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ABSTRACT

An interpretive machine code, called INTCODE 2, is
described. It is intended for use in boqtstrapping the
BCPL compiler onto a new machine. Certain advantages
are claimed over earlier interpretive methods, and these
are discussed. A code generator for INTCODE 2 has been
written, suitable for interfacing to the BCPL compiler
currently in use at the University of Essex. The speci-
fication of an ANSI FORTRAN IV loader/interpreter system
for INTCODE 2 is also given, and discussed in some

detail.



INTRODUCTION

1. The BCPL language

BCPL is a general purpose programming language which
was originally designed as a tool for compiler writing
and other system programming applications. The name
derives from that of the language on which it is based,
the initials standing for "Basic CPL". CPL was a language
developed by Cambridge and London Universities in the mid-
sixties.

BCPL is a block structured language with some
similarity to ALGOL 60, and like ALGOL, it has recursive
functions. However, it has but a single data type - a bit-
string which occupies a single memory cell - and no type
checking is performed either at compile time or at run time.
It contains several restrictions not found in ALGOL or most
other high-level languages, the purpose of these restrictions
being to allow more efficient code to be generated for any

given program. For further details see {1}.

2. The portability of BCPL

BCPL was designed to be a portable, high-level
"assembly language®". It has a self-compiling compiler,
since, as stated above, it was designed with compiler
writing in mind. As such, it is an ideal language in which
to write a BCPL compiler. One might even say that the

writing of BCPL compilers is a major application of BCPL!



Due to the portability requirement, the method for
compiling BCPL differed somewhat from that used for other
languages. Programs were compiled first into an inter-
mediate object code for a pre-defined abstract machine
(called the O-machine), this object code being known as
OCODE. The OCODE was then translated in a separate pass
into machine code for the particular computer on which the
program was to be run {2}. This method meant that if the
BCPL compiler, or indeed any other program written in BCPL,
was to be transferred to another machine (henceforth
referred to as the "target" machine), all that needed to be
available on the target machine was a code generator to
convert the OCODE form of the program into the appropriate
machine code. For bootstrapping purposes when producing a
new implementation of the compiler, a simple non-optimising
version of this code generator was comparatively easy to

produce.

3. The OCODE abstract machine

To quote Martin Richards (one of its progenitors),
OCODE was a "macro-like low-level language" {2}. It was
thought that the final translation from OCODE to machine
code could possibly be done by using a general purpose
macro processor such as GPM {3} or, later on, ML/I {4}.

To this end, OCODE was normally distributed to intending
implementors in character form, although production systems
usually used a binary form since this was faster and easier

to process. It was, and still is, very difficult to write



macros to map OCODE into assembly language for a target
machine, as OCODE statements may have a variable number of
arguments, the last argument not being marked in any
special way. The current state-of-the-art in macro proces-
sors does not extend to anything that can handle this kind
of input, {5}. Instead, the number of arguments was
specified as (usuélly) the first argument of the statement.
I have, in fact, succeeded in mapping OCODE into assembly
language for an ICL 4130, using ML/I as a mapping tool, but
the resulting code was impossibly large and inefficient,
although part of the blame must be attributed to the
unsuitability of the target machine, which has only one
accumulator and only one index register.

OCODE contained fifty-six different statements, each
starting with a key word followed by the arguments. Spaces
and new lines were treated as separators and had no other
significance. The arguments could be either positive or
negative integers, or labels. A label was specified by
the letter L followed by a positive, non-zero integer.

OCODE expression evaluation made extensive use of a
run-time stack, which, although necessary for the imple-
mentation of recursion, was also used to hold the Reverse
Polish forms of expressions for evaluation. This made the
job of writing a good optimising code generator to produce
conventional machine code a decidedly non-trivial matter,
especially as (for a new implementation of BCPL) it was often
done by someone with little or no initial knowledge of

BCPL, and OCODE leaned heavily on BCPL itself.



4., - The INTCODE approach to improved portability

A simpler method of implementing BCPL was later
devised. This was to distribute the compiler in the form
of an interpretive machine code called INTCODE. To avoid
later confusion, I shall refer to this as INTCODE 1 from
now on, .although it was never actually known as such.

INTCODE 1 was compact, and its assembler and inter-
preter were trivial to implement since the language
consisted of only eight main types of statement {6,7}.
However, it was not particularly readable, was still
strongly dependent on the structure of BCPL, and required
an input-output library for the target machine to be
written in INTCODE 1. It did have the advantage that
less initial knowledge of BCPL was required, and the task
of writing the library was eased because most of it dif-

fered little from machine to machine.

5. The INTCODE 2 abstract machine approach

Both of the above methods of portability suffered
from the defect that their abstract machine (which is a
"stack" machine) bore little resemblance to most “"real"
machines (which are "register" machines), excluding
machines with hardware stack operations such as the
Burroughs B5000, the English Electric KDF9, and more
recently, the ICL 2900 series. This made the code obs-
cure and difficult to debug. However, the INTCODE 1
method in particular still finds favour among users of

small machines, who use the interpreter as their main



BCPL system. The method gives a considerable advantage
in the size of the code generator (about 4 to 6 times
smaller than with the OCODE method) although the execu-
tion speed naturally suffefs. The speed factor is of the
order of a tenfold increase in time taken.

I thus developed a new interpretive machine code to
aid transportation of the new University of Essex BCPL
compiler. This compiler is of conventional form, with a
production version generating code directly from the
syntax tree rather than via some intermediate form. It
has been written with portability in mind, insofar as
some attempt has been made to separate the machine-
dependent and machine-independent sections of the logic.
I am of the opinion that this has only been partially
successful.

The new interpretive machine code is known as
INTCODE 2, which, though still capable of closely model-
ling the operations required by most BCPL programs, bears
a close resemblance to the order code of a typical medium-
sized machine. As such, it is quite unlike OCODE, and is
much nearer, say, the intermediate language discussed in
papers on the UNCOL conéept,'{e}. However, one does not
get something for nothing, and the price paid in this
case is an increase in the size and complexity of the
interpreter, and an increase in the size of the program
being interpreted. To partially offset this, INTCODE 2
has been designed with compactness of code being given

priority over execution speed, as usually you can wait



longer for a program to run, but there is rarely any
easy way of increasing the storage available on a
machine beyond certain fixed hardware limits. The
question of interpreter complexity is dealt with by
supplying intending implementors with a ready-written
interpreter (see below).

The INTCODE 2 code generator is primarily intended
as an exemplary code generator which intending imple-
mentors are meant to use as a basis for writing a code
generator suitable for the target machine. To make
this possible, INTCODE 2 has to look like a typical
order code for a medium-sized machine, to reduce the
machine-dependence of what is, after all, a relatively
machine-dependent sort of program. It is structured so
that modifications, necessary because of some peculiarity
of the target machine, are easily incorporated.

The word size of the INTCODE 2 abstract machine is
not specified, but should be at least 16 bits. The
implementation "kit" consists of the interpreter together
with source and INTCODE 2 copies of the parser and the
INTCODE 2 code generator. The interpreter is written in
ANSI Standard FORTRAN IV, this being probably the most
widely available high-level language, with input-output
facilities which usually require the minimum of altera-
tion to a program at different installations. Another
argument fbr the use of FORTRAN is that, in general,
FORTRAN programs compile into relatively efficient code

due to the restrictive nature of the language. However,



if, for some reason, FORTRAN were not available on the
target machine, it would not be too difficult to write
the interpreter in some other language, aue to the con-
ventional nature of the INTCODE 2 abstract machine and
the restricted format of an INTCODE 2 program. (The
restriction on format has been included in deference to
the requirements of Standard FORTRAN). This problem is
unlikely to arise, though, as the widespread use of
FORTRAN almost forces hardware designers to produce
machines capable of processing it, and manufacturers'
software departments to provide compilers for it. For a

detailed account of Standard FORTRAN, see {9}.

6. Use of a macro processor as a tool for implementing

INTCODE 2

I considered that it would be a good idea to make
the format of INTCODE 2 suitable for input to a marco
processor, to provide an alternative method of implemen-
tation. This method would involve writing macro
definitions to map INTCODE 2 directly into some language
acceptable to the target machine, and the use of a general
purpose macro processor such as ML/I {4}, or STAGE2 {1l0}.
The macro processor used would have to be capable of
operating in free mode, that is, without a warning
character preceding each macro call. This is necessary
since the macros may be needed to adjust format, and in
"any case, if a warning character were used, it would have
to be included as part of INTCODE 2, which is clearly

undesirable since the actual character used would almost



certainly vary between different macro processors. Thus
GPM would be unsuitable, but STAGE2 would be acceptable
because it operates in free mode at all times, and so
would ML/I since it can run in either free or warning
mode, the choice being left to the user. A powerful
macro assembler might also be used on some machines.

It soon became evident that suitability for macro
processing conflicted with other ?equirements. One
example of this is the method usedvfor compiling forward
references. The backward chaining techndique is employed,
and this kind of information is hard to pass through a
macro processor and hence to an assembler program. The
method used in OCODE, which is to generate unique
numerical labels as they are reqﬁired, is far more amen-
able to macro processing. This was not done originally
because of the extra complexity involved in the loader.

Another snag with the macro-processor approach is
the input-output library. This is incorporated in the
interpreter in the standard INTCODE 2 system, but it
would have to be hand-coded in tﬁe case of implementation
by macro processor. In addition, the overall system would
probably be very slow and unsuitable for use-as even a
tempofary production system. This is because macro pro-
cessors are notoriously slow programs, although”ggainst
this must be set the fact that they are readily available
on many machinesdue to their own inherent portability {11}.

I therefore decided to concentrate on implementation

using an interpreter. Despite this, it would probably be



possible to modify the INTCODE 2 code generator to produce
code suitable for input to a macro processor. This could

well form the basis of a subsequent project.

7. The procedure for transfer of the compiler

The procedure for transfer of the compiler to a
target machine, given the "kit" mentioned above, is as
follows.

Once the interpreter has been modified to fit in with
any local FORTRAN idiosyncrasies, the INTCODE 2 version of
the compiler is loaded and debugged. This is the original
parser and the original code generator for INTCODE 2. A
code generator for the new machine is then written in BCPL
and compiled, using the interpreted compiler, into INTCODE
2. The parser, as supplied in the "kit", and the new code
generator are then loaded, producing a full compiler for
the target machine, but running under the interpretive
system. The parser and the new code generator (in source
form) are then compiled using this, the result being a
machine code version of the BCPL compiler for the target
machine. A diagram of the procedure is given below.

This procedure has the advantage that the debugging
loop for the new code génerator encompasses only one
machine (the target machine), thereby reducing the problem
of inter-machine data exchange to a single occasion. The
method is often known as "pulling", since the compiler is
“pulled" onto the target machine with only initial assis-
tance from the donor machine. There is evidence that this

method works well for other pieces of software, for example
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the STAGE2 macro processor {10}. An example of the
opposing technique ("pushing") is given by the implementa-
tion of the ML/I macro processor {11}.

Another advantage is that, as with INTCODE 1, there
is no necessity for a new code generator to be written
at once, since the INTCODE 2 system will function
adequately (though probably very slowly) as a production
system. This allows the implementor to get the "feel" of

BCPL before writing the code generator.

8. Writing the new code generator

There is another justification for designing the
INTCODE 2 abstract machine to appear much like a conven-
tional machine. This is that the task of modification of
the code generator for a new machine is a lot easier if
the INTCODE 2 machine and the target machine are similar
in architecture. -

The writing of the new code generator is not a
trivial operation, and in the past it has been customary
to modify an existing code generator rather than to write
one from scratch. The INTCODE 2 code generator has been
written so that it is easy to modify for different target
machines. All machine-dépendent sections have been kept
together as fér as possible, and thus the task of writing
the new code generator for thé target machine is reduced
to that of rewriting certain parts of the INTCODE 2 code
generator, and changing certain compile-time constants.
It is here that the necessity for an exemplary code
generator is evident; the changes required are mainly in

header files, not the main program body. These header



files define selector ("bit-picking") formats for packing
information into a machine word, and clearly they need
modifying for machines with differing word sizes. They
also define machine-dependent constants such as word size,

number of bits occupied by a character, etc.

9. Layout of the following Chapters

Chapter 1 describes the INTCODE 2 machine language in
some detail, and explains the reasons behind its eventual
form. Chapter 2 gives an account of the INTCObE 2 code
generator, in particular the methods used to make it as
exemplary a program as possible.

Since the code generator on which the INTCODE 2 code
generator is based was still in the development stage, and
INTCODE 2 along with its code generator were still being
designed, the interface between the parser and the code
generator was somewhat fluid. This meant that writing and
debugging the code generator took much longer than anti-
cipated, and it was not, therefore, possible to write and
test the interpreter in the time available. The inter-
preter was fully specified in all important aspects since
it is closely related to the structure of INTCODE 2 itself.
Chapter 3 thus contains a specification of a probable form
of the interpreter, while Chapter 4 concludes by, among
other things, examining the usefulness of this method of
compiler portability compared to other methods in current

use. .



CHAPTER 1 - THE INTCODE 2 ABSTRACT MACHINE

1.1 Design requirements

The INTCODE 2 “"abstract machine" had to satisfy several
important design constraints. It had to be a fairly con-
ventional register machine, in order that its code generator
could be used as a model for subsequent code generators on
various target machines. It also had to have a small word
size, so that a wide range of target machines could be
catered for. To this end, it was decided to make the word
size a variable gquantity, with the proviso that it had to
be at least 16 bits in order to accommodate all the fields
of an instruction. The number of accumulators was also made
variable for similar reasons, the minimum number allowed
being three.

The restriction to a 16-bit word proved to be a major
design.headache, since it was necessary that most instruc-
tions should occupy only one word. This naturally produced
many problems when it came to designing methods of accessing
storage, since far too few bits were available in a single
word for specifying a reasonable number of different storage
cells. Bit fields were also required within an instruction
word for specifying such things as address indirection,
floating point operations, stack addressing, accumulator
numbers, and the presence of immediate (sometimes known as
"literal") operands.

It was decided at a fairly early stage that the
INTCODE 2 machine should have either address indexing or

indirection capabilities, but not both. This was partially



due to the above-mentioned problem of how to specify
everything in a single word, but mainly to the fact that
since not all real machines in common use have both, the
code generator (which is meant to be exemplary - see
Section 5) would require considerable modification to

use only indexing or indirection. Some machines, for
example the ICL 1900 series allow only some of the general
purpose registers to be used for indexing purposes; and
this complicates the task of register allocation;

It is, however, fairly simple to model indirection
' using one index register, so the course adopted was to
allow indirection to a single-level only, and to incorporate
no index registers in the INTCODE 2 machine architecture.
This also had the advantage of requiring only one bit in an
instruction word to indicate indirection of the specified
address.

Another design decision was the number of éccumulators
to be incorporated in the INTCODE 2 machine. The final
decision was affected by the difficulty of using an
accumulator O; there are two reasons for this. The first
is that the original PDP-10 code generator does not use
accumulator O in any of the code it compiles, and when
accumulator O is passed as a parameter between its inter-
nal routines, it has a special meaning. This will be
briefly explained. The register allocation is done by a
routine called NEXTREG, taking a single parameter, which
may be a positive or negative accumulator number or the
value zero. Zero means that any free accumulator is
acceptable, a negative number means that any free accumu-

lator, except the one specified by the absolute value of



the parameter, is acceptable, and a pésitive value réquests
that the accumulator specified by the parameter is to be
allocated if it is free. The effects of this convention
‘range over the whole code generator, and there was not

" sufficient time to change all the routines depending on it.
The second reasons for not using an accumulator O is due
to the expected form of the INTCODE 2 interpreter system.
If the interpreter (see Chapter 3) were written in FORTRAN
and it modelled the accumulators as store locations, an
accumulator O would require special treatment because
FORTRAN arrays do not have zero elements.

To minimise accumulator dumping during expression
evaluation, at 1eas£ two accumulators were required. It
was finally decided to use three, since two bits were
required in any case for the accumulator field of an
instruction, if accumulator O was not to be used. One way
round this might have been to have the interpreter mapping
each accumulator reference into a number one larger, then
two accumulators could have been specified by only one
bit.

The above decision does not affect the exemplary
nature of the code generator as a whole, and it is easy
to change the appropriate parts to use less accumulators
if this is required when writing a production code
generator.

Another important aspect of the INTCODE 2 machine
design was the variable number of words that an instruction
may occupy. Multi-word instructions are necessary in order

to correctly specify addresses which exceed the capacity of



the add;ess part of a single-word instruction. This
includes (for all practical purposes) every jump
instruction. It was necessary to earmark a bit in the
instruction word to specify whether the instruction was
continued in the following word. Three-word instructions
are the largest that occur, and these are identified by
the fact that they are all "byte selection" operations.

It was found that a reasonable set of instructions
totalled ébout fifty-five in number. (Many instructions
perform similar functions with differing.types of
operands). Clearly, therefore, six bits wére required
for an operation code field in an instruction word. This
left six bits for the address part of an instruction,
assuming the "worst case" of a 16-bit machine. A diagram
of the word layout is given bglow.

The six-bit address field is useless for most
applications. ‘A "stack" variant on all relevant instruc-
#ions was thus allowed, since most operations in a BCPL
program tend to be on local variables located in the
current stack frame. Use of more than one operation code,
to specify different types of operand for the same opera-
tion, allowed this to be included without ﬁsing any more
bits in an instruction-word. Thus, it is possible, even
on a l6~bit machine, to access at least the first 63
variables in the current stack frame, using only a one-
word instruction. In addition an immediate (or "literal")
operand is possible, if sensible, with a value of up to
63 with a 16-bit one-word instruction. This value of 63

obviously increases if a larger word size is used.



A\ Function Part N Address Part

l— Accumulator Part

|-—- Indirection Bit

Next word Bit

LAYOUT OF AN INTCODE 2 INSTRUCTION WORD




It was still necessary to specify variations on.an
instruction, such as the fact that some operands were to
be treated as floating-point numbers. Although many BCPL
compilers do not offer floating point facilities, I felt
that an exemplary compiler should cater for them, as other-
wise a form of "inbreeding" ‘sets in where the compiler's
"offspring" do not have such facilities either. Usually
the only way to include them afterwards is to code them in
machine code and patch them in, never a good idea at the
best of times. (This is discussed further in {12},
Chapter 2.2). However, floating point operations do not
feature extensively in the compiler, and I considered it
acceptable that such operations should always occupy two
words. Thus, the address part of the first word of a two-
word instruction is used to store infqrmation on such
instruction variants. ("Waste not, want not" - Proverb).

A final pfoblem was the exact treatment of the
accumulators. Should they be treated as low-address store
locations, as on the DEC PDP-10 and the ICL 1900, or
should they appear as hardware non-addressable registers
such as are found on, say, the DEC PDP-11? A compromise
was eventually worked out where they are effectively
treated as store locations, but an entirely separate set
of operation codes is uéed to specify ihter-accumulator

operations.

1.2 The final form of the INTCODE 2 abstract machine

Such difficulties as those detailed above caused the

development of the INTCODE 2 machine to become an



essentially iterative process, despite the most caréful
initial design. For instance, I did not realise at

first that use of the accumulators as store locations
would require special treatment, not only for the reasons
given above, but also because any instruction referencing
an accumulator as a store location would have occupied
two words! Similarly, the difficulty in the use of
accumulator O did not come to light until I studied the

code of the PDP-10 code generator in detail.

1.2.1 General description of the machine

The INTCODE 2 machine is a conventional single-
address stored program register machine, with a store
consisting of equal sized cells addressed by consecutive
integers. Program and data are not mixed within a
given load module, and no code modification takes place
at run time ap&rt from that given by the label and pro-
cedure assignments allowed by BCPL itself. As such, it
is similar to the BCPL "machine" and most modern word
machines. However, a problem arises when dealing with
byte machines such as the IBM 360, where the addresses
of adjacent words do not differ by one. (In this case,
the value is four, since there are four bytes to a 360
word). This has always presented an implementation
problem for BCPL, and the usual solution is to store an
address divided by four, then convert to a byte address
(i.e., multiply by four) whenever an operation such as
vector application is required. The INTCODE 2 machine

is insulated from such worries since its store, as



modelled by a FORTRAN interpreter, is of conventional
form. The implementor of a new code generator needs to
be wary of this point. 3

The word size of the INTCODE 2 machine is imple-
mentation dependent, but as stated in the Int;oduction,
it should be at least 16 bits in order to accommodate
all the fields of an instruction; As stated above, the
number of accumulators should not be less than three,
but whether more are used is again up to the implementor.

There is one auxiliary register, the link register,
(L). This is used to hold the return link following a
call to a routine, being set by the jump to the routine.
Its contents are stored in the current stack frame by
the entry code of the actual routine. Splitting up the
routine call into two distinct parts has the advantage
that should, say, a jump to location zero occur, (perhaps
due to not initialising a variable used to hold any
entry point) some idea of the source of the undefined
jump is available for debugging purposes.

Maention must also be made of the stack pointer, (P).
This points at the base of the current stack frame. It
is altered by operations such as routine calls, which
create a new stack frame, and returns from routines,
which restore a previous stack frame. It is referenced

implicitly by all instructions with a "stack" operand.

1.2.2 Format of an INTCODE 2 instruction

The format of an INTCODE 2 instruction, as it

appears in store, is now discussed. This format may



seem rather complex, but this is defended on the grounds
that it is the only (?) way of packing so much informa-
tion into a machine word which may be only 16 bits wide.
In fact, the method used is quite'logical and easy for
the interpreter to decode.

An INTCODE 2 instruction word (or the first word in
the. case of a multi-word instruction) consists of five
parts. They are: function‘part, accumulator part,
address part, next word bit, and indirection bit. These

are covered in detail below.

l1.2.2.1 The Function Part

This is a six~-bit field specifying the particular
operation to be performed. The various possible
operations are discussed in a later section and summarised
in Appendix A.

This part of the instruction, in conjunction with
the next word bit, governs the interpretation of the

address part.

1.2.2.2 The Accumulator Part

The accumulator part of an instruction is variable
in size, depending on the number of accumulators used.
It specifies the number of the accumulator which is to
be operated on during the execution of the instruction.
For some instructions, such as uncqnditional skips, its
value is immaterial and undefined. However, it is used
in one case to convey extra information about the

instruction, in order to economise on operation codes.



Since the minimum number of accumulators allowed is

three, the minimum width of this field is two bits.

l.2.2.3 The Address Part

This field also has an implementation-dependent
width. 1Its size is equal to the word size less all the
space requiréd for the other fields. For example, on a

16-bit machine, using three accumulators:

Function s 6 bits
Accumulator : 2 bits
Next word : 1l bit

Indirection : 1 bit

Total ... ¢ 10O bits

Therefore, six bits remain for the address field.
In fact, the size of the address field must be at least
the size of the accumulator field plus four bits, which
means in practice that the configuration of a machine
word given above is the only possible one for a 1l6-bit
machine. The extra four bits are used in the "accumula-
tor operate" instructions - see section 1.2.3.1 below.

The exact meaning of the address part depends on
the operation code and the status of the next word bit.

The various possibilities are outlined in section 1.2.3

1.2.2.4 The Next Word Bit

The function of the next word bit is simply to

indicate whether the word occupying the location



immediately after the word containing the operation code,
forms part of the instruction, (i.e. whether the operand
is specified by the first word of the instruction). A
zero in this position means a one-word instruction, a one
means that two words are used.

A byte selection opergtion uses a further word in
either case, to specify the selector t§ be applied. The
interpreter knows about this extra word because it only
. occurs with the byte selection operations, and is thus
processed automatically by the section of the inter-

preter which deals with such operations.

1.2.2.5 ' The Indirection Bit

The indirection bit is a single bit which specifies
whether the effective address, as calculated, is to be
replaced by the contents of the storage cell specified
by such an address. A one in this position indicates
that the replacement is to take place, and a zero that

it is not.

1.2.3 - Phe use of the address part in an INTCODE 2

instruction

The exact meaning of the address part in an INTCODE 2.
instruction depends oﬂ the setting of the next word bit,
and also, on the operation code. It is convenient to
split the cases up into those where the next word bit is

a zero and those where it is a one.

1.2.3.1 ' Use of the address part when the next word bit

is a zero

There are three possibilities. If an immediate form



of an instruction is sensible, there are two main obera-
tion codes for that instruction. For one of these, the
address part forms an unsigned integer which is treated
as an immediate operand. The other interprets the
address part as a reference to a storage cell at the
given offset in the current stack frame. A method thus
exists for referencing, in a one-word instruction, vari-
ables at low stack effects.

Some instructions exist in INTCODE 2 for which an
immediate operand is meaningless (e.g., an accumulator
store instruction). In this case there is only one
operation code for that instruction, and the address part
is always interpreted as a stack oﬁfset.

The third case is rather a special one. There are
three operation codes in INTCODE 2 known as "operate"
instructions. They do not reference any storage cell,
and thus the address part is available for specifying a
multitude of functions. One code is used for the more
conventional "operate" instructions such as "return from
routine”, but the other two are used for inter-accumulator
operations. Four bits are used to specify which operation
to perform, and the remainder specify which accumulator is
to be used as operand.. This allows a total of 32 accumula-
tor-to-accumulator operations, and accounts for the

restriction to three accumulators on a 1l6-bit machine.



1.2.3.2 Use of the address part when the next word bit

is a one

Since the next word bit is a one, the address part

is not used to specify the operand, this function being

performed by the following word in store. It is, thus,:

available for conveying additional information in the

form of flag bits. These are as follows:

(1)

(2)

(3)

A bit signifying that the following word is
to be treated as an immediate operand. This
provides a method of referencing large con-
stants which is more economical on storage
than the more usual method of storing them
separately (a saving of one word for each
different constant used).

A bit signifying that the value given in the
following word is to be treated as a reference
to some storage cell at the given offset in
the current stack frame. It covers the case
when a one-word instruction is insufficient
for this purpose.

A bit which states that the operation is to
be performed in floating point mode if this
is meaningful, e.g. floating point addition
instead of integer addition. It may be com-
bined with either of the previously mentioned
bits, although floating point ;immediates"are
best avoided due to the variations in
representation of floating point numbers on

various machines.



The remaining bits in the address part are unused at
present. If none of the bits are set, the instruction is
treated as a normal integer operation with the next word

specifying 'a direct store address.

1.2.3.3 Instruction Groups

From the above, it can be seen that the exact inter-
pretation of an instruction word and address depends on
the particular operation code. It is convenient to split
the instructions into seven groups with similar legal

operand combinations. These groups are as follows:

GROUP 1 - Instructions that can have no immediate variant.

GROUP 2 - Instructions that may have an immediate variant.

GROUP 3 - Stack variants of instructions in GROUP 2 (i.e.,
the single word form refers to a stack offset
rather than an immediate operand).

GROUP 4 - Conventional "operate" instructions, where the
function part contains code 00 (OP4).

GROUP 5 - Accumulator "operate" instructions corresponding

. to instructions in GROUP 1 and some instructions
in GROUP 2. The function part contains code
0l (OP5).

GROUP 6 - More accumulator "operate" inStructions, cor-
responding to instructions in GROUP 2 not
covered by GROUP 5. The function part contains
code 02 (OP6) .

GROUP 7 - INTCODE 2 pseudo-operations (codes greater than

- 63).



1.2.4 Instructions available on the INTCODE 2

machine
It is not proposed to go into great detail here about
all the instructions which are available, since many are
found on most conventional modern machines. Brief des-
criptions, will, however, be given, with fuller discussion
of the more "interesting" instructions. Appendix A should

be consulted for a complete list.

l1.2.4.1 Accumulator load instructions

Instructions included: LDA, LMA, LCA, LNA, LAA, LFA.

These are perfectl§ conventional instructions apart
from LAA (Load address of operand) and LFA (Load and
convert to and from floating point format).

LAA is necessary since it is not possible to use an
ordinary load instruction with an immediate operand, as
the operand may be avcell in the current stack frame, in
which case its address will not be known until rﬁn time.
This could be circumvented by always using the two-word
form of an instruction and setting the 'stack' and
'immediate' flag bits, but I considered it worthwhile to
include a method which allowed single-word forms of such
an instruction,‘sincevBCPL often requires vector
addresses (which are addresses in the current stack
frame) to be calculated and stored. In addition, I
felt that it was not a good idea to use an ordinary load
immediate operation to specify an address load, since
although these operations are identical on most machines,

there are one or two where this is definitely not the



case.. For example, the DEC PDP-10 has only an address
load instruction, although in some cases this is
equivalent to, and may be treated as, an immediate load.

LFA converts the contents of a cell between the
formats for fixed point and floating point numberé. If
it is specified as a floating point operation (i.e., its
floating point flag bit is set) it loads the contents of
the storage cell specified by the effective address into
the appropriate accumulator, and converts it .to floating
point format. Otherwise its effect is to load the word
as before, but to assume that it represents a floating
point number which is to be converted to fixed point. It
is used for implementing the unary operators FIX and

FLOAT, which are incorporated in the compiler.

1.2.4.2 Operations on store locations

Instructions included: CLS, STA, AOS, SOS.

Apart from STA (Store accumulator) which is
obviously essential, all of these instructions are
included purely for optimising purposes, to reduce the
number of instructions executed and the amount of store
occupied by the program itself. It is a simple matter
to modify the INTCODE»2 code generator if the target
machine does not possess such instructions, when writing
the production code generator for the target machine.
This is because the routine which compiles code using
these operations is largely table driven, so that most

of the work is concerned with just altering the table.



1.2.4.3 Jump instructions

Instructions included: JMP, JOT, JOF.

JMP is an unconditional transfer of control to the
location specified by the effective address. Since no
accumulator need be specified, the accumulator field is
used to say whether or not-the return link is to be
placed in L to be picked up by a routine entry instruc-
tion. (ENT, see section 1.2.4.9). The link is only
placed in L if the accumulator field is non-zero.

It could be argued that it would be simpler to
store the link in L on execution of every jump, but this
complicates the situation if tracing is to be included
in INTCODE 2 at some later stage. It might be preferable
to redefine this operation so that a zero means "do not
store the link" (so that tracing would not occur), a one
means "store the link for indirect jumps only" (for
routine application and traced GOTOs) and a two means
"always store the link" (for a full trace).

JOT and JOF are conditional transfer instfuctions
using a truth value hold in the specified accumulator.
They could not, therefore, be traced using the above
method, since the accumulator field is Already in use.
BCPL has a convention that a word with all the bits set
to ones means "true" and a word with all the bits set
to zeros means "false". The interpretation of any
other value is normally left to the implementor, but I
felt that it would be reasonable to perform the control
transfer only if the appropriate condition is exactiy

satisfied. I would expect the writer of the inter-



preter to continue this convention when implementing JOT

and JOF.

1.2.4.4 Sshift instructions

Instructions included: SHL, SHR, ROL, ROR, ASL, ASR.

All of these instructions should be self-explanatory,
as they correspond exactly to the BCPL logical shift,
logical rotate, and arithmetic shift operators. The number
of bits shifted is Specified by the address part of the
instruction, which may be an immediate operand in the case

of a shift whose distance is known at compile time.

1.2.4.5 Logical operations

Instructions included: AND, IOR, NQV.

The logical operations perform the obvious bit-wise
logical functions. An equivalence instruction (EQV) was
originally jncluded in addition to the not-equivalence
(NQV) but was eventually omitted due to lack of spare
operation codes, on the grounds that it was probably the
ljeast used of those operation codes which could be des-
cribed with existing INTCODE 2 instructions. (This is
certainly true as far as the compiler itself is
concerned). An equivalence operation is compiled into
not-equivalence followed by logical inversion using LCA

(Load complement).

1.2.4.6 Arithmetic operations

Instructions included: ADA, SBA, MUL, DIV, REM.

These should all speak for themselves except possibly



REM, which is a "remainder" operation. It is not strictly
necessary, but reduces the amount of code needed for
remaindering, which occurs in several places in the com-
piler. Once again, it was felt that separate operation
codes ought to be provided for logically separate operations,
and that to compile REM as an auxiliary function of DIV

would not be a good idea.

1.2.4.7 Conditional skip operations (memory reference)

Instxuctions included: SLE, SLS, SNE, SEQ, SGR, SGE.

This group of instructions is a set of skips which test
the contents of an accumulator against the contents of the
effective éddress, and skip the next instruction in sequence
if the condition holds. It should be noted that the "pro-
gram counter" in the interpreter may have to be incremented
by one, two or even (in the case of a following selector

operatioh) three words in order to produce the right effect.

1.2.4.8 Skip operations (non-memory reference)

Instructions included: SKP, SKC, SOT, SOF.

SOT and SOF are skip versions of JOT and JOF, once
again testing a truth value in an accumulator. SKC skips
unconditionally énd clears the accumulator, allowing very
compact code to be compiled for conditional expressions.
As it is not very likely that the target machine will
possess such an instruction, it can be argued that this
detracts from the exemplary nature of the compiler. This
is unfortunately one of those cases where there are con-

flicting requirements. (Ease of rewriting vs. size of an



INTCODE 2 program).

. SKP is a simple unconditional skip, about which no

more need be said.

1.2.4.9 Routine entry code and routine exit instructions

Instructions included: ENT, RTS.

These two instructions may be thought of as "macro-
instructions" since they perform all the operations
required at the entry to and exit from a routine, such as
preserving the link (on entry) and adjusting the runtime
stack pointer to point at the appropriate stack frame.

The amount by which the stack pointer needs to be adjusted
is given by an extra word placed after the JMP instruction
that called the routine.

Two cells are reserved at compile time, at the base

of every stack frame for storing link information.

1.2.4.10 Program termination instructions

Instructions included: FIN, HLT.

The FIN instruction corresponds exactly to the BCPL
command FINISH. Its function is to terminate the program
run and return control to the system after the interpreter
has closed input-output; etc.

HLT is designed to be an abortive termination
instruction. The operation codes have been arranged in
such way that a word consistiné of all zeros will appear
to be a halt instruction, thus providing a small degree
of protection should a program "run amok". It is expected

that the interpreter would set all unused locations in the



machine "store" to zero before commencing execution of a

program.

1.2.4.11 Error trap instructions

Instructions included: ERR.

If an error is detected during compilation, and the
error is of such a type that grossly erroneous code would
be generated, the compiler plants this instruction,
followed by four parameter words for the error trap
service routine which should be included in the inter-
preter. These parameter words specify the error number,
the original line number on which the error occurred, and
the addresses of two strings which give the name of the
source file being compiled and a suitable error message.
The interpreter is expected, on execution of this instruc-
tion, to print out appropriate comments on a monitoring
channel, then to either terminate execution or return

control to the program following the error trap code.

1.2.4.12 Byte manipulation instructions

Instructions included: LDB, DPB.

Strictly speaking, these instructions perform load
and store operations. They are used-for implementing the
BCPL SELECTOR and BYTE operators. Since their use
introduces some machine-dependence into a program, they
are avoided in the distributed version of the compiler,
which only uses full-word selectors and bit fields. They
are thus treated separately here. They have an extra word

after the one or two making up the actual instruction,



this specifying the word and field to be operated on.
The format of the extra word is given in Apéendix A.

There is a special feature incorporated in the
INTCODE 2 code generator which effectively allows full-
word SELECTORS to be defined without prior knowledge of
the word size. A bit field-width of -1 is interpreted as
the width of a word on the machine for which code is
being compiled. This idea could be extended, with other
negative numbers meaning other pre-defined fields such as
the first byte in a word, second byte, etc.

The compiler recognises the case of a selector with
a full-word bit field, and compiles conventional load and
store operations under these conditions. Space is saved
by this, and because the distributed compiler will contain
only full-word selector operations, there should be no
occurrences of the INTCODE 2 byte selection operations in
the distributed code.

Selector operations are useful in the compiler, as
fhey allow the packing of data to be varied by altering
SELECTOR definitions, usually held in a header file.

This means that, say, the format of a tree mode can be
varied to suit a particular target machine, with minimal

work by the implementor.

1.2.5 INTCODE 2 pseudo-operations

INTCODE 2 also contains several pseudo-operations
which are included to allow information to be passed to
the loader/interpreter system. Since they are never

actually packed into a word on the target machine, their



codes can be numerically higher than the maximum vaiue for
an operation code. (i.e., greater than 63).

The various pseudo-operations available are discussed
below. Their format is identical to that for a genuine
INTCODE 2 operation, so that the loader need not be con-
cerned with which type of operation it is currently pro-

cessing.

1.2.5.1 Segment start and end operations

Operations included: SEG, ESG.

The SEG pseudo-operation signifies to the loader that
a new segment of code is about to be loaded. The ESG
operation signals the end of a segment.

Both of these operations have a six-character field
which contains the first six characters of the name of
the segment, so that the loader may use this to output
suitabie moniﬁoring information if desired. The ESG
operation additionally terminates any list of GLOBAL
initialisation requests introduced by the GLB pseudo-

operation.

1.2.5.2 ~ Data specification pseudo—-operations

Operation; included: VAL, NUL.

The address field of these operations simply
specifies a value (which may be a relocatable quantity)
for use by the loader in a manner which depends on
context. The VAL pseudo-operation generates a data word
in store, whereas NUL is merely used to specify some

value for use by the loader.



1.2.5.3  String specification operation

Operations included: STR., -

Since character codes differ from machine to machine,
a character string is represented by'the characters them-
selves, with suitable modifications to allow such items
as carriage returns and line feeds to be included. The
argument to the STR pseudo-operation specifies the number
of characters in the string, subsequent 80-character
records of INTCODE 2 containing all the characters of the
string, padded with trailing spaces to form a complete 80-
character record in all cases. (This is a requirement of
Standard FORTRAN)., The actual number of 80-character
records is determined by the loader from the number of
characters in the string as specified by the address part
of the STR pseudo-operation.

The procedure for "special" characters is to replace
them by an "eécape" character (asterisk) followed by a
code letter, a similar method to that employed in BCPL
itself, Naturally, asterisks also require such treatment
in this case. Each character is counted only once when
forming the argument to STR at compile time. (i.e. the

asterisks are not included in the character count).

1.2.,5.4 GLOBAL initialisation request

Operations included: GLB.

This pseudo-operation is included méinly for his-
torical reasons. It is used to specify the initial
values of elements in the global vector, originally used

in BCPL for inter-segment communication but now super-



seded by EXTERNALS. Its argument gives the number of the
highest global referenced within the segment, and it is
followed by pairs of NUL operations giving the number of
a GLOBAL and the address within the segment to which it
is to be initialised. (It is not possible in BCPL to

initialise a GLOBAL to a compile-time constant).

1.2.5.5 External definition request

Operations included: EXT.

The EXT pseudo-operation is used to make known to
the loader any external names which are defined within
the current segment. Its address part contains the value
of the symbol, and a six-character field specifies the
symbol itself, (External symbols are restricted to six
characters in length although they may be equivalenced
inside a segment to a name of any length up to the per-
mitted maximum string length for the implementation. This

is 127 in the distributed version).

1.2.5.6 Fixup chain specification

Operations included: CHN.

Since the code generator produces code on a single
pass over the syntax tree, forward jumps and references
to static variables are chained through the second word
of the instruction involved. (It should be obvious that
all such instructions are two-word ones). The chain is
terminated by a chain link of zero, and its head is
defined by the CHN pseudo-operation, with the address of

the "top" element of the fixup chain in its address part.



CHN is effectively a directive to the loader to
fix up all locations on the chain to the address of the
next word to be loaded. The compiler always creates
chains through the second word of an instruction in

order to simplify matters for the loader.

1.2.6 Some points about the implementation of

INTCODE 2

The format of the routine call has deliberately
been left as open as possible in much the same way as it
was for OCODE. This is because it is essential in BCPL
for routine calls to be compiled into efficient code,
and this is best done by leaving the exact form of a call
to the implementor. Naturally, this refers mainly to the
rewritten code generator for the target machine, but
advantages are also apparent for the interpreted version,
since the overhead of instruction fetching and decoding
is reduced to one instruction in each case. It also makes
for more compact INTCODE 2 programs.

It is easy for an implementor to omit the code
dealing with floating point operations, when writing the
code generator. This is because both sets of machine
operations have the same operation code, but a different
variant is used for the floating point set. This
facility is required if the target machine cannot repre;
sent floating point numbers in a single word, since BCPL

only manipulates single words.



1.2.7  The format of INTCODE 2, as seen by the

" loader/interpreter

A program compiled into INTCODE 2 appears to the
loader as a series of fixed length records. The actual
length depends on the word size of the target machine,
as this sets a limit on the maximum magnitude of
numbers that may be input. All fields of the record
consist of decimal integers except for the last one,
which is a six-position character field. If this field
is not used in a particular instruction, it is padded
with spaces so that all records appear the same length.
This is a requirement of Standard FORTRAN. The
character field is used mainly for specifying external
names to the loader, but it is also used for passing
over the name of the segment at the beginning and end of
the load, for possible monitoring purposes.

The first record in each segment (even before the
SEG pseudo-operation) is a FORTRAN FORMAT specification,
to be used for reading in the rest of the segment in the
correct format. This reduces the amount of code that
needs to be changed in the loader/interpreter when it is
transferred to the target machine. The same record also
contains information, in pre-defined columns, on the
number of accumulators used, word Size, etc.

The only exceptions to the above format are the
arguments to the STR pseudo-operation. Strings are
always read in as 80-column records, the actual number
of records read being determined from the argument to

the preceding STR pseudo-operation. The last record is



padded with spaces to 80 columns if necessary.

1.2.8 Character codes

One potential implementation problem arises in con-
nection with the different character codes used on various
machines. Since all character comparisons within a BCPL
program (and there are, of course, lots of such comparisons
in the compiler) are effected by comparison with a cell
'containing the actual character code, the distributed
version of the compiler in INTCODE 2 will assume that all
character codes are the same as on the machine it was
compiled on. The solution to this problem is fortunately
quite simple.

The internal character code is ASCII, which is
fairly universal as character codes go. Any input-output
done by the interpreter is converted from or to the
apprbpriate code, and when the production compiler is

running, the conversion code is easily removed.

1.2.9 Library linkage

Lastly, we consider the communication between a
program being interpreted and its input-output library.
The compilef requires relatively few library routines,
since most of the functions normally performed by BCPL
_ libraries (such as numerical input—output) are included
in the compiler itself. The routines required are mainly
low-level ones for character manipulation and input-
output.

on completion of loading, the loader will have



several undefined external references (either GLOBALS

or EXTERNALS). All references to these, as long as they
are routine calls, are expected to be replaced by
suitable spare operation codes from the standard "operate"
set, of which there are about 55 even on a 16-bit machine.
References to static variables in the library are best
processed by leaving space for all such variables before
loading, this being necessary in order that the library
routines themselves may "know" where such a variable may
be found.

The above method depends on there being no more than
55 library routines. Although this is acceptable if
the system is uséd only as a compiler implementation
technique, it means that there may be restrictions when
using it as a production system. It can be argued that
the restriction disappears on any larder machine (due to
the increased number of spare "operatef codes), and in
any case, a program requiring so many library routines,
would in all probability be so large as to preclude
running on an interpretive system unless practically
unlimited. time is available.

If it is planned to use the interpreter as a
production compiler, some increase in speed could be’
obtained by coding critical routines within the compiler
in FORTRAN or even machine code, then linking them to the
main program by using more of the undefined "operate"
codes. This approach has some similarity to that used in
the "LISP" system {13}. A further increase in speed
could be obtained by writing the interpreter in machine

code.



CHAPTER 2 -~ THE CODE GENERATOR FOR INTCODE 2

There were two main points to bear in mind while
the INTCODE 2 code generator was being designed and
written. The first was that the code generator should
be, as much as possible, an exemplary program which could
be used as a model by intending implementors writing a
code generator for particular Earget machines. In other
words, the INTCODE 2 code generator had to be as machine-
independent as possible. ‘

The second design criterion was more obvious; the
code generator should produce reasonably efficient code
which was also as compact as possible.

I decided, at a very early stage, to base the
INTCODE 2 code generator on the new one being developed
for the Essex PDP-10. Perhaps "decided" is not quite
the right word; it was practically obligatory to do so,
since the parser and library system were tailored to this
code generator. It is, in fact, planned to include the
INTCODE 2 code generator as part of the Essex BCPL sys-
tem, in the form of an alternative second pass overlay
which may be invoked. on request.

From the above, it may be seen that the design of
the PDP-10 BCPL code generator.was an imporéant factor
in the design of the INTCODE 2 code generator. A few

words about it are thus in order at this stage.



This section refers only to the version of the code
generator which is now in operation at Essex, not the
earlier versions depending on OCODE.

The input to the code generator is in the form of a
syntax tree in the store of the machine. The kernel of
the program is a recursive tree-walking routine, which
calls service routines to perform translation of the
various types of tree node. As such, the program is
quite well structured, and this is consistent with the
intention that it should be an exemplary program.

In fact, I found that it was not entirely exemplary,
and although certain minor things were changed at my
suggestion (such as a library call which depended on a
large word size) some other undesirable aspects remained.
One example of this was given in section 1.1 (the
register allocation function). Others will now be dis-
cussed.

The routine for translating a SWITCHON block in
BCPL basically compiles a jump over the code of the
block, then translates the block, finishing by compiling
tests for the various case conditions and the jumps back
into the body of the block. -As the block itself is
translated, the code generator places the values of the
various CASE labels into a temporary table. At the end
of the block, it examines this table and evaluates
(among other things) the density of occurrence of the
CASE values. It then invokes a complicated recursive

algorithm to determine the best way of performing the



tests for this set of CASE labels. The result deﬁends
on the number of instructions which would be compiled

in each case, and may compile a skip chain or an indexed
jump table. Such a routine is clearly machine-dependent
and should not really appear in a supposedly "exemplary"
program which purports to-be machine-independent. Since,
however, it would be possible to modify it for different
machines, it would perhaps be a good idea to include it
in the source code of the INTCODE 2 code generator as a
comment, although this was not actually done.

Another area of potential problems was that of
variable (or dynamic) selector application. In the
original form of BCPL, a field selector was constrained
to be a compile-time constant. The new compiler allows
selectors to be set up at run time, although this may
produce inefficiency in the case of, say, full-word
selectors better implemented by simple load and store
instructions. One advantage is that selectors may be
used for indexing bit fields in tree nodes (for
instance), thus allowing packed tree nodes to be used
at a considerable saving in space. This method was used
in the production version of the PDP-10 BCPL compiler.

It is difficult, though not usually completely
impossible, to make such an area ﬁachine-ﬂndependent,
but is very awkward if you are trying to do it for a 16-
bit machine. One possibility would be to restrict the
value of the "offset" field to, say, 127, but this is
not very useful since most applications of dynamic

selectors are usually in cases where a selector con-



taining an actual address is applied to the constant
zero. Machine-independence (and simplicityf were
achieved by restricting selectors to be compile-time
constants, as in previous BCPL compilers.

From the above, it is clear that in addition to
the obvious modifications- required to make such a code
generator produce INTCODE 2, further changes were needed
to remove the non-exemplary sections where possible.

More difficulties were incurred by the fact that
the PDP-10 code generator and its associated programs
were still under development when the INTCODE 2 version
was being written and tested. It is difficult to hit a

-

moving target!

2.3 A general description of the INTCODE 2 code generator

The design of the INTCODE 2 code generator proceeded
in parallel with the design of the INTCODE 2 abstract
machine, since the two are closely linked.

Because the original PDP-10 code generator was
still under development, some of the bugs encountered
had not previously been discovered in that version. 1In
other words, I "inherited" some bugs with the basic
design! This was useful to the writer of the PDP-10
code generator but not to me as it proved very time-
consuming to trace errors which were not introduced by
myself.

In general, the INTCODE 2 code generator is much
like the PDP-10 version. Forward references to STATIC

variables and labels were eventually handled by backward



chaining, although another method was considered at one
stage. This would have been to use the solution used
in the OCODE machine, which is to allocate'a unique
integer for each new reference, and then to output this
integer in a special field in the output code. On
reflection, this would probably have been a better
method, since it would have made it easier to macro pro-
cess INTCdDE 2 and it would have been possible to
incorporate conditional loading facilities into the
loader. However, this would have been achieved at the
expense of extra complexity in the loader, and (less
important) extra storage used during the loading
operation., The storage problem would not be acute since
if only that much store were available, there would
probably have been insufficient for the compiler to
operate correctly when loaded. This applies even if the
loader and interpreter are split into two separate pro-
grams (see section 3.1), since both would probably be of
similar size.

One feature which was incorporated into the INTCODE
2 code generator was parameterisation of the code-
planting routines so that the "best" code could be
compiled for any given target machine. It is possible
to change the word size, character size (in bits) and
the number of accumulators for a particular realisation
of the INTCODE machine on a target computerf As
explained in Chaptef 1, there is no choice with a 16-bit
machine due to the small word size, but there are several

possibilities with larger word sizes. For instance, a .



24-bit machine could use anything between three and sixty-
three accumulators, with a corresponding instruction word
address part ranging from ten bits down to six bits in
width! It has not been possible to test the code
generator for any number of accumulators other than three,
because of lack of runtime facilities to communicate with
the program. (All options are handled by the parser,
which was still being developed). However, various word
sizes were tried, to see how much they affected the size
of a compiled program in INTCODE 2. Further details of
these test runs will be found in Chapter 4.

As stated before, the INTCODE 2 code generator is
intended to be an exemplary BCPL code generator, which
can be easily modified to produce a code generator for
a target machine. Although this has not been completely
realised because of the non-exemplary nature of the code
generator on which it was based, the most important
points requiring attention are covered in Appendix C.

The code generator will not be discussed in lengthy
(and boring) detail, but the more interesting aspects
will be covered in the following sections. A listing
and copy of the program is available on request from the

Computing Centre, University of Essex.

2.4 The code generator in detail

The INTCODE 2 code generator is basically, as
stated above, a recursive tree-walker. There is a fair
amount of local code optimisation but no attempt at
global optimisation as it is not usually a good idea

for system programs (which BCPL is used for writing) to



do things "behind the pipgrammer's back". In any case,
the use of the BCPL indirection (or RV) operator fre-
quently precludes any attempts at optimisation.

There were a number of very interesting and useful
routines in the PDP-10 code generator, and most. of
these are included in the INTCODE 2 version. Sadly,
some of them are definitely not machine-independent (and
thus not exemplary) and have had to be omitted. An
example of suchva routine is that used for handling
SWITCHON blocks (see section 2.2).

The routines of interest which were used are now
discussed, together with some others written specially

for the INTCODE 2 code generator.

2.4.1 - Routines included from the PDP-10 code

2.4.1.1 - The tree-printing routine. '(Print-tree)

Print-tree was copied unaltered from the PDP-10
code generator., It is a recursive routine which prints
out a "picture" of all or part of the syntax tree in a
quite readable format. It is invaluable while debugging
a code generator, and for elucidating some of the more
obscure semantic errors encountered during a regular
compilation.

It is, unfortunately, a space-consuming routine,
especially on small machines, since it contains a lot
of strings which need to be packed into store locations.

It could thus be omitted if an implementor were worried



about the space occupied by the entire compiler/inter-
preter system.

It may be useful to note at this point that a
further saving in space could be made by replacing all
of the lengthy error messages incorporated in the com-
piler by null strings. " Since an error number is
output in any case, they may be omitted at only slight
inconvenience to the user, resulting in a fairly sub-

‘stantial saving in store.

2.4.1.2 The tree-weighting function. ‘(Mark)

This function "walks" over the syntax tree prior
to code generation determining the complexity of
evaluating each subnode. It allows code to be
generated that evaluates the "heaviest"arm first, thus
minimising the amount of accumulator dumping required
during the'evaluation of complex expressions. An
example of the kind of code produced for expressions
involving function calls is given below (in mnemonic
form for clarity).

The full meaning of the notation used is
explained in Appendix A. It is expected that the
tree-weighting function will be included in most pro-
duction code generators. The INTCODE 2 code generator
contains an exact replica of the routine in the PDP-10

code generator.



BCPL code:

EXTERNAL £ (FOO £) // FOO IS AN EXTERNAL FUNCTION

LETA; B,C; D=0, 1,23

A =

INTCODE 2

CLS:
LDA:
STA:
LDA:
STA:
LDA:
STA:

LDA:

2.4.1.3

B + FOO(C * D)

equivalent:
0,000002 " Store zero in A
L 1,000001 Load value 1 into acc. 1
S 1,000003 Store in B
L 1,000002 Load value 2
S 1,000004 Store in C
L 1,000003 Load value 3
S 1,000005 Store in D
S 1,000004 - Load C into acc. 1
S 1,000005 Multiply by D
S 1,000008 Store in what will be the next
I 1,000000* FOO stack frame, and jump to FOO
6,000006 Amount by which stack adjusted
S 1,000003 Add B to result in acc. 1
S 1,000002 Store in A

Evaluation of constant expressions. (E, Evalcconst

and Evallconst)

This set of routines is used for evaluating constant

expressions. E and Evalcconst handle compile-time constant

expressions, while Evallconst is responsible for evaluating

expressions which assume a constant value at load time,

such as addresses of STATIC variables, etc. It is always



useful if constant expressions can be evaluated at cbmpile-
time or load-time, but BCPL also makes extensive use of
this facility to enable conditional compilation of selected
sections of program. The way in which this is done will now
be explained.

When the code generator is translating commands of
the form:

1) IF E DO C

2) UNLESS E DO C

3) TEST E THEN Cl1l OR C2
‘and expressions of the form:

4) E - E1, E2
where C and E represent arbitrary commands and expressions
respectively, it sees if the expression E can be evaluated
completely at compile time. If so, then the code compiled
is only for the part of the conditional which can be
executed. Thus, if E were TRUE in the above examples, the
code compiled in each case would be:

1) C

2) Nothing

3) cl

4) E1
If E were FALSE, the code compiled would be:

1) Nothing

2) C

3) c2

4) E2

There is one exception. If the code not being com-

piled contains a label, then it may still be possible for



it to be executed after a GOTO command elsewhere, so it
must be compiled anyway.

This technique provides a useful means of incorporating
optional debugging code into a BCPL program. Other uses for
optional compilation are the inclusion of code to produce
statistics about the program itself. An example of the
latter may be found in the ﬁEASURING code in the INTCODE 2
code generator. If the MANIFEST constant MEASURING is TRUE,
code is compiled to work out the percentage of one-word
instructions in the total code produced in a given run. If
it is false, no code is compiled, this being the normal
state of affairs.

A compile-time constant may be of any complexity so
long as any identifiers it contains are declared as MANIFEST
constants, and the operators LV and RV are not used. A
1oad—tiﬁe constant allows the use of LV under certain cir-
cumstances which are too involved to define here. It is
only allowed in conjunction with an identifier which refers
to a STATIC or GLOBAL variable, or some EXTERNAL value.

The rules which apply are basically a restricted version of
those applied by loader programs when evaluating relocat-
able expressions. (For an example of such rules, see {14}).

Evalcconst and Evallconst are included essentially
unchanged from the PDP-10 code generator. E is included in
a modified form which calculates the correct selector
value for selector expressions (depending on the word size
of the target machine), and which simulates the BYTE

operation for compile-time BYTE applications.



2.4.1.4 Evaluation of logical expressions. (Loadlbggp)

This routine is included in a form which is much the
same as the version in the PDP-10 code generator. It has
been modified where necessary to accommodate the INTCODE 2
instruction set, thus removing peculiarities which were
present because of the PDP-10 order code.

Its basic function is to load a logical operand into
an accumulator, whereas'the OCODE version loaded a truth
value onto the stack. .However, it goes to considerable
trouble not to produce redundant code, and the code it
does produce is arranged so that no redundant tests are
performed.

Soﬁe examples of the action of Loadlogop under various

circumstances may be useful; these follow.

2.4.1.4.1 lLogical true or false operations between two
variables

A typical case of this is given by the following frag-
ment of BCPL:

TEST A LOGAND B THEN Cl OR C2

A is first evaluated. Since this is a logical true
or false operation, if A is false there is no point in
evaluating B since the expression as a whole must be
false. Control passes immediately to C2 if A is found to
be false.,

A similar situation arises in the case of a logical

OR operation, except that control is immediately passed

to Cl if A is found to be true.



2.4.1.4}2 Logical true or false operations between two

expressions

An example of this is:

IF (A - B) LOGAND FOO(X) THEN C

Regardless of the relativg complexity of the
expressions (the call of FQO is considered the more com-
plicated) , the components of the logiéal expression are
evaluated from left to right. This meéns that the pro-

grammer can always predict what will happen in a particular

case.

The above procedures are still used if an actual
value is required from a logical operation, rather than
some transfer of control. The logical result (always
true or false, all ones or all zeros) is placed in an
accumulator for storage or further manipulation. Even
if the component parts of the expression are not "true"
or "false" as represented by all ones of all zeros, the
result is of such a form.

The above examples show that Loadlogop is a prac-—
tically indispensable routine. It is fairly machine-
independent, but really requires the target machine to
have conditional skipvoperations rather than (or in
addition to) conditional branch instructions. It would,
however, be no great job to modify it for a machine where
these operations were not provided.

2.4.1.5 Assignment operations. (Trnupdate, Update, Trnass,

Ass)
The assignment routines are worthy of mention since



they incorporate a fair degree of local optimisation.
Séme of this optimisation was originally linked to a
PDP-10, but was easily changed by altering one table and
a few odd lines of code.

There are two main areas of optimisation. The first
is that of assigning zero, and any other value which may
be assigned in a single machine operation. Tests are made
for this, and the appropriate machine order generated
instead of the two orders (load, then store) usually
needed. |

The second case is that where an assignment operation
effectively reduces to an operation on a single location.
(Disregarding the simple assignment case mentioned in the
preceding paragraph). Adding one to a variable comes into
this category, being compiled into an add-one-to-store
instruction.

As previously mentioned, when discussing conversion
of this set of routines for the INTCODE 2 macﬁine, it is
simple to cater for the particular cases which can be

optimised on the target machine, by altering one table.

2.4.2 Routines specially written for the INTCODE 2

code generator

2.4.2.1 The SWITCHON block processing routines. (Casetest,

Sswitch and others)

As was stated earlier, the SWITCHON translation routine
incorporated in the PDP-10 code generator was not
exemplary, and was, therefore, of no use for the INTCODE 2

code generator. A completely new routine was thus written,



this having one or two advantages over the oriéinal one.
These are discussed below.

Casetest is the routine that processes CASE labels
and places them into a sorted list. A CASE label is
allowed (in the new compiler) to have a range of values
as;ociated with it, this beiﬁg a convenient shorthand.

An example of this is:
CASE 3 ... 5: C (which is exactly equivalent to CASE: 3:
| CASE 4:
CASE 5: C

The case "range" is compiled into a single range test
(four INTCODE 2 instructions) whereas the separate case
labels are compiled into three separate tests and jumps.
(Six INTCODE 2 instructions).

This would have been the state of affairs if the
SWITCHON processing code from the PDP-10 code generator had
been used, suiﬁably modified. The newly written routines
go one better than this by trying to merge CASE labels into
CASE ranges if they have contiguous ranges of values and
they label the same point in the code. They will, for
example, convert this piece of BCPL:-

CASE 3 ... b5:

CASE 7 ... 1ll:

CASE 6: (command)
to the equivalent in a single CASE range:-

CASE 3 ... 11: (command)

The former takes ten instructions when compiled, the latter

uses only four.

)



2.4.2.2 The routine for compiling SELECTOR operations.

" (Loadanddumpbyte)

The routines which performed this function in the
PDP-10 code generator were most definitely not exemplary,
as they leaned very heavily on the PDP-10 hardware byte
manipulation operations. As such, they were useless for
the INTCODE 2 code generator.

The PDP-10 code generator also allowed selectors to
be defined dynamically. The original practice in BCPL
was to allow SELECTORs to only be defined as compile-time
constants, and this was the course adopted for INTCODE 2.
It is to be hoped, in any case, that SELECTOR operations
will not be used with a portable version of the compiler,
due to their inherent inefficiency (especially when inter-
preted) and their dependence on word size.

The new routines, as included in the INTCODE 2 code
generator, is intended as a model for implementors to use
as a starting point if they decide to implement SELECTORs
on their own machines. It ensures that full-word selector
operations are treated as the more compact, faster, word
size independent, ordinary load and store operations.

The code generator also includes a special method of
defining full-word selectors when the word size of the
machine is not known. This has been covered in section
1.2.4.12, but to recap, it basically treats a selector field
width of ~1 as if it were the word size of the machine.
(e.g. SELECTOR -1:0:3 is compiled as SELECTOR 16:0:3 for
a 16-bit machine, but as SELECTOR 24:0:3 for a 24-bit

machine).



2.4.2.3 The code planting routine. (Plant)

This routine is probably the most important one in
the INTCODE 2 code generator, and it contributes more
than any other to the essentially machine-independent nature
of the program as a whole. The reasons for this will now be
explained.

It will be recalled from Chapter 1 that the format of
an INTCODE 2 instruction is, to put it politely, contorted.
This is necessary in order that INTCODE 2 may be used on
machines with small word sizes, but it also places a great
burden on the code generator if it is to produce the most
compact code in all cases.

However, as far as all the other routines in the code
generator are concerned, it is of no concern whether the
operand of a given instruction is a stack cell, a static cell
or an accumulator. Although, for instance, there are in
reality three different operation codes for loading an
accumulator with varying types of operand, to the code
generator at large there only appears to be one.

The routine Plant is called to plant an actual instruc-
tion, as defined by its parameters. These are: the
operation code, the operand of the instruction (or a
pointer to its symbol table entry), a set of bits specifying
variants on the basic instruction (suchlas "immediate" or
"indirect"), an accumulator number, and a relocation flag.
From this information it generates a standard form of the
instruction, the correct address replacing the pointer into
the symbol table if necessary. It then checks to see if

the instruction can be converted into a single-word form,



either by coding it as an accumulator—to-accumulatof
instruction or as an ordinary single-word instruction with
a stack address or aﬁ immediate value as an operand. Such
a conversion is always made if at all possible.

The address part of an operate instruction is then
set to the correct value for the particular function .
required, and the instruction is output. -An option is
included to list the code produced on a monitoring device.,
This is arranged so that the mnemonics printed are those in
Appendix A, with an extra symbol to indicate the type of
address relocation, and a six-character field which corres-
ponds to the INTCODE 2 field use for external references,
etc.

As far as a prospective implementor is concerned, most
of Plant can be replaced with a routine for producing
machine code suitable for the target machine, and few other
changes of a major nature are required. If the functions
of Plant were scattered over the entire code generator, this

would not be possible.

2.5 Comments on sundry features of the code generator

2.5.1 Compilation of ‘the GLOBAL feature in BCPL

Code is included in the INTCODE 2 code generator for
processing GLOBAL definitions, although it is to be hoped
that these will be avoided by the alternative use of the
newer EXTERNAL method of linking separately compiled
segments. Despite this, it was felt that the code should

at least be included so that sufficient information is



available to include GLOBALs in a production code generator,
should they be needed to ensure compatibility with earlier
BCPL systems.

GLOBALs are treated as a special case of EXTERNALS.
More information appears in the loader/interpreter speci-

fication in Chapter 3.

2.5.2 EXTERNAL prefixes

The PDP-10 code generator includes a feature to allow
the use of six-character names, for library routines, which
would be unlikely to occur in normal use. This is done by
allowing an optional field to appear in an EXTERNAL declara-
tion, immediately before the opening section bracket. This
field has to be either an identifier or a string, and the
characters thus specified are concatenated with each name
defined within the EXTERNAL declaration, to produce the
corresponding external name, after truncation to six
characters. The six-character name is a limitation of the
loader in use at Essex, and the string is allowed as an
alternative to an identifier so that the user can use such
characters as "%" within his external names.

Since this feature costs little in space or compila-
tion time, it was included in the INTCODE 2 code generator.
It is included only as a basis for such a facility on a
new implementation, and is not used in the compiler itself.
It would, perhaps, be a good idea to include it as a comment
in the compiler source code, or place it under the control
of the conditional compilation system, so that it could be

easily included or omitted as desired.



2.5.3 Machine code instructions

The PDP-10 code generator incorporated provision for
including machine code instructions in a BCPL program,
these beipg introduced by section brackets composed of
dollar and square bracket rather than dollar and paren-
thesis.

Since the paiser used with the INTCODE 2 code generator
is the same one as that used with the PDP-10 code generator,
machine code instructions are accepted by the parser. When
the INTCODE 2 code generator attempts to generate code from
the appropriate portion of the syntax tree, an error message
is output at present, although little modification would be
needed to include facilities generating such code. I can-
not see much use for this, especially in a code generator
intended primarily for bootstrapping purposes.

Implementors should have minimal trouble writing a
suitable routine for their own machine. The format of a
machine code tree node is easily deduced from the code of

the parser.



CHAPTER 3 -~ THE INTCODE 2 LOADER AND INTERPRETER

3.1 1Introduction

As explained earlier, the loader/interpreter system
was not actually written, due to lack of time. Since its
design is heavily dependent on the form of the INTCODE 2
"machine" and the INTCODE 2 code generator, a possible
specification can now be given. It should be emphasised
that since it has not actually been written, this is only
a specification.

It is suggested that the loader/interpreter should be
written in ANSI Standard FORTRAN, to ensure maximum ease
of transference.frém machine to machine. All input-output
should be done by the FORTRAN program using the FORTRAN
input-output system, as this is relatively machine-
independent and requires little or no alteration by
implementors for various target machineé. The only prob-
lem with using FORTRAN as the language for the loadex/
interpreter is the lack of character operations in
FORTRAN, for manipulating strings and identifiers. This
problem can be alleviated by mapping all characters into
integers on input, and applying the reverse process on
output. Such a mapping function has to be written afresh
for each different target machine, but since it will only
occupy about ten FORTRAN statements (on average) this is

no great hardship.

The “"store" of the INTCODE 2 machine would be



represented by an array with two equivalenced names. (Or
possibly three, see section 3.3.1 below). One of these
names would be of type REAL, the other of type INTEGER.
This allows correct accessing of each "memory cell®” with-
out unwanted type conversion by the FORTRAN system.

It is anticipated that the loader would occupy about
10K, and the compiler itself around 20-25K (about 10-25%
larger than the PDP-10 version). If the functions of
loading and interpreting were separated, only the inter-
preter would be in store at the same time as the compiler
and its runtime stack. This stack would need to be of
the order of 15K in size. If the interpreter occupied
about 15K also, then the maximum store requirement at any
one time would be about 50-55K. (This may be a bit on
the pessimistic side, but it was stated in the Introduction
that this is not an implementation method suitable for use
on machines with restricted store). To this figure must be
added any space needed by the operating system of the
machine, if it has one!l

It thus seems that it would be a good plan to
separate the loader and interpreter into two separate
programs. In practice, this could work as follows; the
loader would first be.run to load the program (usually
the compiler) into the "store" array. A series of un-
formatted WRITE statements (a Standard FORTRAN construct)
would then be executed to write the contents of the array
to some intermediateAstorage medium, probably disc or
magnetic tape. The loader would then be replaced by the

interpreter, which would have an identical "store" array



defined. It would proceed to initialise this by executing
a series of unformatted READs from the storage medium.

This technique provides an extra bonus; a "core
image" of the program is available on backing store, which
eliminates having to re-run the loader for each run of the
program. This is especially useful because I found it
practically impossible to make the INTCODE 2 code generator
produce restartable code, without introducing a great deal

of additional complexity into the loader.

3.2 The loader program

The first function of the loader would be to
initialise all pointers, counts, etc. and to set all the
elements of the "store" to zeros. (Making them HLT
instructions). I suggest that the external reference
linkage table be kept at the top end of this array, rather
than in a separatevarray, to minimise wastage of space.

The loader would then read in the first line of a
segment, this being the FORMAT specification telling it
how to read in the subsequent code. The same recoxd
would also contain parameters such as the number of
accumulators, word size, etc.

The main body of the segment could then be read in,
checking for pseudo-operations and performing the
appropriate action in each case. (See section 3.2.1 below).
In the case of an operation which generated a word in store,
it would be necessary to examine the "next word" bit on each
instruction 1ihe, to ascertain whether the instruction was

to occupy one or two words. The actual data storage could



then take place. A problem here is how to code ali the
bits of the instruction in a single word, since integers
would probably be held in twos complement form or some-
thing similar. The best way would probably be to code
the entire instruction word as a positive integer, dis-
regarding the next word bit, then to negate the result
if the next word bit were set. This would also make for
easy recognition of a one-word instruction at runtime,
since the array element holding it would always be
negative.

After the word had been stored, it would be
necessary to check the relocation flag for the instruc-
tion. It does not matter if the instruction word would
be negative, since a little thought will show that a one-
word instruction would never need to be relocated. A
' zero relocation flag value means that no relocation is
required, whereas a one means "add the address of the
first instruction of this segment to the word now being
loaded". Usually the word affected is really the next
one in store, as pointed out above, except for the VAL
pseudo-operation which generates data in the store.

A relocation flag with a value of two or three has
a similar meaning to a value of zero or one respectivel&,
except that the.Word thus relocated references an
external symbol whose six-character name is given in the
character field of the instruction. It is necessary,
in this case, to search the external symbol table at the
top of "store". If the symbol is undefined, it is

entered in the table, and noted so that it may be fixed



up later., If it is already defined, its value is added
to the address part of the instruction being loaded.
This method of adding the value to a location rather than
completely replacing the contents of the location means
that a GLOBAL may be treated as a special EXTERNAL (with
external name ".G"), with its offset in the global vector
being placed into the address part of an instruction at
compile time.

The end of the load would be signalled by the end
of file on the input medium. On some FORTRAN systems,
this can be detected by the program, using special
system functions or a modified form of READ statement.
Standard FORTRAN makes no provision for such things, so
the loader would have to recognise a special end-of-file
record. This could consist of an extra pseudo-operation,
introduced either by the code generator, on request, or
by the implementor when creating the INTCODE 2 source
file. It would be useful, for debugging purposes, to
print some form of storage map giving perhaps the location
of the global vector, the address of each EXTERNAL, and
the bounds of the storage area occupied by each program
segment. This would greatly assist in locating bugs in
the production code generator, which are bound to occur.

The loader should also be able to process the
various INTCODE 2 pseudo-operations. Probable loader
action for each operation is now outlined.

3.2.1 " Loader action on reading an INTCODE 2 pseudo-

There are eight INTCODE 2 pseudo-operations



which should be recognised by the loader. These are
defined in Chapter 1, but the expected action of the

loader upon encountering them is described below.

-3.2.1.1 ' The CHN pseudo-operation. (Fixup chain)

The chain pointed to by the address field should be
fixed up to the address of the next free location in
store. No fresh data is generated in the store, and no

table entries made.

3.2.1.2 ' The EXT pseudo-operation. (External symbol

" definition

This defines the six-character symbol specified by
the character field of the operation. The value of the
symbol may be an absolute or relocatable quantity, and
is given by the address field of the operation. Reloca-
tion is indicated in the usual way by the relocation
field. The value may even be the address of some as yet
undefined external location.

The loader action would be to fixup any previous
references to this symbol, then enter it in the external
symbol table together with its value, flagged as "defined".

No data would be generated in "store".

-3.2.1.3 ' The VAL pseudo-operation. ‘(Data word)

This operation means that the next free word in store
should be initialised to the value specified by the
address field. The free location pointer should naturally

be updated.



The specified quantity may be an absolute or
relocatable value. In the case of an absolute value,

it may be negative.

©3.2.1,4 ' The STR pseudo-operation. (String definition)

The next free location in store .should be set to
the length of the subsequent string, given by the
address field of the operation. Following locations
would then be filled with the string itself. The string
would be defined on the next record (or records in the
case of a long string) and should be packed as economically
as possible. Since the compiler is "told" the number of
bits which a character will occupy, and the word size of
the target machine, the correct number of locations will

have been allocated to hold the string.

-3.2.1.5 ° The GLB pseudo-operation. ' (GLOBAL initialisa-

" tion list)

The address field of this pseudo-operation contains
the number of the highest GLOBAL which is referenced in
the segment. The loader should note this value, and
change it only if subsequent segments reference higher-
numbered GLOBALS. At the end of loading, this number is
needed so that the correct amount of space may be
allocated for the global vector.

The records following the GLB pseudo-operation are
' grouped in pairs. They are all NUL pseudo-operations,
which like GLB generate no data in store, at least

directly. The first item in each pair is the offset of



some element in the global vector, and the second is
the value to which it is to be initialised. The loader
should note these pairs, and use them to set up the
correct values in the global vector at the end of the
load.

There is at most one-occurrence of GIB in each
segment, The list of NUL pairs is terminated in all
cases by the ESG pseudo-operation.  (See section

3.20107) *’

-3.2.1.6 ~ The NUL pseudo-operation. (Null operation)

This is used simply for passing, to the loader,
information which is not intended to generate data in
store. The information is passed in the address field
. of the operation.

One example of its use is in a GLB list, see

section: 3.2.1.5 above.

3.2.1.7 °~ The SEG and ESG pseudo-operations. (Start and

" end of segment)

SEG and ESG respectively mark the start and end of
a segment of INTCODE 2. They contain information, in
their character fields, which is the first six
characters of the name of the segment; This is useful,
as it enables the loader to print out monitoring infor-
mation while loading, and to give a segment name in
diagnostics if an error is detected. (E.g. store full).
The ESG pseudo-operation has the additional function

of terminating a list of GLOBAL initialisation pairs



following a GLB pseudo-operation, if these are present.

3.2.2 " Library linkage

At the end of loading, the loader should examine
its list of undefined external references. Those that
correspond to library routines would be "plugged" to
the appropriate point in the runtime system (in effect,
the interpreter) by the use of spare "operate" instruc-
tions (see section 1.2.9). Those refering to library
variables are fixed up to the addresses of these
variables, which would probably occupy some pre-defined
low addressed area of the "store". Any outstanding
references would then be flagged as user errors.

This method has the advantage that the user is able
: to over-ride the library routines with his own routines,
since only those external references which are unsatis-
fied at the end of loading get linked into ‘the library.
However, if this convenience can be sacrificed, loading
may be speeded by using a method employed in the FASTLINK
loader for the IBM 360. In this system, all the library
routines are defined at the start of loading, and
references to the library can, therefore, be linked in as
they are loaded. The method is claimed to considerably
speed loading when a conventional library search is
involved, although the difference would probably not be
as much with the INTCODE 2 loader since a backing store
library is not used. In any case, speed is not of para-
mount importance unless INTCODE 2 is to be used as a

production system.



Further details of FASTLINK may be found in {14},

Chapter 5.

An idea of how the interpreter program should look
is now given. This may be used as a starting point for
anyone who might be involved in writing it.

The first thing the interpreter should do is to
- read the "core image" produced by the loader into its
"store" array, using unformatted READ statements,
(assuming that the.loader and interpreter are separate
programs) .

It should then set up certain runtime parameters
such as the number of accumulators, the number of
characters per word, etc., so that the library routines
will work correctly. Initialisation of the library
should be the next job, finishing with setting the pro-
~gram counter to the starting address of the program,
also passed as a parameter from the loader. Execution
of the interpreted program could then commence.

The various functions of the interpreter program

are now discussed in detail.

3.3.1 - setting of runtime parameters in the ‘i'nte'rpré‘ter

If the interpreter is to be capable of running on any
machine, there are certain items of information that will
not be available to it until runtime. For instance, the
number of accumulators used may differ even among INTCODE

2 programs compiled for the same machine (see‘sectipn 2.3).



This would be given to the interpreter as a paraméter
from the loader.

The number of characters per word is required in
order that library routines handling strings may function
correctly (for instance, Packstring and Unpackstring).

One other point is worth mentioning. It is very
difficult to include operations for "bit-picking" in a
FORTRAN program, but these are needed to implement such
operations as AND, IOR, etc. There are two possible
solutions. The first is to unpack the words being
operated on into two arrays of type LOGICAL, then perform
the operation bit by bit, finishing by packing the result
back into the appropriate accumulator (since the size of
the arrays would not be known until the word size of the
target machine were known, it might be useful to use
part of the runtime stack, after equivalencing another
name to allow LOGICAL opérations). This is clearly a very
time-consuming process, but one which is reasonably
machine-independent.

The second method is something of a "fiddle". Most
FORTRAN systems implement the FORTRAN logical AND
operation (used on LOGICAL variables and expressions) as
a bitwise AND operation, so that it actually produces
the right effect if applied to variables of other types.
To get round the problem of type checking, the "store"
array once again needs to have a third equivalenced name
of type LOGICAL if this method is used.

To save the implementor from having to worry whether

or not the second (faster) method will work on his



machine, I suggest that the decision of which method to
use is left to the interpreter at runtime. By the use

of suitable test cases, it could discover if a bitwise
AND were used or not, and set a flag to define the method
by which the INTCODE 2 logical AND operation was to be
interpreted. Similar methods could be employed to
implement inclusive OR operations, logical not-equivalence,
and logical inversion. It would not be necessary to
implement all four of these operations separately,
because the interpreter could invoke the rules of Boolean
algébra which define each operation in terms of others.
(See any book which discusses Boolean algebra, e,g.‘{15}).

3.3.2 " The interpret loop

This is the most crucial portion of the loader/
interpreter system, and it would be worth spending some
time coding ‘it efficiently, as although execution time
is not a particularly important aspect in a system
intended primarily for bootstrapping, a small saving in
execution time here will probably result in a dis-
proportionate overall saving, (because the main inter-
pret loop is executed for each and every INTCODE 2
instruction obeyed){ |

Coding of the sections which simulate the various
INTCODE 2 instructions is a fairly trivial operation,
so little will be said about it. There are, however,
one or two things horth mentioning about the rest of

the code.



3.3.2.1 Instruction decoding

It is imagineé that instruction decoding would
proceed roughly as follows, assuming that the various
fields of the instruction had been separated out aftgr
determining (perhaps from the sign of the instruction
word) whether the instruction was a one-word or two-
word version.

A set of logical variables describing the variants
on the instruction would be set to FALSE. The number
of the operation code would be examined to determine
to which group it belonged (see section 1.2.3.3).
Control would then be passed to a section of code
devoted to evaluating the effective address of that
~group of instructions, and extracting and checking the
 variant information, storing it in the appropriate
logical variables. It is worth noting that the validity
of an instruction need not be checked if the INTCODE 2
code generator is working correctly (as it should be!)
but it is probably wiser to incorporate such checking.
It would certainly be required if machine code (i.e.,
INTCODE 2) blocks were included in the source program
and the INTCODE 2 code generator had been modified to
accept them.

After checking, a piece of code common to all
instruction decoding would evaluate the effective address
on the basis of the immediate bit and indirection bit
settings. Depending on the instruction group, one of

several computed GOTO statements would then be performed,



jumping to the appropriate section of the interpreter for
simulating that particular instruction. The program
counter would, at this stage, have been incremented to
point to the succeeding instruction in store, the incre-
ment being determined by the instruction size.

All the sections of simulation code would end with a
GOTO to the beginning of the interpret loop in readiness

for executing the next instruction.

3.3.2.2 Runtime checking

The interpreter should maintain certain checks on a
program whilst it is being interpreted. Some of the more

important checks are outlined in this section.

3.3.2.2.1 Store address checking

Checks should be made on all references to "store"
locations to ensure that they are within the bounds of the
storage array. It is not a good idea to leave this to the
FORTRAN system since some systems don't do any checking:

I originally intended to make the code portions of
INTCODE 2 programs reside in a write-protected area of
store. The protection would be provided by checks in the
interpreter, and would prevent erroneous programs from
accidentally overwritiﬂg themselves or the FORTRAN runtime
system. This plan had to be abandoned because the variables
associated with each program segment are loaded with, and
are adjacent to, that segment. Write protection of many
small areas would require complexity in the interpreter,
whereas an alternative method of storage allocation would

greatly increase the complexity of the loader.



3.3.2.2.2 Jumps to invalid addresses

The value of the "program counter" should be monitored
in order to trap jumps. to invalid addresses (including jumps
to location zero). If such a jump occurs, the interpreter
should print out the value of L (the link register) and any
other useful debugging information. The contents of L are
particularly useful if used in. conjunction with a storage
map (see section 3.2), in determining the source of the

erroneous jump.

3.3.2.2.3 Execution of the INTCODE 2 halt instruction, HLT

An INTCODE 2 halt is caused by a jump to some location
containing the value zero (see section 1.2.4.10). It
indicates that the program is in error, and monitoring
information, similar to that given after an invalid jump,
should be printed out by the interpreter. The value of L
is once more a useful debugging aid.

One possible improvement to INTCODE 2 would be to
define the operation code zero as an illegal operation. At
present, operation code zero signifies an 'operate' instruc-
tion with the particular function indicated by the value
of the address part. If the spare operation code octal 77
were used for this, then defining an illegal code zero would
mean that jumps to locations containing low numbers would be
trapped as illegal. Most variables tend to hold low values
compared to the maximum possible even in a 16-bit word, so

this could be quite a useful enhancement.



3.3.3 Character input-output

It should be remembered that characters are expected
to be in ASCII code when fed to the compiler. The input-
output system in the interpreter should thus perform

conversion between external and internal character codes.

-3.3.4 " The runtime library

The interpreter should contain the runtime library.
This provides input-output facilities, and also many other
things such as string packing and unpacking routines. It
is intended that all the machine-dependent routines required
by the compiler are included in this library, hopefully
~greatly reducing the amount of recoding needed to get the
system going on a new machine.

Because the library incorporates such machine-
dependent sections, it would need information about the
machine it was running on, and the version of the INTCODE 2
(number of accumulators, etc.), that it was loaded with.
'Such information would already be known to the interpreter,
and would include such items as word size, character size,

and so on,



CHAPTER 4 - SUMMARY AND CONCLUSTONS

I hope that the preceding Chapters show that the
INTCODE 2 approach to portability is probably a reasonable
one for implementing the BCPL compiler on a new machine.

The main problems likely to be encountered are now discussed.

4.1 ©Speed of execution of a program in INTCODE 2

The speed of the system is not of major importance,
which is probably a good thing since it is likely to be
quite slow! It may even be unusably slow, but one can only
speculate at present since the loader/interpreter has not
been written, and thus no figures are available. However,
execution time will be considerably greater than that of a
program using INTCODE 1 and its implementation mechanism.
The overheads of actually compiling into INTCODE 2 as
opposed to the order code of a conventional machine (such
as the PDP-10) appear to be very small, although more time
is naturally spent in the code-planting routine, due to the
complexity of representation of an INTCODE 2 instruction.
The increase in execution time is an effect of the trade-
off between practical considerations and the necessity of an
exemplary code generator. Perhaps this trade-off is unwar-
ranted and a separate example code generator should have
been written - it is pointless to speculate further until

the loader/interpreter is written and the method is used.

4.2 Size of the interpreter and an INTCODE 2 BCPL compiler

Another big problem is likely to be the size of the



interpretive version of the compiler. This is another trade-
off, for much the same reasons as above. A "macro-like"
order code for the INTCODE 2 machine would have resulted at
a considerable saving in storage, but a code generator for
such an order code would have borne little resemblance to a
code generator for a "real".machine,

Rough estimates of the size of the system were given
in section: 3.1, and these assume a size overhead of about’
10-25% compared to the space occupied by the PDP-10 compiler
on a PDP-10. The figures depend on the word size of the
target machine, and to give some idea of what may be
expected, sample values will now be given. The figures
quoted are for three different word sizes, also for the
PDP-10 code generator producing code for the PDP-10, to
provide a basis for comparison. The program being compiled
in all cases was the entire machine-independent section of
the INTCODE 2 BCPL compiler. The machine-dependent parts
would normally be incorporated as part of the interpreter}

and need not concern us here.



Relative sizes of INTCODE 2 code generator for differing

word sizes

Type of com- No. of words % of one- $¢ size over-

piled code occupied word head compared
instxructions to machine

code for a
PDP-10

Machine code 20370 - -

for PDP-10

INTCODE 2 for a

machine with a 22826 60.0% 12.1%

36-bit word

INTCODE 2 for a

machine with a 23632 : 60.0% 16.0%

24-bit word |

INTCODE 2 for a

machine with a 25323 55.3% : 24.3%

l6-bit worxrd

All the figures quoted above for INTCODE 2 are for a
machine with three accumulators, whereas the figure for the
PDP-10 is for code using up to 10 accumulators. I do not
think this makes any significant difference since there are

_no extremely complicated pieces of code in the compiler

which require so many accumulators.



I should point out that the PDP-10 has a 36-bit word,
so that the overhead figure of 12.1% for "36-bit" INTCODE 2
can be considered as a measure of the relative efficiency
(in terms of store used) of expressing the compiler
algorithm in INTCODE 2 as opposed to the equivalent machine
code. This figure seems very favourable, and is better
than that originally hoped for.

The figures for the percentage of one-word instruc-
tions were obtained by using code written into the INTCODE
2 code generator under the control of the compile-time
constant MEASURING. A production compiler would normally
set this to FALSE to inhibit the statistics.

It is interesting to note that a law of diminishing
returns takes effect somewhere between the 16-bit and 24-bit
word sizes, and no further improvement is obtained when a
36-bit word is used. If more time had been available it
would have been interesting to find out the exact point
at which this occurs. I suspect that it is around the
18-bit or 19-bit stage, since this word size would allow
nearly all the constants used in the compiler to be loaded
into an accumulator in a one-word instructiqn, and nearly
all the references to variables on the stack to be
expressed in a single word as well. Jump instructions
always occupy two words, of course, as do references to
STATICs and EXTERNALS.

The decrease in the size of the 36-bit version over
the 24-bit version is entireiy due to the greater number
of characters that may be packed into the larger word. A

saving in space could be obtained by removing the bulk of



the error message strings, and just printing out an error
number instead.

Some parts of the compiler actually occupy less space
when expressed in INTCODE 2 than they do when compiled into
PDP-10 machine code. This suggests that INTCODE 2 is a
~good language for describing at least some of the con-
structs encountered in BCPL programs, i.e. it is a good
descriptive language for BCPL. Of particular importance
here are such instructions as ENT, the routine entry
instructions, which performs several operations such as
storing a return link and adjusting the stack. It does in
one word what the PDP-10 version requires several words to
do. However, the figures guoted above are for PDP-10
code which includes tracing facilities, and this naturally
increases the amount of code compiled for routine entries.

There is another factor which increases the amount of
storage required by the INTCODE 2 compiling system. This
is that the INTCODE 2 system is inefficient in its use of
work areas. All tree nodes are held in an unpacked form
(i.e. each word contains only one piece of information).
Thus, the amount of store required for compiling reason-
ably sized BCPL programs is greater than that required by,
say, the PDP-10 compiler. There is not much that can be
done about this, especially if the byte selection operations

are to be avoided.

A major consideration in the evaluation of the useful-

ness of the INTCODE 2 implementation mechanism is whether



or not the compiler, as it stands, is exemplary. I feel
that not much can be done for the parser section, but the
code generator is a different story. Although as much
machine-dependence (dependence on the INTCODE 2 abstract
machine) as possible has been removed, there are inevitably
some areas which will still need rewriting for particular
target machines. I hoped to be able to supply a set of
instructions of the form: "change line --- to agree with
the -—==- on your machine" ... etc., but this isn't really
practical since there are points which will be importanf
on some machines but not on others. I believe that the
need for such changes has been kept to a reasonable mini-
mum, and that they will not prove difficult to implement.
The full picture will only emerge when (or if) someone
uses the system to produce a new BCPL implementation.

As yet, there is not much advice that can be given
to prospective implementors. This is because the system
is untried, and the area of most immediate concern to an
implementor (the loader/interpreter) has yet to be written,
and is thus a relatively unknown quantity. Given a good
FORTRAN system on the target machine, I do not envisage
any major problems as long as sufficient store is available.
The only changes required to the loader/interpreter would
be constants describing the target machine, such as word
size, etc., and a routine for conversion of character
codes on input and output. The word size could be passed
from the‘INTCODE 2 on the first line of such segment, as
suggested in section 3.2, and this wouid reduce the amount
of work required of the implementor, though only to a small

degree.



Once the above modifications have been carried out,
there is no reason why a perfectly good BCPL compiler,
with all the facilities available on the PDP-10 implementa-

tion, should not be produced.

- 4.4 TImplementation of INTCODE 2 by macro processor

At this point I should like to discuss something
first mentioned in section 6 of the Introduction. This
is the implementation of INTCODE 2 by means of a macro
processor. Brown (see {11}) calls this method a DLIMP -
a Descriptive Language Implemented by Macro Processor.

Implementation by a DLIMP requires that the software
to be implemented is expressed in a suitable language,
usually tailored to the piece of software itself. Hence
the term “"descriptive language". We have already seen
that INTCODE 2 is a reasonably good descriptive language
for BCPL programs, so the method is certainly applicable
to INTCODE 2, although it would be necessary to make |
minor changes in format and alter the method of compiling
forward references. The question remains as to whether
the method has any significant advantages over the inter-
pretivebapproach. |

To my mind, the advantages of a DLIMP are, in this
case, as follows. The implementor is given more control
over the generated code, since in this case machine code
for the target machine would be generated direqtly from
INTCODE 2. The resulting program would be more economical
on storage (although the problem of unpacked work areas

would remain). This is because few (if any) two-word



instructions would be needed, and the implementor éould
make use of any special facilities accorded by the order
code of the target machine. The interpreter would not be
needed, although it would be necessary to provide a run-
time library, including some form of input-output system.
This could still be written in FORTRAN, and linked to the
machine-code main program (most FORTRAN systems allow
machine code subprograms).

On the debit side, the task of implementation is
increased somewhat. The implementor must write macro
definitions to map INTCODE 2 into some form acceptable
to the target machine (usually machine code), and these
must be debugged. Tests on such macros can be difficult
to write, especially if the macros attempt any more than
the simplest optimisation. The answer here is obviously
to avoid trying to optimise the code, since this is only
a bootstrap method. There is élways time to be clever
when the compiler is actually up and running.

Another snag is that, if a macro processor or a
powerful macro assembler is not available on the target
machine, one must be provided. A suitable choice would be
STAGE2 {10} or possibly ML/I {4}, although the former is
preferable because it is faster to impiement and uses a
.pre-written FORTRAN input-output package which could con-
ceivably be modified for use as the basis of a run-time
library {18}. I have used this package, and found it
rather awkward to use, but I suspect that this may have
been due to inadequate documentation rather than to any

inherent flaw in the package itself.



If a DLIMP were used (the language being INTCODE 2
of course), it would probably be advantageous to set
INTCODE 2 at a slightly higher level. This would allow
slightly more optimisation, and in general, reduce the
" number of redundant operations. Among others, Brown {16}
and Poole {17} give fuller details of the technique. Both
have used the method with great success. They also
suggest the idea of a hierarchy of descriptive languages,
so that the impleméntor may choose the one most suited for
implementation on the target machine. One practical
illustration of the merits of a high level descriptive
language is given by the recent implementation of ML/I on
a Burroughs B6700, which does not have an "assembly
language" as such. Programs on this machine are usually
written in a much extended dialect of ALGOL, and any
attempt to implement ML/I using its low-level descriptive
language (LOWL) would have resulted in an impossibly large
and slow program. It was necessary to use the high-level
descriptive language for ML/I, called L. This provided a
suitable means of implementation, although macros for high
level mappings are in general harder to write and debug.
The resulting version of ML/I was thus written (eventually)
in Burroughs "Extended ALGOL". A similar problem may
arise with the ICL 2900 series of machiﬁes, which are
again devoid of a machine code, at least as far as users
are concerned.

It can be seen that it would be very difficult to
implement the BCPL compiler on such machines using a

DLIMP. The INTCODE 2 method is really no easier when one



comes to write the code generator. The answer is perhaps
that you should not try - Burroughs ALGOL provides an

adequate system programming tool without recourse to BCPL!

Lastly, I shall consider the merits (or otherwise) of
the INTCODE 2 approach to portability.

I think that it was probably a mistake to limit the
INTCODE 2 machine to a 16-~bit word, since the maximum
addressable store on a 16-bit machine is only 64K, and
this is not much more than the minimum necessary to run
the loader/interpreter and the compiler. A 24-bit
lower limit would allow a much more rational instruction
format, and multi-word instructions could probably be
eliminated altogether. It remains to be seen whether the
method is:viable on a 1l6-bit machine.

The use of a pre-written FORTRAN input-output package
is, I think, a good idea, since implementors of many
pieces of portable software tend to spend more time on this
aspect than on any other part of the work. If this time
can be reduced at all, so much the better.

Overall, then, I think that the implementation method
could be improved by modifying the code generator to
produce a slightly higher level language, using a macro
processor for the initial implementation, and leaving the
machine dependent operations to a FORTRAN package supplied
as part of the implementation "kit". The other items in
this "kit" would include an INTCODE 2 copy of the entire

compiler, a source listing of parser and code generator,



and perhaps a copy of STAGE2 for target machines without
a working macro processor or macro assembler., Such
a method would be applicable to a wider range of machines,
because less store would be needed, and there would prob-
ably be a saving (in the long run) in the amount of
machine time needed for the transfer, even allowing for
the voracious "CPU time appetites" of macro processors.
INTCODE 2 then, seems to be a method with possibili-
ties. The best solution would probably be to offer the
implementor a choice:; INTCODE 2 plus macro processor for
more economical use of storage and (possibly) better

eventual code. Only time will tell which is best.
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APPENDIX A - Description of the INTCODE .2 machine

A.l The INTCODE 2 instruction set

This section lists, in symbolic form, the actual

operations performed by each INTCODE 2 instruction. The

terminology and notation used are as follows:

AC

PC

(X)

A~+B

and
ior
pide o

not

*y/

rem

abs

The accumulator number as specified by the
accumulator part.
The result of the effective address calculation.
E is either the address part of a one-word
instruction, or a full word in the case of a two-
word instruction.
The "program counter" of the INTCODE 2 machine.
The number of words occupied by the next instruction.
The word contained in accumulator X or location X.
The quantity A replaces the quantity B. eg. :

(AC) + (E) » (AC)
means the word in accumulator AC plus the word in
location E replaces the word in AC.
The Boolean operator "AND".
The Boolean operator "inclusive OR".
The Boolean operator "exclusive OR".
The Boolean operator “complement“ (logical negation)
The arithmetic operators for addition and subtraction.
The arithmetic operators for multiplication and |
division. |
The arithmetic operator for remaindering.

The arithmetic unary operator for absolute value

(magnitude) .



For convenience, the instructions may be considered in
seven groups, including pseudo-operations. These groups are

as follows:

Group 1 Instructions that can have no immediate variant.

Group 2 - Instructions that may have an immediate variant.

Group 3 - Stack variénts of instructions in Group 2.

Group 4 - Conventional "operate" instructions (using OP4 -
see below).

Group 5 - Accumulator "operate" instructions (using OP5 -
see below).

Group 6 - More accumulator "operate" instructions (using

OP6 - see below).

Group 7 - INTCODE 2 pseudo-operations (codes greater than 63).

GROUP 1
Code (octal) ~ Mnemonic " Description
00 (o)1 Group 4 "operate" instruction.
0l OP5 Group 5 "operate" instruction.
02 OP6 Group 6 "operate" instruction.
03 LAA E » (AC)
04 A0S (E) + 1 » (E)
05 -S0S (E) -1~ (E)
06 ae if (AC) = O then (PC) + (L); E + (PC)
07 JOT ~ if (AC) = true then E + (PC)
10 JOF ~ if (AC) = false then E + (PC)
11 LDB Byte load -~ see Section 1.2.4.12 and
A.2 below.
12 DPB Deposit byte - see Section 1.2.4.12

and A.2 below.



Code (octal) Mnemonic Description

.13 STA (ac) + (E)
14 CLS 0 + (E)
GROUP 2
15 SHL . Shift (AC) left E places.
16 SHR shift (AC) right E places.
17 ASL Arithmetic shift (AC) left E
_ places. |
20 ASR Arithmetic shift (AC) right E
places.
21 ROL Rotate (AC) left E places.
22 ROR Rotate (AC) right E places.
23 AND (AC) and (E) =+ (AC)
24 IOR (AC) ior (E) -+ (AC)
25 NQV (AC) xor (E) -+ (AC)
26 - LDA (E) » (AC)
27 LFA if floating point variant,

FLOAT (E) - (AC)

else FIX (E) =+ (AC)

30 LMA “abs (E) + (aAC)

31 LNA -(E) > (AC)

32 LCA not (E) + (AC)

33 ADA (AC) + (E) » (AQC)

34 SBA (aC) - (E) + (AC)

35 MUL (aC) * (E) -+ (AC)

36 DIV (AC) / (E) + (AC)

37 REM (AC) rem (E) + (AC)

40 SLE “if (AC) le (E) then (PC) + K » (PC)

41 SLS "if (AC) 1ls (E) then (PC) + K » (PC)



Code (octal) Mnemonic

42
43
44
45

GROUP 3

SEQ
SNE
SGE

SGR

[ g |
Hh th Hh a)]

Description

(AC) eq (E) then (PC) + K
(AC) ne (E) then (PC) + K
(AC) ge (E) then (PC) + K

(AC) gr (E) then (PC) + K

+ (PC)
+ (PC)
+ (PC)

+ (PC)

All the instructions in Group 3 are variants of the

instructions in Group 2.

The difference is that the one-word

version of a Group 2 instruction has an implied immediate

operand, whereas the corresponding Group 3 one-word instruc-

tion refers to a location offset in the current stack frame.

Operation codes are from 46 to 76, and refer to variants of

codes 15-45 respectively.

GROUP 4

All operaﬁion codes in Group 4 have OP4 (code 0O0) in the

function part of the instruction.

always one-word instructions) contains an integer which

specifies the exact operation.

Code in address Mnemonic
part
00 HLT
ol SKC
02 SKP
03 SOF
04 SOT

Description

Halt the program run.
O + (AC); (PC) + K » (PC)

(PC) + K + (PC)

~if (AC) = false then

(PC) + K =+ (PC)

“if (AC) = true then

(PC) + K + (PC)

The address part (they are



Code in address Mnemonic Description

part
05 ' ERR Source error trap - see
Section 1.2.4.11. ‘
06 RTS Perform exit from routine.
07 : ENT Perform routine entry séquence.
10 FIN Terminate‘program run (FINISH).

In the INTCODE 2 code generator, these instructions are

represented internally by codes 200-210 (octal).

GROUP_5

The Group 5 instructions are "operate" instructions
similar to those in Group 4, except that they are variants
of instructions in Groups 1 and 2 which may reference an
accumulator as operand. They exist to provide a method of
referencing an accumulator in a one-word instruction. The
code used in the address part for each instruction in
Groups 1 and 2 is as follows, some instructions being

omitted if an accumulator variant is not sensible:

Code in address Mnemonic

part
00 JMP
ol JOT
02 JOF
03 LDB
04 DPB
05 STA

06 CLS



Code in address Mnemonic
part
07 SHL
10 SHR
11 ASL
12 ASR
13 ROL
14 ROR
15 AND
16 IOR
17 NQV

In the INTCODE 2 code generator, these instructions are

represented internally by codes 300-317 (octal).

GROUP_ 6

The Group 6 instructions provide accumulator variants

of instructions from Group 2 not included in Group 5.

codes are as follows:

00
ol
02
03
04
05
06
o7
10
11

LDA
LFA
LMA
LNA

LCA

SBA

DIV

Their.



12
13
14
15
16
17

SLE
SLS
SEQ
SNE
SGE

SGR

In the INTCODE 2 code generator, these instructions

are represented internally by codes 400-417 (octal).

GROUP 7

Group 7 contains the INTCODE 2 pseudo-operations.

Their internal codes (used in the INTCODE 2 code generator)

and a brief description of their action are given below.

For fuller details Section 1.2.5 should be consulted.

Internal code ~ Mnemonic

500
501
502
503
504
505
506
507

510

DAT
GLB
SEG
ESG
VAL
CHN
NUL
STR

EXT

" Description

Generate data-purely internal.
Global variable definition.
Sﬁart of segment.

End of segment.

Generate initialised data word.
Fixup chain-loader directive. _
Null operation - data to loader.
String definition.

External definition.



A.2 Format of an INTCODE 2 instruction word

See also,

A0201

A.z.l.l

Section 1.2.2.

One-word instructions

Group 1 or Group 3

Operation code

Acc.

No. Stack offset

+
Indirection bit

A.2.1.2 Group 2
. : Acc. .
o Operation code o No Immediate operand
A.2.1.3 Group 4
0 00 o | Ace- Function code
o.
A.2.1.4 Group 5
Acc.
o 0l A§c° (operand) | Function code
o -
No .’
4'.

Indirection bit




A.2.1.5 ~Group 6

Acc Acc.
o) 02 N ° (operand) Function code
o.
No.
*
Indirection bit
A.2.2 Two-word instructions
All relevant groups (Groups 1-3)
Word 1| 1 Operation code A;g: Spare A A N
+
Indirection IEloating point bit
bit Immediate bit

Stack operand bit

Word 2

Address part

A.3 TFormat of an INTCODE 2 byte selector word

Although byte selectors are best avoided as far as

possible due to their inherent machine-dependence (on word

size), they are sometime useful.

The format of a byte

selector as used by the INTCODE 2 system is now given. 1In

the absence of hardware selector operations, this format

could be used by intending implementors of byte selectors.

The byte selector word appears after the instruction

word which references it, or after the second word in the

case of a two-word instruction.




Field width . | .. Field position | . Word offset

>

The field width element should be large enough to
specify the word size as an integer, since the field width
may be as much as a fuil word. The pogition element
~ should be one less than this, since it states the number
of bits to the right of the specified field, and for a
meaningful selector this cannot exceed the word size minus
one. The word offset field uses whatever space is left in
the word.

For example, on a 1l6-bit machine:

Field width: possible values are 0-16: element size 5 bits
Field position: possible values are 0-15: element size

4 bits
Word offset: space left is 7 bits, so maximum offset is

127.

A.4 Format of the human-readable INTCODE 2

INTCODE 2 is essentially a string of numbers for input
to the loader/interpreter, and as such it is not very
readable. The code generator thus includes an option to
print out INTCODE 2 in mnemonic form, using the mnemonics
defined in A.l1l above. The output shoWs the relocatable
address of each instruction or data word, relocation markers,
external references and pseudo-operations. A typical

instruction serves to illustrate the format:
000023' LDA:I 1,000453* FOOBAZ

The first column is the relocatablé address of the first



word of the instruction. This is followed by the mnemonic
for the instruction itself (load accumﬁlator) with
accompanying variants separated from the mnemonic by a
colon to improve readability. Two numbers follow, separated
by a comma. The first is the accumulator number, the second
the contents of the address field (the address part of a one-
word instruction, or the second word'of a two-word instruc-
tion). A relocation flag occupies the next column. This
- flag may be a space (no relocation), a single quote (relocation
by thé address of the first location occupied by the segment)
or an asterisk (external reference). The last field is only
present for an external reference, and is a copy of the six-
character field in the "real" INTCODE 2 version of the code.
The variants all appear in a particular column allocated
to each one, and consist of a singlé letter. The key to

these letters is:

I - indirection bit is set.
- immediate (or Literal) instruction.
- operand is in the current stack frame.

instruction is the floating point version.

» M wn
|

- instruction is an accumulator "operate".

Obviously, not all combinations are meaningful.

A.5 Format of the machine-readable INTCODE 2

It may be useful to briefly explain the format of
INTCODE 2, as seen by the loader/interpreter, in a little

more detail.



An INTCODE 2 instruction is read as a single FORTRAN

record of fixed length. (See Section 1.2.7). This record

contains several decimal numbers describing the instruction,

in fields whose width depends on machine-dependent para-

meters.

follows:

Field

g e W N

10
11

The function of these fields (left to right) is as

" Description

Store address of instruction (for checking
only) .

Value of next word bit (O or 1).

Operation code.

Indirection bit (O or 1).

Immediate operand indicator. (O for non-
immediate, 1 otherwise).

Stack variant bit. (O if not stack variant,
1l otherwise).

Floating point instruction variant
indicator. (0 for normal instruction, 1

for floating point).

Accumulator number.

Operand value.

Relocation indicator. (0, 1, 2 or 3).
Six-character field for external references,

etc.

An example of machine-readable INTCODE 2 may be found

in Appendix D.



APPENDIX B - USING THE INTCODE 2 CODE GENERATOR

This Appendix is intendéd to give information on running
the INTCODE 2 code generator. Unfortunately, the information
available is somewhat limited, since it is concerned almost
exclusively with the various. options which can be used, and
these depend on the environment in which the program is
running.

The method of passing "switches" to the PDP-10 INTCODE 2
code generator was still being decided on when the project
finished, and the method of specifying options to the inter-
preted version would depend on the interpreter library, which
has not been written. I shall thus describe the action of
the switch variables named within the code generator. These
names can easily be linked to the appropriate external

option specifications.

Switch name " Action (if TRUE)
BATCH Batch working is assumed, for instance all

error messages are sent to the listing file.
CODEING INTCODE 2 is to be produced. A FALSE switch

value gives a semantic check but no code.

LISTING A source listing is produced.
NOWARNINGS Error class messages only are produced.
CODELIST The INTCODE 2 produced is listed in symbolic

form (see Appendix A) on the monitoring file,
or listing file if BATCH.

NAMELIST The names used in the compiled program are
listed on the monitoring file, or listing

file if BATCH.



Switch name

CHECK

TREELIST

Action (if TRUE)
only a syntax check is performed.
A picture of the parse tree is sent to the

listing file.

There are also three “"switches" which take a numerical

value. These are 55 follows:

Switch name

PASSNO

OPTLEVEL

ERRORMAX

" Description

This switch is present in the PDP-10 code
generator to select various second pass
overlays, one of which is the INTCODE 2
generator. Currently, the value required
for INTCODE 2 is 12 (decimal).

This switch selects whether any tracing or
stack checking is to be incorporated into
the compiled code. It currently has no

effect on the running of the INTCODE 2 code

~generator since tracing is not supported.

The value of this switch is the maximum
number of errors that may occur befbre a
compilation is abandoned. The default
value on the PDP-10 version depends on the

setting of BATCH.

The PDP-10 INTCODE 2 code generator is run by calling

the BCPL compiler in the normal way (by ".R BCPL") , then

requesting the INTCODE 2 code generator as the second pass

overlay. This is currently done by typing the switch

"/P:12" to the compiler.



At the end of compilation, the INTCODE 2 code generator
prints the number of words occupied by the compiled code,
including space occupied by STATIC variables, etc. The

value is given in both octal and decimal.



APPENDIX C - NOTES ON WRITING A CODE GENERATOR FOR THE TARGET

MACHINE

This Appendix is meant to give a little assistance to
implementors to whose lot it falls to write a code
'generator. It attempts to point out the parts of the
INTCODE 2 code generator which will need modification on
most machines. It does not set out to be an exhaustive
list, so "caveat implementor"!

The various files making up the code generator are

discussed separately; each needs its own particular

modifications.

File TRANSO

Change some of the initialisation code; remove the

error messages relating to INTCODE 2.

"File TRANS1

No alterations.

File TRANS2

No alterations.

File TRANS3

Routine DECLSTAT - allocation of space for STATIC

variables.

File TRANS4

Write a version of TRNMCODE suitable for the target

machine order code (if required).



. File TRANSS5

No alterations.

File TRANS6

No alterations.

File TRANS7

'Remove references to floating point operations if they
are not to be supported; alter the code- in E for selector
and byte operations; alter the code for load time con-

stants if necessary; remove routines SELECT and BYTEAP.

" File TRANSS8

No alterations unless jump tables are to be used; the

code will work as it is for an initial implementation.

File TRANS9

Change TRNJUMP to allow for method of routine call on
target machine; alter the code of LOADLOCAL if there is no

"clear store" instruction.

" File TRANSA

Alter the operation code tables. -

File TRANSB

Alter the code of LOADLOGOP if the target machine
cannot do a "jump on true" and a "jump on false"; alter
operation code table for conditional operations; supply

an alternative to the FALSESKIP routine.



File TRANSC

Rewrite OPONLEAF to cater for the order code of the

target machine.

File TRANSD

No alterations.

File TRANSE

Rewrite to LOADANDDUMPBYTE for the hardware byte

selection operations on the target machine (if ady).

File TRANSF

Alter the code of UPDATE if target machine does, not
have a "clear store" operation; alter the table in ASS to
allow for the available operation codes, then carefully

check ASS for necessary changes.

File TRANSG

Complete rewrite to except for SETGLOBAL and possibly

SETEXTERNAL.

File TRANSH

Rewrite PLANT, as this is completely dependent on
INTCODE 2; check all the other routines for necessary

changes.

File TRANSI

Rewrite to suit the target machine order code.

The above information gives the implementor a start;

the best way to continue is to read the code itselff



APPENDIX D - EXAMPLES OF INTCODE 2 PROGRAMS

This Appendix shows typical code for fragments of
BCPL programs, and the output from the INTCODE 2 code
generator in both machine-readable and human-readable form.

Example 1 shows a simple BCPL function, the INTCODE 2
equivalent in human-readable form, and the INTCODE 2
equivalent in the form used for input to the loader/inter-
preter.

Example 2 is a longer piece of code. Amongst other
things it demonstrates the treatment of EXTERNALs in
INTCODE 2. It is a complete segment, and as such includes
the SEG and ESG statements. It may be noted that these
statements assume the name of the file holding the segment
to be SEGNAM. A machine-readable version has not been

included.



LET ¥FREN( L, RY = UalOF
5C LT X ¥ = NJL, @
1= (Y EAU X)) LOGHND A
RESULTIS B / ¥4
%2

EXAMPLE 1 ~ BCPL fragnent

GULOEAGT FNT: . Gy GREGGS
GHOGET' CLS: & 6, GAAGAES
CEREED' LDA: - § 1, GCEEOD S
GEAGGRT MOV § 1, GOGEEL
AGGHHBAY LOAz A 1, OGEER)

BGEGAHESY LN
GREGAGY STh:
GOEGRTY LD 15 GEGERS
GEGBIGT DiVs: 1> GGHEGEGL
GEEHITY RTS: s GEGOGH

1, QOGGES
ls GGOERAL

=

>

L:)
nninn

EXAMPLE 1 - Human-readable INTCCDL 2

15151

G GGE B GG G GO GUGET G
GEGGY 6 F1S G G G G GG GEGGS G
BOGEGS 6 64T 6 A4 1 6 %) G68GS o
GGREGE3 G GAad 6 6 | ¢ 6} G6GA4 &
BOGOA G BES G G G G G) GRG26 6
-+ GGAGS G Gaa 0 B 1 GS0] GEGGS G
GHOGE G G G G 1 G Gl GREGL G
GOOBGT G AT B G ] 6 6] GEEGS &
GGGOS & G55 B G 1 6 Bl GECGA 6

6 GGG G- 6 0

GGEGD GGG GARCEL6 6

' EXAMPLE 1 - Machine-readable INTCODE 2



FXTERNAOL $¢ FOO

LET

#00¢) WK

3
B¢ STATTIC &¢
LET w, C

C :=

fHn 3=
FoR

M ARY

G

-

MLy =

I

o+

TO &

@

30 F 2= K
RETIIRN

S
o
/G

MOemYy %)

)

LnfrPLl 4 - LCPL segient (above)

1

£/ VLW TS BEFINED
// ENOGTHER SEGMENT

+ 1

EXAMPLE 2 =- Human-readable INTCODE 2 (below)

CHEAEGET
oA R A
CEEGET "
CRE@EESY
CEREGIES®
AR AN
[ATAA
CEGEEAT
CUGEET Y
meAEYY Y
GOGELS
o XA Rt
GOGGIYAS
GEERLTY
AN A AT
AR AOT-B I
EGOREEY
COEGESHY
OEGERS
COECRDA
e
(AAA AN
EooERm
Geer3e!

N A A A VIS
GR35
GRCEZA Y
ANV A
CHERLD
(AR AN IR
(AN N VA

A A A
GEEALS
CEOG46 "
(AAA YN

SEG
FhiTse
Lz
QTE:
L bes
SThHs
L 122
[ RTA]
A
ST4Le
LDas
STLz
Lips
ST G
CL. &2
JEiPe
STe:
A0 82
LDg:
ADG:
CHb e
SR
JMPe
LD&s
Ciik e
RTS?
L Dfys
STh:
RTS:
Fiie
Vels
Chid g

3 sy -

AVEAN

EXTs

5S8G:

I-'

ths
Cs
I
1
1,
1

1,
1,
1,
1,
1,
1,
s
Gy
Gy
1,
Go
1,
s
Gy
1,
@,
1,
1,

s

GO0 006
A A
CCGEST
.G 750
GGG GA
AR AN
A AA AR
(A AR
GGG G
AR
GCCEEREJ
GGE GG
A AABYI
GOOCTS
o670 )
CUG 07
GOGRTAH
CHGERD
CORET)
[ o (Y PP
neres "t
CEREFES
GEaEER!
C.AG0 0%
(AR R
CUGG07

PCOT)A"

(A XA AAES
(AR ARAD
COaTaE
CHECTG?T
RN
GOGTGE
AR AT
CHLAGOHT

SEGN AW

MaRy

MARY

Mery

FOO
SN aM

TH



