to be such
large that in an X8 installation with 16K words core store not enough space was left
for the ALGOL 60 system, and, according to its specifications, it required an extensive
conversation between operator and machine even for the smallest program. For these
reasons the MC decided, at a very late stage, to build its own operating system to support
the execution of ALGOL 60 programs only. It was developed by Mailloux and van Berckel
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and called ‘PICO monitor’, for one of the design criteria was minimum size.

1.5 Installation of the system

After one or two short test sessions at Electrologica’s premises at Rijswijk the system
was installed on the X8 of Utrecht University by Mailloux and me in about two days,
short after the machine’s delivery. We went to Utrecht with our bunch of paper tapes
November 9th and 10th, and left a working system. I remember our astonishment over
the machine’s speed: we tried a first ALGOL 60 test program and after reading the paper
tape the machine seemingly failed to do any computation and remained idle. At last we
detected that computation was ready before we could even lift our eyes from the tape
reader.

Thereafter we visited Utrecht several times at increasing intervals, to solve small prob-
lems: November 12th, November 15th, November 16th, November 24th, December 7th,
December 9th, December 20th, December 22nd, Januari 10th, Januari 17th. Right from
the beginning the instability of the X8 and the imperfect hardware test programs of
Electrologica were the main problem.

The Mathematical Center got its X8 in May, 1966. In spite of the enormous gain in
computing power the machine was in no time fully occupied during day hours, which
made it necessary to improve its operation, i.e., improve the operating system PICO.
Gradually it was replaced by the MICRO system (1967) and the MILLI system. The
latter I started to develop at the Mathematical Center, but I could only complete it after
my switch to Philips Research Eindhoven in 1969. Thereafter it was also installed at the
Mathematical Center. In MILLI four streams of programs (with different demands on the
system) were executed in parallel.

For external clients the price for use of the X8 was Fl. 1000 per hour (for the X1 it
was ‘only’ Fl. 600 per hour). Therefore computation times were reported to the users in
‘milli–hours’.

Both at the Mathematical Center and at Philips the X8 was operated in closed shop.

1.6 Maintenance of the ALGOL system for the X8

After its installation in 1965 the ‘maintenance’ of the ALGOL system for the X8 started.
We mention here several aspects.
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• The repair of errors. The most important problem showed up in the first week of
use: if an ALGOL problem had a corrupt declaration and block structure, it could
happen that the second or third scan of the compiler derailed, leading to a break–
down of the system. This was easily repaired by introducing beside the normal error
message a ‘deadly’ error message causing the compiler to discontinue the analysis
at the end of the first scan.

• The inclusion of the line printer as (main) output device. The inclusion of some
background store on the drum. The inclusion of a plotter. The inclusion of punch
cards as input/output medium. The latter required that next to the Flexowriter
representation of basic symbols (with underlined key words) another representation
was introduced (with key words between apostrophes).

• The purchase of a third cabinet of core store, with addresses from 32K to 48K - 1
commanding small addressing changes in order to allow stack growth beyond the
32K border.

• The input/output system was extended to allow in addition to Flexowriter code also
ASCII for the representation of programs and data.

• The development of a library of procedures that could be used without declaration.
Partly they were written in machine code, mainly those that had to do with in-
put/output peripherals. But a large part was written as ALGOL 60 procedures and
precompiled by a special version of the compiler. Their relocatable object codes
were stored on the drum and were added selectively to a compiled program.

1.7 The Z8 committee

The Z8 committee was founded in 1963 by Electrologica and was headed by Van Wijn-
gaarden. Its first meeting took place on September 23rd, 1963. Members were Dijkstra
(THE), Van der Poel (PTT), Van der Sluis (RUU), Van Wijngaarden (MC), Kruseman
Aretz (MC), Scholten (El), Schmidt(El), Zwanenburg (El), Kolff (El), Seligmann (El),
and Dek (Nillmij). Zwanenburg functioned as secretary. Most meetings were attended
also by Van der Meulen (RUU). The committee convened about twice a month. In total
the Z8 had, according to the minutes, 50 meetings. Last meeting was June 23rd, 1966.

Quite a number of the early meetings were devoted to the definition of the assembly
language, later called ELAN. Many discussions had also the ‘El–coordinator’ (operating
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system) as subject. Also details of the hardware (e.g. interrupts) and proposals for change
thereof were treated. The ALGOL 60 system under development at the MC was dealed
with only a few times, mainly to discuss its inbedding in a simple operating system. June
17th, 1965 I communicated the completion of the ALGOL 60 version of the compiler,
November 25th I promised to write a manual for the ALGOL system, and December 16th
I announced that the system, brought to life on the Utrecht X8, was completed, for the
time being. January 6th, 1966 I reported that a certain ALGOL 60 program (solving the
Van der Pol differential equation numerically) was compiled about 5 times faster than on
the EL X1, whereas program execution was 67 as fast.

The Z8 committee also demanded the possibility to order a special token drum for the line
printer. That token drum contained all the special tokens from the ALGOL 60 alphabet
(such as ∨, ∧, ¬ and 10) and the tokens | and for the printing of symbols like ≤ and 6=
and to underline the word delimiters.



Chapter 2

The Electrologica X1

We give here a short summary of the EL X1 instruction set only. We do so using the
notation of ELAN, the assembly language for the X8.

The word length of the X1 was 27 bits. The arithmetic was 1–complement. Instructions
had an operation code of 12 bits and an address part of 15 bits. The memory was in units
of 4K words, with a maximum of 24K. Moreover the X1 had some read–only memory,
addressed from 24K (to maximally 32767).

There were three main registers: A, S, and B. Both A and S had 27 bits. Register B, the
index register, had 16 bits only. There were three one–bit registers, C, LS, and OF. C was
the condition register (C = 0 meaning yes), LS contained the sign of the result at condition
setting, and OF was the overflow indication. Condition setting was not automatic, but
should be asked for explicitely by an instruction variant, using the P(ositive), Z(ero), or
E(qual) sign. All instructions could be made dependent of the condition, using the Y(es)
or N(o) variant.

In general, most instructions allow one or more of three variant types. Let ‘operation’ be
(the notation of) some X1 instruction (with none variant applied). Then:

1. Condition following variants: U, Y, or N.
ELAN notation effect
Y, operation if C = 0 then execute operation, else skip
N, operation if C = 1 then execute operation, else skip
U, operation execute operation, but do not change the

value of the register involved in the opera-
tion

9
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In the U(ndisturbed) variant, strictly spoken not a condition following variant, the
result of the operation is formed in the exit register U of the accumulator, but not
copied to one of the registers. The variant is useful only in combination with one of
the next variants.

2. Condition setting variants P, Z, or E.
ELAN notation effect
operation, P operation; if U ≥ +0 then C:= 0 else C:= 1
operation, Z operation; if U = +0 or U = –0 then C:= 0

else C:= 1
operation, E operation; if (signbit of U) = LS then C:= 0

else C:= 1
Moreover, in any of these three variants, as a last action LS is set to the signbit of
U. Here, as in the previous variant, U is the exit register of the accumulator.

3. Addressing variants ‘:’ and B.
These variants influence the role of the address part in the instruction.
The :–variant is meaningful only if without that variant the operand of the instruc-
tion is a word in store, at the location indicated by the address part. Using the
:–variant then means: use the address part itself as the operand (resulting in an
operand between 0 and 32767).
The B–variant adds the value of B to the address part of the instruction in order to
find the location of the store operand1. In this variant B is therefore used as index
register.

For many instructions the 12 bits of the operation code can be devided into 6 bits operation
code proper and 3 ∗ 2 bits for the variants. In the tables below we indicate the value of
the operation code proper as ‘ocp’.

The main instructions for register A are as follows. Let ‘label’ be an identifier denoting
some address (i.e. some number between 0 and 32767).
Then we have2:

1for B ≥ +0 this addition is carried out modulo 32768, so that 32767 + B results in the address B - 1.
This facilitates the use of B as stack pointer.

2addition and subtraction in the sense of the 1–complement arithmetic for 27 bits.
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ocp ELAN notation effect variants
0 A + label A:= A + store[label] UYN :B PZE
1 A − label A:= A − store[label] UYN :B PZE
2 A = label A:= store[label] UYN :B PZE
3 A = − label A:= − store[label] UYN :B PZE
4 label + A store[label]:= store[label] + A UYN B PZE
5 label − A store[label]:= store[label] − A UYN B PZE
6 label = A store[label]:= A UYN B PZE
7 label = − A store[label]:= − A UYN B PZE

20 A ’+’ label A:= A ’+’ store[label] UYN :B PZE
21 A ’+’ − label A:= A ’+’ − store[label] UYN :B PZE
22 A ’×’ label A:= A ’∗’ store[label] UYN :B PZE
23 A ’×’ − label A:= A ’∗’ − store[label] UYN :B PZE

Herein denotes ’+’ bitswise addition (1 ’+’ 1 = 0) and ’∗’ bitswise multiplication.

Execution of these instructions costs about two store cycli (i.e. 64 µsec), but in the
:–variant only one store cycle (for loading the instruction itself).

Some examples:

1. to set condition register C = 0 without changing the value of any register other than
C and LS:

U, A = 0, Z3

2. to load A with the absolute value of the location in store that is one place beyond
the location refered to by B:

A = M[B+1], P
N, A = − M[B+1]

3. to replace the least significant 15 bits of A by zero:
A ’×’ −32767

The same instructions are available for register S (with ocp 8, . . . , 15, 28, . . . , 31).

The instructions 0 to 7 are also available for register B (with ocp 32 to 39). While loading
B from store the 27 bits are truncated to 16 bits, whereas in the operations 36 to 39 the
value of B is expanded by 11 copies of the sign bit.

3In ELAN, M is a standard identifier meaning address 0. Moreover, address identifiers may be indexed
with numbers. Thus, for 0 ≤ n < 32768, M[n] means address n. Finally, :M[n] may be abbriviated to n.
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In multiplication and division both A and S are involved. Denoting by AS the 53 bit
register consisting of the 27 bits of A followed by the least significant 26 bits of S4 we
have:

ocp ELAN notation effect variants
16 MULAS(label) AS:= S ∗ store[label] + A YN :B PZE
17 MULAS(− label) AS:= S ∗ (− store[label]) + A YN :B PZE
18 MULS(label) AS:= S ∗ store[label] YN :B PZE
19 MULS(−label) AS:= S ∗ (− store[label] ) YN :B PZE

24 DIVAS(label) S:= AS / store[label]; A:= remainder YN :B PZE
25 DIVAS(− label) S:= AS / (− store[label]); A:= remainder YN :B PZE
26 DIVA(label) S:= 226∗A / store[label]; A:= remainder YN :B PZE
27 DIVA(−label) S:= 226∗A / (− store[label]); A:= remainder YN :B PZE

These instructions are slow: they cost 500 µsec.

For transfer of control there are a.o. the following instructions:

ocp ELAN notation effect variants
40 JUMP(label) T:= T + store[label] UYN :B
41 JUMP(−label) T:= T − store[label] UYN :B
42 GOTO(label) T:= store[label] UYN :B
42 GOTOR(label) restore T,C,LS,OF,. . . from store[label] UYN B
46 SUB0(:label) store[8]:= T,C,LS,OF,. . . ; T:= label UYN

. . . . . . . . . . . .
46 SUB15(:label) store[23]:= T,C.LS,OF,. . . ; T:= label UYN

Herein is T the instruction counter. Also in these instructions T is incremented by 1
before execution of the instruction.

The U–variant here has a special meaning: if OF = 1, i.e., if integer overflow during
addition or subtraction occurred, OF is set to 0 and control is transfered; otherwise the
instruction is skipped.

There are 16 subroutine calls: SUB0, SUB1, . . . , SUB15, differing only in the place where
the linkdata are stored: store[8], store[9], . . . , store[23]. The linkdata consist of the (old,

4In multiplications, the resulting sign bit of S is a copy of the sign bit of A; in DIVAS the sign bit of
S is neglected.
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but incremented) value of the instruction counter and the values of a number of one–bit
registers like C, LS, OF, and some more (e.g. the interrupt permit). For the return from
a subroutine one can use the GOTO–instruction, that restores T from the link but none
of the one–bit registers, or the GOTOR–instruction, that restores both T and all the
one–bit registers that are saved in the link.

The availablility of 16 different subroutine calls makes it possible to have a hierarchy of
subroutines. MC–convention was to call subroutines that do not call other subroutines
by means of SUB0, and to use SUBi+1 to call a subroutine that calls internally one or
more subroutines by SUBi (and, of course, no subroutines by SUBj with j > i). This
convention is, however, no solution to implement recursion.

SUB14 and SUB15 were, at least for the X1 of the MC, reserved for the treatment of
interrupts.

There are also counting jumps, with ocp 44 and 45, but their description is not nescessary
for this report.

There are many more X1 instructions. An important group are the 16 shift operations.
There are four different circuits: A, S, AS, and SA. The circuit AS has 53 bits (the sign
bit of S is excluded from the shift) and plays a role in arithmetical shifts, the circuit SA
has 54 bits. There are also 2 kinds of shifts: round shifts, in which the bits that are shifted
out at one side are entered again at the other side, and shifts–out, where bits are lost at
one side and copies of the sign bit are supplied at the other side. Both shift types can,
finally, be carried out to the right and to the left. The number of shift places is contained
in the address part of the instruction; in the B–variant the value of B is added to it. Shift
instructions are slow: they cost 40 + 8 ∗ n µsec, where n is the number of shift places.

Furthermore there are instructions for input/output, instructions for allowing and pre-
venting interrupts, instructions for inverting the value of a register or copying its contents
to another register, and stop instructions (transferring the X1 from the running state into
the stopped state). Again we need not give details here.

Altogether the X1 has an elegant instruction set, which was pleasant to program in.
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Chapter 3

The ALGOL 60 system for the

EL X1

3.1 Introduction

The ALGOL 60 system for the EL X1 was developed in less than a year, from Novem-
ber 1959 to August 1960. An enormous achievement, certainly if one takes into account
the fact that in that period the language itself was still under devlopment, the machine
still had to be delivered to the Mathematical Center, that machine had a core store of
4096 words only, its structure was more fitted to administration than to scientific com-
putation1, and the crew had no previous experience with the implementation of higher
programming languages. Fortunately, Van Wijngaarden, head of the Computing Depart-
ment, was member of the international committee designing ALGOL 60.

The main designers were E.W. Dijkstra and J.A. Zonneveld. They wrote the compiler,
whereas a collection of subroutines (called the ‘complex’) to support execution of compiled
programs was written by Miss M.J.H. Römgens and Miss S.J. Christen. The compiler
length was about 2000 instructions, leaving about 2000 words working space during com-
pilation. It had to read the source program, punched on paper tape in Flexowriter code,
twice; during the second scan the compiled object code was punched on paper tape. The
complex was also about 2000 instructions long, leaving 2000 words for object program and
working space during program execution. Object code loading was a complicated process.
The loader was overwritten during program execution. In total took compilation and ex-

1The X1 had no floating–point hardware, no stack instructions, and no advanced addressing variants.

15
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ecution of an ALGOL 60 program the reading (and subsequently rewinding) of about 10
tapes: the compiler tape, twice the tape(s) containing the ALGOL 60 source program, the
complex tape, the loader tape, the second part of the object code, the cross–reference tape
(of the library), the first part of the object code, the library tape (containing a collection
of input/output routines and some numerical procedures) and, maybe, one or more tapes
with input data read by the program in execution.

Execution was slow. Nevertheless, the ease of programming in ALGOL 60 compared to
programming in assembly language made it rather popular. Also program punching and
editing was changed dramatically by the introduction of the FRIDEN Flexowriter, which
for the first time produced, while typing, both paper tape and a legible print. Within two
years more than 70% of machine time was spent by the ALGOL system.

The implementation of the language was rather complete: there were only few and harm-
less restrictions on the language. It included block structure with local variables, arrays
with dynamically determined bounds, (recursive) procedures, name and value parameters.
The greatest shortcoming of the system was the almost complete absence of syntax checks
during compilation and of bound checks of arrays during program execution.

In May 1962 the core store of the X1 at the MC was extended from 4K to 12K words.
This extended the space available during program execution for object program and work
area to 10K words. Somewhat later I used the extra core store to change the ALGOL
system into a load–and–go system, thereby greatly reducing tape handling. The system
tape now contained compiler, run–time support routines, loader, cross–reference data and
the most frequently used library routines. During the first scan of the ALGOL 60 source
program the text was stored, thus avoiding tape reading during the second scan, and the
object code was also stored, thus avoiding its punching during the second scan and its
reading in the loading phase. The necessary modifications of the system concentrated
at the periphery of the compiler and the loader: no deep changes of the compiler were
required.

In the next sections we go into some details about the representation of values, the
structure of the object code produced by the compiler, and on the structure of the compiler
itself. We will meet these subjects again in Chapter 5, where we describe the ALGOL 60
implementation for the EL X8.
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3.2 The representation of values

Values of type integer are represented by one X1 word of 27 bits. Their value has to
be between −67 108 863 and +67 108 863. This holds for both simple variables, array
elements, and intermediate results of expressions.

Values of type real have two different representations. In a variable x it is represented
by a mantissa m (with 0.5 ≤ m < 1) of 40 bits and a binary exponent e (with −2047 ≤
e ≤ +2047) of 12 bits (then x = m ∗ 2e). This representation requires two words per
variable2. This holds for both simple variables and array elements. An intermediate real
result of an expression on the stack is represented by a mantissa of 53 bits and a binary
exponent of 27 bits, requiring three words. Consequently, while loading the value of a real
variable to the stack a change of representation is necessary, whereas the opposite change
of representation is required while storing the (real) result of an expression in a variable.

The range for real variables is from about −10600 to about −10−600 and from about 10−600

to about 10600 (the value 0 being replaced by about 10−600).

This representation for reals is meaningful: stored values take two words of store only,
important for long arrays, whereas intermediate results of arithmetic expressions have
representations that are fit for arithmetic operations.

All elementary operations (addition, subtraction, multiplication, division) take place at
the top of the stack. This means for real values that the operations are carried out in 52
bits precision, i.e. in more than 15 decimals. Stored result, however, have a precision of
40 bits or about 12 decimals only. In certain applications one can make use of the higher
precision of intermediate results on the stack. To compute the error in the exponential
function3, e.g., one computes the difference between ‘exp(x)’ and the series expansion in
x for it, using enough terms to make the truncation error below 10−15.

Boolean values are represented as integer values, using 0 for true and 1 for false.

2There was also a version of the ALGOL 60 system for the X1 using only one word for real variables,
at the cost of precision. It was, however, hardly used and never maintained.

3In the X1 implementation of the standard functions the precision is 12 decimals only.
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3.3 The structure of the object program

3.3.1 Simple assignment statements

The structure of the object code, generated by the Dijkstra–Zonneveld ALGOL 60 com-
piler can be illustrated by the code for the following ALGOL 60 statement:

i := i + 1

where i is a variable of type integer declared in the outermost block, with 138 as the
address of its location and 10900 as the location of the integer constant 1.

instruction explanation
B = 138 B:= address of i

SUB1(:TIAS) Take Integer Address Static
B = 138 B:= address of i

SUB1(:TIRS) Take Integer Result Static
B = 10900 B:= address of 1
SUB2(:ADIS) ADd Integer Static
SUB1(:ST) STore

We see that the code mainly consists of subsequent calls of subroutines of the complex
of subroutines supporting the execution, which get their parameters(s) (if any) in one of
the registers. These subroutines can be seen as the operation codes for a hypothetical
stack machine, whereas a parameter in one of the registers can be looked upon as the
corresponding address part of that instruction. In this respect the object code is almost
P–code, the pseudo code for such a machine. Here, however, there is no need to decode
the operation code to arrive at the proper subroutine.

The stack cells of the hypothetic stack machine consist of 4 words, the last of which
indicates whether the cell contains the address of an integer variable or array (1 word),
the address of a real variable or array (1 word), an integer value(1 word), or a real value
(2 words mantissa, 1 word binary exponent). The stack pointer of the stack machine is
administrated in an X1 store location labeled ‘AW’ (Accumulator Wijzer).

As illustration of a subroutine of the complex we give the code for TIRS:
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label instruction explanation
TIRS: A = 4 ]

AW + A ] AW:= AW + 4
A = M[B] integer number to A
B = AW stack pointer to B
M[32764 + B] = A store integer in stack cell
S = −0 ]
M[32767 + B] = S ] indication for integer value
GOTOR(M[9]) return to object code

If variable i is local to an inner block, e.g. a procedure body, it has a two–component
address, consisting of a block number bn and a displacement d, from which its location in
store is derived dynamically (hence the term ‘dynamic address’). In that case the value
of i is loaded to the stack by the instruction pair:

instruction explanation
S = 32 ∗ d+ bn S:= dynamic address of i

SUB1(:TIRD) Take Integer Result Dynamic

Subroutine TIRD starts with a call ‘SUB0(:STAT)’, converting the dynamic address in
register S into a static address in register B, and is continued by the code of TIRS4.

The fact that ALGOL 60 has mixed mode arithmetic expressions, combined with the fact
that the representation of integer and real values differ in the ALGOL 60 implementation
for the X1, has many consequences. So all (dyadic) arithmetic operations must inspect
whether both operands have the same type. If not, the operand with integer type is
converted to real representation first. Also the subroutine ST (i.e. STore), finding an
address and a value on top of stack, has to inspect the two types and, when necessary, to
convert an integer value to real representation or to round a real value to an integer.

In total execution of the ALGOL 60 statement ‘i:= i + 1’ costs:

addressing mode instructions time
static 60 3284 µsec

dynamic 74 4044 µsec

4Hence, following the X1 conventions for subroutine nesting, both TIRD and TIRS are called by SUB1
with its link in M[9].
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Let now x and y be variables of type real, declared in the outermost block. Then the
translation of statement:

x := x + y

reads analogously:

instruction explanation
B = @x B:= address of x

SUB1(:TRAS) Take Real Address Static
B = @x B:= address of x

SUB1(:TRRS) Take Real Result Static
B = @y B:= address of y

SUB2(:ADRS) ADd Real Static
SUB1(:ST) STore

where we denoted the address of x by @x and that of y by @y. The number of instructions
executed in subroutine ADRS depends on the values of x and y, and so does execution
time. For initial values for x of 3.14 and for y of 0.1 we find5:

instructions time
110 5784 µsec

Statement x := x× y is executed in 6676 µsec by 101 instructions, statement x := x/y in
6946 µsec by 105 instructions.

3.3.2 Array access

Our second example deals with array access. Consider the following ALGOL 60 statement:

R[i] := R[i] + x

Let R be a real array, x a real variable, and i a variable of type integer, and all three be
declared in the outermost block (and therefore addressed statically). Let us denote the

5For values 0.1 of x and 3.14 of y 114 instructions are executed, lasting 5980 executed by µsec.
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address of the storage function6 of R by @R, the address of x by @x and the address of i

by @i. Then we have the following object code for that statement:

instruction explanation
B = @R B:= address of storage function of R

SUB1(:TRAS) Take Real Address Static
B = @i B:= address of i

SUB1(:TIRS) Take Integer Result Static
SUB1(:IND) INDexer
B = @R B:= address of storage function of R

SUB1(:TRAS) Take Real Address Static
B = @i B:= address of i

SUB1(:TIRS) Take Integer Result Static
SUB1(:IND) INDexer
SUB1(:TAR) Tranform Address into Result
B = @x B:= address of x

SUB2(:ADRS) ADd Real Static
SUB1(:ST) STore

The number of instructions that are executed for the above piece of object code and the
execution time will again depend on the values of R[i] and x. For the values 0.1 and 3.14
for R[i] and x, respectively, 216 instructions are executed in 11 532 µsec.

Due to the fact that boolean array elements are stored one element per word, the code for
the statement ‘B[i]:= true’ is the same as for ‘I[i]:= 0’ (where B is a boolean array and I
an array of type integer): both 8 instructions, demanding the execution of 81 instructions
in 4 416 µsec.

3.3.3 The <for–statement>

The structure of the ALGOL 60 <for–statement> is complex, leading to complex object
code. Consider the following ALGOL 60 statement:

for d:= 2, 3, 5 step s until q do

begin q:= n ÷ d; s:= 6 − s;

6For the declaration of an array of dimension n a set of n+3 consecutive words is constructed in store
containing information about the total number of elements of the array, the location of the elements in
store, and wether one word (for type integer and boolean) or two words (for type real) are assigned per
array element.
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if q × d = n then goto aa
end

We see that the <for–list> can contain several <for–list–element>s of different type. For
all these elements the same controlled statement has to be executed zero or more times.
Therefore an additional anonymous variable is needed to record which is the current
element. We see also that both the step size and the upper bound in an step–until–
element can be changed by the controlled statement.

The semantics of the step–until–element ‘A step B until C’ is descibed in the Revised
Report as:

V:= A;
L1: if (V – C) × sign(B) > 0 then goto Element exhausted;

Statement S;
V:= V + B;
goto L1;

In each iteration step the values of V and B are needed twice, whereas assignments to
V are done both initially and in each next iteration step. This makes implementation
complicated.

In the ALGOL 60 implementation for the X1 each for–statement acts as a parameterless
procedure. This creates the possibility to have new local variables (and has the additional
advantage to prevent jumps from outside the for–statement into it, by the same mechanism
that prevent jumps into procedure bodies). But the extra block administration has a price
in execution time.

In fact, three additional variables are used: one regular local variable of the procedure
(created in subroutine FOR0, see below), the link in the link data of the procedure, and
a word that is reserved in the stack before the creation of the block administration of a
procedure call7.

The local variable is used to store the address of the controlled statement (i.e. L4, see
below). The procedure link serves two purposes: to save the link of the call of subroutine
FOR5 and, in subroutine FOR1, to proceed the elaboration of the step–until element
after the first iteration step. The third word mentioned above is used to record the value
of ‘sign(B) + 8’ and influences the execution of both subroutine FOR1 and subroutine
FOR7.

7This word is filled by a zero in case of a procedure statement and by the address of the function
result in case of a function designator.
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The object code for statement

for i:= 1 step 1 until n do S

reads:

label instruction comment
GOTO(:L2) ” jump over code for address of i

L1: B = 138 ” B:= address of i

SUB1(:TIAS) ” Take Integer Address Static
SUB2(:FOR1)
GOTO(:L4) ” jump to code for statement S

L2: A = 0 ” no parameters
B = :L3 ” address of the ‘procedure body’
SUB1(:ETMP) ” call the ‘procedure’
B = 10900 ” address of constant 1
SUB1(:TIRS) ” Take Integer Result Static
SUB0(:FOR5) ” initial value
B = 10900 ” address of constant 1
SUB1(:TIRS) ” Take Integer Result Static
SUB3(:FOR6) ” step size
B = 139 ” address of n

SUB1(:TIRS) ” Take Integer Result Static
SUB3(:FOR7) ” upper bound
S = :L5 ” address of code following the for–statement
GOTO(:FOR8) ” exit for–statement

L3: SUB0(:FOR0) ” block entrance
GOTO(:L1) ” jump to code generating address of i

L4: . . . ” object code for statement S
GOTO(:L1) ” jump to code generating address of i

L5: . . . ” code for next statements

Its explication is a disaster, but I will give it a try.

First its static structure. It consists of the following parts:

1. a jump over Part 2 to Part 3;

2. code to load the address of the controlled variable to the stack, followed by a call of
FOR1 and a jump over Parts 3, 4, 5 and 6 to Part 7, the controlled statement S;
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3. three instructions to do the block entrance

4. code for the for–list–elements. Here we have just one element, a step–until element.
Its code consists of three component, for loading the initial value, the step size, and
the upper bound, terminated by calls of FOR5, FOR6 and FOR7, respectively;

5. two instructions for exititing the for–statement;

6. an instruction initializing the loop, followed by a jump to Part 2;

7. object code for statement S;

8. a jump to Part 2.

Next the dynamics.

Part 1 leads immediately to Part 3. This is the standard introduction to a block, coded
as a parameterless procedure (hence A = 0) with its body starting at location L3 (hence
B = :L3). ETMP puts a zero on top of stack and next constructs on the stack a new
block cell, containing all the necessary link data. The link of the call of ETMP is saved
there. In normal procedure calls it points to the code where the program is continued
after completion of the execution of the procedure. Here it points to Part 4, the for–list–
element(s).

Returning from ETMP, Part 6 completes the block introduction. It reserves space for one
local variable. Execution is transferred to Part 2.

Here first the address of the controlled variable is loaded to the stack. Next FOR1 is
called. It saves its link in the local variable of the block. Since it finds a zero below the
block cell it jumps via the ETMP link in the link data to Part 4.

Part 4 loads the initial value to the stack and calls FOR5. FOR5 changes the link of
ETMP in block’s link data to its own link (consequently, the preceding code of PART 4
will not be executed another time!) and returns. Now the test ‘(V – C) * sign(B) has
to be performed. Therefore, in Part 4 now the step size is loaded, followed by a call of
FOR6, in which, since it finds a zero below the block cell, first the initial value is assigned
to the controlled variable, next the value of the step size on top of the stack is replaced by
its sign and, incremented by 8 (therefore different from 0) written below the block cell in
order to change the future behaviour of FOR1 and FOR6. Next the upper bound is loaded
and FOR7 is called. In FOR7 the test is carried out. If the element is not yet exhausted,
the cells with the address of V, the value of V and the upper bound are removed from the
stack and control is transferred via the local variable, i.e. the saved link of FOR1, to the
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last instruction of Part 2, i.e. a jump to Part 7. If, however, the element is exhausted,
the link of FOR 7 is stored in link data of the block, a zero is written back just below
the block cell (giving FOR1 and FOR6 their original meaning) and control is transferred
via FOR 7’s link to the instructions following the call of FOR7, i.e. either to the next
for–list–element or, in case the for–list is exhausted, to Part 5, the exit procedure of the
for–statement.

Part 7 is the execution of statement S. It is concluded by a jump to Part 2.

Now we get a repetition of previous steps, with modified effect of FOR1 and FOR7. In
FOR1 now the value of V is loaded to the stack (using the address on top of the stack),
and control is transferred via the link in the link data of the block, i.e. to the instruction
following the call of FOR5 in PART 4. In Part 4 the step size is loaded. In the call of
FOR6 it is now added to the value of V before storing the result in V.

Complicated, is’n it? Definitely the ideas of ‘structured programming’ had not been
invented yet. Especially the change of effect of subroutines FOR1 and FOR7 is nasty,
as is the fact that some of those subroutines do not end by returning via their link but
pass control to some other instructions of the object program. Even with the compiling
technique used to generate the object code something simpler and more structured could
have been obtained.

No wonder that this complicated construction also takes time. Taking for S the <dummy
statement>, with an object code of 0 instructions, the execution of statement

for i:= 1 step 1 until n do S

takes:

for n > 0: 10 044 + n × 7 612 µsec,
for n ≤ 0: 10 772 µsec.

3.3.4 Procedure calls

Let procedure p be declared in the outermost block by:

procedure p(z); real z;
begin real y;
end;

and let x be a simple global variable of type real with initial value 3.14.

Then the call p(x) generates the following object code:
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label instruction comment
B = @p ” load address declaration of p in register B
GOTO(:L1) ” jump over parameter code
(0 + @x) ” parameter code word for x

L1: A = 1 ” number of actual parameters in register A
SUB1(:ETMP) ” ExTransMark Procedure

with execution time 4540 µsec, of which 1560 µsec for the execution of the body, and 2980
for the call administration and for parameter conversion (see below),

whereas the code for p(x+0.1) reads:

label instruction comment
B = @p ” load address declaration of p in register B
GOTO(:L1) ” jump over parameter code

L0: B = @x ” B:= address of x
SUB1(:TRRS) ” Take Real Result Static
B = @0.1 ” B:= address of constant 0.1
SUB2(:ADIS) ” ADd Integer Static
GOTO(:EIS) ” End of Implicit Subroutine
(220 + :L0) ” parameter code word for x + 0.1

L1: A = 1 ” number of actual parameters in register A
SUB1(:ETMP) ” ExTransMark Procedure

with the same execution time.

Now let us change the context to procedure p1 (again declared in the outermost block):

procedure p1(z); real z;
begin real y;

y:= z
end;

Now the execution time of p1(x) is 8912 µsec, of which 4372 µsec for the assignment
y:= z, whereas the execution time of p1(x+1) increases from 4540 µsec to no less than
17824 µsec, of which 13284 µsec for the assignment y:= z.

For an explanation of these figures we need to go into some detail about the addressing
mechanism. For each block that during program execution is entered but not yet exited
there is a block cell in the stack. A block cell contains some link data, parameter data,
local data and, perhaps, some stacked intermediate results. The link data consist of:
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the procedure link proper (i.e. the link of the call of ETMP), the block number bn, the
dynamic link (i.e. the address of the block cell wich was active before the current block was
entered), and the static link (i.e. the address of the block cell belonging to the most recent
incarnation of the textual enclosing block). Moreover the block cell contains the value of
the stack pointer between statements, i.e. of the stack without any stacked intermediate
results.

In order to be able to convert a two–level address (bn, d) (where bn is the block number
and d is the displacement with respect to the begin of the block cell) to a static address
n, a display disp is maintained: n = disp[bn] + d. The elements of disp are the begin
addresses of the block cells in the so-called static chain: disp[0] = 0, disp[BN ] = PP
(with BN being the block number of the most recently activated block and PP the begin
address of its block cell), and for 0 < i < BN we have disp[i] = the static link from the
block cell starting at disp[i + 1]. This display is located at a fixed place, where 32 words
are reserved for it.

Consequently it is necessary to update this display at every change of context: at block
entry (here ETMP does the main job), at block exit (either by passing the block’s end,
where RET, i.e. RETurn, does the work), or by a goto statement (where GTA, i.e. GoTo–
Adjustment, carries out the display update, cf. Section 3.3.6.). Moreover, when in the
procedure body one of the formal name parameters is accessed, a temporary change of
context is necessary from the procedure body’s context to the context of the corresponding
actual parameter, i.e. to the context of the procedure’s call. This implies two display
updates. As an optimization, however, for an actual parameter which is either an identifier
or a constant no such updates are necessary.

For each actual parameter that is more complicated than just an identifier or a constant
a subroutine (called ‘implicit subroutine’ or ‘isr’) is constructed, preceding the call (cf.
the code for the call of p(x + 0.1)). Following the implicit subroutines there is for each
actual parameter a one–word actual parameter descriptor, containing information about
the address and the nature of the parameter. In turn these are followed by an instruction
that puts the number of actual parameters in register A, before ETMP is activated.

The nature of the actual parameter is described by 2 ∗ 2 bits. Two of these are used by
ETMP, the other two are used by the complex routines TFA and TFR (see below).

ETMP constructs the new block cell on top of the stack. It fills in the link data and
constructs for each actual parameter a two–word parameter descriptor on the basis of
its one–word descriptor preceding the call of ETMP. The second word of the parameter
descriptor in the new block cell contains both block number and address of the old block
cell (the calling context). The first word contains the two bits information about the
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nature of the actual parameter to be interpreted by TFA and TFR8 plus an address. For
an identifier or an constant it is always its static address: dynamic addresses are elaborated
by ETMP using the old context. It can also be the address of the corresponding implicit
subroutine.

After the construction of these two–word parameter descriptors ETMP transfers control
to the translation of the procedure declaration.

The translation of the procedure declaration starts with two instructions:

B = bn ” B:= the procedure’s block number
SUB0(:SCC) ” Short CirCuit

by which the address of the new block cell is added to the display. Next follows code to
evaluate value parameters, to handle the declarations of local variables and the code for
the statements of the procedure body. As an example we give the code for the statement
‘y:= z’ from procedure p1.

S = @y ” S:= dynamic address of y
SUB1(:TRAD) ” Take Real Address Dynamic
S = @z ” S:= dynamic address of z
SUB1(:TFR) ” Take Formal Result
SUB1(:ST) ” STore

TFR analyses the nature of the actual parameter from its two–word descriptor. If the
actual parameter is a simple variable or a constant, it can immediately load its value,
without any change of context. This is the case in the call ‘p1(x)’, and then execution
of TFR takes 1992 µsec. If, however, there is an implicit subroutine for the actual pa-
rameter, TFR has to carry out the context switch to the calling environment. This is the
case in the call ‘p1(x+0.1)’, and this time TFR alone takes 4424 µsec, the evaluation of
‘x+0.1’ 3848 µsec, and the switch back, carried out by EIS, reinstalling the context of the
procedure body, 2796 µsec. Hence the loading of the parameter value ‘x+0.1’ has a total
cost of 11068 µsec.

The translation of a statement ‘z:= z + 0.1’ (only allowed for calls with a variable as
actual parameter) reads:

8Thereby discriminating the following four situations: a simple variable or constant of type real, a
simple variable or constant of type integer or Boolean, an implicit subroutine delivering an address, or
an implicit subroutine delivering a value.
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S = @z ” S:= dynamic address of z
SUB1(:TFA) ” Take Formal Address
S = @z ” S:= dynamic address of z
SUB1(:TFR ) ” Take Formal Result
B = @0.1 ” B:= @0.1
SUB1(:ADRS) ” ADd Real Static
SUB1(:ST) ” STore

which, for initial value 3.14 of z, leads to an execution time of 7936 µsec for 152 instructions
executed.

The code for the declaration of a procedure ends with the instruction ‘GOTO(:RET)’,
RETurn. Routine RET of the complex removes the procedure’s block cell from the stack
and carries out the context switch to the calling environment by updating the display
using the static chain in the link data of block cells. The jump to RET and RET’s
execution together take here 852 µsec.

3.3.5 Some standard functions

The standard functions sqrt, sin, cos, ln, and exp were implemented as subroutines of
the complex, transforming the top–of–stack value. There were no provisions for using
these functions as actual parameter of a procedure. Function arctan was originally also a
subroutine of the complex, but later replaced by an MCP, i.e., one of the procedures of
the library. The object code for statement

x := sin(y)

reads:

B = @x ” B:= static address of x
SUB1(:TRAS) ” Take Real Address Static
B = @y ” B:= static address of y
SUB1(:TRRS) ” Take Real Result Static
SUB0(:SIN) ” call of sine routine
SUB1(:ST) ” STore

Function sqrt is computed by improving an initial estimation by three steps in Newton’s
iteration scheme. cos(x) is computed as sin(x + π/2). Functions sin, ln, and exp are
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computed by reducing their arguments to some narrow intervals and using polynomial
approximations.

Below we give some data on the execution performance. They were measured as the
average for a range of values. For sqrt, exp, ln, and arctan we used the arguments
1.0 (1.0) 20.0, for sin and cos the values −π (π/10) +π.

function instructions time (µsec)
sqrt 47 4 453
sin 229 24 557
cos 298 28077
exp 232 24 195
ln 369 28 010
arctan 1500 106 523

3.3.6 Designational expressions and goto statements

The object code for a designational expression always leads to a transfer of control to the
selected label; therefore the compiler just ignores keyword ‘goto’.

The object code for statement:

goto if b then aa else bb

is just the same as for statement:

if b then goto aa else goto bb

and reads (for local labels aa and bb):

B = @b ” load address of variable b in register B
SUB1(:TIRS) ” Take Integer Result Static
SUB0(:CAC) ” Copy Boolean Accumulator into Condition

N, GOTO(:L0) ” conditional jump to else–part
GOTO(@aa) ” jump to label aa
GOTO(:L1) ” jump over else–part

L0: GOTO(@bb) ” jump to label bb
L1:

Statement:

goto aa
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is, for non–local label aa, translated as:

B = n ” load blocknumber n of label aa in register B
SUB0(:GTA) ” GoTo–Adjustment
GOTO(@aa) ” jump to label aa

Statement:

p(aa)

with aa some (nonformal) label and p some (nonformal) procedure, is translated as:

B = @p ” load adress declaration of p in register B
GOTO(:L1) ” jump over parameter code

L0: B = n ” load blocknumber n of label aa in register B
SUB0(:GTA) ” GoTo–Adjustment
GOTO(@aa) ” jump to label aa
GOTO(:EIS) ” End of Implicit Subroutine
(220 + :L0) ” parameter code word for aa

L1: A = 1 ” number of actual parameters in register A
SUB1(:ETMP) ” ExTransMark Procedure

Evaluation of the corresponding formal parameter leads already to transfer of control to
label aa.

The use of labels as value parameter of a procedure was prohibited. If done it lead to
curious and unpredictable derailments.

3.4 The structure of the compiler

The ALGOL 60 compiler for the X1 consists of 70 pieces of code with length varying from
1 to 170 instructions, placed in some random order. Some pieces are subroutines, others
end by a jump to some other piece.

It is, however, possible to discern some components: the lexical scanner, the prescan
program and the second–scan program.
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3.4.1 The lexical scanner

There are 4 subroutines, which, together, build kind of a lexical scanner. The lowest level
thereof reads tape symbols, the uppermost level delivers delimiters in some internal rep-
resentation. The latter is named ‘read–until–next–delimiter’. If it encounters an identifier
or a number between two delimiters, that identifier or number is assembled and the result
is delivered at a fixed place; moreover, a boolean value indicates whether that was the
case. In total 529 instructions9.

3.4.2 The prescan program

There are three pieces that together constitute the first–scan program of the compiler.
Its task is to make a list, with one element for each block, procedure declaration or for
statement of the program. Each of these elements contains in turn two sublists, one
containing the names of all procedures declared locally in the block or procedure, the
other with the names of all labels or all switches occurring or declared locally10. The
names of procedures, labels, and switches are listed without any descriptor at all: just
the identifiers and nothing more. The total length of these three pieces of code is 173
instructions only; it is hardly imaginable that it is possible to interpret an ALGOL text
to such a degree as is necessary to isolate the names of certain specific objects with so few
instructions. The prescan part can be characterized as the art of intelligent text skipping!

3.4.3 The second or main scan program

The remaining pieces constitute the second scan program. It contains a main cycle con-
sisting roughly of the following actions:

1. read until next delimiter,
2. if thereby a number or an identifier has been encountered, look it up,
3. jump to the piece of code belonging to the delimiter just read.

As an example we give the code belonging to delimiter step (transcribed from X1 notation
into ELAN):

9This figure holds for the load–and–go version; the original version is probably not much different.
10In contrast to the ALGOL 60 report, the ALGOL 60 implementation for the X1 prescibes a certain

order for the declarations of a block or procedure: first scalar variables, next the arrays, and finally
switches and procedures. Therefore, in the second text scan, when the object code is produced, at all
applied occurrences of scalars and arrays their declaration has been passed already. This is not true for
applied occurrences of labels, procedures, and switches.
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step: SUB2(:ETT) ” Empty stack Through Thenelse
A = 24 ” A:= object–code number of FOR5
S = 0 ” S:= 0
SUB0(:FRL) ” Fill Result List(FOR5,0)
GOTO(:MAIN) ” return to main cycle

Subroutine FRL has two parameters; often the second parameter is superflous, as is the
case here. It just adds an instruction to the object code.

The task of ETT is to complete the translation of an expression. Thereafter the subroutine
call of FOR5 is generated, which concludes the translation of the initial–value expression
of a step–until element of a for–statement (c.f. Section 3.3.3).

Compiler subroutine ETT is called in the sections belonging to delimiters ‘do’, ‘,’, ‘:’,
‘step’, ‘until’, ‘while’, and ‘end’, all belonging to the (in modern parsing terminology so–
called) Follow Set of an expression. Its task is, as said before, to complete the translation
of the expression. In the first place it can be the case that the last call of read–until–
next–delimiter passed an identifier or a constant.Then still code for loading that operand
has to be generated. Next it is possible that the stack contains some operators that were
put there in the course of the transformation of the infix notation of the ALGOL 60
expression to the postfix notation of the object code. For all these operators code has to
be generated. Finally the stack can contain a number of else–symbols, indicating that
the expression is the else–part of one or more conditional expressions. In that case the
destination address of one or more jump instructions over the else–parts have to be filled
in11.

The code of ETT reads:

ETT: A = M[10]
W36 = A ” save link to working space 36
A = 1
OFLA = A ” oflag:= true

ETT[4]: SUB1(:POP) ” Production of Object Program(1)
SUB1(:THENELSE) ” THENELSE?

Y, GOTO(:ETT[4]) ” if so, repeat last instructions
GOTO(W36) ” return via saved link

11In other sections belonging to a delimiter from the Follow Set of an expression there is no call of
ETT but a cycle of 3 instructions calling POP and THENELSE directly.
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The first two tasks mentioned above are carried out by the call of Production–of–Object–
Program, which has an operator priority as parameter, priority 1 being the lowest priority
in expressions. THENELSE is a Boolean function that fulfills the third task and delivers
in condition register C whether it found an else–symbol in the stack.

The interpretation of delimiters in general depends on the context. A clear example is the
comma, which can separate subscript expressions, for–list elements, actual parameters,
etc. In the compiler the context is administrated by means of 6 Boolean variables:

name context
eflag an expression
oflag the start of an expression
mflag an actual parameter list
iflag a subscript list
vflag a for clause
sflag a switch declaration

The code of compiler subroutine ETT given above sets ofla to true. In the case of the
call of ETT in the code belonging to delimiter step this effectuates the context transition
from ‘inside an (arithmetic) expression’ to ‘at the start of an (arithmetic) expression. It
should be the case that, prior to that call of ETT, eflag = true, oflag = false, mflag =
false, iflag = false, vflag = true, and sflag = false, but this is not checked ! Here we see
illustrated that the compiler expects the ALGOL 60 program to be correct.

As an example of the use of a context variable we present the code of the section belonging
to delimiter ‘)’:

CLOSE: A = MFLA, Z ” mflag = false?
N, GOTO(:COMMA[32]) ” else join with parameter separator

CLOSE[2]: SUB1(:POP) ” Production of Object Program(1)
SUB1(:THENELSE) ” THENELSE?

Y, GOTO(:CLOSE[2]) ” if so, repeat last instructions
A = 1
TLSC – A ” stack pointer:= stack pointer – 1
S = :MFLA
SUB0(:LTF) ” retrieve old value of mflag from the stack
GOTO(:MAIN) ” return to main cycle

If mflag = true then delimiter ‘)’ is interpretet as the closing parenthesis of a procedure
statement or a function designator. In that case control is transfered to part of the section
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for delimiter ‘,’, where the code for the last actual parameter is completed and next the
call of the procedure, preceded by actual parameter code words, is generated.

Otherwise, delimiter ‘)’ is interpreted as the closing parenthesis of an expression–between–
parenthesis. The code for the expression is completed by an alternation of calls of sub-
routines POP and THENELSE in the way we discussed above, the opening parenthesis is
removed from the stack and the old value of mflag is retrieved from the stack. Note that
the rest of the context remains unchanged: it is typical for this compiler that at context
switches only that part of the context is saved in (and later retrieved from) the stack
that might be different in the new context. Note also that it is assumed that there is an
opening parenthesis on top of the stack and a saved mflag value underneath without any
check whether that is indeed the case!

Another example of a context switch is given by the code of the section belonging to
delimiter ‘[’:
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SUB: A = EFLA, Z ” eflag = false?
Y, SUB2(:RLA) ” if so, reserve area for local arrays

A = 1
OFLA = A ” oflag:= true
A = 0
OH = A ” operator priority level:= 0
S = EFLA
SUB0(:FTL) ” put eflag to the stack
S = IFLA
SUB0(:FTL) ” put iflag to the stack
S = MFLA
SUB0(:FTL) ” put mflag to the stack
S = FFLA
SUB0(:FTL) ” put fflag to the stack
S = JFLA
SUB0(:FTL) ” put jflag to the stack
S = NID
SUB0(:FTL) ” put nid to the stack
A = 1
EFLA = A ” eflag:= true
IFLA = A ” iflag:= true
A = 0
MFLA = A ” mflag:= false
SUB0(:FTD) ” put 256 × oh + ‘[’ on the stack
S = JFLA, Z ” jflag = false?

Y, SUB1(:GAI) ” if so, Generate Address of Identifier
GOTO(:MAIN) ” return to main cycle

If eflag = false, it is possible that delimiter ‘[’ opens the subscript list of a subscripted
variable that is the left part of an assignment statement. In that case it can be the first
statement of a block, thus marking the end of the declarations of the block. In that
case perhaps still the areas of the local arrays have to be reserved, which is checked (and
carried out) by subroutine RLA (Reserve Local Arrays). Next we see a context change,
saving old values and setting new values to the context12.

12We see two other flags here, fflag and jflag. They are derived from the identifier preceding the
delimiter and indicate whether that identifier is formal and whether it is a switch identifier. Variable nid

points to the descriptor of the identifier. We see here the only occasion where nid is saved to the stack:



3.4. THE STRUCTURE OF THE COMPILER 37

It is striking how short the code of these examples is. It also clear that adding syntax
checking to this compiler would be a fomidable job.

As said before, the most complicated section is that for delimiter ‘,’. Its structure is the
following13:

if iflag then deal with subscript separator else
if vflag then deal with for–list separator else
if mflag then deal with actual parameter separator else
begin ETT;

if sflag then deal with switch declaration
else deal with array declaration

end

Therefore that section is one of the longest: 145 instructions.

There was hardly any check on errors in the source program. Most checks had to do with
the lexical level, e.g. a parity error in a paper tape punching. Further there were checks on
store management. The only (context–sensitive) syntax check was regarding the applied
occurrence of an undeclared identifier. At a later stage the occurrences of brackets were
counted, and it was tested at each occurence of a semicolon or an end symbol whether
there were no unmatched square or round brackets. At the occasion of a failing test the
X1 came to a full stop, showing an error number, without a possibility to continue: no
back–on–the–rails procedure.

There was a library system of machine–code procedures and functions that could be used
without any declaration in the source program. These were selectively loaded from paper
tape at the end of the (object code) loading phase. That system contained mainly input–
output procedures and some simple numerical subroutines.

We hope that these examples suffice to give a fair impression of the X1 ALGOL 60
compiler of Dijkstra and Zonneveld. Recently the full code of the compiler with much
more explanation of details is documented in [8].

in general the code for loading the address of an identifier is generated immediately (here by GAI), but
in the case of a switch designator that generation is postponed and carried out after the compilation of
the subscript expression.

13Comma’s occurring in procedure headings are dealt with in the section belonging to delimiter pro-

cedure.
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Chapter 4

The Electrologica X8

The Electrologica X8, the successor of the Electrologica X1, was advertized to be upwards
compatible with the X1, but that was it to some degree only.

Certainly it kept many of the nice features of the X1, and it added new features that
made it more fit for scientific calculations and for the implementation of ALGOL 60.

The main store of the X8 was again core store, in units of 16K words of 27 bits. Address
space was extended from 215 for the X1 to 218 for the X8. Cycle time was 2.5 µsec,
therefore about 13 times as fast as that of the X1.

The structure of instructions was the same as for the X1: 12 bits operation code and
15 bits address part. Consequently, in a store exceeeding 32K not all words could be
addressed directly. Again the operation code for most instructions contained 3 ∗ 2 bits for
coding variants.

Registers A and S were again 27 bits long. Now register B was 27 bits long too, thereby
frustrating the upwards compatibility X1–X8. Again in the B–variant register B was used
as index register, but instead of adding B to the addresspart of the instruction, B - 16384
was added, making it possible to access store from address B − 16384 to B + 16383. This
again frustrated X1–X8 compatibility1. An instruction with the ELAN notation ‘M[B+n]’
as address part was encoded by the assembler to the bit pattern for the instruction with
B–variant and with n + 16384 as address part.

All instructions for A, S, and B, discussed for the X1, were present again. Multiplication
now lasted from 8.75 to 40 µsec, depending on the number of significant bits of the

1The X8 console contained a switch by which the X1–X8 compatibility could be augmented. One of
its effects was that register B functioned as in the X1.

39
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multiplier, division lasted 40 µsec.

Also all X1 jumps and subroutine calls were maintained, as were the shift instructions.
Some shift instructions were much faster, however: the shifts–out for circuits A and S
costed at most 5 µsec, whereas the other shifts costed roughly 0.625 µsec per shift place.

The main new features, absent in the X1, were a floating–point register F and instructions
for it, some new addressing variants: one to enable the use of registers A, S, F and T (i.e.
the instruction counter) as index registers, one for ‘dynamic addressing’ (i.e. two–level
addressing), and one for automatic stacking and unstacking of operands and links (using
register B as stack pointer), and an ‘execute’ instruction. We give the details below.

4.1 Floating–point instructions

Floating–point register F has 54 bits: a binary exponent of 12 bits, a sign bit and a
mantissa of 40 bits2. The representation is the Grau representation[7], in which the
mantissa is an integer. Denoting the value of the mantissa by m and that of the exponent
by e, the value of F is therefore:

F = m ∗ 2e

The preferential representation for a value is that with |e| minimal. For F integral with
an absolute value of at most 240 − 1 this implies e = 0. While the arguments of the four
arithmatic operations (+,−,×, /) need not to be in preferential form, the result is always
standardized to preferential form.

Both exponent and mantissa use one complements representation. For the value of the
exponent this implies −2047 ≤ e ≤ 2047, for the mantissa we have −(240 − 1) ≤ m ≤
240 − 1. For e = 0 the preferential representation of the exponent is 12 copies of the
sign bit of the mantissa. The absolute value of F is 0 (when m = 0) or lies between
0.619 ∗ 10−616 and 1.777 ∗ 10628. For negative values of F the exponent is inverted. Hence
inversion of F is easy: just replace all zeroes by ones and all ones by zeroes.

The advantage of the Grau representation over more conventional representations (in
which the mantissa is a true fraction) is that integer values are represented with binary
exponent zero, i.e. in exactly the same way as the normal representation for integers. This
makes F extremely fit for handling the mixed–mode expressions of ALGOL 60, without

2The first 27 bits of F contain the binary exponent, the sign bit and the most significant 14 bits of
the mantissa, the last 27 bits a bit that is irrelevant for F’s value (mostly a copy of the sign bit) followed
by the least significant 26 bits of the mantissa.
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any need for change of representation between integers and reals. Also the rounding–off
from a real value to an integer one can be carried out very elegantly (see below).

The instructions for register F come in two variants. Denoting the 54 bits of two successive
words in store with addresses n and n + 1 by [M[n],M[n+1]] we have on one hand the
instructions:

ocp ELAN notation effect variants
48 F + M[n] F:= F + [M[n],M[n+1]] YN :B PZE
49 F − M[n] F:= F − [M[n],M[n+1]] YN :B PZE
50 F = M[n] F:= [M[n],M[n+1]] YN :B PZE
51 F = − M[n] F:= − [M[n],M[n+1]] YN :B PZE
56 F × M[n] F:= F × [M[n],M[n+1]] YN :B PZE
57 F / M[n] F:= F / [M[n],M[n+1]] YN :B PZE
58 M[n] = F [M[n],M[n+1]]:= F YN B PZE
59 M[n] = − F [M[n],M[n+1]]:= − F YN B PZE

On the other hand we have the same set of instructions with G instead of F, e.g. G × M[n].
G denotes the ‘tail’ of register F, i.e. the least 26 bits of the mantissa (together with a
sign bit). In this case the operand is one word of store. For the first 6 instructions this
operand is supplied with 27 copies of its sign bit in order to form a 54 bit operand. In
the last two instructions just the tail of F is written to store. All G–instructions have as
variants B and PZE only: they cannot be used conditionally.

The arithmetical operations (+,−,×, /) deliver the best possible result, i.e. the exact
value rounded to the nearest representable value. If the exact result lies exactly in the
middle of two neighbouring representable values, it is rounded away from zero. There is
no underflow or overflow detection.

The rounding of a real value in F, with −238 − 1

4
≤ F < 238 + 1

2
, to an integral value can

be done by the following tric, devised by C.S. Scholten, one of the architects of the X8:

F + Scholten
F − Scholten

where constant Scholten has the value 3∗238. Whether or not this results in an one–word
integral value can next be checked by:

U, S = F, Z ” rounding successful?

This instruction tests whether the ‘head’ of F, i.e. the binary exponent and the most
significant 14 bits of the mantissa, are all zero (or all one, for negative results).
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The execution times of the arithmetical F–operations depend on the value of the two
operands. Maximally they last:

F ± M[n]: 18.75 µsec,
F × M[n]: 68.75 µsec, and
F / M[n]: 68.75 µsec.

More details are given in Section 4.6.

Register F can be used for two–word transports in memory, since instructions with opc
50 and 58 do not change the sign bit of the tail to a copy of the sign bit in the head.

4.2 New addressing variants

Before dealing with the new addressing variants we have to discuss some special addresses.
In instructions in which an operand is loaded from store the addresse 57 to 62 play a special
role: instead of the corresponding store cell one of the registers is used as operand. These
‘addresses’ of the registers are:

57: head of F
58: tail of F
59: A
60: S
61: B
62: T

Here T stand for the 18 bits of the instruction counter and the contents of a number of
the one–bit registers. Especially the sign bit is filled with condition register C (this on
special demand of the ALGOL 60 implementation team).

In ELAN just the names of the registers can be used. Therefore we could write U, S = F, Z
above, which is encoded by the assembler as U, S = M[57], Z. The instructions of the X1
for copying or inverting register values are, in view of the X1–X8 compatibility, probably
present in the X8, but are never used and do not have an ELAN notation.

Another special address is 63. M[63] is called ‘D’, is on the one hand a normal store
location, but plays, as we will see in a moment, a special role in most of the new addressing
variants.
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The new addressing variant is called ‘DYN’, for dynamic. In this variant the 15 bits of
the address part of an instruction are split in two groups, one of 6 bits and the other of
9 bits. Let p denote the value of the group of 6 bits (0 ≤ p ≤ 63) and q the value of the
group of 9 bits (−256 ≤ q ≤ 255)3.

For 0 ≤ p ≤ 57 the ELAN notation Mp[q] is used. Mp[q] addresses the store cell with
address M[D′+p]′ + q, where D = M[63] and the primes indicate that in the address
calculation only the least significant 18 bits of a word are taken into account (the remaining
bits being replaced by copies of the sign bit). This address variant enables a direct
implementation of two–level addresses as required by the block structure of ALGOL 60.
It extends execution time of an instruction by 5 µsec, the time for two additional store
cycles: one for accessing D and one for accessing M[D′+p].

For p = 63 the ELAN notation MD[q] is used. MD[q] addresses the store cell with address
D′ + q. It costs one additional store cycle.

The ELAN notations for p = 58, 59, 60, 61, and 62 are MG[q], MA[q], MS[q], MC[q],
and MT[q]. Here MG[q], MA[q], MS[q], and MT[q] address the store cells with addresses
G′ + q, A′ + q, S′ + q, and T′ + q, respectively. MC[q] addresses the store cell with
address B′ + q, but with a side effect:

if an operand is loaded from store, B is decreased by 1 or 2 afterwards,
if an operand is written to store, B is incremented by 1 or 2 afterwards.

The change of B is 1 for A–, S–, B–, and G–instructions (having a one–word operand)
and 2 for F–instructions (having a two–word operand). This facility makes it possible to
use B as a stack pointer, with automatic adaptation for stack instructions.

If q = 0, ELAN allows to omit the [q] part from the instruction notation. Hence, to stack
the value of F one simply writes MC = F.

The DYN–variant makes it possible to address also store locations with addresses from
215 to 218 − 1.

This DYN–variant is available for most X8–instructions.

Besides this DYN–variant there exists a :DYN–variant, in which not the operand is loaded,
but only its address (in case of the :MC–variant without side–effect). This variant is
available for less instructions. There is a subtle difference between instruction S = A and
instruction S = :MA. In the first case all bits of A are copied to S, in the second case its
least significant 18 bits plus 9 copies of the sign bit.

3In the instruction q is encoded by q + 256.
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4.3 A new subroutine call

Besides the 16 subroutine calls that were already present in the X1 and had fixed addresses
for their links the X8 has one new subroutine call:

ELAN notation variants
SUBC(label) UYN : B DYN :DYN

It puts its link in the store location with address B′ and increments B by 1, in other
words, it puts its link on top of stack. This makes the instruction fit for implementation
of recursive routines. In contrast to the old subroutine calls of the X1, the address part
of the instruction is, except for the :– and the :DYN–variants, not the subroutine’s begin
address, but the address of the store location in which that begin address can be found.

In addition there exists a variant of SUBC, called SUBCD, which makes the X8 deaf for
interrupt signals. It is used inside operating systems only.

4.4 The execute instructions

In order to simplify parameter handling, an execute instruction was added to the X8. Its
ELAN notation is:

DO(label)

with the effect that the instruction in M[label] is executed, whereafter program execution is
continued by the instruction following the DO. If M[label] happens to contain a subroutine
call, the link points to the instruction following DO.

During the development of the ALGOL 60 implementation the team concluded that oc-
casionally also access to the address of the instruction executed by DO was necessary.
Therefore they proposed to Electrologica to add a variant of DO, called DOS, which as a
side effect loads that address in register S.

Both DO and DOS allow the variants UYN : B DYN :DYN.

4.5 Some other additions to the X8 instruction set

In the first place we have the instructions:
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ELAN notation effect variants
PLUSA(label) store[label]:= A:= store[label] + A PZE
MINA(label) store[label]:= A:= store[label] − A PZE

with analogous instructions PLUSS, MINS, PLUSB, and MINB for register S and B.

Moreover the structure of input/output differs completely from that of the X1. The
X8 has a separate input/output processor, capable of executing complex transput tasks
autonomously. There are instructions for regulating the interaction between X8 and the
input/output processor. Since such instructions are part of an operating system and do
not occur in the ALGOL 60 implementation itself, they are of no further interest here.

4.6 The execution times of floating–point operations

In order to be able to carry out numerous kinds of measurements of the ALGOL 60–
implementation for the EL X8 I wrote an X8–emulator in Pascal. I also included the
execution times for all instructions as described in the official programmers guide of
Electrologica.

For most instructions this description was rather complete. We give some examples4:

instruction time(µsec) condition
A + n 2.50
A + M[n] 5.00
A + M[B+n] 5.00
A + :MA[q] 3.75
A + MA[q] 5.00
A + MD[q] 7.50
A + :MD[q] 6.25
A + Mp[q] 10.00
A + :Mp[q] 8.75
LUA(n) 3.75 n < 16
LUA(n) 5.00 n ≥ 16
LCA(0) 3.75
LCA(n) ⌊(n+5)/2⌋ n > 0

4LUA(n) shifts A out to the left over n places, LCA(n) shifts A circular to the left over n places.
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For the instructions MULAS, MULS, and the floating–point operations, however, ranges
are given for the execution times. For MULAS we have:

MULAS(n): (5.00 + y) µsec, with 1.25 ≤ y ≤ 32.5

and the same range for MULS. Digging deeply in memory I faintly remembered that
multiplication time depends on the number of significant bits of the multiplier. Therefore
we adopted the following model: each multiplication step costs 1.25 µsec, and the number
of steps is at least 1 and at most 26, depending on the number of significant bits of S.

For floating–point addition and subtraction the following figures are given by Electrolog-
ica:

instruction time(µsec) condition
F + n 3.75 exponent of F zero
G + M[n] 5.00 exponent of F zero
F + M[n] 7.50 both exponents zero
F + n 6.25 – 15.00 otherwise
G + M[n] 7.50 – 17.50 otherwise
F + M[n] 8.75 – 18.75 otherwise

In general, there are four phases for the execution of an addition: reading and decoding
the instruction, obtaining the (second) operand, comparing and equalizing the binary
exponents by shifting zero, one, or both operands, and finally bringing the result in
normal form. In view of the fact that the excution time is variable only when not both
binary exponents are zero I attributed the variation mainly to the process of making the
two exponents equal. Excluding some special cases, like a zero mantissa or the exponents
differing more than 81 in absolute value, we first try to shift the mantissa corresponding
to the largest exponent to the left (thus reducing that exponent) and thereafter we shift,
if still necessary, the other mantissa to the right, thereby loosing information. Left shifts
are carried out over at most 39 positions, shifts to the right over at most 41 positions5.
We assumed that each shift takes between 0 and 3 cycles of 11

4
µsec.

For floating–point multiplication and division the following figures are given by Electro-
logica:

5For the purpose of correct rounding–off of the result of an floating–point operation register F had
two guarding bits.
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instruction time(µsec)
F × n 10.00 – 66.25
G × M[n] 11.25 – 67.50
F × M[n] 12.50 – 68.75
F / n 60.00 – 66.25
G / M[n] 61.25 – 67.50
F / M[n] 62.50 – 68.75

For multiplication we assumed that the variation in execution time depends on the number
of multiplication steps (of 1.25 µsec each), i.e. on the number of significant bits of the
multiplier6. Since one of the operands in F × n had at most 15 significant bits and in
G × M[n] atmost 26, we expect for F × n rather 10.00 – 35.00 and for F × G[n] rather
11.25 – 50.00 as ranges.

For division part of the variation is probably caused by shifting the mantissa of divider
or dividend to the left such their quotient is at least 1 and smaller than 2.

Whenever we specify X8 execution times for program parts in the next chapters and in
the appendices, it is with the proviso that the timing model used in our X8 emulator is
correct. Moreover we did not take into account any slowing down of execution times by
the cycle stealing done by CHARON, the separate input/output processor of the X8.

6If I do remember it correctly, multiplier and multiplicant were interchanged if the latter had a smaller
number of significant bits
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Chapter 5

The ALGOL 60 system for the

EL X8

5.1 Introduction

The project to develop an ALGOL 60 implementation for the EL 8 started 1963. The
team, initially consisting of Zonneveld, Van de Laarschot, Barning, Nederkoorn, and
myself, was rather ambitious.

In the first place we aimed at implementing ALGOL 60 without any restriction. This
included arbitrary order of declarations, allowance to omit specifications of formal pa-
rameters called by name, integer labels, and, of course, recursion. There were only a few
places where we deviated from the semantics of the Revised Report. So we interpreted
access to a switch designator with an index out of bounds as a run–time error.

Of course we planned the implementation of dynamic own arrays. These could have
variable size: at re-entrance of the block in which an own array is declared its bounds are
re-evaluated yielding possibly values that differ from their previous ones. Hence they had
to be allocated on a heap (we used the term ‘contra–stack’).

We also planned the extension of the language with a string type as first–class citizen
(simple and subscripted string variables, string expressions, string assignments, and func-
tions delivering a string result). Here again the variable size of strings demanded the use
of a heap.

The compiler should carry out a thorough check on the syntactical correctness of source
programs. At run time as much semantical checks should be carried out as was feasible

49
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without slowing down execution speed exceedingly. This included some dynamic tests on
the correspondence between actual and formal parameters.

Nederkoorn and I defined the mapping of source programs to object programs including
these extentions. The subroutines to be called in an object program were also written,
with the exclusion of those handling the declaration of own arrays and all other heap
operations. Those we postponed temporarily, and in the end they were never written.
The compiler, however, generates the mapping as defined by Nederkoorn and myself and
it is at run time only that own arrays and string operations lead to a run–time error
message (‘· · · not implemented’).

Some language constructions, such as integer labels, own arrays, and our string–type
extensions, lead to a certain amount of execution overhead. We were, however, careful
not to burden programs not using such constructions with this overhead.

Another example hereof is the implementation of labels. In general a two–word variable,
called label variable, was reserved and initialized for each label when entering the block
to which that label was local. For labels that were used in local goto statements only (or
were not used at all) no label variables were introduced.

After the definition of the mapping from source language to object code and the design of
the run–time support routines we compiled a number of small test programs by hand and
tested them by means of the X8–emulator written by Barning. No amendments showed
necessary. Only after that work I started to develop the compiler.

Although the mapping from source language to object code was defined prior to and
independently of the compiler design, its structure, with a restricted amount of optimiza-
tion, was simple enough to allow a direct implementation of the compiler. It was at only
one place (in the step–until–element) convenient to change the order of the object–code
instructions as defined in the mapping in order to simplify (the translator scan of) the
compiler.

To us it was self–evident that the system would be a load–and–go system never storing
object programs externally. We had in mind to transform the X8 into a machine running
ALGOL 60 programs sequentially without much interference of an operator. In the user
manual[10] that I wrote in 1965 on request of Electrologica, the fact that source programs
were compiled before execution was not mentioned at all, as being irrelevant to the user.
It confined itself to stating that programs were checked against syntax errors and only
executed if faultless.

As we will see in the next sections, there are a number of differences between the ALGOL
60–system of the EL X1 and that of the EL X8. They concern the use of registers as
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‘top of stack’, the representation of values, the use of X8–instructions in object programs
instead of pseudo P–code as was the case for the X1, the amount of validity checks at
both compile time and run time, and the structure of the compiler.

In contrast with the ALGOL 60–system of the X1, all results of expressions and all
addresses are delivered in a register and not on top of stack. Such a result or address
is written to the stack if and only if the register involved is temporarily nescessary for
another value.

One of the major design decissions was to give some of the registers each a special role:

• register B is used almost exclusively as stack pointer;

• all arithmetic values, both of real and of integer type, are built in register F;

• Boolean results are constructed in register C (the condition register);

• all addresses, both of arrays and of label variables, are delivered in register A;

• the major role of register S is as working register.

This arrangement was rather useful, also in exceptional cases. An example of the latter
was the object code for integers as actual parameter of a procedure for which an inter-
pretation both as arithmetic value and as label value was possible. Evaluation of the
corresponding formal parameter then delivered its numeric value in register F and its
label value in register A. More details are given in Section 5.2.6.

The value representation of variables was rather direct: integers in one word, reals in two
words, simple booleans in one word (true represented by 0 and false by 1), boolean array
elements in one bit (packed 27 elements per word), and strings in one word (represented
by a heap address).

There was, indeed, a ‘complex’ of run–time support routines, but it had a role different
from that of the X1. Wherever sensible the X8 object program was coded directly in
terms of X8 instructions, and only fixed patterns consisting of several instructions were
coded as subroutine in the complex for the sake of reducing object–program size. Here
we see a compromise between execution speed and program length.

The structure of the compiler was quite different, containing, in modern terms, a recursive
descent parser. This made it rather easy to incorporate a thorough syntax check and also
to include an effective ‘back–on–the–rails’ procedure.
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5.2 The structure of the object program

5.2.1 Simple assignment statements

As was the case with ALGOL implementation for the X1, we start our discussion for the
X8 case with the example statement:

i := i + 1

.

In case i is a variable of type integer declared outside procedures it has again a fixed
location in store. Let its (static) address be 4880. Then the object code reads:

instruction explanation
G = M[4880] Take Integer Value of i

F + 1 Add Small Integer Constant 1
S = F, Z ]

N, SUBC(:RND) ] Store Integer in i

M[4880] = G ]

During program execution this requires the execution of 5 instructions and takes 20 µsec1.

From this example we see that arithmetic expressions are evaluated in register F. The
stack is only used when an intermediate result in F should be saved, in order that F can
be used for the evaluation of another subexpression. Moreover, the address and type of
the left hand side of this assignment statement is kept in the compiler for use after the
generation of the code for the right hand side.

In case variable i is local to a procedure body, the translation of the statement ‘i:= i + 1’
reads:

instruction explanation
G = MD[5] Take Integer Value of i

F + 1 Add Small Integer Constant 1
S = F, Z ]

N, SUBC(:RND) ] Store Integer in i

MD[5] = G ]

1provided that no integer overflow occurs and the third instruction sets condition register C to true.
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due to the dynamic addressing2 of i. Now its execution takes 25 µsec.

The code for statement

x := x + y

with x and y variables of type real, declared in the outermost block simply reads:

instruction explanation
F = M[@x] Take Real Value of x

F + M[@y] Add Real Value of y

M[@x] = F Store Real in x

Execution time depends on the values of x and y and is minimally 22.50 µsec and max-
imally 33.75 µsec. For initial values 3.14 of x and 0.1 of y the excution time is 26.25
µsec3.

The statements x := x × y and x := x/y are coded analogously and (for the values of x
and y as above) executed in 77.50 and 78.75 µsec, respectively.

5.2.2 Array access

We now turn to array access. As was the case for the ALGOL 60 implementation for the
X1, for each array a storage function is constructed at declaration time. Now its length
is 3 ∗ n + 4, where n is the array dimension, such that it can contain the lower and upper
bound for each index position. Moreover it contains the array type and the address of
the area in store reserved for the elements. The address of this storage function is stored
in a pseudo–variable local to the block in which the array declaration occurs, called the
array key. This kind of indirection is useful in compiling a formal array identifier called
by value, where the compiler has no knowledge of the dimension of the actual parameter
(this problem was solved in X1–ALGOL by restricting that dimension to at most 5).

Let R be a one–dimensional real array, x a real variable and i a variable of integer type,
all declared outside procedures. Then the object code for:

2If i is declared local to a procedure, it gets a two–component address (block number, displacement).
If block number = 2 and displacement = 5, one would expect M2[5] as dynamic address. Since MD[2] =
D, this is optimized to MD[5].

3All timing figures for floating–point operations are modulo the correctness of our timing model for
the floating–point instructions of the X8.
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R[i] := R[i] + x

reads:

instruction explanation
G = M[4880] Take Integer Value of i

A = M[4883] Take Array Key of R

MC = F Stack F
MC = A Stack A
G = M[4880] Take Integer Value of i

A = M[4883] Take Array Key of R

SUB0(:IND) ]
F = MA ] Take Subscripted Real
F + M[4881] Add Real Value of x

SUB2(:STSR) Store Subscripted Real

Now the translation of the left–hand side of the assignment consists of 4 + 1 instructions.
The first 4 instructions put the index value and the address of the storage function of the
array on top of stack. Thereafter F and A are available for the evaluation of the right–
hand side of the assignment, for which 5 instructions are generated. The last instruction,
a subroutine call to the complex, finds in F the value of the expression and on top of
stack the address description for the left–hand side. It computes the address of the array
element and carries out the assignment. It uses the same complex routine ‘IND’ to convert
an index in F and an array key in A into the address of the array element in A. Within
IND the index (or indices, for an array of higher dimension) is (are) checked against the
lower and upper bound(s) of the array.

In the ALGOL 60 implementation for the X1 the address of a left–hand side array ele-
ment is elaborated before evaluating the right–hand side expression. In X8 ALGOL this
is postponed to the assignment operation itself. This was done for two reasons:

1. If the left–hand side variable is an element of an own array, it could happen that
during the evaluation of the right–hand side expression both location and bounds of the
array change. This possibility arises if the own array is declared with dynamic bounds lo-
cally in a function and the expression contains a (recursive) call of that function, changing
thereby the array bounds and giving the array possibly a new location in the heap4. By

4Here we used the interpretation of ALGOL 60 in which all incarnations of a recursive procedure or
function share one and the same copy of a locally declared own array.
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applying IND after the evaluation of the expression the indices can be checked against the
(possibly new) bounds and the (possibly new) address of the element can be calculated.

2. A second reason is that thereby the storage function is still available, containing
type information. This is used in the case that the array identifier of the left–hand side
variable is a formal identifier of (a to the compiler) unknown type.

Execution of the above piece of object code of 10 instructions gives rise to the execution
of 41 instructions and costs from 197.50 to maximally 208.75 µsec. For R[i] = 0.1 and
x = 3.14 the cost is 201.25 µsec.

For the implementation of ALGOL 60 for the X8 there is a difference in execution time
for the statements ‘I[i]:= 0’ and B[i]:= true, where I is an integer array and B a boolean
array. This is caused by the fact that boolean–array elements are represented by bits, 27
elements per X8 word, and therefore one bit in a word has to be cleared and set. We give
the code for the subroutine ST(ore) S(ubscripted) B(oolean):

STSB: A = MC[−1] ” A:= address of storage function
F = MC[−2] ” F:= last index
SUB1(:INDB) ” INDB does not disturb C!

” address word in A, a 1 at bit position in S
stock3 = S ” save S, having a 1 at the right bit position
S = − S ” now S has a 0 at the right position
S ’×’ MA ” clear old value

N, S ’+’ stock3 ” substitute new value
MA = S ” store word with new value substituted
GOTO(M[10]) ” return

with IND(exer for) B(oolean arrays) is given by5:

5INDB delivers in register F a value 2 as type indication Boolean. That is used in some subroutines
but not in STSB.
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INDB: SUB0(:IND) ” index routine
S = A ” delivers (27 ∗ word address + bit position) in A
A = 0 ” clear A
DIVAS(27) ” S:= word address, A:= bit position
F = :MC ” save stack pointer in F
B = :MA ” B:= bit position in word
A = :MS ” A:= address of word containing the bit
S = 1 ” S:= one bit 1 at position 0
LCS(B) ” shift S circular to the left over B positions
B = :MG ” restore stack pointer from F
F = 2 ” type indication Boolean
GOTOR(M[9]) ” return, restoring condition C from the link

Consequently, the assignment I[i]:= 0 costs 120 µsec whereas the assignment B[i]:= true

takes 192.5 µsec.

5.2.3 The <for–statement>

The object code for a for–statement in the X8–version is rather direct, certainly compared
with its X1–counterpart. For the statement

for i:= 1 step 1 until n do S

it reads:
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label instruction comment

F = :L2 ” ] store address of step
M[...] = G ” ] in for–list variable
F = 1 ” inititial value for i

GOTO(:L3) ” store in i and test
L1: F = 1 ” step size
L2: G = M[@i] ” Take Integer Value of i

MC = F ” Stack (old) value of i

DO(L1) ” load step size
F + MC[−2] ” add value of i

L3: S = F, Z ” ]
N, SUBC(:RND) ” ] Store Integer in i

M[@i] = G ” ]
MC = F ” Stack (new) value of i

G = M[@n] ” Take Integer Value of n

F − MC[−2], Z ” equal to the value of i?
DO(L1) ” load step size

N, F = F, E ” otherwise, do step size and i − n have the same sign?
N, F = F, Z ” or step size = 0?
Y, GOTO(:L4) ” then execute statement S

GOTO(:L5) ” jump to code following for–statement
L4: . . . ” object code for S

GOTO(M[...]) ” jump via for–list variable to continue iteration
L5: . . . ”

In the case that the controlled variable is a simple non–formal variable we can distinguish
the following three parts:

1. the translation for the for–list–elements (here only one), each beginning with two
instructions by setting a variable (called for–list variable) to the label (here L2)
where the execution has to be continued after execution of statement S. This part
is concluded by a jump over Part 2 (here to label L5).
The code for a step–until–element itself has several subparts:
a. code for loading the initial value into F, followed by a jump over subparts b and
c to subpart d,
b. code for loading the step size into F. If it consists of more than one instruction,
it is followed by a return instruction (i.e. GOTO(MC[-1])),
c. code for adding the value of the controlled variable and the step size. A step size
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compiled to one instruction is loaded by a DO–instruction, executing that single
instruction, otherwise part b is called as a subroutine,
d. code for assigning the value of F to the controlled variable and testing that value
against the upper bound. It is concluded by a conditional jump to Part 2, i.e. the
code for statement S.

2. code for statement S.

3. a jump, via the for–list variable, to the relevant for–list–element.

There is no block introduction. In each block the compiler reserves a number of words
for accomodating for–list variables, as many, in fact, as necessary for giving each for–
statement in the deepest nesting of for–statements in the block its own variable (for–list
variables are shared between non–nested for–statements).

Execution of a for–statement begins by executing the first for–list–element. In our exam-
ple, it begins by assigning label L2 to the for–list variable, loading initial value 1 to F
and jumping to Label L3 (i.e. Subpart 1.d), in order to assign it to i and to test whether
or not the step–until element is exhausted. If not, control is moved to Label L4 (i.e.
Part 2). After execution of statement S a jump is carried out via the for–list variable
to Label L2, where the value of i is incremented by step size 1, before we again arrive
at Label L3. After exhaustion of the step–until element the code for the next element is
entered. After completion of the last element a jump over Part 2 (here to Label L5) is
executed, completing the execution of the for–statement.

Taking for S the <dummy statement>, with an object code of 0 instructions, execution
of statement

for i:= 1 step 1 until n do S

takes:

for n > 0: 66.25 + n ∗ 83.75 µsec,
for n ≤ 0: 71.25 µsec.

In case that the controlled variable is an array element (occurring seldom, but not ex-
cluded in ALGOL 60) or a formal identifier (occurring regularly in the so–called Jensen’s
device) the object code is slightly more complicated to contain code for the preparation
of assignments to the controlled variable. Still it remains extremely simple and direct
compared to the code for the X1. In after–thought, however, some optimizations for the
simplest cases can easily be conceived.
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5.2.4 Procedure calls

Let again procedure p be declared in the outermost block by:

procedure p(z); real z;
begin real y;
end;

and let x be a simple global variable of type real with initial value 3.14.

Then the call p(x) generates the following object code:

SUBC(@p) ” subroutine call to the object code of p’s declaration
(0 + @x) ” parameter descriptor for x

with resulting execution time 182.5 µsec, whereas the call p(x+0.1) produces:

GOTO(:L1) ” jump over implicit subroutine
L0: SUB2(:ENTRIS) ” enter implicit subroutine

F = M[@x] ” F:= value of x
F + M[@0.1] ” F:= F + 0.1
GOTO(:EXITIS) ” exit implicit subroutine

L1: SUBC(@p) ” subroutine call to the object code of p’s declaration
(20 ∗ 220 + @L0) ” parameter descriptor for x + 0.1

with execution time 185 µsec (due to the jump over the implicit subroutine, adding 2.5
µsec).

In the context of procedure p1, declared in the outermost block by:

procedure p1(z); real z;
begin real y;

y:= z
end;

the call p1(x) executes in 207.5 µsec (i.e. 25 µsec for statement y:= z) and p1(x+0.1) in
278.75 µsec (i.e. 93.75 µsec for y:= z).

For an explication of these figures we need again to go into some details of the addressing
mechanism of the ALGOL 60 implementation for the X8.

Instead of one display at a fixed location in store which has to be updated at the occasion
of each context switch, now each procedure incarnation has its own display at a fixed
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location in its block cell in the stack. The begin address of this display is stored in
M[63], hence the name D for that location. As we have seen in the previous chapter,
M[63] plays an central role in the dynamic–addressing variant of instructions: using that
variant the transformation of a two–level address to a (static) store location is carried out
by hardware.

The cost of the construction of a display is paid at procedure entrance. The benifits show
up by all other context switches, such as entrance and exit of an implicit subroutine and
procedure exit, either by completion or by a goto–statement. In these cases simply the
begin address of an old display has to be assigned to D.

The code for the declaration of p1 reads:

p1: S = D ” S:= current value of D
A = − 0, Z ” A:= block number − 2
SUB0(:DPTR) ” Display Transport
B + 1 ” reserve one word for new block cell pointer
SUB0(:CEN) ” Call Expression by Name
F = :MA[2] ” F:= address of word reserved in display
B + 2 ” reserve two words for local variable y
SUB2(:ENTRPB) ” Enter Procedure Body
DOS(MD[3]) ” execute first parameter word: F:= z
MD[5]:= F ” store result in y
GOTO(:EXITP) ” Exit Procedure

In this figure we can discern 5 sections. The first one, of 4 instructions, constructs the
new display. The next section contains a subroutine call for each formal parameter. For
parameters in the value list specified real, integer, boolean, or label subroutines CRV
(Call Real by Value), CIV (Call Integer by Value), CBV (Call Boolean by Value), or
CLV (Call Label by Value) are called. For name parameters occurring in the procedure
body as left part of an assigment statement subroutine CLPN (Call Left Part by Name)
is called6 and for all other parameters subroutine CEN (Call Expression by Name). CRV,
CIV, CBV, and CLV just put the value of the actual parameter on top of the stack, CEN
constucts a two–word parameter descriptor and CLPN a four–word descriptor on top of
the stack.

The two–word descriptor constructed by CEN consists of an instruction which, when
executed, evaluates the actual parameter, and in the second word the display pointer of

6CLPN checkes dynamically whether the corresponding actual parameter is a variable.



5.2. THE STRUCTURE OF THE OBJECT PROGRAM 61

the calling context and a copy of that part of the parameter desciptor in the code that
encodes the nature of the actual parameter. Instead of 4 cases, as we saw for the X1
system, now even 32 different possibilities are distinguished.

The four–word descriptor constructed by CLPN contains two additional instructions for
use in assignments to the formal parameter: one to be executed before the evaluation
of the right hand side of the assignment statement (i.e. the expression), the other one
after that evaluation to accomplish the assignment itself. If the corresponding actual
parameter is a simple variable, the former instruction is an innocent one and the latter
either a simple store instruction (for real variables) or the call of a subroutine of the
complex (in the integer or boolean case). On the other hand, if the actual parameter is
a subscripted variable, the former instruction is a special call of the implicit subroutine
constructing an address description on the stack, whereas the latter instruction is always
the call of a subroutine of the complex.

In Section 3.3.4. we saw that in the X1 system the construction of a parameter descriptor
on the stack is carried out by ETMP before control is transferred to the code of the
procedure declaration. In the X8 system that is done after that tranfer of control, by the
code for the procedure body itself. The reason for this is that at the calling environment
the information whether a two–word or a four-word descriptor has to be constructed is
not necessarily available7.

The third section of the code for the declaration of p1, 3 instructions long, completes the
entrance of the procedure. Next comes the section with the code for the statements of the
procedure body, here the statement y:= z. The DOS instruction executes the instruction
in the parameter descriptor constructed by CEN. In the call p1(x) it is the instruction ‘F
= M[@x]’, in the call p1(x+0.1) it is the instruction ‘SUBC(:L0)’, where L0 is the begin
address of the implicit subroutine preceding the procedure call. As a side effect of the
DOS instruction the address of the two–word parameter descriptor is delivered in register
S. The implicit subroutine starts with a call of ENTRIS, in which the current value of D
(the context of the procedure body) is saved in the stack and replaced by the value of the
second word of the two–word parameter descriptor, i.e. the context of the procedure call.
The implicit subroutine ends with a jump to EXITIS, in which the context is set back to
the procedure body (by means of the value of D saved by ENTRIS) whereafter control is
transferred to the instruction following DOS.

The last section of the code for the procedure declaration is the procedure exit.

7Since the construction of a four–word descriptor costs additional execution time, it is, as a kind of
optimization, avoided when not necessary.
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For procedure p2, declared in the outermost block by:

procedure p2(z); real z;
begin real y;

z:= z + 0.1
end;

the following code is generated:

p2: S = D ” S:= current value of D
A = − 0, Z ” A:= block number − 2
SUB0(:DPTR) ” Display Transport
B + 1 ” reserve one word for new block cell pointer
SUB1(:CLPN) ” Call Left Part by Name
F = :MA[2] ” F:= address of word reserved in display
B + 2 ” reserve two words for local variable y
SUB2(:ENTRPB) ” Enter Procedure Body
DOS(MD[5]) ” prepare assignment to z
DOS(MD[3]) ” F:= z
F + M[@0.1] ” F:= F + 0.1
DOS(MD[6]) ” assign value of F to z
GOTO(:EXITP) ” Exit Procedure

Execution of a call p2(x) now takes 307,5 µsec, whereof 148.75 µsec for the call of CLPN
and 51.25 µsec for the statement z:= z + 0.1 (the call of CEN occurring in the execution
of p(x) costs 75 µsec).

5.2.5 Some standard functions

The standard functions sqrt, sin, cos, ln, and exp were, as was the case for the X1,
implemented as subroutines of the complex, transforming the top–of–stack value. On the
X8 also function arctan was implemented that way. The object code for statement

x := sin(y)

reads simply:
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F = M[@y] ” F:= value of y
SUBC(:SIN) ” call of the sine routine, F:= sin(F)
M[@x] = F ” x:= F

In contrast to the X1 implementation all standard–function identifiers can be used as
actual parameters. The call

p3(sin)

of procedure p3 with heading

procedure p3(f); real procedure f;

reads:

JU(:L1) ” jump over implicit subroutine to L1
L0: S = MS[1] ” Take Formal Display pointer

GOTO(COS L) ” jump indirectly to routine SIN P
L1: SUBC(@p3) ” subroutine call to the object code of p3

(24 ∗ 220 + :L0) ” parameter descriptor for implicit subroutine

SIN P is the subroutine of the complex to which control is passed whenever p3’s parameter
f is used as function identifier in a function designator. It first evaluates the actual
parameter of the function designator (delivering the result in F) and then jumps to the
sine routine. Where the computation of sin(0.3) takes 635.00 µsec, the computation of
f(0.3) costs 777.50 µsec. In this way we combined efficiency (for normal use of a standard
function) with generality (allowing its use as an actual parameter).

Again we give some data on the execution performance. They were measured as the
average for a range of values. For sqrt, exp, ln, and arctan we used the arguments
1.0 (1.0) 20.0, for sin and cos the values −π (π/10) +π.

function instructions time (µsec)
sqrt 45 343.75
sin 32 656.25
cos 33 603.75
exp 76 985.00
ln 58 700.00
arctan 61 785.19
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5.2.6 Designational expressions and goto statements

As was already mentioned in Section 5.1, a two–word label variable corresponded to each
label. It was reserved in the local space of the block to which that label was local, each
time the block was entered. It was initialized with the object–program address of the
label, the current display pointer and the blocknumber of the block. The object code for
a statement:

goto if b then aa else bb

read:

S = M[@b], Z ” load value of b in condition register C
N, GOTO(:L0) ” conditional jump to else–part

A = @aa ” load address of variable for aa in register A
GOTO(:L1) ” jump over else–part

L0: A = @bb ” load address of variable for bb in register A
L1: GOTO(:JUA) ” JUA

where the code of routine JUA in the complex of subroutines accesses the label variable
to produce a context switch (by installing a new display pointer and adapting the stack
pointer) and to execute the jump to the object–program address.

Statement:

goto aa

for local label aa is, however, translated simply by:

GOTO(:Laa) ” jump to aa

where Laa is the object–program address of aa8.

The evaluation of a designational expression that is used as actual parameter to a proce-
dure always yields the address of a label variable. If the corresponding formal parameter
is a value parameter, the contents of that label variable are copied into the parameter
area of the procedure by the subroutine CLV (Call Label by Value, c.f. Section 5.2.4.).
The introduction of label variables made the implementation of value calls of labels an
easy job.

8If label aa is used only in such simple, local goto statements, the reservation and initialization of a
label variable for aa is suppressed, saving execution time.
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Statement:

p(aa)

with aa some (nonformal) label and p some (nonformal) procedure, is translated as:

SUBC(@p) ” subroutine call to the object code for p
(14 ∗ 220 + @aa) ” parameter descriptor for aa’s label variable

The translation of procedure statement p(2) in a context where 2 can also be interpreted
as an integer label reads9:

GOTO(:L1) ” jump over implicit subroutine
L0: SUB2(:ENTRIS) ” enter implicit subroutine

F = 2 ” load value 2 in register F
A = @2 ” load address of label variable for 2 in A
GOTO(:EXITIS) ” exit implicit subroutine

L1: SUBC(@p) ” subroutine call to the object code for p
(29 ∗ 220+ @L0) ” parameter descriptor for ambivalent 2

Here we profit from the fact that different value types use different registers. This imple-
mentation of ambivalent integer parameters allows that procedure q with declaration:

procedure q(p,x); p(x);

can be called both by statement q(p1,2) as by statement q(p2,2), where p1 and p2 are
declared by:

procedeure p1(x); goto x;
procedure p2(x); i:= i + x;

and 2 is in scope as integer label for both p1 and p210.

9The compiler translates actual parameters of a procedure statement independently of the procedure’s
declaration. This makes sense since in the case of the use of formal procedures that declaration might be
unknown or not unique.

10A declaration ‘procedure p(x); if b then goto x else i:= i + x;’ leads to an error message of the
compiler, complaining (probably in conflict with the Revised Report) about inconsistent use of parame-
ter x.
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5.2.7 Line numbers

After the design of the object code by Nederkoorn and Kruseman Aretz and, if my re-
membrance is correct, even after the design of the compiler in ALGOL 60, the idea was
born that it would be helpful to users of the system if in case of a run–time error they
were informed about the place in the source program where the error was detected. This,
however, was not easily implemented in the existing design. Moreover, I did not like
to add a long table to the object program with a mapping from instruction counters to
source code positions. Therefore I devised a cheaper solution, which gave the users the
line number of the most recently started statement.

For that purpose the object program was larded with instruction pairs of the form:

S = . . .
line counter = S ” set line counter

execution of which takes 7.5 µsec.

In principle these instructions are generated as the begin of the translation of an ALGOL
60 statement, unless it is certain to the compiler that the value of line counter has already
the correct value. For the source program line:

begin i:= 0; j:= 0; A[i,j]:= 1 end;

the instruction pair is generated only once. The same is true for the following lines:

if i = n then ready:= true;

for i:= 1 step 1 until n do B[i]:= 0;

There are complications, however. For the statement:

for i:= 1 step 1 until n do

begin x:= x + A[i];
A[i]:= 0

end;

there are generated 4 instruction pairs, the last one just prior to the indirect backwards
jump to the for–list element.

Another complication is the use of a function designator within an expression. After the
elaboration of the actual parameters (in which the position of the call is relevant) the
current value of line counter is saved to the stack (in the newly constructed block cell)
before the function body is executed. At the end of the function call line counter is reset
from the stack to the value relevant for the calling environment.
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Also in front of array declarations the line–number setting instruction pair is generated.

I made an effort to restrict the overhead of line–number setting during program execu-
tion as much as possible. The code for generating the necessary instructions is scattered
throughout the compiler and the complete algorithm is rather complex. A slightly im-
proved version is treated in [13]. It was made possible to request the system to produce
an object program without line–number administration during execution, leading to some
savings in execution time and object–program length.

In 1965 I estimated that those saving would be in the order of a few percents. I never
measured it. Only recently I did measurements for a number of programs. Those programs
are dealt with in the next chapter. The results read:

program with line numbers without line numbers code time
code time code time ratio ratio

Havie integrator 609 96.70 507 96.20 1.20 1.005
QR eigenvalues 1211 0.2850 1047 0.2785 1.16 1.023
JAZZ164 2497 10.36 2165 10.22 1.15 1.014
Erathostenes 208 6.347 176 6.003 1.18 1.057
pentomino 1019 51.43 839 48.36 1.21 1.063
lisp interpreter 5128 636.7 4052 597.8 1.27 1.065

In program length the savings vary from 15 to 27%, in execution time from 0.5 to 6.5%,
more than I expected. When we discuss the programs in more detail in the next chapter,
we will also go into the question why the savings vary so much as they do.

5.2.8 Guarding stack overflow

Where in the X1 implementation of ALGOL 60 the execution stack could grow unlimited
and could overwrite object program and run–time support routines without any warning,
in the X8 implementation stack growth is guarded against overflow. The implementation
is such that the test on stack overflow is not carried out for each stack operation adding
something to the stack but done only at specific moments of the execution.

To be more precise, at block entrance (in run–time subroutine ENTRB), at procedure en-
trance (in subroutine ENTRPB), at the entrance of an implicit subroutine (in subroutine
ENTRIS), and after reservation of the area for array elements (in subroutine RAD, for
Real Array Declaration, and in subroutine TAV, for Take Array by Value) the new value
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of the stack pointer, augmented by a certain margin, is checked against the end of the
area that is available for the execution stack.

The margin mentioned above is computed by the compiler and incorporated in the object
program after its last instruction, which is ‘GOTO(:ENDRUN)’. It is the sum of four
variables, the maximum stack movement within the elaboration of expressions outside
implicit subroutines (max depth), the maximum stack movement of expressions within
implicit subroutines (max depth isr), the maximum display length (max disp length) and
the maximum stack growth in a procedure preceding the call of ENTRPB (max proc
length). The execution of an expression

x + f1(f2)

(where f1 has a real parameter called by value and f2 is a parameterless real procedure)
is guarded for the first time by subroutine ENTRPB, occurring in the object code for
procedure f2. In the mean time the value of x, a new display for f1 and the actual
parameter descriptor for f2 have been added to the stack, whereafter the execution of f2
by the value mechanism adds again a new display to the stack. Hence the unguarded
stack growth could be as much as max depth + max proc length + max disp length
for an expression outside implicite subroutines and max depth isr + max proc length +
max disp length for an expression inside implicite subroutines. With the sum of all four
quantities we are always on the save side.

Most likely this implementation of the guarding of stack overflow was designed at a late
stage of the compiler design, for the four variables discussed above are obtained, in the
part of the compiler called ‘macro processor’ (c.f. Section 5.3.4), by reconstructing the
stack movements from the instructions produced by the translator scan of the compiler.

For the programs dealt with in the next chapter the margin varies from 4 (for Erathoste-
nes) to 52 (for JAZZ164). At the start of program execution this margin is assigned to a
variable bcheck, which then is used in all checks.

program bcheck

erathostenes 4
pentomino 14
havy integral 26
lisp 32
QR 36
JAZZ 52
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5.3 The structure of the compiler

5.3.1 Overview

The compiler consists of 4 parts:

1. a collection subroutines called ‘General–purpose procedures’. This collection con-
tains a number of subroutines together constituting the lexical scan, and some other
routines that are called from at least two of the other parts. Its length is 881 words
in total.

2. the prescan0 program. In Prescan0 the program is scanned and a complete name
list (identifier table) is constructed. 509 words.

3. the prescan1 program. Collects, in the name list, all further data necessary for the
translator scan and does the addressing of variables. 894 words.

4. the translator scan. Produces the object program in situ, ready for execution. 2965
words.

The complete length is 5249 words.

All three scans read the string of basic symbols that constitutes the program. In Prescan0
this string is derived from the text on paper tape using the lexical scan subroutines. As
a side effect the string is saved in store in an area called the text array. Prescan1 and the
translator scan read the string from the text array. All three scans build identifiers and
numbers from letters and digits (including ‘.’ and ‘10’) as contained in the string of basic
symbols.

The compiler does a complete syntax check. For most errors, a simple back–on–the–rails
procedure is applied to continue the compiling process, in order to find as many errors as
possible. Syntactily incorrect are never executed, however.

The translator scan was written first and includes most of the syntax checks11. It uses
a recursive descent method for parsing and generates the object code. It assumes the
availability of a block–structured symbol table, containing also some general data for each
block or procedure. In the parsing procedures, however, no implementation details of the
symbol table are present: the symbol table is structured as an abstract data structure
with many functions and procedures to extract data from or to add new data to it. It

11All syntax errors with error number from 300 (‘in an arithmetic expression an if–clause is not closed
by then’) upto 401 (‘code body does not start with a quote symbol’) are reported by the translator scan.
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was only after the completion of the design of the translator scan that the representation
of the symbol table was chosen: then it was known what information it should contain.

Also the code generation as included in the parsing procedures is rather abstract: code
is produced as macro’s with or without a parameter, and in a special ‘macro processor’
these macro’s are expanded to X8–instructions, possibly after applying some peep–hole
optimization.

Both prescans were derived from the translator scan by leaving out all code for syntax
checking and object program production and applying many other simplifications.

Prescan0 reads the source text from paper tape using the lexical scan subroutines. It
produces a program listing on the line printer. Its main task is the construction of
a complete symbol table. It mainly analyses and checks the block structure and the
declarations and reports all errors found12.

If serious errors are detected in the declaration structure (such as an identifier declared
twice in the same block) the compiling process is disrupted at the end of Prescan0. This
was not originally planned but showed necessary in the first weeks of practice. Conse-
quently, in that case no further checks are carried out. It would have been better to do
all context–free error checking in Prescan0 instead of the translator scan (in an ALGOL
60 compiler for Philips P1400, written in 1970 when I moved to the research laboratory
of Philips in Eindhoven, I included all these checks in the first scan indeed).

The main task of Prescan1 is to add to the symbol table information about formal pa-
rameters that can not be derived from their specifications (if present at all!), but can be
extracted from their use, such as the dimensions of array parameters or the number of
arguments for a procedural parameter. Also the use of labels in inner blocks or as ac-
tual parameter is registrated. Moreover, data is collected about the depth of inner block
structure (determining the length of the display) and the depth of for–statement nesting
(determing the number of locations to be reserved for the for–list variables of the block, cf.
Section 5.2.3). There are only 4 (context–sensitive) error checks, among which the check
on undeclared identifiers (after producing error message 204, the identifier is added to the
symbol table as global identifier with the descriptor of an unspecified formal parameter).

The main task of Prescan1 as mentioned above requires a more detailed analysis of the
program than needed in Prescan0.

12All syntax errors with error number from 100 (‘in a parameter separator the colon is missing’) upto
130 (‘ the value of a numeric label is non–integral or lies outside the integer capacity’) are reported by
Prescan0.
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The ALGOL 60 version of the compiler, written and tested before its coding in ELAN,
was designed with this coding in mind. Therefore, complex ALGOL 60 constructions
were avoided. In general, the compiler procedures have a few parameters only, preferably
value parameters, that in the ELAN coding can be transfered in a register.

5.3.2 The General–purpose procedures

In the first place the collection of general–purpose procedure contains the lexical scanner.
Essentially it consists of three layers: subroutine ‘next symbol’, subroutine ‘next basic
symbol’, and subroutine ‘insymbol’.

The upper layer is function next symbol. It delivers (the internal representation of) the
next basic symbol of the source program as function value and also stores it in variable
‘last symbol’. Moreover, it sets two boolean variables, ‘letter last symbol’ and ‘digit last
symbol’. It also skips comment (starting with comment or following end) and assembles
‘) <letterstring> : (’ to (the internal representation of) ‘,’. During Prescan0 it also takes
care for buiding the text array.

The lower level, function insymbol, decides whether to read from the input source (Pres-
can0) or from the text array (Prescan1 and Translator scan). In the latter case it simply
extracts the next symbol from the text array and exits. Otherwise, it has to assemble one
or more characters from input to (the internal representation of) a basic symbol. It skips
lay–out symbols (except the new–line symbols), assembles ‘:’ and ‘=’ to 92 (for ‘:=’) and
‘ ’ ‘i’ ‘ ’ ‘f’ to 94 (for if).

The only task of the intermediate level is bookkeeping of the line counter. When it meets
a new–line symbol it increments the line counter by one and it calls insymbol for the next
basic symbol. Only within strings the new–line symbols are delivered to the upper layer
(and then to the parsing procedure calling next symbol).

Apart from the lexical scanner there are a.o.:

• routines for further analysis of basic symbols, like ‘aritmetic operator last symbol’,
‘declarator last symbol’ and ‘specifier last symbol’. They deliver a boolean result
and in case of an affirmative answer the latter two assemble, if appropriate, two or
more basic symbol to one characteristic value for the declarator or specifier (e.g.
own integer array to 41).

• a routine to assemble unsigned numbers, delivering its value in F and setting two
boolean variables ‘real number’ and ‘small’ (the latter true for integer representa-
tions < 32768).
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• a routine to assemble identifiers, delivering their representation at the end of the
symbol table.

• a routine to look whether the identifier at the end of the symbol table is present
elsewhere in that table. The parts of the table where to look for it depend on the
context.

• routines to skip type declarations, value lists and specification lists (called from
Prescan1 and Translator scan).

• routines to administrate at block entrance and block exit some pointers governing
the look–up process of identifiers in the symbol table.

• the procedure ‘skip rest of statement’, activated occasionaly in the back–on–the–
rails process after the detection of an error.

5.3.3 The translator scan

In the translator, having a total length of 2965 words, one can distinguish several parts:

• the recursive descent parser, checking the program and generating code in the form
of macro’s (2073 words);

• the macro processor, generating X8 instructions in situ after application of some
peep–hole optimizations (239 words);

• a set of symbol–table procedures, delivering properties of identifiers and blocks or
adding new data, such as (code) addresses of procedures and labels (246 words);

• some tables for use by the macro processor (407 words).

As said before, I wrote the parser unaware of any theory about parsing, let alone of notions
like LL(1) grammars or recursive descent parsers. As I was trained of programming in
ALGOL 60 and almost thought in terms thereof, it was very natural to me to try to
write a compiler by means of a procedure for each of the nonterminal symbols of the BNF
grammar of ALGOL 60. In general such a procedure expects that the first symbol of the
terminal production of that nonterminal symbol is already read and stored in variable
‘last symbol’ and leaves in turn the first symbol not belonging to it (the ‘follower’) in ‘last
symbol’. Almost automatically I applied certain transformations where the grammar was
not in suitable (i.e., LL(1)) form. We give an example:
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ALGOL 60 rule: <factor> ::= <primary> | <factor> ↑ <primary>
LL(1) form: <factor> ::= <primary> <next primary>

<next primary> ::= <empty> | ↑ <primary> <next primary>
ALGOL 60 code: procedure Factor;

begin Primary; Next primary end Factor;

procedure Next primary;
begin if last symbol = ttp

then begin Macro(STACK);
next symbol; Primary;
Macro(TTP); Next primary

end

end Next primary;
ELAN code: FACTOR: SUBC(:PRIMARY)

NXT PRIM: S = last symbol
U, S − 69, Z ” last symbol = ttp?
N, GOTOR(MC[-1])

A = 0
SUBC(:MACRO) ” MACRO(STACK)
SUBC(:NXT SBL)
SUBC(:PRIMARY)
A = 7
SUBC(:MACRO) ” MACRO(TTP)
GOTO(:NXT PRIM)

The LL(1) rules are nicely reflected in the ALGOL 60 code. We see moreover clearly how
the parsing activities are mingled with code generation. The macro processor produces
(the bit patterns corresponding to) instruction ‘MC = F’ out of macro STACK and
instruction ‘SUBC(:TTP)’ out of macro TTP. The ELAN code follows the structure of the
ALGOL 60 code conscentiously. The only adaptations are the fact that in NXT PRIM tail
recursion is replaced by iteration and that the call of NXT PRIM at the end of FACTOR
is eliminated by putting its code directly following the code of FACTOR.

A second example is given in the next table. In this example we took a decision that, for
reasons to be explained below, could better have been taken differently.
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ALGOL 60 rules: <primary> ::= <unsigned number> | <variable> |
<function designator> | ( <arithmetic expression> )

LL(1) form: <primary> ::= <unsigned number> |
<identifier> <array extension> <function extension> |
( <arithmetic expression> )

<array extention> ::= <empty> | [ <subsript list> ]
<function extension> ::= <empty> |

( <actual parameter part> )
ALGOL 60 code: procedure Primary;

begin integer n;
if last symbol = open then

begin next symbol; Arithexp;
if last symbol = close
then next symbol else ERRORMESSAGE(302)

end else

if digit last symbol then

begin Unsigned number; Arithconstant end else

if letter last symbol then

begin n:= Identifier;
Subscripted variable(n); Function designator(n);
Arithname(n)

end else

begin ERRORMESSAGE(303);
if last symbol = if ∨ last symbol = plus

∨ last symbol = minus then Arithexp
end

end Primary;

procedure Subscripted variable(n); integer n;
begin if Subscrvar(n) then

begin Address description(n);
if last symbol = colonequal
then begin Macro(STACK); MACRO(STAA) end

else Evaluation of(n)
end

end Subscripted variable;

· · ·
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Since in the ALGOL 60 rules a variable (either a simple variable or a subscripted variable)
and a function designator both start with an identifier, in the LL(1) rules the identifier
is factored out. In the ALGOL 60 routines we see this reflected by the call of function
‘Identifier’ followed by two procedure calls catering for the cases of a subscripted variable
or a function designator. Identifier deliveres a pointer in the symbol table pointing to the
descriptor of the identifier.

The less fortunate decisions were taken in the ALGOL 60 procedures ‘Subscripted variable’
and ‘Function Designator’. Instead of inspecting ‘last symbol’ in order to see whether
it is an opening parenthesis (in Function designator) or an opening square bracket (in
Subscripted variable), the symbol table is consulted to see whether the identifier is the
identifier of a function (in Function designator) or an array (in Subscripted variable).
This does not only conflict with the idea of a one–symbol look–ahead parser. It makes it
also impossible that both prescans and the translator scan base their parsing decisions in
the same way, in the prescans the information contained in the symbol table not being
necessarily available in time.

The above example also demonstrates some error checking and some back–on–the rails
measures. In case of a missing closing parenthesis this fact is reported, and parsing is
simply continued. It is possible that the preceding call of procedure Arithexp (short for
Arithmetic expression) is prematurely ended because a symbol was found that could not
belong to an arithmetic expression (e.g. a comma). In that case Primary just passes the
problem upwards in the calling hierarchy.

If primary does not find a letter, a digit, or an opening parenthesis, it reports an er-
ror. In case of some frequently occurring errors it tries to resume parsing itself (as in
‘a + if x > y then x else y’ or ‘x↑ −2’), otherwise it again passes the problem upwards.

Of course I struggled at some places where ALGOL 60 is not an LL(1) language. Trying
the impossible, this made some parts of the compiler more complicated than they other-
wise would have been. The problem is that the context–free language

{(n 1 )n = 2 | n > 0} ∪ {(n true )n | n > 0}
is not LL, let alone LL(1), and this language is just a subset of the terminal productions
of <Boolean expression>.

The most complex part is the analysis of actual parameters. According to the Revised
Report we have the following rule:

<actual parameter> ::= <string> | <expression> | <array identifier> |
<switch identifier> | <procedure identifier>
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Therefore, actual parameters can be almost anything. A special case of <expression> is
<variable>, which needs a special treatment because assignments to the corresponding
formal parameter must be reckoned with. Since the procedure identifier in the call can
be an formal parameter, we should also take into account that not always information
about the nature and use of its arguments is available. Consequently, the analysis of an
actual parameter is carried out almost bottom–up rather than top–down, without explicit
expectation about what kind of actual parameter to expect. Only after the analysis of
an actual parameter (under construction of the parameter descriptor and, if applicable,
an implicit subroutine) there is a test whether it is compatible with what is known about
the corresponding formal parameter.

The back–on–the–rails mechanism, touched on already above, was quite simple but rather
effective. Most of the parsing procedures passed a serious problem, in which it was
not clear how to continue, upwards in the calling hierarchy. There was one level, the
compound–tail level, that was able to skip text in order to synchronize text and parsing
again:

ALGOL 60 rule: <compound tail> ::= <statement> end |
<statement> ; <compound tail>

LL(1) form <compound tail> ::= <statement > <rest of compound tail>
<rest of compound tail> ::= end | ; <compound tail>

ALGOL 60 code: procedure Compound tail;
begin Statement;

if last symbol 6= semicolon ∧ last symbol 6= end then

begin ERRORMESSAGE(367);
skip rest of statement(Statement)

end;
if last symbol = semicolon then

begin next symbol; Compound tail end

end Compound tail;

Three notes:
1. Compound tail is the only procedure that does not read beyond the last symbol of the
construction (i.e. the end symbol), because that symbol could be the very last symbol of
the input string!
2. Procedure ‘skip rest of statement’ is the only compiler procedure with a procedure
parameter. It is called from all three scans, each with its own procedure ‘Statement’.
3. Procedure ‘skip rest of statement’ skips text until it meets a semicolon or an end
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symbol, but does so in an intelligent way: if it meets a do, a goto, a for, or a begin it
calls its parameter in order to parse a statement before continuing skipping. Also when
it meets a opening string quote it skips the string until the corresponding closing string
quote before continuing normal skipping.

5.3.4 The macro processor

In the translator scan the object program is generated in the form of a sequence of
macros. It is the macro processor that generates the real X8 instructions. In two tables
it has for each macro the instructions and some properties at its disposal. Macros can
have parameters. For practical reasons the number of parameters is limited to one and
the number of instructions per macro to three. In some cases, therefore, a macro was
split into two macros that always follow one another. An example is the macro pair
DPTR(display level) and INCRB(top of display), leading to the instructions:

S = D ” )
A = – (display level – 2), Z ” ) DPTR(display level)
SUB0(:DPTR) ” )

B + (top of display) ” INCRB(top of display)

which we met before in Section 5.2.4.

A special task of the macro processor is to carry out some peep–hole optimizations.
We give an example. For the arithmetic expression ‘x + 1’, translation scan procedure
‘Arithexp’ generates the macro sequence:

TRV(x) ” Take Real Value of x
STACK
TSIC(1) ” Take Small Integer Constant 1
ADD

The last three macros are optimized to: ADDSIC(1)

ADDSIC(1) ” Add Small Integer Constant 1

leading to the instruction:
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F + 1 ” Add 1 to F

For this purpose the macro processor can be in several states, indicating which macros
it has in stock that are candidates for optimization. Whenever the translator scan refers
to the instruction counter of the object program (pointing to the place where the next
instructions have to be placed), first the stock of the macro processor is emptied by
generating the corresponding instructions.

The macro parameter of macros like TRV, Take Real Value, is a pointer into the symbol
table, to the descriptor of the identifier of a variable or a formal parameter. For such
macros the macro processor converts this pointer to the (static or dynamic) address of
the variable and adapts the addressing variant of the instruction when applicable.

Another task of the macro processor is to register the stack movement caused by the
execution of a macro. The purpose of this is to determine the number that is used in
guarding stack overflow during program execution as discussed in Section 5.2.8. There
are several reasons to do this in the macro processor. First of all this makes the code of
the translator scan more transparant. The stack movement is, furthermore, influenced by
the peep–hole optimization of the macro processor, as can be seen in the example above.
Finally it could be the case that the monitoring of the stack movements was planned at
a stage where large parts of the translator scan were already designed. The price paid is
that the macro processor, to which the structure of the source program is not available,
has to do some reconstruction activities with the help of a table of macro properties.

5.3.5 The symbol table

We discuss here the structure of the symbol table. For each block (including those of
procedure declarations) there is a segment of words in store containing:

– a heading, giving some general data for the block,
– a section for the formal identifiers of the block, if any,
– a section for the local identifiers of the block, possibly interspersed with the segments

of inner blocks.

The heading contains, a.o., pointers to the block heads of the smallest enclosing block
and of the textually following block, pointers to the first formal identifier and to the first
local one, a pointer to one of the descriptors of for variables, the block number (i.e. the
number of enclosing blocks), and several other numbers. It consists of 5 words.

All characters of an identifier are stored in the symbol table, 4 characters per word,
requiring 4 * 6, i.e. 24 bits. These words are stored negatively. The descriptor of the
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identifiers occupies one, two or three words, immediately following the character words,
and are stored positively. The first descripter word contains a code of 7 bits. Three of these
give its type (real, integer, Boolean, string, arithmetic, non–designational, designational,
unknown), one bit discriminates formal and non–formal, and three bits determine its
character (simple variable, simple own variable, array or switch, own array, procedure,
function). The first descripter word contains moreover an 18–bits address and one bit
indicating for non–formals whether the address is static or dynamic, whereas for formal
identifiers that bit indicates whether the formal is called by value or by name.

In case of a formal identifier, an array, a procedure, or a function there is a second
descriptor word, containing more information, giving the dimension for arrays and the
number of parameters for procedures and functions. For non–formal function identifiers
there is a third descriptor word containing the descriptor of a simple local variable, used
to record the function value.

Apart from some exceptions to be discussed below, the identifiers of a block are stored
successively. The identifier look–up procedure is rather simple. As soon as a mismatch
is found, the rest of the (negative) character words and the positive descriptor words are
skipped and the next (negative) character words are examined.

In general, however, the symbol table contains ‘jump instructions’ indicating that the
search has to be continued elsewhere in the symbol table. Jumps are coded by negative
words in which not all first three bits are one. There are two different kinds of jumps:

– a jump over the segment of an inner block, and
– a jump at the end of the locals or formals of a block.

The former kind of jump occurs when among the declarations of a block a (type) procedure
is found. After the procedure’s descriptor there is a jump to the next local identifier of
the block. Also after the segment for an inner block among the statements new local
identifiers of labels can be present.

The latter kind of jumps occurs at the end of the ‘local list’, leading to the ‘formal list’
(which is empty for an inner block or for a procedure without parameters) and at the end
of the formal list, leading to the local list of the enclosing block (which list, of course,
might also be empty).

Since after Prescan1 all identifiers are present in the symbol table, the look–up procedure
always ends with a hit.

The translator scan is completely ignorant of the structure of the symbol table: the latter
is an abstract data type. The symbol table section of the translator scan contains some
40 functions to interrogate the symbol table about the properties of an identifier and a
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few procedures to fill in some new information (e.g. the program address of a label or
procedure).

5.3.6 Prescan1

The main task of Prescan1 is to collect data about the use of identifiers and store these
in the symbol table for use by the translator scan.

In the first place it adds data about the use of formal parameters. According to the
definition of ALGOL 60, it is not necessary to give a specification of formal parameters,
except for those that are called by value. But even if a formal parameter is specified, this
specification is often far from complete. Specification ‘boolean array b’ does not give
any information about b’s dimension. From statement ‘b[i,j]:= true’ it follows that b is
a boolean array of dimension 2.

All information gathered in Prescan1 is reported to the symbol table by means of pro-
cedure calls. Unknown facts are added, facts already registered in the symbol table or
conflicting with previously stored information are simply neglected.

Prescan1 adds an undeclared identifier at the end of the symbol table as an unspecified
formal (after producing an error message). It is treated as all other formals, so every
applied occurence of that identifier leads to information on its intended nature, which in
the translator scan is used to check its consistent use.

Some other facts are registered about the use of identifiers. For formal parameters oc-
curring as left part of an assignment statement that fact is registered. It is used in the
translator scan to generate a call of CLPN (Call Left Part by Name) as described in
Section 5.2.4. Any use of a label identifier other than in ‘goto <label identifier>’ local
to the block in which that label has its defining occurrence leads to a mark in the symbol
table. This results at run time in the creation of a ‘label variable’ in the block cell in
which the label’s program address and the block’s display pointer and block number are
stored.

For each block also the maximal nesting depth of for statements is registered.

A final task of Prescan1 is to assign addresses to all local variables and arrays.

Prescan1 was written after completion of the translator scan. It was obtained by leaving
out all code generation and all error messages, while adding the information gathering.
Moreover, where possible the syntax analysis was simplified. Typical examples are rou-
tines ‘Simple arithexp’ and ‘Subscripted variable’, which we present in their ALGOL 60
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version. The calls of ‘Arithmetic’, ‘Subscrvar’ and ‘List length’ herein potentially add
new information to the symbol table.

procedure Simple arithexp;
begin integer n;

if last symbol = plus ∨ last symbol = minus
then

next0: next symbol;
if last symbol = open
then begin next symbol; Arithexp;

if last symbol = close then next symbol
end

else

if digit last symbol then unsigned number
else

if letter last symbol
then begin n:= Identifier; Arithmetic(n);

Subscripted variable(n); Function designator(n)
end

else

if last symbol = if then Arithexp;
if arithoperator last symbol then goto next0

end Simple Arithexp;

procedure Subscripted variable(n); integer n;
begin if last symbol = sub

then begin Subscrvar(n)
dimension:= Subscrlist; List length(n)

end

end Subscripted variable;

5.3.7 Prescan0

Prescan0 reads the ALGOL 60 program from external source and constructs a first version
of the symbol table. As a side effect the basic symbols that constitute the program are
stored in a text array for use in Prescan1 and the translator scan. All lay–out characters
except the new–line characters are thereby removed, as are all comments. Moreover the
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text is listed, augmented with line numbers.

For the construction of the symbol table the block structure of the program and the
declarations are carefully analyzed. Statements are almost completely skipped. The only
points of interest are the occurence of labels (that have to be added to the symbol table)
and the basic symbols for (for administrating the maximal nesting of for–statements in
the block), begin (possibly the start of an inner block) and string quote open (in order
to be able to skip strings separately).

The construction of the symbol table is carried out with care. For each identifier to be
added it is checked that it really new, i.e. that it does not have a defining occurrence for
the same block in the preceding text. If there is, however, such an occurrence, this is
considered as a serious error and a reason to disrupt the compilation process at the end
of Prescan0.

The code of Prescan0 in its ALGOL 60 version is a procedure ‘prescan0’ with 11 local
procedures and a body. The local procedures are named ‘Program’, ‘Block’, ‘Compound
Tail’, ‘Declaration list’, ‘Statement’, ‘Label declaration’, ‘Int lab declaration’, ‘Begin state-
ment’, ‘Store numerical constant’, ‘Process identifier’, and ‘Identifier’. We give here the
code of ‘Statement’ (6 × d19 being the descriptor value for a label):
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procedure Statement;
begin integer n, lfc;

lfc:= local for count; character:= 6 × d19;
next: if letter last symbol

then begin read identifier;
if last symbol = colon
then begin n:= Process identifier;

Label declaration(n);
goto next

end

end

else if digit last symbol
then begin unsigned number;

if last symbol = colon
then begin Int lab declaration;

goto next
end

else Store numerical constant
end

else if last symbol = for
then begin local for count:= local for count + 1;

if local for count > max for count
then max for count:= local for count

end

else if last symbol = begin
then begin Begin statement; next symbol; goto next end

else if last symbol = quote then skip string;
if last symbol 6= semicolon ∧ last symbol 6= end
then begin next symbol; goto next end;
local for count:= lfc

end Statement;

Prescan0 was written after, and almost indepently of Prescan1.
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5.3.8 Results of some measurements

For one of the programs (JAZZ164) discussed in the next chapter we present here results
of some measurements on compiler execution. The first table gives the number of paper–
tape punchings read and the number of basic symbols constructed from these by the
lexical–scan procedures13.

number of paper–tape punchings 9 477
number of basic symbols 3 479

Next we give the number of instructions executed and the time spent in several parts of the
compiler. The data for the lexical scan are time and number of instructions used for the
production of the basic symbols. During Prescan0 they are constructed (by reading paper
tape), stored and printed, during Prescan1 and the translation scan they are taken from
store. The assemblage of identifiers and numbers from their constituent basic symbols is
carried out in the scan themselves and done anew in each of the scans. The figures for
the translation scan include the activities of the macro processor.

time (msec) instructions
Prescan0 4 189 1 057 553
of which lexical scan 3 756 945 074

look up 57 13 331
Prescan1 1 741 453 949
of which lexical scan 412 113 505

look up 550 135 137
Translation scan 2 989 758 263
of which lexical scan 412 113 505

look up 536 132 160
macro processor 871 209 894

total compilation 8 919 2 269 765

13Both the number of punchings and the number of basic symbols differ from those reported in [8].
There are three causes for these differences:

1. the program text for the X8–version of the program differs from the original version: in the X8
version the own arrays had to be replaced by global arrays, a declaration for procedure SUM had to be
added, and the procedure calls of FLOT needed a third parameter;

2. in the X8–version symbols between symbol end and the next end, else or semicolon are already
skipped in the lexical scan and therefore not counted as basic symbols;

3. new–line symbols are in the X8–version counted as basic symbols, since they are used in the
line–number administration.
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If we express the timing figures as percentages of the total compilation time we get the
following results:

time (%)
Prescan0 47.0
of which lexical scan 42.1

look up 0.6
Prescan1 19.5
of which lexical scan 4.6

look up 6.2
Translation scan 33.5
of which lexical scan 4.6

look up 6.0
macro processor 9.8

We see that the lexical scan activities in Prescan0, i.e. reading and printing the text,
the isolation of basic symbols, and their storage for retrieval in the next two scans, costs
already almost half of the compilation time. The analysis of the text in Prescan1 costs less
than 9%, including the incorporation of the data gathered into the symbol table. In the
translation scan about 13% of total time is enough to do the scanning, including all checks
and the generation of the macros. The elaboration of these macros into X8 instructions
costs almost 10%, hardly less than the scanning! The moral is that it is important to
do the lexical analysis as efficient as possible, whereas parsing at the context–free level is
done almost for free.
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Chapter 6

Comparison of the two ALGOL 60

systems

In this chapter we compare the two ALGOL 60 systems that were described in the previous
chapters.

We start by comparing some of the characteristics of the two machines, the EL X1 from
1958 and its successor, the EL X8 from 1965.

Next we compare the ALGOL 60 implementations for these two machines with respect
to both the compilers and the object programs produced by them.

Thereafter we present and analyse figures that were collected by compiling and executing
six ALGOL 60 programs on both the ALGOL 60 system for the EL X1 and that for the
ELX8, using emulators for these machines written in Pascal.

6.1 Comparison of the EL X1 and the EL X8

In its time the EL X1 was a quite modern machine: fully transistorized, core store, an
index register, and an interrupt system for I/O. The central processor fitted in a large
writingdesk. Besides the convential type writer and tape–punch peripherals also punch–
card equipment and magnetic tapes could be connected (but the MC never bought these).
It was aimed mainly at use in administration. It had a short word length of 27 bits,
therefore a small integer range. It had no floating–point provision and no support at all
for the implementation of programming languages. Nevertheless it was a nice machine

87
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and the MC used it heavily for scientific computation.

The successor of the El X1, the El X8, was about 12 times as fast as the X1 and (almost)
upwards compatible with it. It had, as we saw, a number of extensions directed to
the implementation of ALGOL 60 (and other programming languages): a floating–point
register, stack instructions, several new addressing variants, a provision for fast context
switches, and a provision for parameter handling. As a result execution of ALGOL 60
programs ran a factor of 40 to 60 faster than on the X1. The minimal machine was housed
in 5 cabinets plus a console (mainly for use by technical staff and software developers).
All peripherals were on separate tables. The hardware used integration at the gate level.

The X8 was lacking memory protection and a separate monitor mode. That made it
unsuited to ran multiple machine–code programs on it. It was, however, possible to run
ALGOL 60 programs in multiprogramming: the THE system of Dijkstra et al. [6] is a
famous example.

Some data:

X1 X8
first delivery 1958 1965

integration level none gate level
word length 27 27

registers A,S (27 bits) A,S (27 bits)
B (15 bits) B (27 bits)

F (54 bits)
instruction counter T (15 bits) T (18 bits)

index registers B A,S,B,F,T,M[63]
store cycle 32 µsec 2.5 µsec

store in units of 4 K words 16 K words
max core size 32 K words 256 K words
A = M[1000] 64 µsec 5 µsec

MULS(M[1000]) 500 µsec max 40.00 µsec
F + M[1000] max 18.75 µsec
F × M[1000] max 68.75 µsec
F / M[1000] max 68.75 µsec
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6.2 Comparison of the ALGOL 60 implementations

It is difficult to underestimate the achievement made by Dijkstra en Zonneveld when they
implemented ALGOL 60 on the EL X1. Almost everything was new: the language, the
machine, run–time organization for blocks and (recursive) procedures, and compilation.
ALGOL 60 itself was still under development, the X1 was a computer not really fit to
implement such a language, there were no existing implementations to learn from, and
the compiler and all of its working space had to be accommodated in a store of 4 K words
only. The resulting compiler was 2 K instructions short.

For the crew constructing the ALGOL 60 implementation the situation was quite different.
The language was well known, there was experience with its implementation, the X8 had
provisions for the implementation of higher order programming languages (such as stack
instructions including a subroutine call putting its link on top of stack), and the store
size of the X8 was at least 16 K words. Nevertheless the design of the object–program
structure, making optimal use of the new machine features, was quite an effort, whereas
the structure of the compiler was completely new and different from that for the X1.

We come back to some of these points in the next sections.

6.2.1 Comparison of the object programs

The essence of the object code for the X1 was the use of pseudo instructions, calls to
subroutines in a complex of subroutines supporting execution. It is comparable with a
P–code, i.e. the instruction code of an emulated stack computer.

The object programs of the X8, on the other hand, used in principle the instructions of the
X8 itself; only for more complex tasks, such as indexing in arrays or block and procedure
entrance, subroutine calls in a complex of subroutines were used.

The following example, giving the object codes for statement ‘x:= x + y’, shows this
difference clearly.
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X1: B = @x ” load address of x in register B 36 µsec
SUB1(:TRAS) ” Take Real Address Static 500 µsec
B = @x ” load address of x in B 36 µsec
SUB1(:TRRS) ” Take Real Result Static 908 µsec
B = @y ” load address of y in B 36 µsec
SUB2(:ADRS) ” ADd Real Static 2868 µsec
SUB1(:ST) ” STore 1400 µsec

X8: F = M[@x] ” load value of x in register F 7.50 µsec
F + M[@y] ” add value of y to F 11.25 µsec
M[@x] = F ” store F in x 7.50 µsec

Note that the X8 object code uses a register for buiding up results where the X1 code
uses the (top of) stack for that purpose. The X1 version puts the address of the left–hand
side of the assignment statement, together with type information, on top of stack before
evaluating the right–hand side expression. The result of the latter, again stored on top of
stack, includes also type information. Subroutine ST can, therefore, carry out the proper
assignment. In the X8 code, on the other hand, the address information is moved beyond
that expression and used in a store instruction that is selected on the basis of its type.

Execution times (for x = 3.14 and y = 0.1) are 5784 µsec for the X1 and 26.25 µsec for
the X8. The addition itself costs 2868 µsec for the X11 and 11.25 µsec for the X8. Here
we see in isolation the effect of having floating–point operations in hardware!

The complex of the X1, excluding the subroutines for input and output and those for the
standard functions sqrt, sin, cos, ln, and exp is 1107 instructions long. The complex of
the X8 counts 627 instructions only.

6.2.2 Comparison of the compilers

The ALGOL compiler for the X1 has two passes. Both passes read the ALGOL 60 program
from source in a cyclic process which proceeds from delimiter to delimiter. The first pass
collects the identifiers of procedures, switches and labels from their defining occurrences.
The second pass generates and punches the object code. It contains a separate piece of
program for each delimiter. The context is characterized by 6 Boolean values. A stack

1In fact ADRS is a combination of TRRS and ADD. Execution of TRRS and ST imply changes from
variable representation to stack representation and vice versa. The execution times of these changes form
part of the execution times for TRRS and ST.
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is used to store operators (like ‘+’ and ‘∨’, but also ‘:=’, ‘(’, and ‘if ’) and parts of the
context values at a context switch.

In this way a minimum of information needs to be stored by the compiler. In the com-
pilation of statement ‘x:= x + y’ first delimiter ‘:=’ is encountered. It is stacked with
low priority and the first two instruction of the object code given in the previous section
are generated. Next delimiter ‘+’ is met. It is stacked with somewhat higher priority
and the next two object instructions are generated. Finally the delimiter following the
assignment statement is found and the last three instructions are generated on the basis
of the two operators found in the stack. Execution, however, of the object code takes 12
stack positions.

The X8 compiler has three passes. Each reads the source program anew, but the last two
passes do so from a text array in which the first pass stores the complete string of basic
symbols. All three scans have the structure of a recursive descent parser. In the first two
passes a complete symbol table is built. The third scan produces the object code in situ.

The compilation of statement ‘x:= x + y’ proceeds as follows. Compiler subroutine2

statement (with its link on the stack) reads identifier ‘x’ and delimiter ‘:=’. It calls
subroutine assignment statement with in S a pointer to the descriptor of ‘x’. There the
type of ‘x’ is stacked and subroutine real assignment is called. This subroutine stores the
descriptor pointer (still in register S) in the stack, reads identifier ‘x’ and delimiter ‘+’,
generates the instruction for loading the value of ‘x’ to register F, and calls subroutine
rest of arithmetic expression3. The latter reads the rest of the expression and produces
the second instruction of the object code. Then subroutine real assignment unstackes the
descriptor pointer and generates the third instruction, which completes the compilation
of the assignment statement. It uses all together 17 stack positions.

2We describe here the ELAN code of the compiler.
3Subroutine real assignment cannot simply call subroutine arithmetic expression to compile the right–

hand side of the expression: it has to cater for statements like ‘x:= y:= x + 1’. An identifier following
delimiter ‘:=’ can therefore be a next left part.
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6.3 Results of measurements

First we recapitulate some figures that were given in Chapter 3 and Chapter 5. Thereafter
we present figures that were collected by compiling and executing six ALGOL 60 programs
on both the ALGOL 60 system for the EL X1 and that for the ELX8, using emulators
for these machines written in Pascal.

These figures should be looked at with all proper reserves.

For the X1, the waiting times for peripheral devices are not taken into account. Whenever
an I/O order for a device is given, it is assumed that that device accepts the order
immediately and generates an interrupt signal instantaneously. The interrupt programs,
however, are carried out correctly. Another deviation from the situation as it existed at
the Mathematical Centre is the fact that an X1 is emulated with 24 K core store (instead
of 12 K). This influences the compile time in two respects. In the first place, memory
management for a number of lists used during compilation is simpler. Secondly, at the end
of the compilation process the ‘free’ store is filled with octal value ‘777 777 777’ in order
to make program execution reproducible. In a 24 K store this costs the execution of an
additional 24 K instructions compared to a 12 K store. The 24 K core store is large enough
to execute both the sieve of Erathostenes and the lisp interpreter (see Section 6.2.1) on
the X1, whereas the other programs execute in a 12 K machine too. A further difference
with the MC X1 is that the list of identifiers of built–in procedures and functions in the
emulator is smaller and that less MCP’s are processed during the loading phase of the
compiler.

In the X8 case I/O is handled by Charon. Input is read by Charon in portions (in the
PICO case of 32 heptads) and output is presented to Charon in portions (in PICO of 150
lineprinter symbols). Again it is assumed that Charon handles commands instantaneously.
Where in reality Charon uses the main store on the basis of cycle stealing, this fact is
omitted in the emulator. Output for the lineprinter is packed in the form of 8–bit ASCII
characters with three characters per word instead of four 6–bits characters in the special
lineprinter code. Finally, the execution time for floating–point operations is taken from a
model for the hardware as discussed in Section 4.6.

Nevertheless we believe that the figures given in the next sections are fully representative
for the two ALGOL 60 implementations.
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6.3.1 Summary of results of Chapter 3 and Chapter 5

In the following table we summarize some figures that were given in Chapter 3 (on the
ALGOL 60 implementation for the X1) and in Chapter 5 (on the X8 ALGOL 60 imple-
mentation). We present for a number of basic constructions the number of instructions
generated, the number of instructions executed, and the execution time. Moreover, in the
last column, we give the ratio of the X1 and the X8 execution times.

X1 X8 X1/X8
statement code executed time code executed time time
i:= i + 1 7 60 3 284 5 5 20.00 164
x:= x + y 7 110 5 784 3 3 26.25 220
x:= x × y 7 101 6 676 3 3 77.50 86
x:= x / y 7 105 6 946 3 3 78.75 88
A[i]:= A[i] + x 14 216 11 532 10 41 201.25 57
I[i]:= 0 8 81 4 416 6 27 120.00 37
B[i]:= true 8 81 4 416 6 39 192.50 23
for i:= 1 step 1 22 179 + 10 044 + 21 15 + 66.25 + 91

until n do n∗143 n∗7 612 n∗15 n∗83.75
p(x) 5 78 4 540 2 45 182.50 25
p(x+0.1) 10 78 4 540 7 46 185.00 25
p1(x) 5 163 8 912 2 47 207.50 43
p1(x+0.1) 10 320 17 824 7 61 278.75 64
p2(x) 5 230 12 476 2 68 307.50 41
sqrt 1 47 4 453 1 45 343.75 13
sin 1 229 24 557 1 32 656.25 37
cos 1 298 28 077 1 33 603.75 46
exp 1 232 24 195 1 76 985.00 26
ln 1 369 28 010 1 58 700.00 36
arctan 5 1500 106 523 1 61 785.19 135

The ratio X1/X8-times for these constructions is varying from 13 (for ‘sqrt’) to 220 (for
‘x:= x + y’).

The proportions for ‘x:= x × y’ and ‘x:= x / y’ show most clearly the effect of inter-
pretation of a stack machine for the X1 versus direct execution of X8 instructions. For
‘i:= i + 1’ and ‘x:= x + 1’ the availability of floating–point hardware in the X8 leads to
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an additional factor4. The large factor for ‘arctan’ can be attributed to a different and
more efficient algorithm.

The small factor for ‘sqrt’ is mainly caused by the fact that the whole calculation but the
last Newton iteration is carried out in 27–bits arithmetic. The factors for subscripted–
variable handling are affected by the use of subroutines also in the case of the X8. Moreover
does the X8 index subroutine a check of all index values against the corresponding lower
and upper bounds. The ratio for the handling of Boolean arrays is specially low by the
fact that in the X8 27 array elements of Boolean type are packed in one X8 word.

It is evident that with such a strong variation in the X1/X8 speed up for elementary
constructions the execution times of complete programs will show a variation in execution–
time speed up too, depending on the specific mix of elementary constructions in them.
This is affirmed by the figures given in Section 6.3.5.

6.3.2 An estimation of the X1 to X8 acceleration factor

In 1969 I left the Mathematical Center for a job at the computer center of Philips Research
Laboratories. It had an X8 at its disposal, and after a while also a Philips computer, a
P1400, was installed with a time–sharing system called MDS. It contained an ALGOL
60 implementation that was incompatible with the X8 system and, moreover, was rather
slow. Therefore it was decided to develop an ALGOL 60 system for the P1000 series, fully
compatible with that of the X8. It took me less than one year to complete it.

Before embarking into that project I tried to find out whether the X8 system contained
serious efficiency shortcomings. We devised a small system change by which perodically,
through a clock interrupt, the current instruction counter and the binary code of five
instructions around that position were recorded. These were collected during two days
and analysed. They gave enough information to construct the following table:

4For multiplications and divisions the absence of floating–point hardware in the X1 plays a less impor-
tant role: the multiplication of two 52–bit mantissas can be carried out by three 27–bits multiplications
of 500 µsec each.
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DYNAMIC FREQUENCIES IN ALGOL ON THE X8

array indexing 23

arithmetic expressions 14

block/procedure entrance/exit 12

compiler 12

I/O 10

sqrt/exp/ln/sin/cos/arctan 10

for clauses 4

Boolean expressions 3

assignments 2

all remaining constructions 3

idle 7

The figures from this table reassured us: at least 24% of the time was used for real
calculations (in arithmetic expressions and standard functions). Considering compile
time and I/O time as unavoidable (in an experimental environment a program is seldom
executed without some changes) the only point that needed some improvement was array
indexing, although a reduction of indexing time by a factor of two would not lead to a
substantial system–throughput increase. In the ALGOL 60 system for the P1400 array
indexing was made more efficient for one– and two–dimensional arrays.

We will now try to apply this table in a quite other direction: can we learn from it
something about the relation between X1 and X8 execution times? If we leave out the
idle and compile times and neglect the contribution of I/O (since a large proportion of
I/O is used in the compilation process, especially for syntactily incorrect programs that
have no execution at all) we get the following figures for program execution:

X8 X1/X8 X1
construct execution factor execution

block/procedure 0.169 40 6.8
indexing 0.324 32 10.7

sqrt/exp/sin/ldots 0.141 40 5.6
expressions 0.239 150 35.9
assignments 0.028 40 1.1

for clauses 0.056 91 5.1
other constructs 0.042 12 0.5

sum 0.999 65.7
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Here we tried to compute the execution time on the X1 for the program mix of our
experiments using the X1/X8 factors that were gathered in the foregoing (cf. Sections
6.2.1 and 6.3). The value of some of these factors is quite arbitrary: we do not know
the relative frequencies in which the standard functios sqrt etc. are used, we have no
information what percentage of the expressions are of integer type, or which part of the
assignments are assignments to formal variables. Nevertheless, rough estimations as it
might be, we obtain a reasonable acceleration factor X8/X1 of 66.

6.3.3 The programs

For our measurements we used the following six ALGOL 60 programs:

Havie integrator: integrates numerically three functions using a variant of
Romberg integration [15]

QR eigenvalues: computes the eigenvalues of a symmetric 5 ∗ 5 matrix using a
method of Housholder [4]

JAZZ164: computes planetary trajectories using a Runge–Kutta method
[19]

Erathostenes: counts the number of primes below 10 000 using the sieve
method of Erathostenes

pentomino: computes the first 7 solutions of the standard plane pentomino
puzzle using backtracking

lisp interpreter: solves, interpreting the program written in LISP 1.5 derived
in [14], the 3 missionaries and 3 cannibals crossing a river
puzzle using a simple LISP 1.5 interpreter written in ALGOL
60

The first three programs are typical for scientific computations (perhaps missing a program
solving linear equations). The other three programs work with integer and Boolean types
only5.

The programs are listed in Appendix A. In fact the (emulated) X8 lineprinter output of
running these programs is given there, including program listing, execution output and
an execution profile.

5The lisp interpreter declares some objects of type real, but these are not used in solving the puzzle.
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6.3.4 Compiling

Here we present some figures for the compilation process of the six programs for both
machines: the length of the object program, the number of instructions executed during
compilation, the compile time, the average instruction time, and the average number of
compiler instructions executed to produce one object–code instruction. The compile time
is given in seconds, the average instruction time in µseconds.

machine program length instructions time time/instr instr/length
X1 Havie integrator 672 435 096 23.8 54.75 647
X8 609 787 624 3.08 3.92 1293
X1 QR eigenvalues 1354 607 264 32.7 53.98 448
X8 1211 1 240 976 4.87 3.92 1024
X1 JAZZ164 2538 1 145 895 61.9 54.07 451
X8 2497 2 270 261 8.92 3.93 909
X1 Erathostenes 170 156 361 9.1 58.21 920
X8 208 139 858 .6 3.96 672
X1 pentomino 973 505 350 27.5 54.43 519
X8 1019 960 488 3.75 3.90 946
X1 lisp interpreter 5290 3 159 178 167.5 53.05 597
X8 5128 7 497 415 29.1 3.88 1462

We can make the following observations.

• The object–code length for the two systems is of the same order of magnitude: their
ratio varies from 0.82 to 1.12 (the X8 object code including the instructions for
administration of line numbers).

• The number of instructions executed during compilation is roughly proportional
to the object–code length; X8 to X1 ratio varies from 0.89 to 2.05. In general,
compilation on the X8 needs twice as much instructions. This has several causes:
program listing during Prescan0 (remind that the lexical scan, which includes listing,
already takes 42% of the compile time), the complete check of the syntax, and the
greater amount of information about the program to be accumulated.

• The average time per compiler instruction is, as to be expected, rather constant in
both systems: about 55 µseconds for the X1 and 3.9 µseconds for the X8, reflecting
a hardware speed–up of a factor 12. Since the X8 compilation process needs in
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general twice as much instructions, compilation time is speeded up only by a factor
of 6.

The fact that in the table the sieve–of Erathostheness program is a bit exceptional comes
from the fact that it is a 17–line program of 7 statements only, three of which being
for–statements (one of these a nested for–statement).

6.3.5 Program execution

For the execution of the six programs we list in the table below the number of instructions
executed, the execution time, the average instruction execution time. The last column
gives the ratio between the X1 and the X8 execution times.

machine program instructions time time/instr X1–time/X8–time
X1 Havie integrator 59 374 267 4 380.5 73.78
X8 9 788 838 96.7 9.88 45
X1 QR eigenvalues 280 120 15.8 56.56
X8 51 363 0.3 5.55 55
X1 JAZZ164 9 450 329 557.3 58.97
X8 1 705 131 10.4 6.08 54
X1 Erathostenes 4 997 305 268.2 53.68
X8 1 230 657 6.3 5.16 42
X1 pentomino 63 812 331 3 471.2 54.40
X8 10 813 999 51.4 4.76 67
X1 lisp interpreter 422 069 848 23 505.5 55.69
X8 135 622 946 636.7 4.69 37

We see here a speed–up of by a factor between 42 and 67, much more than the factor 12
of the hardware speed–up. The precise factor depends on the program. Below we try, for
each of the programs, to mention some of its characteristics contributing to its execution
speed–up factor.

The largest speed-up factor, of 67, has program ‘pentomino’. In the heart of this program,
in lines 48 to 786, all unused stones are successively examined in all their orientations as
possible candidates for the next stone to be laid down in the rectangle of 6 by 10. The
ALGOL 60 constructions heavily used are for–statements (25% of the X8 execution time),

6See Appendix B.
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Boolean–array access (20% execution time), integer additions, and integer array access,
constructions we have seen to speed up (in certain contexts) by factors 91, 23, 164 and
37. Procedure calls and parameters play no role of any importance. In this heart of the
program 95% of the execution time is spent.

The ‘lisp interpreter’, on the other hand, consists of a large collection of very short pro-
cedures, e.g. for the operations ‘car’ and ‘cdr’ (see lines 124 to 134)7. Sometimes actual
parameters are structured, leading to implicit subroutines and context switching. The
procedure and parameter mechanism has, as we have seen, a moderate accelleration fac-
tor.

The small factor of the sieve of ‘Erathostenes’ can be fully attributed to the use of the
Boolean array ‘prime’. Here the statements of lines 6 and 11 are responsible for 55%
and the test of line 16 for 12% of X8 execution time. The acceleration factor of 23 for
Boolean–array access is compensated partly by that for the for–clauses of lines 5, 10, and
15, catering for 33% of execution time. This mix results in a factor 42 for the program as
a whole.

The execution time of the ‘QR eigenvalues’ program is more scattered over the program.
Important is the statement in lines 60 and 61, containing two calls of the function ‘sum’
to compute the inner product of a matrix row and column. One of the actual parameters
of ‘sum’ is complex, leading to implicit subroutines and context switches. The time spent
in ‘sum’ caters for 13% of the total execution time. It is also used in line 52, and including
the time spent in ‘sum’ these lines are responsible for 20% of total execution time.

Hence a favourable factor of 55.

Also ‘Jazz164’, which uses a Runge–Kutta method to integrate multiple coupled differen-
tial equations (here of planetary orbits) numerically, uses Jensen’s device intensively. As
is the case in the QR eigenvalues, (real) array access plays also an important role.

7This interpreter was written for educational purposes. Separation of concerns and a clear decompo-
sition were the major premises, efficiency was not (allthough we tried to minimalize garbage production).
Hence we hided in the major routines, like assoc, pairlis, apply, eval, evcon, and evlis the representation
of lisp objects.
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6.4 The influence of line–number book–keeping

In Section 5.2.7. we discussed the book–keeping of line numbers in the X8 system at
run time for the purpose of easier error location in the case of a run–time error. It was
possible, however, to suppress this book–keeping, thereby gaining in execution speed. The
savings in program length varied from 15 to 27% in our six sample programs, whereas
the speed savings varied from 0.5 to 6.5%. We now go into the question why these saving
vary so much as they do.

Savings in execution time of more than 6% were measured for two of the programs:
‘pentomino’ and ‘lisp interpreter’. Both programs are characterized by relatively short
program lines.

For ‘pentomino’ the object–program length saving is 21%, the saving of execution time
6.3%. In this program 12% of execution time is spent in line 49, reading

if ongebruikt[steen] then

Here the book–keeping costs are 7.5 µsec per execution of the line, to be compared with
an average value of 146.4 µsec for the execution of the program code proper, leading to
an overhead of 5.1%. The object code of line 49 is 7 instructions with, and 5 instructions
without book-keeping. In program length book-keeping leads here to an overhead of 40%!

For ‘lisp interpreter’ the savings are 27% in code length and 6.5% in execution time. Here
14.7% of execution time is spent in line 161, reading

if x ÷ d24 = y ÷ d24

Again line–number book–keeping costs 7.5 µsec, whereas the program code proper takes
on the average 395.3 µsec. Hence the time overhead here is 1.9% only, due to the fact
that integer division is such an expensive operation, taking the execution of 43 to 59
instructions. In program length the overhead is 2 upon 11, i.e. 18.2%. In line 162, taking
9.2% of the execution time, the time overhead is 7.5 µsec upon 295.5 µsec, an overhead of
2.5%. Here again it is the integer division which makes the time saving relatively modest.
More typical are perhaps lines 127 and 133, taking together 4.3% of the excution time,
where the book–keeping costs of 12.5 µsec8 count heavily in respect of the 90 µsec9 for
the action proper. Or line 141, 3.0% of the execution time, with 12.5 µsec versus 283.75
µsec.

8The code for the last statement of a function restores the line number of the calling side. This costs
an additional 5 µsec.

9Including an instruction to deliver the function result in register F.
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Smaller savings, on the other hand, are met in ‘Havie integrator’, ‘QR eigenvalues’, and
‘JAZZ164’. These programs have statements with relatively complicated expressions.

For ‘QR eigenvalues’ we measured savings of 16% in program length and 2.3% in execution
time. Let us look at the statement in line 67, reading:

g[i,j]:= g[i,j] − g[i,k]×p[j] − p[i]×g[j,k]

responsible for 8.5% of the excution time. Here the program–length overhead is 2 upon
40 instructions, i.e. 5.0%, whereas the execution–time overhead is 7.5 upon 1271.1 µsec,
i.e. 0.6%.

For ‘Havie integrator’ with savings of 20% in code length and 0.5% in execution time,
96.2% of the time is spent in line 34, reading:

begin x:= x + h; sumu:= sumu + integrand; count:= count + 1 end

where x and integrand are formal parameters (in a construction called ‘Jensen’s device’).
For this statement code–length overhead is 4 upon 19 instructions10, i.e. 21% and execu-
tion overhead is 10 upon 2814.2 µsec, i.e. 0.36%.

An extreme case is met in ‘JAZZ164’, where line 172 is responsible for 45.7% of execution
time. It reads:

for i:= a step 1 until b do s:= s + xi;

Again i and xi are formal parameters; the actual parameter for xi can be found in line 27
and reads11:

m[j]*((y[3×(j−i)+k]−y[k])×ownd[i,j]−y[3*(j−i)+k]×ownr[j])

The overhead in code length for line 172 was measured to be 2 upon 27 instructions, i.e.
7.4%, that in execution time is 7.5 upon 5841.9 µsec, i.e. 0.13%.

10At the end of the code for line 34 line number 33 is reinstalled, c.f. Section 5.2.7.
11The execution times for this expression contribute to that of line 172.
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Chapter 7

Final remarks

In the preceding chapters we described and compared two ALGOL 60 implementations.

The first one was developed for the Electrologica X1, a computer designed in the 1950’s.
The first X1 was delivered in 1958 and its ALGOL 60 implementation was completed in
1960.

The second one was developed for the Electrologica X8, Electrologica’s upward compat-
ible successor for the X1. The first X8 was delivered in 1965, as was its ALGOL 60
implementation.

In the 5 years between the completion of the two compilers we see an enormous progress
in both hardware and software. Progress in hardware was big. The X8 was, in principle,
12 times as fast as the X1. A memory cycle took 2.5 µsec compared to 32 µsec for the
X1. Integer division (using registers A and S) took 40 µsec instead of 500µsec.

The ALGOL 60 compiler for the X8, however, compiled programs only about 6 to 8 times
as fast but execution speed was increased by a factor 40 to 60.

The compiler speed was strongly influenced by the fact that the X8 version did a thourough
syntax check, something almost completely absent in the X1 version. In the 5 years
between the completion of the systems the requirements changed drastically and due to
the emergence of compiler techniques it was possible to meet these demands. The fact
that the compiler for the X8 was designed in ALGOL 60 first and only after completion
thereof was recoded in ELAN had undoubtly a strong influence on its structure.

The execution speed was the result of a number of factors.

1. The X1 object code resembled more or less the instruction code for a hypothetical
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stack machine, whereas the X8 object code was in terms of X8 instructions.

2. Results of expressions were delivered in a register rather than on top of stack. Inter-
mediate results were stacked only when the register was to be used for elaboration
of other subexpressions.

3. The availability of a floating–point register and hardware floating–point operations
in the X8.

4. Hardware support for push and pull operations on a stack.

5. Hardware support for addressing local variables of blocks.

6. Hardware support for the ALGOL 60 parameter mechanism.

Clearly we see here an illustration of the progress in both hardware and software.

Both ALGOL 60 implementations have in common that the job was carried out in about
4 man–year and that the number of flaws was minimal. The compilers were small: 2K and
5K, for the X1 and the X8 respectively. Also the language definition of ALGOL 60 was
small: it was defined in a report of 17 pages! Small can be nice and effective, something
to keep in mind in this time of mega language definitions and mega compilers.



Appendix A

Sample programs

This Appendix contains the results of running the six programs discussed in Section 6 on
an emulator for the X8.

The emulator was loaded with an adapted version of the Pico monitor and an almost
unchanged version of the ALGOL 60 system. The original versions were published in [11].
We first discuss here some of the adaptations.

The adapted version of Pico has no interaction with the operator teletype. The date
is fictitious: May 2nd, 2005. Each run gets a fixed ‘serial number’: 1. Insertion of line
number instructions in object programs (see Section 5.2.6.) is set to be wanted. The only
output device is a version of the line printer, adapted to be coded by eigtht–bit ASCII
code rather than the special six–bit line–printer code of the printer. This implies that
only three characters can be stored in one X8 word and that the possibility to print lines
without paper advancement is abandonned1.

The most important adaptation of the ALGOL 60 system is in the lower level of the
lexical scanner of the compiler. It allows besides the ‘underline style’ for word delimiters
also ‘apostrophe style’. This is a later version of the lexical scan which was useful for
punch-card equipment: punch cards lend themselves badly to the underline style which
led to nice Flexowriter print-outs. Furthermore the ouput routines for the paper-tape
punch are omitted.

The emulator, written in standard Pascal, has a very simple user interface. Pascal text
file ‘input’ is used as tape reader and has to contain (Flexowriter) characters coded as
numbers (from 0 to 255). Pascal text file ‘output’ is used for line-printer output coded

1This possibility was used to add underlinings to a line, resulting in ‘begin’ instead of ‘ b e g i n’.
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in ASCII. The emulator contains a version of ‘Charon’, the transput processor of the X8
(cf. Section 1.2.).

Preceding the emulation of each X8 instruction the emulator checks whether there is
an activation request for Charon. If so, the requested action is executed completely,
including the setting of an interrupt request for the main processor (in the real hardware
the requested action was executed in parallel to the activities of the main processor on
the basis of cycle stealing). After the care for Charon activities the interrupt requests are
inspected and if nescessary the corresponding interrupt instruction is selected. Otherwise
the next instruction is emulated.

Each instruction is timed and counted. The timing for floating–point instructions is
taken from a model (cf. Section 4.6.). Moreover, during execution of object programs the
execution time of each instruction is also added to that element of an execution profile
array that corresponds to the current line number. Likewise the instruction is counted
there. It is here that an emulator creates profiling capabilities that were absent in the
real hardware!

The Charon activities in the X8 influenced program execution on the basis of cycle steeling
at unpredictable moments. For that reason we ignored this influence in the emulator.
Interrupt programs were executed at unpredictable moments too. Their execution times,
as well as the number of instructions executed in interrupt programs, are included in the
summing up of compilation and execution data, but excluded from the profile.

During compilation an ALGOL 60 program was always listed. If no errors were found it
was immediately executed. The execution output started on a new page. In the example
programs we find therefore both the program listings and the execution results. After
execution completion the emulator added the results of its measurements including the
profile.

In general the interpretation of the execution profiles do not present much difficulty.
Sometimes, however, some knowledge of the way in which the line numbers are updated
might be useful. In the first example, see Appendix A.1., there are no counts for lines
1 upto 24. The reservation of store for simpel local variables of the outermost block(s)
is already carried out by the compiler. The reservation of simple local variables of a
procedure and the evaluation of value parameters are true enough carried out by the code
of the procedure, but, since line numbers are set only at the beginning of statements,
these activities are counted at the call side (see, e.g., line 72).

In one case some adaptations were nescessary to adapt a program written for the X1
ALGOL 60 system to that for the X8. In program ‘JAZZ164’ (Appendix A.3) the local



107

own arrays ‘d’ and ‘r’ of procedure ‘f’ have been replaced by global arrays ‘ownd’ and
‘ownr’, respectively2. Moreover, a third parameter is added to calls of the built–in output
procedure FLOT for the specification of the number of decimals in the decimal exponent3.

Program ‘Lisp interpreter’ contains declarations for procedures ‘RESYM’ and ‘PRSYM’
in terms of the built–in procedures ‘read’ and ‘PRINTTEXT’, respectively. These were
added in order to make execution on the X1 possible: the X8 ALGOL 60 system has
built–in procedures ‘RESYM’ and ‘PRSYM’, but the X1 system doesn’t.

2Since in the X1 system own arrays are implemented as global arrays, this adaptation does not affect
the comparison of execution times.

3In the X1 system output procedure FLOT had two parameters only, one to specify the number of
decimals of the mantissa and one for the number to be printed. The number of decimals for the exponent
was here fixed to two.
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A.1 Havie integrator

160205 - 1

1 _b_e_g_i_n _c_o_m_m_e_n_t HAVIE INTEGRATOR.

2 ALGORITHM 257, Robert N. Kubik,

3 CACM 8 (1965) 381;

4

5 _r_e_a_l a,b,eps,mask,y,answer; _i_n_t_e_g_e_r count;

6

7 _r_e_a_l _p_r_o_c_e_d_u_r_e havieintegrator(x,a,b,eps,integrand,m);

8 _v_a_l_u_e a,b,eps,m;

9 _i_n_t_e_g_e_r m; _r_e_a_l integrand,x,a,b,eps;

10 _c_o_m_m_e_n_t This algorithm performs numerical integration of

11 definite integrals using an equidistant sampling of the

12 function and repeated halving of the sampling interval.

13 Each halving allows the calculation of a trapezium and

14 a tangent formula on a finer grid, but also the calcul-

15 ation of several higher order formulas which are defined

16 implicitly. The two families of approximate solutions

17 will normally bracket the value of the integral and from

18 these convergence is tested on each of the several orders

19 of approximation. The algorithm is based on a private

20 communication from F. Haavie of the Institutt for Atom-

21 energi Kjeller Research Establishment, Norway. A Fortran

22 version is in use on the Philco-2000. ...;

23 _b_e_g_i_n _r_e_a_l h,endpts,sumt,sumu,d;

24 _i_n_t_e_g_e_r i,j,k,n;

25 _r_e_a_l _a_r_r_a_y t,u,tprev,uprev[1:m];

26 x:= a; endpts:= integrand; count:= 1;

27 x:= b; endpts:= 0.5 * (integrand + endpts); count:= count + 1;

28 sumt:= 0.0; i:= n:= 1; h:= b - a;

29 estimate:

30 t[1]:= h * (endpts + sumt); sumu:= 0.0;

31 _c_o_m_m_e_n_t t[1] = h*(0.5*f[0]+f[1]+f[2]+...+0.5*f[2^(i-1)]);

32 x:= a - h/2.0;

33 _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

34 _b_e_g_i_n x:= x + h; sumu:= sumu + integrand; count:= count + 1 _e_n_d;

35 u[1]:= h * sumu; k:= 1;

36 _c_o_m_m_e_n_t u[1] = h*(f[1/2]+f[3/2]+...f[(2^i-1)/2],

37 k corresponds to approximate solution with truncation

38 error term of order 2k;

39 test:

40 _i_f abs(t[k]-u[k]) _< eps

41 _t_h_e_n _b_e_g_i_n havieintegrator:= 0.5 * (t[k] + u[k]);

42 _g_o_t_o exit

43 _e_n_d;

44 _i_f k |= i

45 _t_h_e_n _b_e_g_i_n d:= 2 |^ (2*k);

46 t[k+1]:= (d * t[k] - tprev[k]) / (d - 1.0);

47 tprev[k]:= t[k];

48 u[k+1]:= (d * u[k] - uprev[k]) / (d - 1.0);

49 uprev[k]:= u[k];

50 _c_o_m_m_e_n_t This implicit formulation of the higher

51 order integration formulas is given in

52 [ROMBERG, W. ...;

53 k:= k + 1;

54 _i_f k = m

55 _t_h_e_n _b_e_g_i_n havieintegrator:= mask;

56 _g_o_t_o exit

57 _e_n_d;

58 _g_o_t_o test

59 _e_n_d;
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60 h:= h / 2.0; sumt:= sumt + sumu;

61 tprev[k]:= t[k]; uprev[k]:= u[k];

62 i:= i + 1; n:= 2 * n;

63 _g_o_t_o estimate;

64 exit: NLCR; NLCR;

65 PRINTTEXT(|<i: |>); ABSFIXT(3,0,i);

66 PRINTTEXT(|<k: |>); ABSFIXT(3,0,k);

67 PRINTTEXT(|< count:|>); ABSFIXT(7,0,count)

68 _e_n_d havieintegrator;

69

70 _c_o_m_m_e_n_t Following is a driver program to test havieintegrator;

71 a:= 0.0; b:= 1.5707963; eps:= 0.00001; mask:= 9.99;

72 answer:= havieintegrator(y,a,b,eps,cos(y),12);

73 NLCR; PRINTTEXT(|<integral(0,pi/2,cos(x)) = |>);

74 FLOT(10,2,answer);

75 a:= 0.0; b:= 4.3;

76 answer:= havieintegrator(y,a,b,eps,exp(-y*y),12);

77 NLCR; PRINTTEXT(|<integral(0,4.3,exp(-x*x)) = |>);

78 FLOT(10,2,answer);

79 a:= 1.0; b:= 10.0;

80 answer:= havieintegrator(y,a,b,eps,ln(y),12);

81 NLCR; PRINTTEXT(|<integral(1,10,ln(x)) = |>);

82 FLOT(10,2,answer);

83 a:= 0.0; b:= 20.0;

84 answer:= havieintegrator(y,a,b,eps,y|^(1/2)/(exp(y-4)+1),20);

85 NLCR; PRINTTEXT(|<integral(1,20,x^(1/2)/(exp(x-4)+1)) = |>);

86 FLOT(10,2,answer);

87 _e_n_d

88
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i: 4 k: 3 count: 17

integral(0,pi/2,cos(x)) = +.9999999981%- 0

i: 4 k: 1 count: 17

integral(0,4.3,exp(-x*x)) = +.8862269239%- 0

i: 7 k: 2 count: 129

integral(1,10,ln(x)) = +.1402585066%+ 2

i: 15 k: 2 count: 32769

integral(1,20,x^(1/2)/(exp(x-4)+1)) = +.5770724810%+ 1
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compiler data

number of instructions executed: 787624

compile time (microseconds): 3084811.25

average instruction time: 3.92

object--program length: 609

execution data

number of instructions executed: 9788838

execution time (microseconds): 96701315.00

average instruction time: 9.88

profile

linenumber count time %

25 724 3310.00 0.0

26 329 2700.00 0.0

27 546 5595.00 0.0

28 48 317.50 0.0

30 990 6471.25 0.0

32 300 4243.75 0.0

33 560218 3335992.50 3.4

34 9158426 92983682.50 96.2

35 960 5625.00 0.0

40 6132 31537.50 0.0

41 160 855.00 0.0

42 12 40.00 0.0

44 852 4082.50 0.0

45 6812 34945.00 0.0

46 8236 53240.00 0.1

47 4872 24070.00 0.0

48 8236 53240.00 0.1

49 4872 24070.00 0.0

53 812 3770.00 0.0

54 580 2900.00 0.0

58 348 1160.00 0.0

60 208 3233.75 0.0

61 2132 10595.00 0.0

62 312 1730.00 0.0

63 78 260.00 0.0

64 296 1280.00 0.0

65 2534 12001.25 0.0

66 2532 11941.25 0.0

67 3872 18828.75 0.0

71 10 67.50 0.0

72 203 830.00 0.0

73 1112 4746.25 0.0

74 979 5616.25 0.0

75 6 37.50 0.0

76 203 830.00 0.0

77 1112 4746.25 0.0

78 979 5595.00 0.0

79 6 37.50 0.0

80 203 830.00 0.0

81 1112 4746.25 0.0

82 1005 5895.00 0.0

83 6 37.50 0.0

84 203 830.00 0.0

85 1476 6308.75 0.0

86 1005 5910.00 0.0

87 102 463.75 0.0
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1 _b_e_g_i_n _c_o_m_m_e_n_t eigenvalues of a real symmetric matrix

2 by the QR method. Algorithm 253, P.A. Businger, CACM 8 (1965) 217;

3

4 _i_n_t_e_g_e_r n;

5

6 n:= read;

7 _b_e_g_i_n _i_n_t_e_g_e_r i,j;

8 _r_e_a_l _a_r_r_a_y a[1:n,1:n];

9

10 _p_r_o_c_e_d_u_r_e symmetric QR1(n,g);

11 _v_a_l_u_e n; _i_n_t_e_g_e_r n; _a_r_r_a_y g;

12

13 _c_o_m_m_e_n_t uses Housholders’s method and the QR algorithm to

14 find all n eigenvalues of the real symmetric matrix whose lower

15 triangular part is given in the array g[1:n,1:n]. The computed

16 eigenvalues are stored as the diagonal elements g[i,i]. The

17 original contents of the lower triangular part of g are lost during

18 the computation whereas the strictly upper triagular part of g

19 is left untouched;

20

21 _b_e_g_i_n

22

23 _r_e_a_l _p_r_o_c_e_d_u_r_e sum(i,m,n,a);

24 _v_a_l_u_e m,n; _i_n_t_e_g_e_r i,m,n; _r_e_a_l a;

25 _b_e_g_i_n _r_e_a_l s; s:= 0;

26 _f_o_r i:= m _s_t_e_p 1 _u_n_t_i_l n _d_o s:= s + a;

27 sum:= s

28 _e_n_d sum;

29

30 _r_e_a_l _p_r_o_c_e_d_u_r_e max (a,b);

31 _v_a_l_u_e a,b; _r_e_a_l a,b;

32 max:= _i_f a > b _t_h_e_n a _e_l_s_e b;

33

34 _p_r_o_c_e_d_u_r_e Housholder tridiagonalization 1(n,g,a,bq,norm);

35 _v_a_l_u_e n; _i_n_t_e_g_e_r n; _a_r_r_a_y g,a,bq; _r_e_a_l norm;

36 _c_o_m_m_e_n_t nonlocal real procedure sum, max;

37 _c_o_m_m_e_n_t reduces the given real symmetric n by n matrix g

38 to tridiagonal form using n - 2 elementary orthogonal trans-

39 formations (I-2ww’) = (I-gamma uu’). Only the lower tri

40 angular part of g need be given. The diagonal elements and

41 the squares of the subdiagonal elements of the reduced matrix

42 are stored in a[1:n] and bq[1:n-1] respectively. norm is set

43 equal to the infinity norm of the reduced matrix. The columns

44 of the strictly lower triagular part of g are replaced by the

45 nonzero portions of the vectors u;

46 _b_e_g_i_n _i_n_t_e_g_e_r i,j,k;

47 _r_e_a_l t,absb,alpha,beta,gamma,sigma;

48 _a_r_r_a_y p[2:n];

49 norm:= absb:= 0;

50 _f_o_r k:= 1 _s_t_e_p 1 _u_n_t_i_l n - 2 _d_o

51 _b_e_g_i_n a[k]:= g[k,k];

52 sigma:= bq[k]:= sum(i,k+1,n,g[i,k]|^2);

53 t:= absb + abs(a[k]); absb:= sqrt(sigma);

54 norm:= max(norm,t+absb);

55 _i_f sigma |= 0 _t_h_e_n

56 _b_e_g_i_n alpha:= g[k+1,k];

57 beta:= _i_f alpha < 0 _t_h_e_n absb _e_l_s_e - absb;

58 gamma:= 1 / (sigma-alpha*beta); g[k+1,k]:= alpha - beta;

59 _f_o_r i:= k + 1 _s_t_e_p 1 _u_n_t_i_l n _d_o
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60 p[i]:= gamma *

61 (sum(j,k+1,i,g[i,j]*g[j,k]) + sum(j,i+1,n,g[j,i]*g[j,k]));

62 t:= 0.5 * gamma * sum(i,k+1,n,g[i,k]*p[i]);

63 _f_o_r i:= k + 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

64 p[i]:= p[i] - t*g[i,k];

65 _f_o_r i:= k + 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

66 _f_o_r j:= k + 1 _s_t_e_p 1 _u_n_t_i_l i _d_o

67 g[i,j]:= g[i,j] - g[i,k]*p[j] - p[i]*g[j,k]

68 _e_n_d

69 _e_n_d k;

70 a[n-1]:= g[n-1,n-1]; bq[n-1]:= g[n,n-1]|^2;

71 a[n]:= g[n,n]; t:= abs(g[n,n-1]);

72 norm:= max(norm,absb+abs(a[n-1])+t);

73 norm:= max(norm,t+abs(a[n]))

74 _e_n_d Housholder tridiagonalization 1;

75

76 _i_n_t_e_g_e_r i,k,m,m1;

77 _r_e_a_l norm,epsq,lambda,mu,sq1,sq2,u,pq,gamma,t;

78 _a_r_r_a_y a[1:n],bq[0:n-1];

79

80 Housholder tridiagonalization 1(n,g,a,bq,norm);

81 epsq:= 2.25%-22*norm|^2;

82 _c_o_m_m_e_n_t The tollerance used in the QR iteration depends

83 on the square of the relative machine precision. Here 2.25%-22

84 is used which is appropriate for a machine with a 36-bit

85 mantissa;

86 mu:= 0; m:= n;

87 inspect: _i_f m = 0

88 _t_h_e_n _g_o_t_o return _e_l_s_e i:= k:= m1:= m - 1;

89 bq[0]:= 0;

90 _i_f bq[k] _< epsq _t_h_e_n

91 _b_e_g_i_n g[m,m]:= a[m]; mu:= 0; m:= k;

92 _g_o_t_o inspect

93 _e_n_d;

94 _f_o_r i:= i - 1 _w_h_i_l_e bq[i] > epsq _d_o k:= i;

95 _i_f k = m1 _t_h_e_n

96 _b_e_g_i_n _c_o_m_m_e_n_t treat 2 * 2 block separately;

97 mu:= a[m1]*a[m] - bq[m1]; sq1:= a[m1] + a[m];

98 sq2:= sqrt((a[m1]-a[m])|^2+4*bq[m1]);

99 lambda:= 0.5*(_i_f sq1_>0 _t_h_e_n sq1+sq2 _e_l_s_e sq1-sq2);

100 g[m1,m1]:= lambda; g[m,m]:= mu / lambda;

101 mu:= 0; m:= m - 2; _g_o_t_o inspect

102 _e_n_d;

103 lambda:= _i_f abs(a[m]-mu) < 0.5*abs(a[m])

104 _t_h_e_n a[m] + 0.5*sqrt(bq[m1]) _e_l_s_e 0.0;

105 mu:= a[m]; sq1:= sq2:= u:= 0;

106 _f_o_r i:= k _s_t_e_p 1 _u_n_t_i_l m1 _d_o

107 _b_e_g_i_n _c_o_m_m_e_n_t shortcut single QR iteration;

108 gamma:= a[i] - lambda - u;

109 pq:= _i_f sq1 |= 1

110 _t_h_e_n gamma|^2/(1-sq1) _e_l_s_e (1-sq2)*bq[i-1];

111 t:= pq + bq[i]; bq[i-1]:= sq1 * t; sq2:= sq1;

112 sq1:= bq[i] / t; u:= sq1 * (gamma+a[i+1]-lambda);

113 a[i]:= gamma + u + lambda

114 _e_n_d i;

115 gamma:= a[m] - lambda - u;

116 bq[m1]:= sq1 *

117 (_i_f sq1|=1 _t_h_e_n gamma|^2/(1-sq1) _e_l_s_e (1-sq2)*bq[m1]);

118 a[m]:= gamma + lambda; _g_o_t_o inspect;

119 return:
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120 _e_n_d symmetric QR 1;

121

122

123 _f_o_r i:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

124 _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l i _d_o

125 a[i,j]:= read;

126

127 symmetric QR 1(n,a);

128

129 _f_o_r i:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

130 _b_e_g_i_n NLCR; ABSFIXT(2,0,i); PRINT(a[i,i]) _e_n_d

131

132 _e_n_d

133

134 _e_n_d

135
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1 +.2240687530767%+ 2

2 +.7513724154203%+ 1

3 +.4848950120329%+ 1

4 -.1096595181629%+ 1

5 +.1327045599557%+ 1
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compiler data

number of instructions executed: 1240976

compile time (microseconds): 4865792.50

average instruction time: 3.92

object--program length: 1211

execution data

number of instructions executed: 51363

execution time (microseconds): 284983.75

average instruction time: 5.55

profile

linenumber count time %

6 288 1137.50 0.4

7 12 48.75 0.0

8 94 443.75 0.2

25 96 480.00 0.2

26 6466 36425.00 12.8

27 120 1020.00 0.4

32 48 365.00 0.1

48 67 306.25 0.1

49 6 45.00 0.0

50 72 400.00 0.1

51 264 1280.00 0.4

52 660 2816.25 1.0

53 255 1687.50 0.6

54 351 1607.50 0.6

55 18 87.50 0.0

56 156 758.75 0.3

57 28 162.50 0.1

58 219 1523.75 0.5

59 207 1181.25 0.4

60 3501 15241.25 5.3

62 558 2543.75 0.9

63 207 1181.25 0.4

64 864 4766.25 1.7

65 207 1181.25 0.4

66 485 2733.75 1.0

67 4636 24293.75 8.5

70 221 1095.00 0.4

71 140 682.50 0.2

72 152 708.75 0.2

73 155 716.25 0.3

78 132 598.75 0.2

80 177 722.50 0.3

81 49 341.25 0.1

86 8 41.25 0.0

87 221 1123.75 0.4

88 3 10.00 0.0

89 486 2340.00 0.8

90 378 1863.75 0.7

91 240 1170.00 0.4

92 9 30.00 0.0

94 1305 6662.50 2.3

95 75 375.00 0.1

96 2 7.50 0.0

97 91 512.50 0.2

98 146 885.00 0.3

99 13 93.75 0.0

100 117 645.00 0.2

101 10 47.50 0.0

103 1492 9022.50 3.2

105 322 1750.00 0.6

106 986 5662.50 2.0

107 88 330.00 0.1

108 924 5176.25 1.8

109 2508 17138.75 6.0

111 2244 14517.50 5.1

112 1980 16133.75 5.7

113 1276 7405.00 2.6

115 294 1660.00 0.6

116 1162 8236.25 2.9
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118 406 2212.50 0.8

120 7 30.00 0.0

123 102 530.00 0.2

124 340 1737.50 0.6

125 3225 14217.50 5.0

127 83 326.25 0.1

129 203 993.75 0.3

130 8086 46241.25 16.2
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1 _b_e_g_i_n _c_o_m_m_e_n_t JAZ164, R743, Outer Planets;

2

3 _i_n_t_e_g_e_r k,t; _r_e_a_l a,k2,x; _B_o_o_l_e_a_n fi;

4 _a_r_r_a_y y,ya,z,za[1:15],m[0:5],e[1:60],d[1:33];

5

6 _a_r_r_a_y ownd[1:5,1:5],ownr[1:5];

7

8 _r_e_a_l _p_r_o_c_e_d_u_r_e f(k); _i_n_t_e_g_e_r k;

9 _b_e_g_i_n _i_n_t_e_g_e_r i,j,i3,j3; _r_e_a_l p;

10 _i_f k |= 1 _t_h_e_n _g_o_t_o A;

11 _f_o_r i:= 1 _s_t_e_p 1 _u_n_t_i_l 4 _d_o

12 _b_e_g_i_n i3:= 3*i;

13 _f_o_r j:= i+1 _s_t_e_p 1 _u_n_t_i_l 5 _d_o

14 _b_e_g_i_n j3:= 3*j;

15 p:= (y[i3-2] - y[j3-2])|^2 + (y[i3-1] - y[j3-1])|^2 +

16 (y[i3] - y[j3])|^2;

17 ownd[i,j]:= ownd[j,i]:= 1/p/sqrt(p)

18 _e_n_d

19 _e_n_d ;

20 _f_o_r i:= 1 _s_t_e_p 1 _u_n_t_i_l 5 _d_o

21 _b_e_g_i_n i3:= 3*i; ownd[i,i]:= 0;

22 p:= y[i3-2]|^2 + y[i3-1]|^2 + y[i3]|^2;

23 ownr[i]:= 1/p/sqrt(p)

24 _e_n_d ;

25 A: i:= (k - 1) _: 3 + 1;

26 f:= k2 * (- m[0] * y[k] * ownr[i] +

27 SUM(j,1,5,m[j]*((y[3*(j-i)+k]-y[k])*ownd[i,j]-y[3*(j-i)+k]*ownr[j])))

28 _e_n_d f;

29

30 _p_r_o_c_e_d_u_r_e RK3n(x,a,b,y,ya,z,za,fxyj,j,e,d,fi,n);

31 _v_a_l_u_e b,fi,n; _i_n_t_e_g_e_r j,n; _r_e_a_l x,a,b,fxyj;

32 _B_o_o_l_e_a_n fi; _a_r_r_a_y y,ya,z,za,e,d;

33 _b_e_g_i_n _i_n_t_e_g_e_r jj;

34 _r_e_a_l xl,h,hmin,int,hl,absh,fhm,discry,discrz,toly,tolz,mu,mu1,fhy,fhz;

35 _B_o_o_l_e_a_n last,first,reject;

36 _a_r_r_a_y yl,zl,k0,k1,k2,k3,k4,k5[1:n],ee[1:4*n];

37 _i_f fi

38 _t_h_e_n _b_e_g_i_n d[3]:= a;

39 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

40 _b_e_g_i_n d[jj+3]:= ya[jj]; d[n+jj+3]:= za[jj] _e_n_d

41 _e_n_d ;

42 d[1]:= 0; xl:= d[3];

43 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

44 _b_e_g_i_n yl[jj]:= d[jj+3]; zl[jj]:= d[n+jj+3] _e_n_d ;

45 _i_f fi _t_h_e_n d[2]:= b - d[3];

46 absh:= h:= abs(d[2]);

47 _i_f b - xl < 0 _t_h_e_n h:= - h;

48 int:= abs(b - xl); hmin:= int * e[1] + e[2];

49 _f_o_r jj:= 2 _s_t_e_p 1 _u_n_t_i_l 2*n _d_o

50 _b_e_g_i_n hl:= int * e[2*jj-1] + e[2*jj];

51 _i_f hl < hmin _t_h_e_n hmin:= hl

52 _e_n_d ;

53 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l 4*n _d_o ee[jj]:= e[jj]/int;

54 first:= reject:= _t_r_u_e ;

55 _i_f fi

56 _t_h_e_n _b_e_g_i_n last:= _t_r_u_e ; _g_o_t_o step _e_n_d ;

57 test: absh:= abs(h);

58 _i_f absh < hmin

59 _t_h_e_n _b_e_g_i_n h:= _i_f h > 0 _t_h_e_n hmin _e_l_s_e - hmin;
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60 absh:= hmin

61 _e_n_d ;

62 _i_f h _> b - xl _= h _> 0

63 _t_h_e_n _b_e_g_i_n d[2]:= h; last:= _t_r_u_e ;

64 h:= b - xl; absh:= abs(h)

65 _e_n_d

66 _e_l_s_e last:= _f_a_l_s_e ;

67 step: _i_f reject

68 _t_h_e_n _b_e_g_i_n x:= xl;

69 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

70 y[jj]:= yl[jj];

71 _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

72 k0[j]:= fxyj * h

73 _e_n_d

74 _e_l_s_e _b_e_g_i_n fhy:= h/hl;

75 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

76 k0[jj]:= k5[jj] * fhy

77 _e_n_d ;

78 x:= xl + .27639 32022 50021 * h;

79 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

80 y[jj]:= yl[jj] + (zl[jj] * .27639 32022 50021 +

81 k0[jj] * .03819 66011 25011) * h;

82 _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o k1[j]:= fxyj * h;

83 x:= xl + .72360 67977 49979 * h;

84 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

85 y[jj]:= yl[jj] + (zl[jj] * .72360 67977 49979 +

86 k1[jj] * .26180 33988 74989) * h;

87 _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o k2[j]:= fxyj * h;

88 x:= xl + h * .5;

89 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

90 y[jj]:= yl[jj] + (zl[jj] * .5 +

91 k0[jj] * .04687 5 +

92 k1[jj] * .07982 41558 39840 -

93 k2[jj] * .00169 91558 39840) * h;

94 _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o k4[j]:= fxyj * h;

95 x:= _i_f last _t_h_e_n b _e_l_s_e xl + h;

96 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

97 y[jj]:= yl[jj] + (zl[jj] +

98 k0[jj] * .30901 69943 74947 +

99 k2[jj] * .19098 30056 25053) * h;

100 _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o k3[j]:= fxyj * h;

101 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

102 y[jj]:= yl[jj] + (zl[jj] +

103 k0[jj] * .08333 33333 33333 +

104 k1[jj] * .30150 28323 95825 +

105 k2[jj] * .11516 38342 70842) * h;

106 _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o k5[j]:= fxyj * h;

107 reject:= _f_a_l_s_e ; fhm:= 0;

108 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

109 _b_e_g_i_n

110 discry:= abs((- k0[jj] * .5 + k1[jj] * 1.80901 69943 74947 +

111 k2[jj] * .69098 30056 25053 - k4[jj] * 2) * h);

112 discrz:= abs((k0[jj] - k3[jj]) * 2 - (k1[jj] + k2[jj]) * 10 +

113 k4[jj] * 16 + k5[jj] * 4);

114 toly:= absh * (abs(zl[jj]) * ee[2*jj-1] + ee[2*jj]);

115 tolz:= abs(k0[jj]) * ee[2*(jj+n)-1] + absh * ee[2*(jj+n)];

116 reject:= discry > toly # discrz > tolz # reject;

117 fhy:= discry/toly; fhz:= discrz/tolz;

118 _i_f fhz > fhy _t_h_e_n fhy:= fhz;

119 _i_f fhy > fhm _t_h_e_n fhm:= fhy
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120 _e_n_d ;

121 mu:= 1/(1 + fhm) + .45;

122 _i_f reject

123 _t_h_e_n _b_e_g_i_n _i_f absh _< hmin

124 _t_h_e_n _b_e_g_i_n d[1]:= d[1] + 1;

125 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

126 _b_e_g_i_n y[jj]:= yl[jj];

127 z[jj]:= zl[jj]

128 _e_n_d ;

129 first:= _t_r_u_e ; _g_o_t_o next

130 _e_n_d ;

131 h:= mu * h; _g_o_t_o test

132 _e_n_d rej;

133 _i_f first

134 _t_h_e_n _b_e_g_i_n first:= _f_a_l_s_e ; hl:= h; h:= mu * h;

135 _g_o_t_o acc

136 _e_n_d ;

137 fhy:= mu * h/hl + mu - mu1; hl:= h; h:= fhy * h;

138 acc: mu1:= mu;

139 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

140 z[jj]:= zl[jj] + (k0[jj] + k3[jj]) * .08333 33333 33333 +

141 (k1[jj] + k2[jj]) * .41666 66666 66667;

142 next: _i_f b |= x

143 _t_h_e_n _b_e_g_i_n xl:= x;

144 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

145 _b_e_g_i_n yl[jj]:= y[jj]; zl[jj]:= z[jj] _e_n_d ;

146 _g_o_t_o test

147 _e_n_d ;

148 _i_f ~ last _t_h_e_n d[2]:= h;

149 d[3]:= x;

150 _f_o_r jj:= 1 _s_t_e_p 1 _u_n_t_i_l n _d_o

151 _b_e_g_i_n d[jj+3]:= y[jj]; d[n+jj+3]:= z[jj] _e_n_d

152 _e_n_d RK3n;

153

154 _p_r_o_c_e_d_u_r_e TYP(x); _a_r_r_a_y x;

155 _b_e_g_i_n _i_n_t_e_g_e_r k;

156 NLCR; PRINTTEXT(|<T = |>); ABSFIXT(7,1,t+a); NLCR; NLCR;

157 _f_o_r k:= 1 _s_t_e_p 1 _u_n_t_i_l 5 _d_o

158 _b_e_g_i_n _i_f k=1 _t_h_e_n PRINTTEXT(|<J |>) _e_l_s_e

159 _i_f k=2 _t_h_e_n PRINTTEXT(|<S |>) _e_l_s_e

160 _i_f k=3 _t_h_e_n PRINTTEXT(|<U |>) _e_l_s_e

161 _i_f k=4 _t_h_e_n PRINTTEXT(|<N |>) _e_l_s_e

162 PRINTTEXT(|<P |>);

163 FIXT(2,9,x[3*k-2]); FIXT(2,9,x[3*k-1]); FIXT(2,9,x[3*k]);

164 NLCR

165 _e_n_d

166 _e_n_d TYP;

167

168 _r_e_a_l _p_r_o_c_e_d_u_r_e SUM(i,a,b,xi);

169 _v_a_l_u_e b; _i_n_t_e_g_e_r i,a,b; _r_e_a_l xi;

170 _b_e_g_i_n _r_e_a_l s;

171 s:= 0;

172 _f_o_r i:= a _s_t_e_p 1 _u_n_t_i_l b _d_o s:= s + xi;

173 SUM:= s

174 _e_n_d SUM;

175

176 a:= read;

177 _f_o_r k:= 1 _s_t_e_p 1 _u_n_t_i_l 15 _d_o

178 _b_e_g_i_n ya[k]:= read; za[k]:= read _e_n_d ;

179 _f_o_r k:= 0 _s_t_e_p 1 _u_n_t_i_l 5 _d_o m[k]:= read;
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180 k2:= read; e[1]:= read;

181 _f_o_r k:= 2 _s_t_e_p 1 _u_n_t_i_l 60 _d_o e[k]:= e[1];

182 NLCR; PRINTTEXT(|<JAZ164, R743, Outer Planets|>); NLCR; NLCR;

183 _f_o_r k:= 1 _s_t_e_p 1 _u_n_t_i_l 15 _d_o

184 _b_e_g_i_n FLOT(12,2,ya[k]); FLOT(12,2,za[k]); NLCR _e_n_d ;

185 _f_o_r k:= 0 _s_t_e_p 1 _u_n_t_i_l 5 _d_o

186 _b_e_g_i_n NLCR; FLOT(12,2,m[k]) _e_n_d ;

187 NLCR; NLCR; FLOT(12,2,k2);

188 NLCR; NLCR; PRINTTEXT(|<eps = |>); FLOT(2,2,e[1]); NLCR;

189 t:= 0; TYP(ya); fi:= _t_r_u_e ;

190 _f_o_r t:= 500,1000 _d_o

191 _b_e_g_i_n RK3n(x,0,t,y,ya,z,za,f(k),k,e,d,fi,15);

192 fi:= _f_a_l_s_e ; TYP(y)

193 _e_n_d

194 _e_n_d

195
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JAZ164, R743, Outer Planets

+.342947415189%+ 1 -.557160570446%- 2

+.335386959711%+ 1 +.505696783289%- 2

+.135494901715%+ 1 +.230578543901%- 2

+.664145542550%+ 1 -.415570776342%- 2

+.597156957878%+ 1 +.365682722812%- 2

+.218231499728%+ 1 +.169143213293%- 2

+.112630437207%+ 2 -.325325669158%- 2

+.146952576794%+ 2 +.189706021964%- 2

+.627960525067%+ 1 +.877265322780%- 3

-.301552268759%+ 2 -.240476254170%- 3

+.165699966404%+ 1 -.287659532608%- 2

+.143785752721%+ 1 -.117219543175%- 2

-.211238353380%+ 2 -.176860753121%- 2

+.284465098142%+ 2 -.216393453025%- 2

+.153882659679%+ 2 -.148647893090%- 3

+.100000597682%+ 1

+.954786104043%- 3

+.285583733151%- 3

+.437273164546%- 4

+.517759138449%- 4

+.277777777778%- 5

+.295912208286%- 3

eps = +.10%- 3

T = 2430000.5

J +3.429474152 +3.353869597 +1.354949017

S +6.641455426 +5.971569579 +2.182314997

U +11.263043721 +14.695257679 +6.279605251

N -30.155226876 +1.656999664 +1.437857527

P -21.123835338 +28.446509814 +15.388265968

T = 2430500.5

J -.049534455 +4.714982495 +2.023963513

S +4.277614611 +7.483210480 +2.909418313

U +9.582290073 +15.567813885 +6.685732380

N -30.235783049 +.215924799 +.849602274

P -21.994991444 +27.345130515 +15.303485551

T = 2431000.5

J -3.535429691 +3.610053139 +1.635176964

S +1.496149963 +8.261862331 +3.351487277

U +7.805112554 +16.281370897 +7.023579152

N -30.235569469 -1.228279723 +.257987477

P -22.837219187 +26.205087209 +15.197406000
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compiler data

number of instructions executed: 2270261

compile time (microseconds): 8918110.00

average instruction time: 3.93

object--program length: 2497

execution data

number of instructions executed: 1705131

execution time (microseconds): 10363829.00

average instruction time: 6.08

profile

linenumber count time %

4 372 1653.75 0.0

6 158 720.00 0.0

10 5616 26190.00 0.3

11 4590 24907.50 0.2

12 1512 8707.50 0.1

13 13068 70335.00 0.7

14 3780 22545.00 0.2

15 130680 690161.25 6.7

17 74520 502625.00 4.8

20 5508 30105.00 0.3

21 13500 68242.50 0.7

22 49410 263942.50 2.5

23 21060 171271.25 1.7

25 25164 170235.00 1.6

26 164430 849295.00 8.2

36 796 3652.50 0.0

37 8 35.00 0.0

38 41 200.00 0.0

39 272 1600.00 0.0

40 2115 10275.00 0.1

42 144 682.50 0.0

43 544 3200.00 0.0

44 3390 16800.00 0.2

45 80 388.75 0.0

46 72 352.50 0.0

47 16 80.00 0.0

48 146 790.00 0.0

49 1080 6860.00 0.1

50 4118 22972.50 0.2

51 406 2465.00 0.0

53 8556 53442.50 0.5

54 14 65.00 0.0

55 8 35.00 0.0

56 6 23.75 0.0

57 54 337.50 0.0

58 63 355.00 0.0

62 144 893.75 0.0

63 88 427.50 0.0

64 20 147.50 0.0

66 35 148.75 0.0

67 40 175.00 0.0

68 20 170.00 0.0

69 1088 6400.00 0.1

70 3360 16200.00 0.2

71 1412 9430.00 0.1

72 5280 27563.75 0.3

74 30 557.50 0.0

75 1632 9600.00 0.1

76 3870 24417.50 0.2

78 90 1227.50 0.0

79 2720 16000.00 0.2

80 14250 94266.25 0.9

82 16120 91021.25 0.9

83 90 1240.00 0.0

84 2720 16000.00 0.2

85 14250 95001.25 0.9

87 16120 91013.75 0.9

88 90 837.50 0.0

89 2720 16000.00 0.2
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90 20100 129883.75 1.3

94 16120 91047.50 0.9

95 80 621.25 0.0

96 2720 16000.00 0.2

97 16950 110526.25 1.1

100 16120 91042.50 0.9

101 2720 16000.00 0.2

102 19800 132376.25 1.3

106 16120 91041.25 0.9

107 70 337.50 0.0

108 2720 16000.00 0.2

109 300 1125.00 0.0

110 12300 86973.75 0.8

112 17550 96007.50 0.9

114 9450 67182.50 0.6

115 10350 73322.50 0.7

116 2850 16346.25 0.2

117 1200 26968.75 0.3

118 900 5330.00 0.1

119 928 5652.50 0.1

121 110 1360.00 0.0

122 40 175.00 0.0

123 12 73.75 0.0

131 12 152.50 0.0

133 32 140.00 0.0

134 20 250.00 0.0

135 6 20.00 0.0

137 78 1702.50 0.0

138 32 220.00 0.0

139 2176 12800.00 0.1

140 15600 92141.25 0.9

142 64 452.50 0.0

143 24 195.00 0.0

144 1632 9600.00 0.1

145 9900 49050.00 0.5

146 18 60.00 0.0

148 10 42.50 0.0

149 82 410.00 0.0

150 554 3245.00 0.0

151 4230 20550.00 0.2

156 3201 17405.00 0.2

157 321 1740.00 0.0

158 660 2748.75 0.0

159 645 2685.00 0.0

160 630 2621.25 0.0

161 615 2557.50 0.0

162 588 2445.00 0.0

163 42121 251957.50 2.4

164 570 2456.25 0.0

171 3240 16200.00 0.2

172 730620 4738025.00 45.7

173 4050 34425.00 0.3

176 651 2790.00 0.0

177 272 1402.50 0.0

178 25370 115621.25 1.1

179 5319 24255.00 0.2

180 1415 6156.25 0.1

181 3262 15927.50 0.2

182 1150 4910.00 0.0

183 272 1402.50 0.0

184 34111 202182.50 2.0

185 119 603.75 0.0

186 6915 40701.25 0.4

187 1154 6766.25 0.1

188 1049 4878.75 0.0

189 51 200.00 0.0

190 123 538.75 0.0

191 700 2700.00 0.0

192 94 372.50 0.0
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1 _b_e_g_i_n _c_o_m_m_e_n_t zeef van Erathostenes;

2 _i_n_t_e_g_e_r p, m;

3 _b_o_o_l_e_a_n _a_r_r_a_y prime [2 : 10000];

4

5 _f_o_r p:= 2, 3 _s_t_e_p 2 _u_n_t_i_l 10000 _d_o

6 prime[p]:= _t_r_u_e ;

7

8 _f_o_r p:= 2, 3 _s_t_e_p 2 _u_n_t_i_l 10 _d_o

9 _b_e_g_i_n _i_f prime[p]

10 _t_h_e_n _f_o_r m:= p * p _s_t_e_p p _u_n_t_i_l 10000 _d_o

11 prime[m]:= _f_a_l_s_e

12 _e_n_d;

13

14 m:= 0;

15 _f_o_r p:= 2, 3 _s_t_e_p 2 _u_n_t_i_l 10000 _d_o

16 _b_e_g_i_n _i_f prime[p]

17 _t_h_e_n _b_e_g_i_n m:= m + 1 _e_n_d

18 _e_n_d;

19

20 NLCR; PRINTTEXT(|<number of primes below 100 000: |>); ABSFIXT(5,0,m)

21

22 _e_n_d

23
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number of primes below 100 000: 2288
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compiler data

number of instructions executed: 139858

compile time (microseconds): 553232.50

average instruction time: 3.96

object--program length: 208

execution data

number of instructions executed: 1230657

execution time (microseconds): 6346575.00

average instruction time: 5.16

profile

linenumber count time %

3 71 356.25 0.0

5 85010 443773.75 7.0

6 205000 1036082.50 16.3

8 95 467.50 0.0

9 155 751.25 0.0

10 199788 1101747.50 17.4

11 481668 2463777.50 38.8

14 6 21.25 0.0

15 85010 443773.75 7.0

16 155000 779832.50 12.3

17 16016 62920.00 1.0

20 1923 8951.25 0.1
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A.5 Pentomino
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1 _b_e_g_i_n _c_o_m_m_e_n_t pentomino, 130968;

2 _i_n_t_e_g_e_r score, nummer, lengte, breedte, aantal stenen, aantal standen,

3 i, j, k, teller, lb;

4 lengte:= read; breedte:= read; aantal stenen:= read; aantal standen:= read;

5 lb:= lengte * (breedte - 1);

6

7 _b_e_g_i_n _i_n_t_e_g_e_r _a_r_r_a_y bord [-39 : 100],

8 standen, wijzer [1 : aantal stenen],

9 informatie [1 : 8 * aantal standen];

10 _b_o_o_l_e_a_n _a_r_r_a_y ongebruikt [1 : aantal stenen];

11

12 _p_r_o_c_e_d_u_r_e output;

13 _b_e_g_i_n _i_n_t_e_g_e_r i, j;

14 score:= score + 1;

15 SPACE (1);

16 _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l 2 * lengte _d_o

17 _b_e_g_i_n PRINTTEXT (|<-|>); SPACE (1) _e_n_d ;

18 _c_o_m_m_e_n_t ABSFIXT (6, 2, time); NLCR;

19 _f_o_r i:= 0 _s_t_e_p lengte _u_n_t_i_l lb _d_o

20 _b_e_g_i_n PRINTTEXT(|<I|>);

21 _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l lengte - 1 _d_o

22 _b_e_g_i_n SPACE (3);

23 _i_f bord [i + j] |= bord [i + j + 1]

24 _t_h_e_n PRINTTEXT(|<I|>) _e_l_s_e SPACE (1)

25 _e_n_d ;

26 SPACE (3); PRINTTEXT(|<I|>); NLCR; SPACE (1);

27 _i_f i < lb

28 _t_h_e_n _b_e_g_i_n _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l lengte _d_o

29 _b_e_g_i_n _i_f bord [i + j] |= bord [i + j + lengte]

30 _t_h_e_n _b_e_g_i_n PRINTTEXT (|<-|>); SPACE (1);

31 PRINTTEXT (|<-|>); SPACE (1)

32 _e_n_d

33 _e_l_s_e SPACE (4)

34 _e_n_d

35 _e_n_d

36 _e_l_s_e _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l 2 * lengte _d_o

37 _b_e_g_i_n PRINTTEXT (|<-|>); SPACE (1) _e_n_d ;

38 NLCR

39 _e_n_d ;

40 NLCR; NLCR;

41 _i_f score = 7 _t_h_e_n _g_o_t_o ex

42 _e_n_d output;

43

44 _p_r_o_c_e_d_u_r_e up (veld, kolom); _v_a_l_u_e veld, kolom;

45 _i_n_t_e_g_e_r veld, kolom;

46 _b_e_g_i_n _i_n_t_e_g_e_r i, j, k, r, w, steen, aantal;

47 nummer:= nummer + 1;

48 _f_o_r steen:= 1 _s_t_e_p 1 _u_n_t_i_l aantal stenen _d_o

49 _i_f ongebruikt [steen] _t_h_e_n

50 _b_e_g_i_n ongebruikt [steen]:= _f_a_l_s_e ;

51 bord [veld]:= steen;

52 aantal:= standen [steen] - 1;

53 _f_o_r i:= 0 _s_t_e_p 1 _u_n_t_i_l aantal _d_o

54 _b_e_g_i_n w:= wijzer [steen] + 4 * i;

55 _i_f bord [informatie [w] + veld] = 0 _t_h_e_n

56 _b_e_g_i_n _i_f bord [informatie [w + 1] + veld] = 0 _t_h_e_n

57 _b_e_g_i_n _i_f bord [informatie [w + 2] + veld] = 0 _t_h_e_n

58 _b_e_g_i_n _i_f bord [informatie [w + 3] + veld] = 0 _t_h_e_n

59 _b_e_g_i_n _f_o_r j:= 0, 1, 2, 3 _d_o
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60 bord [informatie [w + j] + veld]:= steen;

61 _i_f nummer = aantal stenen

62 _t_h_e_n output

63 _e_l_s_e

64 _b_e_g_i_n

65 _f_o_r k:= kolom _s_t_e_p 1 _u_n_t_i_l lengte _d_o

66 _f_o_r r:= 0 _s_t_e_p lengte _u_n_t_i_l lb _d_o

67 _i_f bord [r + k] = 0 _t_h_e_n _g_o_t_o beet;

68 beet: up (r + k, k)

69 _e_n_d ;

70 _f_o_r j:= 0, 1, 2, 3 _d_o

71 bord [informatie [w + j] + veld]:= 0

72 _e_n_d

73 _e_n_d

74 _e_n_d

75 _e_n_d

76 _e_n_d ;

77 ongebruikt [steen]:= _t_r_u_e

78 _e_n_d ;

79 bord [veld]:= 0;

80 down: nummer:= nummer - 1

81 _e_n_d up;

82

83 teller:= 1;

84 _f_o_r i:= 1 _s_t_e_p 1 _u_n_t_i_l aantal stenen _d_o

85 _b_e_g_i_n j:= read; _c_o_m_m_e_n_t steennummer, wordt niet gebruikt;

86 wijzer [i]:= teller; standen [i]:= read;

87 _f_o_r j:= 1 _s_t_e_p 1 _u_n_t_i_l standen [i] _d_o

88 _b_e_g_i_n _f_o_r k:= 0 _s_t_e_p 1 _u_n_t_i_l 3 _d_o

89 informatie [teller + k]:= read;

90 teller:= teller + 4

91 _e_n_d

92 _e_n_d ;

93 _f_o_r i:= - 39 _s_t_e_p 1 _u_n_t_i_l 0,

94 61 _s_t_e_p 1 _u_n_t_i_l 100 _d_o bord [i]:= - 1;

95 _f_o_r i:= 1 _s_t_e_p 1 _u_n_t_i_l 60 _d_o bord [i]:= 0;

96 _f_o_r i:= 1 _s_t_e_p 1 _u_n_t_i_l aantal stenen _d_o

97 ongebruikt [i]:= _t_r_u_e ;

98 score:= nummer:= 0;

99 NLCR; PRINTTEXT (|<The first 7 solutions:|>); NLCR; NLCR; NLCR;

100 up (1, 1);

101 ex:

102 _e_n_d

103 _e_n_d
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The first 7 solutions:

- - - - - - - - - - - - - - - - - - - -

I I I I I I

- - - - - - - -

I I I I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - - - - - - - -

I I I I I I

- - - - - - - - - - - - - -

I I I I I I

- - - - - - - - - -

I I I I I

- - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - -

I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - - - - - - - -

I I I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - -

I I I I I I

- - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - -

I I I I I

- - - - - - - - - - - - - -

I I I I I I

- - - - - - - - - -

I I I I I I

- - - - - - - - - - - - - - - -

I I I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - -

I I I I I I

- - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - -

I I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - -

I I I I I I I

- - - - - - - - - - - - - - - -

I I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - - - -
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I I I I I

- - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - -

I I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - -

I I I I I I I

- - - - - - - - - - - - - - - -

I I I I I I

- - - - - - - - - - - - - -

I I I I I I

- - - - - - - - - -

I I I I I

- - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - -

I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - - - - - - - -

I I I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - -

I I I I I I

- - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - -

I I I I I

- - - - - - - - - - - - - -

I I I I I I

- - - - - - - - - -

I I I I I I

- - - - - - - - - - - - - - - -

I I I I I I I

- - - - - - - - - - - -

I I I I I I

- - - - - - - - - -

I I I I I I

- - - - - - - - - - - - - - - - - - - -
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compiler data

number of instructions executed: 960488

compile time (microseconds): 3747490.00

average instruction time: 3.90

object--program length: 1019

execution data

number of instructions executed: 10813999

execution time (microseconds): 51433663.75

average instruction time: 4.76

profile

linenumber count time %

4 3271 12918.75 0.0

5 10 58.75 0.0

7 180 790.00 0.0

8 68 308.75 0.0

10 72 361.25 0.0

14 49 192.50 0.0

15 476 2030.00 0.0

16 2646 16397.50 0.0

17 21280 87850.00 0.2

18 266 1146.25 0.0

19 833 4926.25 0.0

20 3612 14332.50 0.0

21 7560 42210.00 0.1

22 43848 189945.00 0.4

23 29292 128972.50 0.3

24 14703 58093.75 0.1

26 12684 53550.00 0.1

27 294 1417.50 0.0

28 6580 37406.25 0.1

29 14350 65187.50 0.1

30 32832 135540.00 0.3

31 33048 136080.00 0.3

33 18760 81070.00 0.2

36 2646 16397.50 0.0

37 21280 87850.00 0.2

38 1617 7001.25 0.0

40 518 2240.00 0.0

41 77 318.75 0.0

47 23471 92207.50 0.2

48 739675 4229616.25 8.2

49 1245270 6180237.50 12.0

50 380029 1919248.75 3.7

51 268801 1251315.00 2.4

52 203918 868968.75 1.7

53 798954 4573112.50 8.9

54 943525 4666692.50 9.1

55 1358676 5708326.25 11.1

56 557923 2337245.00 4.5

57 322788 1352220.00 2.6

58 191734 803210.00 1.6

59 144437 621415.00 1.2

60 618056 2838355.00 5.5

61 16795 67180.00 0.1

62 228 917.50 0.0

64 6704 25140.00 0.0

65 80390 427622.50 0.8

66 393921 2301293.75 4.5

67 461047 1969930.00 3.8

68 361994 1516697.50 2.9

70 143921 619195.00 1.2

71 615848 2761275.00 5.4

77 379537 1893615.00 3.7

79 96889 434330.00 0.8

80 40092 167050.00 0.3

83 6 21.25 0.0

84 221 1168.75 0.0

85 6363 25352.50 0.0

86 3946 16716.25 0.0

87 2304 10770.00 0.0
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88 5100 25575.00 0.0

89 97268 401593.75 0.8

90 420 1650.00 0.0

93 1391 7232.50 0.0

94 2320 10200.00 0.0

95 2537 12146.25 0.0

96 221 1168.75 0.0

97 492 2431.25 0.0

98 7 26.25 0.0

99 1000 4271.25 0.0

100 90 355.00 0.0

102 103 471.25 0.0
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1 _b_e_g_i_n _c_o_m_m_e_n_t ALGOL 60 version of program lisp(input,output).

2

3 *** version 1, March 28, l988 ***

4 *** author: F.E.J. Kruseman Aretz ***

5 *** Philips Research Laboratory Eindhoven ***;

6

7

8 _i_n_t_e_g_e_r maxidf,maxnbr,maxstruct; maxidf:= 200; maxnbr:= 200; maxstruct:= 2000;

9

10

11 _b_e_g_i_n

12

13 _i_n_t_e_g_e_r sym,shift,lastidf,lastnbr,d24,d25,free,indentation,linewidth,dummy,

14

15 f,

16 args,

17 p,

18 id,

19 olp,

20 t,

21 nilv,

22 quote,

23 cond,

24 lambda,

25 define,

26 car,

27 cdr,

28 cons,

29 equal,

30 atom,

31 numberp,

32 lessp,

33 greaterp,

34 add1,

35 sub1,

36 add,

37 minus,

38 timesv,

39 divf;

40

41 _i_n_t_e_g_e_r _a_r_r_a_y idf[0:maxidf,0:9],alist[0:maxidf];

42 _r_e_a_l _a_r_r_a_y nbr[0:maxnbr];

43 _i_n_t_e_g_e_r _a_r_r_a_y a,d[1:maxstruct];

44 _b_o_o_l_e_a_n _a_r_r_a_y m[1:maxstruct];

45

46

47 _c_o_m_m_e_n_t *** error handling ***;

48

49 _p_r_o_c_e_d_u_r_e errorhandler(errorstring); _s_t_r_i_n_g errorstring;

50 _b_e_g_i_n NLCR; NLCR; PRINTTEXT(|<+++ error: |>); PRINTTEXT(errorstring);

51 _g_o_t_o ex;

52 _e_n_d errorhandler;

53

54

55 _c_o_m_m_e_n_t *** representation dependent functions ***;

56

57 _p_r_o_c_e_d_u_r_e collect garbage;

58 _b_e_g_i_n _i_n_t_e_g_e_r i,j;

59 free:= 0;
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60 _f_o_r i:= 1 _s_t_e_p 1 _u_n_t_i_l maxstruct _d_o m[i]:= _t_r_u_e;

61 NLCR; PRINTTEXT(|<garbage collector: |>);

62 mark(olp);

63 _f_o_r i:= 0 _s_t_e_p 1 _u_n_t_i_l lastidf - 1 _d_o mark(alist[i]);

64 _f_o_r i:= 1 _s_t_e_p 1 _u_n_t_i_l maxstruct _d_o

65 _i_f m[i] _t_h_e_n _b_e_g_i_n a[i]:= free; free:= i _e_n_d;

66 _i_f free = 0 _t_h_e_n errorhandler(|<free list exhausted|>);

67 i:= 1; j:= free;

68 _f_o_r j:= carf(j) _w_h_i_l_e j |= 0 _d_o i:= i + 1;

69 ABSFIXT(4,0,i); NLCR

70 _e_n_d collect garbage;

71

72 _p_r_o_c_e_d_u_r_e mark(ref); _v_a_l_u_e ref; _i_n_t_e_g_e_r ref;

73 _b_e_g_i_n

74 work: _i_f ref < d24

75 _t_h_e_n _b_e_g_i_n _i_f m[ref]

76 _t_h_e_n _b_e_g_i_n m[ref]:= _f_a_l_s_e;

77 mark(a[ref]); ref:= d[ref]; _g_o_t_o work

78 _e_n_d

79 _e_n_d

80 _e_n_d mark;

81

82 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e createidf;

83 _b_e_g_i_n _i_n_t_e_g_e_r i,j;

84 i:= 0;

85 _f_o_r dummy:= 0 _w_h_i_l_e i < lastidf _d_o

86 _b_e_g_i_n _f_o_r j:= 0 _s_t_e_p 1 _u_n_t_i_l 9 _d_o

87 _i_f idf[lastidf,j] |= idf[i,j] _t_h_e_n _g_o_t_o diff;

88 _g_o_t_o old;

89 diff: i:= i + 1

90 _e_n_d;

91 new: i:= lastidf; alist[i]:= nilv; lastidf:= lastidf + 1;

92 _i_f lastidf = maxidf _t_h_e_n

93 _b_e_g_i_n _f_o_r i:= 0 _s_t_e_p 1 _u_n_t_i_l 99 _d_o

94 _b_e_g_i_n NLCR; write(d25+i) _e_n_d;

95 errorhandler(|<too much identifiers|>)

96 _e_n_d;

97 old: createidf:= d25 + i

98 _e_n_d createidf;

99

100 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e createnum(x); _r_e_a_l x;

101 _b_e_g_i_n _i_n_t_e_g_e_r i;

102 nbr[last nbr]:= x; i:= 0;

103 _f_o_r dummy:= 0 _w_h_i_l_e i < last nbr _d_o

104 _b_e_g_i_n _i_f nbr[last nbr] = nbr[i] _t_h_e_n _g_o_t_o old;

105 i:= i + 1

106 _e_n_d;

107 new: i:= last nbr; last nbr:= last nbr + 1;

108 _i_f last nbr = maxnbr _t_h_e_n errorhandler(|<too much numbers|>);

109 old: createnum:= d24 + i

110 _e_n_d createnum;

111

112 _b_o_o_l_e_a_n _p_r_o_c_e_d_u_r_e atomf(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

113 _b_e_g_i_n atomf:= x _> d24 _e_n_d atomf;

114

115 _b_o_o_l_e_a_n _p_r_o_c_e_d_u_r_e numberpf(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

116 _b_e_g_i_n numberpf:= x _> d24 ^ x < d25 _e_n_d numberpf;

117

118 _p_r_o_c_e_d_u_r_e getidfval(x,idf); _v_a_l_u_e x; _i_n_t_e_g_e_r x,idf;

119 _b_e_g_i_n idf:= x - d25 _e_n_d getidfval;
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120

121 _r_e_a_l _p_r_o_c_e_d_u_r_e numval(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

122 _b_e_g_i_n numval:=nbr[ x - d24] _e_n_d numval;

123

124 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e carf(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

125 _b_e_g_i_n _i_f x _> d24

126 _t_h_e_n errorhandler(|<car undefined for atomic lisp value|>);

127 carf:= a[x]

128 _e_n_d carf;

129

130 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e cdrf(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

131 _b_e_g_i_n _i_f x _> d24

132 _t_h_e_n errorhandler(|<cdr undefined for atomic lisp value|>);

133 cdrf:= d[x]

134 _e_n_d cdrf;

135

136 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e consf(x,y);

137 _v_a_l_u_e x,y; _i_n_t_e_g_e_r x,y;

138 _b_e_g_i_n _i_n_t_e_g_e_r n;

139 _i_f free = 0 _t_h_e_n collect garbage;

140 n:= free; free:= a[free];

141 a[n]:= x; d[n]:= y; consf:= n

142 _e_n_d consf;

143

144 _p_r_o_c_e_d_u_r_e returncell(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

145 _b_e_g_i_n a[x]:= free; free:= x _e_n_d;

146

147 _p_r_o_c_e_d_u_r_e returnlist(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

148 _b_e_g_i_n _f_o_r dummy:= 0 _w_h_i_l_e x |= nilv _d_o

149 _b_e_g_i_n returncell(x); x:= d[x] _e_n_d

150 _e_n_d returnlist;

151

152 _p_r_o_c_e_d_u_r_e recycle(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

153 _b_e_g_i_n _f_o_r dummy:= 0 _w_h_i_l_e ~ atomf(x) _d_o

154 _b_e_g_i_n recycle(a[x]); returncell(x); x:= d[x] _e_n_d

155 _e_n_d recycle;

156

157 _b_o_o_l_e_a_n _p_r_o_c_e_d_u_r_e equalf(x,y);

158 _v_a_l_u_e x,y; _i_n_t_e_g_e_r x,y;

159 _b_e_g_i_n _s_w_i_t_c_h s:= str,num,id;

160 work:

161 _i_f x _: d24 = y _: d24

162 _t_h_e_n _b_e_g_i_n _g_o_t_o s[x _: d24 + 1];

163 id: num: equalf:= x = y; _g_o_t_o ex;

164 str: _i_f equalf(a[x],a[y])

165 _t_h_e_n _b_e_g_i_n x:= d[x]; y:= d[y];

166 _g_o_t_o work

167 _e_n_d

168 _e_l_s_e equalf:= _f_a_l_s_e

169 _e_n_d

170 _e_l_s_e equalf := _f_a_l_s_e;

171 ex:

172 _e_n_d equalf;

173

174

175

176 _c_o_m_m_e_n_t *** input procedures ***;

177

178 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e RESYM;

179 _b_e_g_i_n _i_n_t_e_g_e_r s;
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180 s:= read;

181 _i_f s = 122 # s = 124 _t_h_e_n _b_e_g_i_n shift:= s;

182 RESYM:= RESYM

183 _e_n_d _e_l_s_e

184 _i_f s = 16 _t_h_e_n RESYM:= 93 _e_l_s_e

185 _i_f s = 26 _t_h_e_n RESYM:= 119 _e_l_s_e

186 _i_f s = 8 ^ shift = 124 _t_h_e_n RESYM:= 98 _e_l_s_e

187 _i_f s = 25 ^ shift = 124 _t_h_e_n RESYM:= 99 _e_l_s_e

188 _i_f s = 107 _t_h_e_n RESYM:= 88 _e_l_s_e

189 _i_f s = 32 _t_h_e_n RESYM:= 0 _e_l_s_e

190 _b_e_g_i_n s:= s_:32*32 + s - s_:16*16;

191 _i_f s = 0 _t_h_e_n errorhandler(|<eof|>);

192 RESYM:= _i_f s < 10 _t_h_e_n s _e_l_s_e

193 _i_f s < 64 _t_h_e_n s - 6 _e_l_s_e

194 _i_f s < 96 _t_h_e_n s - 46 _e_l_s_e s - 87

195 _e_n_d

196 _e_n_d RESYM;

197

198

199

200

201 _p_r_o_c_e_d_u_r_e nextsym;

202 _b_e_g_i_n sym:= RESYM; PRSYM(sym) _e_n_d nextsym;

203

204 _p_r_o_c_e_d_u_r_e skipspaces;

205 _b_e_g_i_n _f_o_r dummy:= 0

206 _w_h_i_l_e sym = 93 # sym = 118 # sym = 119 _d_o nextsym

207 _e_n_d skipspaces;

208

209 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e number;

210 _b_e_g_i_n _r_e_a_l x; _b_o_o_l_e_a_n signed;

211 x:= 0; signed:= (sym = 65);

212 _i_f signed

213 _t_h_e_n _b_e_g_i_n nextsym;

214 _i_f sym > 9 _t_h_e_n errorhandler(|<digit expected in input|>)

215 _e_n_d;

216 _f_o_r dummy:= 0 _w_h_i_l_e sym < 10 _d_o

217 _b_e_g_i_n x:= 10 * x + sym; nextsym _e_n_d;

218 number:= createnum(_i_f signed _t_h_e_n -x _e_l_s_e x)

219 _e_n_d number;

220

221 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e identifier;

222 _b_e_g_i_n _i_n_t_e_g_e_r i;

223 idf[lastidf,0]:= sym; nextsym;

224 _f_o_r i:= 1 _s_t_e_p 1 _u_n_t_i_l 9 _d_o idf[lastidf,i]:= 93;

225 i:= 0;

226 _f_o_r dummy:= 0 _w_h_i_l_e sym < 64 ^ i < 9 _d_o

227 _b_e_g_i_n i:= i + 1; idf[lastidf,i]:= sym; nextsym _e_n_d;

228 _f_o_r dummy:= 0 _w_h_i_l_e sym < 64 _d_o nextsym;

229 identifier:= createidf

230 _e_n_d identifier;

231

232 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e nextitem;

233 _b_e_g_i_n _i_n_t_e_g_e_r lv,op;

234 skipspaces;

235 _i_f sym < 10 # sym = 65 _t_h_e_n nextitem:= number

236 _e_l_s_e

237 _i_f sym < 64 _t_h_e_n nextitem := identifier

238 _e_l_s_e

239 _i_f sym = 98
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240 _t_h_e_n _b_e_g_i_n nextsym; skipspaces;

241 _i_f sym = 99

242 _t_h_e_n _b_e_g_i_n nextitem:= nilv; nextsym _e_n_d

243 _e_l_s_e _b_e_g_i_n op:= olp; olp:= consf(nilv,op);

244 lv:= a[olp]:= consf(nilv,nilv); nextitem:= lv;

245 a[lv]:= nextitem; skipspaces;

246 _i_f sym = 88

247 _t_h_e_n _b_e_g_i_n nextsym; d[lv]:= nextitem;

248 skipspaces;

249 _i_f sym |= 99

250 _t_h_e_n errorhandler

251 (|<close missing for dotted pair in input|>)

252 _e_n_d

253 _e_l_s_e _f_o_r dummy:= 0 _w_h_i_l_e sym |= 99 _d_o

254 _b_e_g_i_n lv:= d[lv]:= consf(nilv,nilv);

255 a[lv]:= nextitem; skipspaces

256 _e_n_d;

257 nextsym;

258 olp:= op

259 _e_n_d;

260 _e_n_d

261 _e_l_s_e

262 _i_f sym = 120

263 _t_h_e_n _b_e_g_i_n nextsym;

264 op:= olp; olp:= consf(nilv,olp);

265 lv:= a[olp]:= consf(nilv,nilv); nextitem:= lv;

266 a[lv]:= quote; lv:= d[lv]:= consf(nilv,nilv); a[lv]:= nextitem;

267 olp:= op

268 _e_n_d

269 _e_l_s_e errorhandler(|<illegal symbol in input|>)

270 _e_n_d nextitem;

271

272

273

274 _c_o_m_m_e_n_t *** output procedures ***;

275

276 _p_r_o_c_e_d_u_r_e PRSYM(sym); _v_a_l_u_e sym; _i_n_t_e_g_e_r sym;

277 _b_e_g_i_n _s_w_i_t_c_h sw:= a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,

278 a,b,c,d,e,f,g,h,i,j,k,l,m,

279 n,o,p,q,r,s,t,u,v,w,x,y,z;

280 _i_f sym = 93 _t_h_e_n SPACE(1) _e_l_s_e

281 _i_f sym = 88 _t_h_e_n PRINTTEXT(|<.|>) _e_l_s_e

282 _i_f sym = 98 _t_h_e_n PRINTTEXT(|<(|>) _e_l_s_e

283 _i_f sym = 99 _t_h_e_n PRINTTEXT(|<)|>) _e_l_s_e

284 _i_f sym = 119 _t_h_e_n NLCR _e_l_s_e

285 _b_e_g_i_n _i_f sym > 35

286 _t_h_e_n errorhandler(|<illegal output symbol|>);

287 _g_o_t_o sw[sym+1];

288 a0: PRINTTEXT(|<0|>); _g_o_t_o ex;

289 a1: PRINTTEXT(|<1|>); _g_o_t_o ex;

290 a2: PRINTTEXT(|<2|>); _g_o_t_o ex;

291 a3: PRINTTEXT(|<3|>); _g_o_t_o ex;

292 a4: PRINTTEXT(|<4|>); _g_o_t_o ex;

293 a5: PRINTTEXT(|<5|>); _g_o_t_o ex;

294 a6: PRINTTEXT(|<6|>); _g_o_t_o ex;

295 a7: PRINTTEXT(|<7|>); _g_o_t_o ex;

296 a8: PRINTTEXT(|<8|>); _g_o_t_o ex;

297 a9: PRINTTEXT(|<9|>); _g_o_t_o ex;

298 a: PRINTTEXT(|<a|>); _g_o_t_o ex;

299 b: PRINTTEXT(|<b|>); _g_o_t_o ex;
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300 c: PRINTTEXT(|<c|>); _g_o_t_o ex;

301 d: PRINTTEXT(|<d|>); _g_o_t_o ex;

302 e: PRINTTEXT(|<e|>); _g_o_t_o ex;

303 f: PRINTTEXT(|<f|>); _g_o_t_o ex;

304 g: PRINTTEXT(|<g|>); _g_o_t_o ex;

305 h: PRINTTEXT(|<h|>); _g_o_t_o ex;

306 i: PRINTTEXT(|<i|>); _g_o_t_o ex;

307 j: PRINTTEXT(|<j|>); _g_o_t_o ex;

308 k: PRINTTEXT(|<k|>); _g_o_t_o ex;

309 l: PRINTTEXT(|<l|>); _g_o_t_o ex;

310 m: PRINTTEXT(|<m|>); _g_o_t_o ex;

311 n: PRINTTEXT(|<n|>); _g_o_t_o ex;

312 o: PRINTTEXT(|<o|>); _g_o_t_o ex;

313 p: PRINTTEXT(|<p|>); _g_o_t_o ex;

314 q: PRINTTEXT(|<q|>); _g_o_t_o ex;

315 r: PRINTTEXT(|<r|>); _g_o_t_o ex;

316 s: PRINTTEXT(|<s|>); _g_o_t_o ex;

317 t: PRINTTEXT(|<t|>); _g_o_t_o ex;

318 u: PRINTTEXT(|<u|>); _g_o_t_o ex;

319 v: PRINTTEXT(|<v|>); _g_o_t_o ex;

320 w: PRINTTEXT(|<w|>); _g_o_t_o ex;

321 x: PRINTTEXT(|<x|>); _g_o_t_o ex;

322 y: PRINTTEXT(|<y|>); _g_o_t_o ex;

323 z: PRINTTEXT(|<z|>)

324 _e_n_d;

325 ex:

326 _e_n_d PRSYM;

327

328 _p_r_o_c_e_d_u_r_e analyse(x,r); _v_a_l_u_e x; _i_n_t_e_g_e_r x,r;

329 _b_e_g_i_n _i_n_t_e_g_e_r n,l; _b_o_o_l_e_a_n simple;

330 _i_f numberpf(x)

331 _t_h_e_n _b_e_g_i_n _r_e_a_l dg,v,absv;

332 v:= numval(x);

333 _i_f v _> 0

334 _t_h_e_n _b_e_g_i_n absv:= v; l:= 1 _e_n_d

335 _e_l_s_e _b_e_g_i_n absv:= - v;l:= 2 _e_n_d;

336 dg:= 10;

337 _f_o_r dummy:= 0 _w_h_i_l_e dg _< absv _d_o

338 _b_e_g_i_n l:= l + 1; dg:= 10 * dg _e_n_d;

339 r:= createnum(l)

340 _e_n_d

341 _e_l_s_e

342 _i_f atomf(x)

343 _t_h_e_n _b_e_g_i_n getidfval(x,id); n:= 10;

344 _f_o_r dummy:= 0 _w_h_i_l_e idf[id,n-1] = 93 _d_o n:= n - 1;

345 r:= createnum(n)

346 _e_n_d

347 _e_l_s_e

348 _i_f islist(x)

349 _t_h_e_n _b_e_g_i_n indentation:= indentation + 1;

350 analyselist(x,r,l,simple);

351 indentation:= indentation - 1;

352 _i_f simple ^ indentation + l _< linewidth

353 _t_h_e_n _b_e_g_i_n recycle(r); r:= createnum(l) _e_n_d

354 _e_n_d

355 _e_l_s_e _b_e_g_i_n indentation:= indentation + 1;

356 olp:= consf(nilv,olp);

357 r:= a[olp]:= consf(nilv,nilv);

358 analyse(carf(x),a[r]); analyse(cdrf(x),d[r]);

359 indentation:= indentation - 1;
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360 _i_f atomf(a[r]) ^ atomf(d[r])

361 _t_h_e_n _b_e_g_i_n l:= numval(carf(r)) + numval(cdrf(r)) + 5;

362 _i_f indentation + l _< linewidth

363 _t_h_e_n _b_e_g_i_n recycle(r); r:= createnum(l) _e_n_d

364 _e_n_d;

365 returncell(olp); olp:= d[olp]

366 _e_n_d

367 _e_n_d analyse;

368

369 _p_r_o_c_e_d_u_r_e analyselist(x,r,l,simple);

370 _v_a_l_u_e x; _i_n_t_e_g_e_r x,r,l; _b_o_o_l_e_a_n simple;

371 _b_e_g_i_n _i_f x = nilv

372 _t_h_e_n _b_e_g_i_n r:= nilv; l:= 1; simple:= _t_r_u_e _e_n_d

373 _e_l_s_e _b_e_g_i_n olp:= consf(nilv, olp);

374 r:= a[olp]:= consf(nilv,nilv);

375 analyse(carf(x),a[r]); analyselist(cdrf(x),d[r],l,simple);

376 _i_f simple ^ atomf(a[r])

377 _t_h_e_n l:= numval(a[r]) + l + 1

378 _e_l_s_e simple:= _f_a_l_s_e;

379 returncell(olp); olp:= d[olp]

380 _e_n_d

381 _e_n_d analyselist;

382

383 _b_o_o_l_e_a_n _p_r_o_c_d_u_r_e islist(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

384 _b_e_g_i_n

385 work: _i_f atomf(x)

386 _t_h_e_n islist:= equalf(x,nilv)

387 _e_l_s_e _b_e_g_i_n x:= cdrf(x); _g_o_t_o work _e_n_d

388 _e_n_d islist;

389

390 _p_r_o_c_e_d_u_r_e writenumber(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

391 _b_e_g_i_n _i_n_t_e_g_e_r n,d,v;

392 v:= numval(x);

393 _i_f v < 0 _t_h_e_n v:= - v;

394 d:= 10;

395 _f_o_r dummy:= 0 _w_h_i_l_e d _< v _d_o d:= d * 10;

396 _f_o_r d:= d _: 10 _w_h_i_l_e d > 0.5 _d_o

397 _b_e_g_i_n n:= v_: d; PRSYM(n); v:= v - d * n _e_n_d

398 _e_n_d writenumber;

399

400 _p_r_o_c_e_d_u_r_e writeidentifier(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

401 _b_e_g_i_n _i_n_t_e_g_e_r i;

402 getidfval(x,id);

403 _f_o_r i:= 0 _s_t_e_p 1 _u_n_t_i_l 9 _d_o

404 _i_f idf[id,i] |= 93 _t_h_e_n PRSYM(idf[id,i])

405 _e_n_d writeidentifier;

406

407 _p_r_o_c_e_d_u_r_e writelist(x,r); _v_a_l_u_e x,r; _i_n_t_e_g_e_r x,r;

408 _b_e_g_i_n _i_n_t_e_g_e_r a,ind; _b_o_o_l_e_a_n simple,nl;

409 PRSYM(98);

410 _i_f atomf(r)

411 _t_h_e_n _b_e_g_i_n _f_o_r dummy:= 0 _w_h_i_l_e x |= nilv _d_o

412 _b_e_g_i_n writevalue(carf(x),r); x:= cdrf(x);

413 _i_f x |= nilv _t_h_e_n PRSYM(93)

414 _e_n_d

415 _e_n_d

416 _e_l_s_e _b_e_g_i_n indentation:= indentation + 1; ind:= indentation;

417 _f_o_r dummy:= 0 _w_h_i_l_e x |= nilv _d_o

418 _b_e_g_i_n a:= carf(r);

419 simple:= atomf(a);
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420 _i_f simple

421 _t_h_e_n nl:= numval(a) + indentation > linewidth

422 _e_l_s_e nl:= indentation > ind;

423 _i_f nl

424 _t_h_e_n _b_e_g_i_n indentation:= ind;

425 NLCR; SPACE(ind)

426 _e_n_d

427 _e_l_s_e _i_f indentation > ind _t_h_e_n PRSYM(93);

428 writevalue(carf(x),a);

429 _i_f simple

430 _t_h_e_n indentation:= indentation + numval(a) + 1

431 _e_l_s_e indentation:= linewidth + 1;

432 x:= cdrf(x); r:= cdrf(r)

433 _e_n_d;

434 indentation:= ind - 1; NLCR; SPACE(indentation)

435 _e_n_d;

436 PRSYM(99)

437 _e_n_d writelist;

438

439 _p_r_o_c_e_d_u_r_e writepair(x,r); _v_a_l_u_e x,r; _i_n_t_e_g_e_r x,r;

440 _b_e_g_i_n PRSYM(98);

441 _i_f atomf(r)

442 _t_h_e_n _b_e_g_i_n writevalue(carf(x),r); PRINTTEXT(|< . |>);

443 writevalue(cdrf(x),r)

444 _e_n_d

445 _e_l_s_e _b_e_g_i_n indentation:= indentation + 1;

446 writevalue(carf(x),carf(r));

447 NLCR; SPACE(indentation-1); PRINTTEXT(|< . |>);

448 NLCR; SPACE(indentation); writevalue(cdrf(x),cdrf(r));

449 NLCR; SPACE(indentation)

450 _e_n_d;

451 PRSYM(99)

452 _e_n_d writepair;

453

454 _p_r_o_c_e_d_u_r_e writevalue(x,r); _v_a_l_u_e x,r; _i_n_t_e_g_e_r x,r;

455 _b_e_g_i_n _i_f numberpf(x) _t_h_e_n writenumber(x)

456 _e_l_s_e

457 _i_f atomf(x) _t_h_e_n writeidentifier(x)

458 _e_l_s_e

459 _i_f islist(x) _t_h_e_n writelist(x,r)

460 _e_l_s_e writepair(x,r)

461 _e_n_d writevalue;

462

463 _p_r_o_c_e_d_u_r_e write(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

464 _b_e_g_i_n _i_n_t_e_g_e_r r;

465 indentation:= 0;

466 analyse(x,r); writevalue(x,r); recycle(r)

467 _e_n_d write;

468

469

470

471 _c_o_m_m_e_n_t *** interpreter proper ***;

472

473

474 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e assoc(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

475 _b_e_g_i_n _i_n_t_e_g_e_r ax;

476 getidfval(x,id); ax:= alist[id];

477 _i_f ax = nilv _t_h_e_n errorhandler(|<identifier has no value|>);

478 assoc:= carf(ax)

479 _e_n_d assoc;
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480

481 _p_r_o_c_e_d_u_r_e pairlis(x,y); _v_a_l_u_e x,y; _i_n_t_e_g_e_r x,y;

482 _b_e_g_i_n _f_o_r dummy:= 0 _w_h_i_l_e ~ equalf(x,nilv) _d_o

483 _b_e_g_i_n getidfval(carf(x),id); alist[id]:= consf(carf(y),alist[id]);

484 x:= cdrf(x); y:= cdrf(y)

485 _e_n_d

486 _e_n_d pairlis;

487

488 _p_r_o_c_e_d_u_r_e depairlis(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

489 _b_e_g_i_n _f_o_r dummy:= 0 _w_h_i_l_e ~ equalf(x,nilv) _d_o

490 _b_e_g_i_n getidfval(carf(x),id); alist[id]:= cdrf(alist[id]);

491 x:= cdrf(x)

492 _e_n_d

493 _e_n_d depairlis;

494

495 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e eval(e); _v_a_l_u_e e; _i_n_t_e_g_e_r e;

496 _b_e_g_i_n _i_n_t_e_g_e_r care;

497 work: _i_f atomf(e)

498 _t_h_e_n _b_e_g_i_n _i_f equalf(e,nilv) # equalf(e,t) # numberpf(e)

499 _t_h_e_n eval:= e _e_l_s_e eval:= assoc(e)

500 _e_n_d

501 _e_l_s_e _b_e_g_i_n care:= carf(e);

502 _i_f equalf(care,cond)

503 _t_h_e_n _b_e_g_i_n e:= evcon(cdrf(e)); _g_o_t_o work _e_n_d

504 _e_l_s_e _i_f equalf(care,quote)

505 _t_h_e_n eval:= carf(cdrf(e))

506 _e_l_s_e _b_e_g_i_n olp:= consf(nilv,olp);

507 a[olp]:= evlist(cdrf(e)); eval:= apply(care,a[olp]);

508 returnlist(a[olp]); returncell(olp); olp:= cdrf(olp)

509 _e_n_d

510 _e_n_d

511 _e_n_d eval;

512

513 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e apply(f,x);

514 _v_a_l_u_e f,x; _i_n_t_e_g_e_r f,x;

515 _b_e_g_i_n

516 work: _i_f atomf(f)

517 _t_h_e_n _b_e_g_i_n

518 _i_f equalf(f,car) _t_h_e_n apply:= carf(carf(x))

519 _e_l_s_e

520 _i_f equalf(f,cdr) _t_h_e_n apply:= cdrf(carf(x))

521 _e_l_s_e

522 _i_f equalf(f,cons) _t_h_e_n apply:= consf(carf(x),carf(cdrf(x)))

523 _e_l_s_e

524 _i_f equalf(f,equal)

525 _t_h_e_n _b_e_g_i_n _i_f equalf(carf(x),carf(cdrf(x)))

526 _t_h_e_n apply:= t

527 _e_l_s_e apply:= nilv

528 _e_n_d

529 _e_l_s_e

530 _i_f equalf(f,atom) _t_h_e_n _b_e_g_i_n _i_f atomf(carf(x))

531 _t_h_e_n apply:= t

532 _e_l_s_e apply:= nilv

533 _e_n_d

534 _e_l_s_e

535 _i_f equalf(f,numberp) _t_h_e_n _b_e_g_i_n _i_f numberpf(carf(x))

536 _t_h_e_n apply:= t

537 _e_l_s_e apply:= nilv

538 _e_n_d

539 _e_l_s_e
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540 _i_f equalf(f,lessp)

541 _t_h_e_n _b_e_g_i_n _i_f numval(carf(x)) < numval(carf(cdrf(x)))

542 _t_h_e_n apply:= t

543 _e_l_s_e apply:= nilv

544 _e_n_d

545 _e_l_s_e

546 _i_f equalf(f,greaterp)

547 _t_h_e_n _b_e_g_i_n _i_f numval(carf(x)) > numval(carf(cdrf(x)))

548 _t_h_e_n apply:= t

549 _e_l_s_e apply:= nilv

550 _e_n_d

551 _e_l_s_e

552 _i_f equalf(f,add)

553 _t_h_e_n apply:= createnum(numval(carf(x)) + 1)

554 _e_l_s_e

555 _i_f equalf(f,sub1)

556 _t_h_e_n apply:= createnum(numval(carf(x)) - 1)

557 _e_l_s_e

558 _i_f equalf(f,add)

559 _t_h_e_n apply:= createnum(numval(carf(x)) + numval(carf(cdrf(x))))

560 _e_l_s_e

561 _i_f equalf(f,minus)

562 _t_h_e_n apply:= createnum(numval(carf(x)) - numval(carf(cdrf(x))))

563 _e_l_s_e

564 _i_f equalf(f,timesv)

565 _t_h_e_n apply:= createnum(numval(carf(x)) * numval(carf(cdrf(x))))

566 _e_l_s_e

567 _i_f equalf(f,divf)

568 _t_h_e_n apply:= createnum(numval(carf(x)) _: numval(carf(cdrf(x))))

569 _e_l_s_e _b_e_g_i_n f:= assoc(f); _g_o_t_o work _e_n_d

570 _e_n_d

571 _e_l_s_e _b_e_g_i_n pairlis(carf(cdrf(f)),x);

572 apply:= eval(carf(cdrf(cdrf(f))));

573 depairlis(carf(cdrf(f)))

574 _e_n_d

575 _e_n_d apply;

576

577 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e evcon(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

578 _b_e_g_i_n _i_n_t_e_g_e_r r;

579 work: r:= carf(x);

580 _i_f equalf(eval(carf(r)),nilv)

581 _t_h_e_n _b_e_g_i_n x:= cdrf(x); _g_o_t_o work _e_n_d

582 _e_l_s_e evcon:= carf(cdrf(r))

583 _e_n_d evcon;

584

585 _i_n_t_e_g_e_r _p_r_o_c_e_d_u_r_e evlist(x); _v_a_l_u_e x; _i_n_t_e_g_e_r x;

586 _b_e_g_i_n _i_n_t_e_g_e_r res;

587 _i_f equalf(x,nilv)

588 _t_h_e_n evlist:= nilv

589 _e_l_s_e _b_e_g_i_n olp:= consf(nilv,olp); a[olp]:= res:= consf(nilv,nilv);

590 a[res]:= eval(carf(x)); d[res]:= evlist(cdrf(x));

591 evlist:= res;

592 returncell(olp); olp:= cdrf(olp)

593 _e_n_d

594 _e_n_d evlist;

595

596

597

598 _c_o_m_m_e_n_t *** initialization ***;

599
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600 _p_r_o_c_e_d_u_r_e create(lv); _i_n_t_e_g_e_r lv;

601 _b_e_g_i_n skipspaces;

602 lv:= identifier;

603 _e_n_d create;

604

605 _p_r_o_c_e_d_u_r_e init;

606 _b_e_g_i_n _i_n_t_e_g_e_r i,j;

607 d24:= 16777216; d25:= 33554432;

608 last idf:= 0; sym:= 93; nilv:= d25 + 1;

609 create(t); create(nilv);

610 create(quote); create(cond);

611 create(lambda); create(define);

612 create(car); create(cdr);

613 create(cons); create(equal);

614 create(atom); create(numberp);

615 create(lessp); create(greaterp);

616 create(add1); create(sub1);

617 create(add); create(minus);

618 create(timesv); create(divf);

619

620 olp:= nilv;

621

622 free:= 1; last nbr:= 0; linewidth:= 40;

623 _f_o_r i:= 1 _s_t_e_p 1 _u_n_t_i_l maxstruct - 1 _d_o a[i]:= i + 1;

624 a[maxstruct]:= 0

625 _e_n_d init;

626

627

628

629 _c_o_m_m_e_n_t *** main program ***;

630

631

632 _p_r_o_c_e_d_u_r_e function definitions(x,a,r); _v_a_l_u_e x; _i_n_t_e_g_e_r x,a,r;

633 _b_e_g_i_n _i_n_t_e_g_e_r carx,lr;

634 _i_f equalf(x,nilv)

635 _t_h_e_n r:= nilv

636 _e_l_s_e _b_e_g_i_n carx:= carf(x);

637 a:= consf(consf(carf(carx),carf(cdrf(carx))),a);

638 function definitions(cdrf(x),a,lr);

639 r:= consf(carf(carx),lr)

640 _e_n_d

641 _e_n_d function definitions;

642

643 PRINTTEXT(|<Lisp interpreter version 1, Oktober 2004|>);

644 NLCR; NLCR;

645 init;

646 _f_o_r dummy:= 0 _w_h_i_l_e _t_r_u_e _d_o

647 _b_e_g_i_n olp:= consf(nilv,olp); a[olp]:= p:= consf(nilv,nilv);

648 a[p]:= f:= nextitem; d[p]:= args:= nextitem;

649 NLCR;

650 _i_f equalf(f,define)

651 _t_h_e_n _b_e_g_i_n args:= carf(args); PRSYM(98);

652 _f_o_r dummy:= 0 _w_h_i_l_e ~ equalf(args,nilv) _d_o

653 _b_e_g_i_n p:= carf(args); write(carf(p));

654 getidfval(carf(p),id);

655 alist[id]:= consf(carf(cdrf(p)),nilv);

656 args:= cdrf(args);

657 _i_f ~ equalf(args,nilv) _t_h_e_n SPACE(1)

658 _e_n_d;

659 PRSYM(99)



A.6. LISP INTERPRETER 145

160205 - 1

660 _e_n_d

661 _e_l_s_e _b_e_g_i_n p:= apply(f,args);

662 NLCR; write(p)

663 _e_n_d;

664 olp:= cdrf(olp)

665 _e_n_d;

666 ex:

667 _e_n_d

668 _e_n_d

669
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Lisp interpreter version 1, Oktober 2004

t nil quote cond lambda define car cdr cons equal atom numberp

lessp greaterp add1 sub1 add minus times div

define ((

(crossriver (lambda ( ) (complete (cons (i) nil))))

(complete

(lambda (path)

(cond ((equal (car path) (f)) (cons path nil))

(t (try path (fullmoveset)))

) ) )

(try

(lambda (path moveset)

(cond ((null moveset) nil)

((feasible (car moveset) (car path))

(append (try1 path (result (car moveset) (car path)))

(try path (cdr moveset))))

(t (try path (cdr moveset)))

) ) )

(try1

(lambda (path newstate)

(cond ((not (admissible newstate)) nil)

((member newstate path) nil)

(t (complete (cons newstate path)))

) ) )

(i (lambda ( ) (quote ((c c c) (m m m) ( ) ( ) left))))

(f (lambda ( ) (quote ((c c c) (m m m) ( ) ( ) right))))

(fullmoveset

(lambda ( )

(quote (((c c) ( )) ((c) (m)) (( ) (m m)) ((c) ( )) (( ) (m))))

) )

(feasible

(lambda (move state)

(cond ((smaller (car state) (car move)) nil)

((smaller (cadr state) (cadr move)) nil)

(t t)

) ) )

(admissible

(lambda (state)

(cond ((null (cadr state)) t)

((null (cadddr state)) t)

(t (ofequallength (car state) (cadr state)))

) ) )

(result

(lambda (move state)
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(list (inc (caddr state) (car move))

(inc (cadddr state) (cadr move))

(dec (car state) (car move))

(dec (cadr state) (cadr move))

(other (caddddr state))

) ) )

(other

(lambda (riverside)

(cond ((equal riverside (quote left)) (quote right))

(t (quote left))

) ) )

(list

(lambda (a b c d e)

(cons a (cons b (cons c (cons d (cons e nil)))))

) )

(smaller

(lambda (x y)

(cond ((null y) nil)

((null x) t)

(t (smaller (cdr x) (cdr y)))

) ) )

(inc

(lambda (x y)

(cond ((null y) x)

(t (inc (cons (car y) x) (cdr y)))

) ) )

(dec

(lambda (x y)

(cond ((null y) x)

(t (dec (cdr x) (cdr y)))

) ) )

(ofequallength

(lambda (x y)

(cond ((null x) (null y))

((null y) nil)

(t (ofequallength (cdr x) (cdr y)))

) ) )

(null (lambda (x) (equal x nil)))

(append

(lambda (x y)

(cond ((null x) y)

(t (cons (car x) (append (cdr x) y)))

) ) )

(not (lambda (x) (equal x nil)))

(member

(lambda (x y)

(cond ((null y) nil)

((equal x (car y)) t)

(t (member x (cdr y)))

) ) )
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(cadr (lambda (x) (car (cdr x))))

(caddr (lambda (x) (car (cdr (cdr x)))))

(cadddr (lambda (x) (car (cdr (cdr (cdr x))))))

(caddddr (lambda (x) (car (cdr (cdr (cdr (cdr x)))))))

))

(crossriver complete try try1 i f fullmovese feasible admissible result other list smaller inc dec ofequallen null append not member cadr caddr

cadddr caddddr)

crossriver ( )

garbage collector: 1200

garbage collector: 1031

garbage collector: 1137

garbage collector: 1246

garbage collector: 1020

garbage collector: 901

garbage collector: 1069

((((c c c) (m m m) nil nil right)

((c c) nil (c) (m m m) left)

((c c) (m m m) (c) nil right)

((c c c) nil nil (m m m) left)

((c) (m m m) (c c) nil right)

((c c) (m m) (c) (m) left)

((c c) (m m) (c) (m) right)

((c) (m m m) (c c) nil left)

((c c c) nil nil (m m m) right)

((c c) (m m m) (c) nil left)

((c c) nil (c) (m m m) right)

((c c c) (m m m) nil nil left)

)

(((c c c) (m m m) nil nil right)

((c) (m) (c c) (m m) left)

((c c) (m m m) (c) nil right)

((c c c) nil nil (m m m) left)

((c) (m m m) (c c) nil right)

((c c) (m m) (c) (m) left)

((c c) (m m) (c) (m) right)

((c) (m m m) (c c) nil left)

((c c c) nil nil (m m m) right)

((c c) (m m m) (c) nil left)

((c c) nil (c) (m m m) right)

((c c c) (m m m) nil nil left)

)

(((c c c) (m m m) nil nil right)

((c c) nil (c) (m m m) left)

((c c) (m m m) (c) nil right)

((c c c) nil nil (m m m) left)

((c) (m m m) (c c) nil right)
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((c c) (m m) (c) (m) left)

((c c) (m m) (c) (m) right)

((c) (m m m) (c c) nil left)

((c c c) nil nil (m m m) right)

((c c) (m m m) (c) nil left)

((c) (m) (c c) (m m) right)

((c c c) (m m m) nil nil left)

)

(((c c c) (m m m) nil nil right)

((c) (m) (c c) (m m) left)

((c c) (m m m) (c) nil right)

((c c c) nil nil (m m m) left)

((c) (m m m) (c c) nil right)

((c c) (m m) (c) (m) left)

((c c) (m m) (c) (m) right)

((c) (m m m) (c c) nil left)

((c c c) nil nil (m m m) right)

((c c) (m m m) (c) nil left)

((c) (m) (c c) (m m) right)

((c c c) (m m m) nil nil left)

)

)

+++ error: eof
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compiler data

number of instructions executed: 7497415

compile time (microseconds): 29111407.50

average instruction time: 3.88

object--program length: 5128

execution data

number of instructions executed: 135622946

execution time (microseconds): 636706448.75

average instruction time: 4.69

profile

linenumber count time %

8 14 48.75 0.0

11 12 48.75 0.0

41 158 716.25 0.0

42 66 291.25 0.0

43 105 466.25 0.0

44 72 361.25 0.0

50 684 2898.75 0.0

51 14 60.00 0.0

59 42 148.75 0.0

60 756119 4109061.25 0.6

61 5474 23301.25 0.0

62 434 1741.25 0.0

63 45066 200077.50 0.0

64 238119 1383051.25 0.2

65 669724 3311585.00 0.5

66 35 131.25 0.0

67 70 297.50 0.0

68 623521 2699332.50 0.4

69 4079 22691.25 0.0

74 120518 544088.75 0.1

75 242412 1234542.50 0.2

76 262236 1357361.25 0.2

77 722748 3022110.00 0.5

84 2154 8526.25 0.0

85 120731 552477.50 0.1

86 222111 1088785.00 0.2

87 996457 4596528.75 0.7

88 897 2990.00 0.0

89 67669 314177.50 0.0

91 2280 10275.00 0.0

92 300 1200.00 0.0

97 2872 16603.75 0.0

102 18600 93750.00 0.0

103 40886 186115.00 0.0

104 124240 561250.00 0.1

105 19292 89570.00 0.0

107 154 647.50 0.0

108 70 280.00 0.0

109 4800 27750.00 0.0

113 453008 2741202.50 0.4

116 260384 1292507.50 0.2

119 535648 2887477.50 0.5

122 14112 73920.00 0.0

125 767322 3836610.00 0.6

127 2813514 13108417.50 2.1

131 826914 4134570.00 0.6

133 3032018 14126447.50 2.2

139 324005 1215088.75 0.2

140 1618975 6718746.25 1.1

141 3950299 19184853.75 3.0

145 2100488 9604205.00 1.5

148 476388 2018130.00 0.3

149 1652364 6893145.00 1.1

153 112645 469748.75 0.1

154 100920 421225.00 0.1

161 13348041 93295421.25 14.7

162 10057008 58837205.00 9.2

163 1351252 6997555.00 1.1

164 216635 910452.50 0.1
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165 37320 160942.50 0.0

166 2799 9330.00 0.0

168 1428 5652.50 0.0

170 186980 794665.00 0.1

172 692010 4613400.00 0.7

180 867191 3697818.75 0.6

181 40265 178305.00 0.0

182 21956 96681.25 0.0

184 21002 95106.25 0.0

185 10589 45745.00 0.0

186 21716 89556.25 0.0

187 18889 77670.00 0.0

188 6600 28050.00 0.0

189 6600 28050.00 0.0

190 85500 607962.50 0.1

191 6649 28242.50 0.0

192 29567 137967.50 0.0

202 881816 3690371.25 0.6

205 67720 275047.50 0.0

206 36702 149102.50 0.0

223 27643 121162.50 0.0

224 199963 985903.75 0.2

225 2154 8526.25 0.0

226 26878 117722.50 0.0

227 77818 347760.00 0.1

228 5466 20227.50 0.0

229 15437 68658.75 0.0

234 19102 77602.50 0.0

235 7748 29835.00 0.0

237 18410 79733.75 0.0

239 1285 4818.75 0.0

240 15934 64892.50 0.0

241 1285 4818.75 0.0

242 481 1966.25 0.0

243 26352 109190.00 0.0

244 31720 133895.00 0.0

245 23180 99430.00 0.0

246 1220 4575.00 0.0

253 7000 27120.00 0.0

254 43848 184440.00 0.0

255 33060 141810.00 0.0

257 7808 31720.00 0.0

258 1464 6405.00 0.0

260 1028 5782.50 0.0

280 113424 484817.50 0.1

281 15720 66810.00 0.0

282 54055 219471.25 0.0

283 51800 210000.00 0.0

284 16025 68368.75 0.0

285 10565 44901.25 0.0

287 54938 250918.75 0.0

289 435 1718.75 0.0

298 13050 51922.50 0.0

299 3393 13507.50 0.0

300 22394 88735.00 0.0

301 10614 42117.50 0.0

302 13833 54881.25 0.0

303 3654 14568.75 0.0

304 2610 10417.50 0.0

305 3915 15521.25 0.0

306 10788 42730.00 0.0

309 16791 66816.25 0.0

310 19140 75707.50 0.0

311 11136 44345.00 0.0

312 5742 22788.75 0.0

313 2436 9655.00 0.0

314 1479 5881.25 0.0

315 10875 43235.00 0.0

316 6177 24530.00 0.0

317 14355 57037.50 0.0

318 3480 13840.00 0.0

319 2001 7932.50 0.0

320 348 1386.25 0.0

321 2697 10697.50 0.0

322 2523 10032.50 0.0

326 31507 135030.00 0.0

330 43560 182256.25 0.0
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342 43560 182256.25 0.0

343 44084 177160.00 0.0

344 175274 781645.00 0.1

345 183862 856426.25 0.1

348 13896 58141.25 0.0

349 1351 5307.50 0.0

350 36284 147646.25 0.0

351 1351 5307.50 0.0

352 2346 10488.75 0.0

353 147680 684947.50 0.1

371 3865 17392.50 0.0

372 85437 407838.75 0.1

373 59160 239975.00 0.0

374 274572 1260632.50 0.2

375 258680 1058500.00 0.2

376 254860 1176562.50 0.2

377 257712 1200530.00 0.2

378 36 210.00 0.0

379 49880 202275.00 0.0

385 111312 465732.50 0.1

386 49794 208922.50 0.0

387 87000 365400.00 0.1

402 42436 170465.00 0.0

403 79104 437235.00 0.1

404 397292 1713160.00 0.3

409 48443 201685.00 0.0

410 13896 58141.25 0.0

411 8440 35420.00 0.0

412 130416 545820.00 0.1

413 87828 366610.00 0.1

416 55 231.25 0.0

417 637 2732.50 0.0

418 3848 16250.00 0.0

419 3796 16120.00 0.0

420 208 910.00 0.0

421 3696 15655.00 0.0

422 28 138.75 0.0

423 208 910.00 0.0

424 282 1233.75 0.0

425 6106 26712.50 0.0

427 30 125.00 0.0

428 9100 37895.00 0.0

429 208 910.00 0.0

430 3792 16140.00 0.0

431 28 110.00 0.0

432 7592 32110.00 0.0

434 520 2248.75 0.0

436 49408 206027.50 0.0

455 43560 182256.25 0.0

457 71576 298131.25 0.0

459 33196 138236.25 0.0

465 150 531.25 0.0

466 6650 27437.50 0.0

476 2040572 8258462.50 1.3

477 83630 376335.00 0.1

478 1254450 5435950.00 0.9

482 1832790 7525340.00 1.2

483 3308032 13816600.00 2.2

484 1160992 4910360.00 0.8

489 1832790 7525340.00 1.2

490 2433312 10138800.00 1.6

491 588448 2485000.00 0.4

497 2285064 9560771.25 1.5

498 5731672 23863957.50 3.7

499 35748 183705.00 0.0

501 1233802 5210312.50 0.8

502 2100798 8628277.50 1.4

503 328944 1380390.00 0.2

504 1831662 7522897.50 1.2

505 36735 156123.75 0.0

506 1458600 5916625.00 0.9

507 4418700 18697250.00 2.9

508 3203200 13245375.00 2.1

516 1435320 6005418.75 0.9

517 28602 107257.50 0.0

518 2181074 9010300.00 1.4

520 1940778 8033017.50 1.3
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522 1352393 5580240.00 0.9

524 1040508 4273515.00 0.7

525 955136 3998320.00 0.6

526 9710 44908.75 0.0

527 14877 72318.75 0.0

530 709884 2915595.00 0.5

535 709884 2915595.00 0.5

540 709884 2915595.00 0.5

546 709884 2915595.00 0.5

552 709884 2915595.00 0.5

555 709884 2915595.00 0.5

558 709884 2915595.00 0.5

561 709884 2915595.00 0.5

564 709884 2915595.00 0.5

567 709884 2915595.00 0.5

569 422550 1774710.00 0.3

571 1431036 5972040.00 0.9

572 1752174 7359412.50 1.2

573 1256382 5288917.50 0.8

579 300366 1268437.50 0.2

580 1152756 4789620.00 0.8

581 144225 605745.00 0.1

582 328944 1401750.00 0.2

587 4310208 17702640.00 2.8

588 114400 589875.00 0.1

589 4499208 18589095.00 2.9

590 6967800 29712690.00 4.7

591 119448 572355.00 0.1

592 2647764 10924515.00 1.7

601 640 2600.00 0.0

602 920 4175.00 0.0

603 140 600.00 0.0

607 10 40.00 0.0

608 15 55.00 0.0

609 140 552.50 0.0

610 140 552.50 0.0

611 140 552.50 0.0

612 140 552.50 0.0

613 140 552.50 0.0

614 140 552.50 0.0

615 140 552.50 0.0

616 140 552.50 0.0

617 140 552.50 0.0

618 140 552.50 0.0

620 6 23.75 0.0

622 14 48.75 0.0

623 87974 452356.25 0.1

624 34 150.00 0.0

643 1516 6477.50 0.0

644 74 320.00 0.0

645 32 130.00 0.0

646 28 96.25 0.0

647 678 2793.75 0.0

648 296 1292.50 0.0

649 76 327.50 0.0

650 248 1005.00 0.0

651 321 1332.50 0.0

652 3252 13130.00 0.0

653 5064 20820.00 0.0

654 4320 17520.00 0.0

655 6792 28380.00 0.0

656 1728 7080.00 0.0

657 4518 18692.50 0.0

659 252 1047.50 0.0

661 102 413.75 0.0

662 98 405.00 0.0

664 144 590.00 0.0

667 103 471.25 0.0
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Appendix B

User–manual extracts

B.1 Extract of the X1 ALGOL user manual

Introduction

. . .

The text of an Algol program, drafted according the Algol 60 rules (see [1]) with due
observance of the rules that apply to the MC Algol system, is typed on a so-called
”Flexowriter”. This is a typewriter that can record all that is typed on seven–track
paper tape too. Such a tape, produced on a Flexowriter and recording the text of an
Algol 60 program can be elaborated by the X1 without more ado. This elaboration takes
place in two phases.

In the first phase the compilation program, the so–called MC Algol compiler, is activated.
This program reads the seven–track tape with the Algol text and compiles this Algol
description in a computer prescription that is more adapted to the requirements that are
posed on an efficient execution on the X1. The result of this compilation work, the so–
called ”object program”, is punched meanwhile. In this way the compiler produces from
an Algol program an equivalent object program. After this the seven–track tape with the
Algol text has finished its job and the second phase can start.

In the second phase the computation is actually executed. Since the object program is
formulated as a series of standard operations that are collected in a so–called ”complex”,

1The X1 ALGOL manual was written in Dutch and is part of the ‘MCP’ documentation ‘P100’.
Translation by the author.
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in the second phase first the complex is placed in the X1 store. Next the object–program
tape produced by the compiler is read by a special input program and recorded in the
X1. Then the machine is ready to execute the computation demanded by the program.

. . .

The complexes ALD and ALS

The standard operations necessary for the object program are, as remarked above, col-
lected in a complex. To the standard operations of the complex belong:

1) administrative operations

2) the elementary arithmatic operations

3) the standard functions:
abs, sign, sqrt, sin, cos, ln, exp, entier.

For the meaning of these functions see the Algol 60 report [1] sections 3.2.4 and
3.2.5. Contrary to what is posed there, in the MC Algol system the value of ”abs”
always has the same type as its argument. (The standard function ”arctan” is not
included in the complex but is available as MCP (see in the sequel)).

4) the input and output procedures:
read, stop, print, TAB, NLCR, SPACE.

The meaning of these procedures is explained below.

At this moment there exist two complexes, namely the complex ALD, in which the real

arithmetic is carried out in double length, i.e. in 12 to 15 decimals, and the complex ALS,
in which the real artithmetic occurs in single length, i.e. in over 7 decimals2.

For the arithmetic in both complexes the following holds.
An integer variable occupies one single memory location. Consequently its absolute
value is less than 226 (= 67 108 864). An anonymous intermediate result that according
to Algol 60 has to be of type integer but exceeds the integer capacity is transformed
automatically to real representation.
The real variables occupy two memory locations. Anonymous intermediate results of
type real occupy four memory locations (in the accumulator stack, see various publica-
tions of E.W. Dijkstra). Variables and anonymous intermediate results of type real are
represented in over 7 decimals relative precision in the system ALS. In the system ALD
anonymous intermediate results of type real are represented in 15 decimals, real variables

2The complex ALS was seldom used and not maintained from 1963 onwards.



B.1. EXTRACT OF THE X1 ALGOL USER MANUAL 157

in 12 decimals relative precision.
The arithmetic operations deliver always unambiguous results. Relations between two
numbers of equal type are, moreover, exact. (For an expression E without side effects E
= E always holds.) If the operands in a relation are of different type then the integer

operand is first transformed to real representation and next the intended relation is es-
tablished. The transformation from integer to real is exact except for integer 0. This is
transformed to the smallest positive real number that can be represented as anonymous
number in the accumulator. The same result is formed if sum or difference of two real

numbers had to be exactly 0. (For an expression E without side effects E – E = 0 holds.)
Sum, difference or product of two numbers of different type is formed in this manner: first
the integer operand is converted into real representation and thereupon the operation
concerned is executed. Possible integer operands of the operator ”/” are converted into
real representation, whereafter the quotient of two real numbers is formed.
For the operation ”:=” the following holds: According to the Algol 60 report [1] Section
4.2.4. a transfer function is inserted if necessary. Naturally an assignment of an integer

result to an integer variable occurs exactly. In the case of an assignment of a real result
to a real variable, in the complex ALD the result, represented in the accumulator in 15
decimals relative precision, is rounded to 12 decimals. In the complex ALS no rounding
takes place and the assignment is exact, except in the following case. In both complexes
a result that in absolute value is too large or too close to 0 is brought within the more
restricted range of variables of type real. If this form of ”overflow” or ”underflow” occurs
the absolute value of the variable becomes maximal (ca. 10616) or minimal (ca. 10 − 616)
with the sign of the result to be assigned. (As a consequence the relation ”a = 0” can
never have the value true for variable a of type real).

The MCPs

The procedures just mentioned in (3) and (4) are available to the programmer without
declaration. Also the so–called MCPs have this pleasant property. These were added to
the system afterwards and are published in this report with serial letter ”AP” followed
by a number starting by 100.

The MCP’s are not included in the complex but collected in an extension thereof, a so–
called ”mechanical library”. The special reading program of the second phase mentioned
in the foregoing reads, immediately after the tape containing the object program, the
mechanical library selectively, i.e. only those MCPs are included in the store that are
necessary for the object program. This makes it desirable to signal the use of MCPs in a
comment at the begin of the text of the Algol program.
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. . .

Input and output devices of the X1

In connextion with the execution of Algol programs on the X1 the following input and
output devices are of interest:

1) paper–tape reader

The paper–tape reader can read both seven–track tapes and five–track ones. During
the execution of an Algol program numbers can be read from paper tape by means
of the function designator ”read”. Seven–track tapes should be punched according
to the punch code of the MC Flexowriter. In this code each symbol contains a parity
bit that is checked at reading. The five–track punch code has no parity bit; thus a
programmed check of the input is then desirable. The punch conventions for ”read”
are discussed below in full detail.

2) type writer

For typing of numbers and texts several procedures are available both in the complex
and in the MCP library.

3) seven–track tape punch

For punching of numbers and texts several MCPs are written. They produce paper
tapes punched according to the punch code of the MC Flexowriter. These tapes can
not only be typed on the MC Flexowriter, but also be read as input tape by input
function ”read”.

. . .

Input and output procedures of the complexes

. . .

Special properties of the MC Algol system

Here the points are enumerated by which the MC Algol system deviates from the Algol 60
report.

. . .
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3) Only the first nine symbols of identifiers matter.
. . .

5) Algol 60 allows function procedures to be called as independent statement, besides
their use in expressions. In that case the function value is of no interest and is left
out of consideration. In the MC Algol system, however, the standard procedures
mentioned in sections 3.2.4 and 3.2.5 of [1] and moreover functions ”read” and
”XEEN” may not be called as independent statement.

6) The value of standard function ”abs” is of the same type as its argument. Standard
function ”entier” may have an argument of type integer. Functions ”sqrt” and ”ln”
operate on the absolute value of their argument.

7) The primaries of an expression are elaborated in the order from left to right.

8) Labels starting by a digit are prohibited.
. . .

12) A for clause may not be followed by a conditional statement. In other words: do if

is prohibited.
. . .

17) Declarations of a block and specifications in a procedure declaration must be given
in the following order:

1 scalars (<type> or own <type>) and strings
2 arrays
3 destinations (label or switch)
4 procedures

18) Procedures containing array declarations marked by the symbol ”own” do not func-
tion in the official way when used recursively.

19) Index bounds in array declarations of the outermost block or in array declarations
preceded by ”own” may only be integer numbers.

. . .

21) The MC Algol system does not discriminate between ”real” and ”integer” as first
symbol of a function procedure: in each call the type of the result is determined by
the arithmetic that is carried out in the procedure body this time.

22) Each formal parameter must be specified.
. . .
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24) A formal parameter in the value list may not be specified as label or <type>
procedure.

. . .

26) An array in the value list may have at most five indices.

How to run ALGOL programs

From May 11th 1964 the MC uses officially an ALGOL system3 satisfying the following
specifications.

1. Instructions for compiling programs

a) read the Load–and–go compiler pressing H, 2, 1.

b) read the ALGOL text pressing H, 2, 0.
Stop 3–7 means: compilation completed.
If d1 of the console word equals 0 then label–, switch–, and procedure identfiers
are typed4 together with their address relative to the start address of the
program in the number system with base 32.
For other stops during compilation see the list of stops, present on the X1
console.

2. Instructions for program execution

autostarts H,0: run the program using the fast paper–tape punch
autostarts H,G,0: run the program using the slow paper–tape punch.

3. Punch conventions for input data to be read by procedure ”read”

. . .

4. Check on reading and writing outside array bounds

Programs not using MCP ”INPROD” have only limited checks on reading and
writing outside array bounds. After stop 1–23, occurring when an error is found,
program execution cannot be continued.

3The ”Load–and–go” ALGOL system.
4On the IBM typewriter of the system.
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B.2 Extract of the X8 ALGOL user manual

1. Requirements to ALGOL 60 programs

The ALGOL system for the X8 accepts programs written in ALGOL 60 as defined in the
Revised Report on the Algorithmic Language ALGOL 60, with the provisional restrictions
that in the program

1.1. no own <type> arrays are declared,

1.2. no integer labels occur with an integer value > 6710883,

1.3. the number of declared local variables and local labels does not exceed certain, very
ample limits,

1.4. the number of entries in a switch declaration does not exceed certain, very ample
limits.

A number of (function) procedures can be used without needing a declaration in the
program. In addition to the elementary functions that are incorporated in Section 3.2.4.
of the Revised Report a.o. all input and output procedures belong to them. For a complete
enumeration see Section 7.

In addition to the basic symbols of ALGOL the symbols accent, apostrophe, and question
mark (′, ”, and ?), as well as arbitrary combinations or symbols that are underlined or
crossed by a bar may occur in programs, but exclusively within comments (after comment

and end) and within strings.

Formal parameters of procedures that do not occur in the value part need not to be
specified. Usually it is advantageous to specify parameters as much as possible, since
the additional information provided by the specification is also taken into account in
the formal/actual parameter correspondence checks and moreover can benefit execution
efficiency. It is, however, possible to write procedures that derive their special meaning
from the absence of one or more specifications.

2. Some interpretations of ALGOL 60

. . .

5Taken from ”The MC ALGOL 60 system for the X8. Provisional programmer’s manual”.
Version oktober 1966 (in Dutch), c.f. [10].
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2.4. A formal parameter occurring in the value part may be specified as label. The
corresponding actual parameter has to be a designational expression; it is evaluated at
procedure entry, just like other parameters from the value part.

. . .

2.6. At the elaboration of expressions the operands are evaluated in the order of the
ALGOL text, from left to right. At procedure entry the formal parameters from the
value part are evaluated in the order of the formal–parameter list; first, however, the
simple value parameters are dealt with and only thereafter the value arrays.

3. Punch conventions for ALGOL programs

. . .

4. The processing of ALGOL programs

4.1. . . .

4.2. Hereafter the processing takes place as follows:

4.2.1. The X8 reads the program and checks it against the syntax in several scans.
During the reading the text is printed on the line printer. Each line is preceded by its line
number followed by several space symbols. If need the printing of a line is interrupted for
the printing of an error message of an error, already detected in the reading phase. For
syntax errors detected in subsequent scans an error message is printed after the program
text. The representation of the ALGOL symbols on the line printer is treated in table III.
Each message of a syntax error has the following form:

er <error number> <line number> <last symbol read>
<value of the last number read> <first 8 characters of the last identifier read>.

The interpretation of error numbers can be found in table I, the decoding of the last
symbol read by means of table II. The line number refers to the line of the ALGOL text
in which the error is detected. Although the error message gives only 8 characters of the
last identifier read, all letters and digits of an identifier do matter for the X8.
Some errors in the ALGOL text can lead to other error messages than would be natural.
This is closely bound up with the way in which the syntax analysis of a text that, due to
an error, is more or less uninterpretable, is continued.

Each page on the line printer starts with a heading that mentions the date of processing
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and a serial number attached by the system to this processing. For text and error messages
60 lines per page are available.

4.2.2. Only if no errors are found during the aforesaid syntax analysis the program is
executed. Output on the line printer starts on a new page, output on the paper–tape
punch is preceded by a standard prelude and concluded by a standard postlude.

. . .

4.2.3. Upon detection of an unallowed situation in the execution phase of a program
execution is stopped immediately; as last activity an error message is given on the line
printer and, if approprate, a standard postlude is punched on the paper–tape punch. The
usual form of an error message during execution is:

er <error number> <line number> <value of last decimal number read>.

For the interpretation of the error numbers we refer again to table I. The line number
refers to the line of the ALGOL text where the last statement or the last array declaration
starts that was taken into execution but was not yet completed.

4.2.4. . . .

4.2.5. Execution of a program is ended:
a) by ”passing” the last end,
b) by calling library procedure EXIT,
c) by detection of a run–time error,
d) by operator intervention.
In this last case a pseudo error message is given with error number 999.

. . .

4.2.6. . . .

5. The arithmetic of the ALGOL system

The arithmetic of the X8 ALGOL system corresponds to the floating–point arithmetic of
the X8.

5.1. Variables of type integer occupy one single memory word. Consequently the value
range of integer variables is restricted and runs from − 67 108 863 to + 67 108 863 and
no value in absolute value greater than 67 108 863 (after rounding, if not integral) may
be assigned to an integer variable during execution of the program. This applies also to
implicit assignments to integers (c.f. Revised Report 3.1.4.2., 4.7.3.1., 5.2.4.1., and 5.4.4.).
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An exception is the integer procedure entier whose value range is not restricted in the
above sense.

5.2. Variables of type real occupy two memory words and are represented in floating–
point representation with a mantissa of 40 binary positions (40 bits) plus sign bit and a
binary exponent of 11 bits plus sign bit. In general their values represent non–integral
numbers with a relative precision of about 12 decimals. Integral numbers that have an
absolute value less than 1 099 511 627 776 can be represented exactly by real variables.

5.3. The elaboration of expressions takes place always in floating–point arithmetic. The
arithmetic operations +, −, ×, and / produce the best possible result that is representable
in aforesaid representation, with preservation of the monotony (this implies, e.g., that if
a < b and c ≥ 0, then a × c ≤ b ×c).
If the operands to the operations +, −, or × are integral numbers with absolute values
less than 1 099 511 627 776 and the result of this operation also does not exceed this limit
in absolute value, than this result is exact.
The arithmetic operation ↑ delivers a result with a relative precision of about 12 decimals.
If the exponent is an integral number whose absolute value is less than 30 the result is
constructed by repeated multiplication.

5.4. The absolue value of expressions and variables of type real ranges from about 10−616
to about 10628 or is exactly 0. If in an arithmetic operation a result is formed that is in
absolute value greater than about 10628, than the maximal representable result is formed
with the correct sign. Addition or subtraction produces a result 0 only if the absolute
values of both operands are equal ”bit by bit”. Multiplication produces a result 0 only
if at least one of the operands equals 0. In all other cases the result of an arithmetic
operation has an absolute value of at least about 10 − 616.
Division by 0 produces, if the denominator differs from 0, the in absolute value greatest
representable value. The value 0/0 can be different from case to case.

5.5. The value of relation a = b is true only if the two operands a and b are equal
”bit by bit”. Relations a > b and a < b produce surely false if the two operands are
equal ”bit by bit”.

6. Memory occupation

6.1. For ALGOL programs and their working space (variables, arrays, and block adminis-
tration as carried out by the ALGOL system) provisionally about 18 000 memory places
(”words”) are available.
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A variable of type real occupies two words of memory, variables of type integer and
Boolean one word.
real arrays take two words per element, integer arrays one word per element, Boolean

arrays one word per 27 elements.

6.2. If during execution of a program the available memory space is exhausted, execution
is disrupted with an error message with error number 609.
. . .

7. Library procedures

The preliminary library of the X8 ALGOL system contains the following groups of pro-
cedures that need not to be declared in the program:

7.1. Elementary functions

7.1.1. real procedure abs (x); value x; real x;
abs:= if x ≥ 0 then x else −x;

7.1.2. integer procedure sign (x); value x; real x;
sign:= if x = 0 then 0 else if x > 0 then 1 else −1;

7.1.3. real procedure sqrt(x); value x; real x;
If the square root of x is exactly representable in the floating–point arithmetic of
the X8, the exact result is delivered. In particular sqrt (i × i) = i holds for i =
0 (1) 1 048 575. For x < 0 a result 0 is given to sqrt (x).

7.1.4. real procedure sin (x); value x; real x;
The conditions sin (0) = 0 and abs (sin (x)) ≤ 1 are satified.

7.1.5. real procedure cos (x); value x; real x;
The conditions cos (0) = 1 and abs (sin (x)) ≤ 1 are satified.

. . .

7.2. Input procedures

As input device is available a paper–tape reader with a speed of 1000 punchings/second
for 5–, 7,– or 8–track paper tape. There are three input procedures for the tape reader:

. . .

7.3. Output procedures

Provisionally two output devices are available:
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a) a line printer, with a speed of 7 to 20 lines/second. Per page 60 lines are available with
a line width of 144 positions;
b) a paper tape punch for 7–track paper tape with a speed of 150 heptads/second.

. . .

7.4. Procedures that govern the computation

. . .

7.5. Various procedures

. . .

8. Punch conventions for the punching of number tapes

. . .

9. The timing of several operations

Since as a rule the timing of an operation in the ALGOL system for the X8 depends on
the specific syntactic construction the following figures are quite global. In particular the
evaluation of formal identifiers will sometimes last relatively long. But the figures given
here allow a crude estimation of the excution times of certain program parts. All times
are given in µsec.

9.1. The diadic arithmetic operations:
a) integer operands:

+ or − 8 or 20
÷ 190

otherwise as for real operands,
b) real operands:

+ or − 13 or 25
× 40 or 52
/ 65 or 77
↑ 2 290
↑ 3.14 1500

If two values are given the smaller value holds in the case that the second operand is
simple ( a constant or a simple non–formal identifier).
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9.2. The logical operations:
¬ 5
∧,∨,≡,⊃ 21

9.3. Indexing:
a) integer or real array 50 + 85 per index position
b) Boolean array 150 + 85 per index position

9.4. Assignments:
a) to a real 15
b) to an integer 16
c) to a Boolean 14

9.5. For statements:
for i:= 1 step 1 until n do 80 per iteration

9.6. Block entrance and exit: 45

9.7. Array declaration: 150 + 100 per index position

9.8. Procedure entrance and exit:
110 + 70 per formal parameter

9.9. abs 13
sign 13
entier 80
sqrt 340
sin 470
cos 450
arctan 725
ln 580
exp 735
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