MINISTRY OF DEFENCE
(Procurement Executive)

OFFICIAL DEFINITION OF

CORALG6

Prepared by the Inter-Establishment Committee on
Computer Applications as a language standard for
military programming

London Her Majesty’s Stationery Office

© Crown copyright 1970
First published 1970

Seventh impression 1981

Extracts may be reproduced provided the source is acknowledged

ISBN 0 11 470221 7

Preface

Coral 66 is a general-purpose programming language based on Algol 60,
with some features from Coral 64 and Jovial, and some from Fortran. It was
originally designed in 1966 by I. F. Currie and M. Griffiths of the Royal
Radar Establishment in response to the need for a compiler on a fixed-point
computer in a control environment. In such fields of application, some
debasement of high-level language ideals is acceptable if, in return, there is a
worthwhile gain in speed of compilation with minimal equipment and in
efficiency of object code. The need for a language which takes these require-
ments into account, even though it may not be fully machine-independent, is
widely felt in industrial and military work. We have therefore formalized the
definition of Coral 66, taking advantage of experience gained in the use of
the language. Under the auspices of the Inter-Establishment Committee for
Computer Applications, we have had technical advice from staff of the Royal
val Scientific Service, the Royal Armament Research and Development
tablishment, the Royal Radar Establishment, the Defence ADP Training
Centre, from serving officers of all three services and from interested sections
of industry, to all of whom acknowledgments are due.

The present definition is an inter-service standard for military program-
ming, and has also been widely adopted for civil purposes in the British
control and automation industry. Such civil usage is supported by RRE and
by the National Computing Centre at Manchester, on behalf of the Depart-
ment of Industry. The NCC has agreed to provide information services and
training facilities, and enquiries about Coral 66 for industrial application
should be directed to that organization.

Royal Radar Establishment P. M. WOODWARD
Malvern P. R. WETHERALL
Wores. B. GORMAN

June, 1974

iii

Contents

N

w

IS

Introduction

1.1
1.2
1.3
1.4

Special-purpose languages
Real-time

Syntax

Implementation

The Coral 66 program

21
22

Objects
Program

Scoping

31
32
33
34
35

Block structure

Clashing of names

Globals

Labels

Restrictions connected with scoping

Reference to data

4.1
42
4.3
44

4.5
4.6

4.7
48

‘Numeric types

Simple references

Array references

Packed data

4.4.1 Table declaration

4.42 Table-clement declaration
4.4.2.1 Whole-word table-elements
4.42.2 Part-word table-elements

4.4.3 Example of table declaration

444 Ref to tables and
Storage allocation
Presetting

4.6.1 Presetting of simple references and arrays
4.6.2 Presetting of tables

Preservation of values

Overlay declarations

PAGE

A L= ——

ENFN

®uNuo o

5 Place references—switches

6 Expressions

6.1

Simple expressions
.1 imaries
6.1.1.1 Untyped primaries
1.1.2 Typed primaries
6.1.1.2.1 Word references
2 Part-words
3 Locations
4 Explicit type-changing
6.1.1.2.5 Functions
6.1.1.2.6 Integers
6.1.2 Word-logic
6.1.3 Evaluation of expressions
Conditional expressions
62.1 Conditions

6.1
6.1
6.1

7 Statements

7.1
72
73
74
15
7.6
17
7.8
79

Assignments
Goto statements
Procedure statements
Answer statements
Code statements
‘Compound statements
Blocks

Dummy statements
Conditional statements

7.10 For statements

7.10.1 For-clements with STEP
7.10.2 For-elements with WHILE

8 Procedures

8.1
8.2
8.3

Answer specification

Procedure heading

Parameter specification

83.1 Value parameters

832 Data reference parameters

3.2.1 Word location parameters
.2 Array parameters

3 Table parameters

vi

©

11

833 Place parameters
833.1 Label parameters
8332 Switch parameters
83.4 Procedure parameters
83.5 Non-standard parameter specification
84 The procedure body

Communicators

9.1 COMMON communicators
9.2 LIBRARY communicators
9.3 EXTERNAL communicators
9.4 ABSOLUTE communicators

Names and constants
10.1 Identifiers

10.2 Numbers

103 Literal constants
10.4 Strings

Text processing

1.1 Comment
11.1.1 - Comment sentences
11.1.2 Bracketed comment
11.1.3 END comment

11.2° Macro facility
1121 String replacement
1122 Parameters of macros
11.23 Nesting of macros
11.2.4 Deletion and redefinition of macros

113 Syntax of comment and macros

Appendixes 1 Syntax rules in alphabetical order

2 List of language symbols
3 Levels of implementation

Index of terms

Introduction

It is virtually impossible to design a standard language such that programs
will run with equally high efficiency in all types of computer and in any
applications. Much of the design of Coral 66 reflects this difficulty. For
example, the language permits the use of non-standard ‘code statements’ for
any parts of a program where it may be important to exploit particular hard-
ware facilities. A special feature is scaled fixed-point arithmetic for use in
small fixed-point machines; the floating point facilities of the language can
be omitted when hardware limitations make the use of floating-point arith-
metic uneconomical. Other features also may be dropped without reducing
the power of the language to an unacceptably low standard. Some reduced
levels of implementation are suggested in Appendix 3 to this definition.

1.1 Special-purpose languages

A clear distinction must be made between general-purpose languages for use
by skilled programmers, and more hmlted languages designed to incorporate
the inbuilt ions of or to make direct com-
puter access practical for the non-specialist user. Coral 66 belongs to the first
category. Languages in this class are sunable for writing compllers and
interpreters as well as for direct Special-purpose | can
therefore be implemented by means of software written in Coral 66, backed
up as required with suites of specialized macros or procedures. It is largely for
this reason that the facilities for using procedures have been kept as general
as possible. The main differences between Coral 66 procedures 2nd those of
Algol 60 lie in the replacement of the Algol 60 dynamic ‘name parameter’ by
the more efficient ‘location’ or reference parameter used in Fortran, and the
requirement to declare recursive procedures explicitly as such, again in the
interest of object-code efficiency.

1.2 Real time

The theory and structure of programming for real-time computer applica-
tions has not yet advanced to such a point that a particular choice of language

1

facilities is inevitable. Further, the design of real-time languages is handi-
capped by the lack of agreed standard software interfaces for applications
programmers or compiler writers. This does not imply that real-time programs
cannot yet be written in high-level language. The use of Coral 66 in real-time
applications implies the presence of a supervisory system for the control of
communications, which may have been designed independently of the
compiler. The programmer’s control over external events, and the com-
puter’s reaction to them, is expressed by the use of procedures or macros
which communicate with the outside world indirectly through the agency of
the supervisory software. No fixed conventions are laid down for the names
or action of such calls on the supervisor.

1.3 Syntax

The widespread use of syntax-driven methods of compilation lends increasing
importance to syntax methods of language description. The present definition
takes the form of a commentary on the syntax of Coral 66, and therefore
starts with broad structure, working downwards to finer detail. For reasons
of legibility, the customary Backus notation has been dropped in favour of a
system relying on typographical layout. Each syntax rule has on its left-hand
side a class name, such as Statement. Such names appear in lower case
without spaces, and with an initial capital letter. On the right-hand side of a
rule are found the various alternative expansions for the class. These alter-
natives are printed each on a new line. Where a single alternative spreads
over more than one line of print, the continuation lines are inset in relation
to the starting position of the alternatives. Each alternative expansion
consists of a sequence of items separated by spaces. The items themselves are
cither further class names or ‘terminal symbols’ such as BEGIN. The class
name Void is used for an empty class. For example, a typical pair of rules
might be

Specimen = ALPHA Sign
BETA Sign
Sign = +
Void
Examples of legal specimens are ALPHA+ and BETA. The equals sign is

used to separate the left-hand side from the right, except after its first
appearance in a rule.

2

1.4 Implementation

Considerations of software engineering have been allowed to influence the
design of Coral 66, principally to ensure the possibility of rapid compilation,
loading and i C ly, Coral 66 ilation is a one-pass
process. The insistence that identifiers are fully declared or specified before
use simplifies the compiler by ensuring that all relevant information is
available when required. The syntax of the language is transformable into
one-track predictive form, which enables fast syntax analysers with no
back-tracking to be employed. Features which require elaborate hardware
in the object machine for efficient program execution, for example dynamic
storage allocation, are not included in the language. Unless run in a special
diagnostic mode, a Coral 66 compiler is not expected to generate run-time
checks on subscript bounds. No run-time checking of procedure entries is
necessary. The ar for separate ilation of program segments
are designed to minimize load-time overheads, but the specification of the
interface between a Coral 66 compiler and the loader is outside the scope of
the present document.

The Coral 66 program

A distinction is made between symbols and characters. Characters, standing
only for themselves, may be used in ‘strings™ or as literal constants. Apart
from such occurrences, a program is regarded as a sequence of symbols,
each visibly representable by a unique character or combination of characters.
The symbols of the language are defined (Appendix 2), but the characters are
not. For the purpose of the language definition, words in upper case letters
are treated as single symbols. Lower case letters are reserved for use in
identifiers, which may also include digits in non-leading positions. Except
where they are used in strings, layout characters are ignored by a Coral 66
compiler.

2.1 Objects

A program is made up of symbols (such as BEGIN, =, 4) and arbitrary

which, by d 2 or setting acquire the status of
single symbols. Identifiers are names referring to objects which are classified
as

data (numbers, arrays of numbers, tables)
places (labels and switches)
(functions and pi)

2.2 Program

A program need not be compiled in one unit, but may be divided into
segments for separate compilation. To make it possible to refer to chosen
objects in different segments, the names and types of such objects are written
outside the program segments in communicators. Objects fully defined within
the program are rendered accessible to all segments by their mention in a
COMMON communicator (sections 3.3 and 9.1). Objects whose full definition
lies outside the program, for example library procedures, can be made

4

acoessxble to all scgrnents by menuon m forms of communicator whose
will be i A Coral 66 program will thus
comprise

name of program
optional communicators
named segments
in some appropriate sequence. Each program segment is in the form of a
block (section 3). The language definition does not specify how the program
or its segments shall be named or how the segments are to be separated or
terminated, but when a whole program is compiled together, a typical form
might be
name of program
COMMON etc ;
segment name 1
BEGIN . . . END ;
segment name 2
BEGIN . . . END
FINISH
The program starts running from the begmmng of a segment, the chmce of
which will depend upon a or outside the
the language.

Scoping

A named object can be brought into existence for part of a program and
may have no existence elsewhere (but see section 4.7). The part of the
program in which it is declared to exist is known as its scope. One effect of
scoping is to increase the freedom of choosing names for objects whose
scopes do not overlap. The other effect is economy of computer storage space.
The scope of an object is settled by the block structure of the program as
described below.

31 Block structure

A block is a statement consisting, internally, of a sequence of declarations
followed by a sequence of statements punctuated by semi-colons and all
bracketed by a BEGIN and END. Formally,

Block = BEGIN Declist ; Statementlist END

Declist = Dec
Dec ; Declist

Dec = Datadec
Overlaydec
Switchdec
Proceduredec

Datadec = Numberdec
Arraydec
Tabledec

The declarations have the purpose of fully classifying new objects and
providing them with names (identifiers). As a statement can be itself a block
merely by having the right form, blocks may be nested to an arbitrary depth.
Except for global objects (section 3.3), the scope of an object is the block in
which it is declared, and within this block the object is said to be local. The
scope penetrates inner blocks, where the object is said to be non-local.

6

3.2 Clashing of names

If two objects have the same name and their scopes overlap, the clash of
definitions could give rise to ambiguity. Typically, a clash occurs when an
inner block is opened and a local object is declared to have the same name
as a non-local object which already exists. In this situation, the non-local
object continues to exist through the inner block (e.g. a variable maintains its
value), but it becomes temporarily inaccessible. The local meaning of the
identifier always takes precedence.

3.3 Globals

A program consists of a number of segments, each of which may be described
as an outermost block, as there is no formal block surrounding the segments.
In addition to objects which are local to inner blocks or outermost blocks,
global objects may be defined. Such objects may be used in any segment, as
their scope is the entire program. To become global, an object must be named
in a communicator written outside the segments. For some types of object,
such as COMMON data references, this takes the form of a declaration (and
is the only declaration required). Other types of object, specifically
COMMON labels, COMMON switches and COMMON procedures, must
be fully defined within a segment. This means that COMMON labels must
be set, and COMMON switches and procedures must be declared, in one of
the outermost blocks of the program. Such objects are merely ‘specified” in
the COMMON communicator, as described in section 9.1, and are treated as
local in every outermost block of the program. Global objects declared
outside the segments are treated as non-local. All globals are non-local in all
the inner blocks of any segment. With these rules of locality, questions of
clashing are resolved in accordance with section 3.2.

34 Labels

Any statement may be labelled by writing in front of it an indentifier and a
colon. The scope of a label is the smallest block embracing the statement
which is labelled, extending from BEGIN to END. Thus labels can be used
before they have been set. It also follows that the only means of entering an
inner block is through its BEGIN. It is possible to jump into an outermost
block from a different segment by the use of a COMMON label (or switch or
procedure).

35 Restrictions connected with scoping

No identifier other than a label may be used before it has been declared or
specified. Specification means that the type of object to which an identifier
refers has been given, but not necessarily the full definition of the object (see
section 9.1). Typically, a procedure identifier is specified as referring to a
certain type of procedure with certain types of parameters by the heading of
the procedure declaration, but the procedure is not fully defined until the end
of the declaration as a whole. As an example of this, assume that two pro-
cedures f and g are declared in succession after the beginning of a segment.
Then the body of g may call on itself or on the procedure f, but the body of f
may not call on the procedure g unless g has been specified in a COMMON
communicator. If a procedure is defined in a manner which directly or
indirectly calls on itself, that procedure is said to be recursive and must be
explicitly declared as such.

4

Reference to data

4.1 Numeric types

There are three types of number, floating-point, fixed-point and integer.
Except in certain part-word table-elements (section 4.4.2.2), all three types
are signed. Numeric type is indicated by the word FLOATING or INTEGER,
or by the word FIXED followed by scaling constants which must be given
numerically, e.g.

FIXED (13,5)

This specifies five fractional bits and a minimum of 13 bits to represent the
number as a whole, including the fractional bits and a sign. The number of
fractional bits may be negative, zero or positive, and may cause the binary
point to fall outside the significant field of the number. It is assumed
throughout this definition that a number is confined within a single com-
puter word. If, in any implementation, a dlﬁ”erenl system is adopled €.g. two
words for a floating-point number, a lly modified inter

of the language definition will be necessary. The syntax for numeric type is

Numbertype = FLOATING

FIXED Scale

INTEGER
Scale = (Totalbits , Fractionbits)
Totalbits = Integer

Fractionbits = Signedinteger

4.2 Simple references
The simplest objects of data are single numbers of floating, fixed-point or
integer types. Identifiers may refer to such objects if suitably declared, e.g.

INTEGER i, j, k;
FIXED (13,5) x, y

and the declarations may optionally include assignment of initial values.
This is known as presetting and is described in section 4.6. The syntax for a
number declaration is

Numberdec = Numbertype Idlist Presetlist

Idlist =1d
1d, Idlist

4.3 Array references

An array is restricted to a one or two dimensional set of numbers all of the
same type (including scale for fixed-point). An array is represented by an
identifier, suitably declared with, for each dimension, a lower and upper
index bound in the form of a pair of integer constants, e.g.

FIXED (13,5) ARRAY b[0:10];
FLOATING ARRAY ¢[1:3,1:3]

The lower bound must never exceed the corresponding upper bound. If more
than one array is required with the same numeric type, and the same dimen-
sions and bounds, a list of array identifiers separated by commas may
replace the single identifiers shown in the above examples. Arrays with the
same numeric type but different bounds or dimensions may also be included
in a composite declaration, as shown below.

INTEGER ARRAY p, g, r[1:3], s[1:4], t, u[1:2, 1:3]

An array identifier refers to an array in its entirety, but its use in statements
is confined to the communication of the array reference to a procedure.
Elsewhere, an array identifier must be indexed so that it refers to a single
array element. The index, in the form of an arithmetic expression enclosed in
square brackets after the array identifier, is evaluated to an integer as des-
cribed in section 6.1.3. The syntax rules for an array declaration, which
include a presetting facility (section 4.6.1), are:

Arraydec = Numbertype ARRAY Arraylist Presetlist
Arraylist = Arrayitem
Arrayitem , Arraylist
Arrayitem = Idlist [Sizelist]
Sizelist = Dimension

Dimension , Dimension

Dimension = Lowerbound : Upperbound
Lowerbound = Signedinteger
Upperbound = Signedinteger

44 Packed data

There are two systems of referring to packed data, one in which an unnamed
field is selected from any computer word which holds data (see section
6.1.1.2.2), and one in which the data format is declared in advance. In the
latter system, with which this section is concerned, the format is replicated to
form a table. A group of n words is arbitrarily partitioned into bit-fields (with
no fields crossing a word boundary), and the same partitioning is applied to
as many such groups (m say) as are required. The total data-space for a table
is thus nm words. Each group is known as a table-entry. The fields are named,
so that a combination of field identifier and entry index selects data from all
or part of one computer word, known as a table-element. The elements in an
entry may occupy overlapping fields, and need not together fill all the
available space in the entry.

4.4 Table declaration

A table declaration serves two purposes. The first is to provide the table
with an indentifier, and to associate this identifier with an allocation of word-
storage sufficient for the width and number of entries specified. For example,

TABLE april [3,30]
is the beginning of a declaration for the table ‘april’ with 30 entries each
3 words wide, requiring an allocation of 90 words in all. The second purpose
of the declaration is to specify the structure of an entry by declaring the
elements contained within it, as defined in section 4.4.2 below. Data-packing
is impl ion di d and the will be found to assume a
wordlength of 24 bits. The syntax for a table declaration is
Tabledec = TABLE 1d [Width , Length] [Elementdeclist
Elementpresetlist] Presetlist

Elementdeclist = Elementdec
Elementdec ; Elementdeclist

Width = Integer
Length = Integer
Details of the two presetting mechanisms are given in section 4.6.2.

4.4.2 Table-element declaration

A table-el d

an element name with a numeric
type and with a particular field of each and every entry in the table. The field
may be the whole or part of a computer word, and the form of declaration
differs accordingly. The syntax for an element declaration, more fully
developed in section 4.4.2.2, is

Elementdec = Id Numbertype Wordposition

Id Partwordtype Wordposition , Bitposition
Wordposition = Signedinteger
Bitposition = Integer

Word-position and bit-position are b from zero upwards, and the
least significant digit of a word occupies bit-position zero. Normally, table-
elements will be located so that they fall within the declared width of the
table, but a Coral 66 compiler does not check the limits. To improve program
legibility, it is suggested that the word BIT be permitted as an alternative to
the comma in the above syntax. The meaning of Bitposition is given in
section 4.4.2.2.

4.421 Whole-word table-elements

As shown in the syntax of the previous section, the form of declaration for
whole-word table-elements is

Id Numbertype Wordposition
For example,
tickets INTEGER 0

declares a pseudo-array of elements named ‘tickets’. (True array elements

are located consecutively in store, section 4.5.) Each element refers to a

(signed) integer occupying word-position zero in an entry. Similarly,
weight FIXED (16,-4) 1

locates ‘weight’ in d-position 1 with a sij of 16 bits, stopping

4 bits short of the binary point. Floating-point elements are similarly per-

mitted.

4.42.2 Part-word table-elements

Elements which occupy fields narrower than a computer word (and only
such elements) are declared in forms such as

12

rain UNSIGNED (4,2) 2,0;
humidity UNSIGNED (6,6) 2,8;
temperature (10,2) 2,14

for fixed-point elements. The fixed-point scaling is given in brackets (total
bits and fraction bits), followed by the word- and bit-position of the field
within the entry. Word-position is the word within which the field is located,
and bit-position is the bit at the least significant end of the field. The word
UNSIGNED increases the capacity of the field for positive numbers at the
expense of eliminating negative numbers. For example, (4,2) allows numbers
from —2.00 to 1.75, whilst UNSIGNED (4,2) allows them from 0.00 to
3.75. If the scale contains only a single integer, e.g.

sunshine UNSIGNED (4) 2,4

the number in brackets represents the total number of bits for a part-word
integer. Though (4,0) and (4) have essentially the same significance, the fact
that (4,0) indicates fixed-point type and (4) indicates an integer should be
borne in mind when such references are used in expressions. The syntax of
Partwordtype, for substitution in the syntax of section 4.4.2, is

Partwordtype = Elementscale
UNSIGNED Elementscale

Elementscale = (Totalbits , Fractionbits)
(Totalbits)

The rules for Totalbits and Fractionbits are in section 4.1. The number of
fraction bits may be negative, zero or positive, and it is permissible for the
binary point to lie outside the declared field.

443 Example of table declaration

TABLE april [3,30]
[tickets INTEGER 0;
weight FIXED (16,-4) 1;
rain UNSIGNED (4,2) 2,0;
sunshine UNSIGNED (4) 2,4;
humidity UNSIGNED (6,6) 2,8;
temperature (10,2) 2,14]

It should be noted that all the numbers used to describe and locate fields
must be constants.

13

444 e to tables and table-el

A table-element is selected by indexing its field identifier. To continue from
the example in section 4.4.3, the rain for april 6th would be written rain[5],
for it should be noted that an entry always has the conventional lower bound
of zero. In use, the names of table-elements are always indexed. On the other
hand, a table identifier such as ‘april’ may stand on its own when a table
reference is passed to a procedure. The use of an index with a table identifier
does not (other than accidentally) select an entry of the table. It selects a
computer word from the table data regarded as a conventional array of
single computer words, with lower index bound zero. Thus the implied
bounds of the array ‘april’ are 0 : 89. A word so selected is treated as a
signed integer, from which it follows that april[6] in the example would be
equivalents to tickets[2]. A table name is normally indexed only for the
purpose of running through the table systematically, for example to set all
data to zero, or to form a base for overlaying (section 4.8).

45 Storage allocation

Computer storage space for data is allocated automatically at compile time,
one word for each simple reference, one for each array element, and as many
as are declared for each table-entry. In any one composite declaration, a
Coral 66 compiler is explicity required to perform allocation serially. For
example, the declarations

INTEGER 2 , b , ¢ ;

INTEGER p , q ;
will make the locations of a,b,c become n, n+1, n+2 respectively, and those of
P, q become m, m+-1 where n and m are undefined and unrelated. In two-
dimensional arrays, the second index is stepped first: the declaration

INTEGER ARRAY a[l:2], b[1:2, 1:2]
will locate the elements
all]l, a2}, b[L1], b[1,2], b[2,1], b[22]
in consecutive ascending locations.

4.6 Presetting

Certain objects of data may be initialized when the program is loaded into
store by the inclusion of a presetting clause in the data declaration. Presetting

14

is not dynamic, and preset values which are altered by program are not reset
unless the program or segment is reloaded. An object is not eligible for
presetting if it is declared anywhere within

(a) the body of a recursive procedure, or

(b) an inner block of the program, or

(c) an inner block of a procedure body.
Procedure bodies do not count as blocks for the purpose of (b). For example,
the integer i is eligible for presetting in a segment which begins as follows:

BEGIN PROCEDURE f;
BEGIN PROCEDURE g;
BEGIN INTEGER i

4.6.1 Presetting of simple references and arrays

The preset constants are listed at the end of the declaration after an assign-
ment symbol, and are allocated in the order defined in section 4.5. As
examples,

INTEGER a, b, c « 1, 2, 3;

INTEGER ARRAY k[1:2, 1:2] « 11, 12, 21, 22
If desired for legibility, round brackets may be used to group items of the
presetlist, but such brackets are ignored by the compiler. The number of
constants in the presetlist must not exceed, but may be less than, the number
of words declared, and presetting ceases when the presetlist is exhausted. In
special cases (see section 4.7), the preset assignment symbol may be the only
part of the presetlist which is present. The syntax is

Presetlist = « Constantlist
Void

Constantlist = Group
Group , Constantlist

Group = Constant
(Constantlist)
Void

The main purpose of the final void will be seen in section 4.6.2. For the
expansion of Constant, see section 10.2.

15

46.2 Presetting of tables

There are two alternative mechanisms. If the internal structure of a table is
completely disregarded, the table can be treated as an ordinary one-dimen-
sional array of whole computer words (4.4.4), and preset as such (4.6.1).
Alternatively, all the table-elements may be preset after their declaration list,
as shown at Elementpresetlist in the syntax of 4.4.1. For example,

TABLE gears [1,3]
[teethl UNSIGNED (6) 0,0;
teeth2 UNSIGNED (6) 0,6;
ratio UNSIGNED (11,5) 0,12;
arc UNSIGNED (5,5) 0,12
PRESET (57,19,3.0,), (50,25,2.0,), (45,30,1.5,)]

For table-element presetting, the word PRESET is used instead of the
assignment symbol of 4.6.1. Each entry of the table is preset in succession
as a group of elements, taken in the order of their declaration. Voids in
the list imply absence of assignment. This may be necessary to avoid
duplication when fields overlap, as do ‘ratio’ and ‘arc’ in the above example.
As in 4.6.1, brackets used for grouping constants in the list of presets are
ignored by the complier. The syntax is

Elementpresetlist = PRESET Constantlist
Void

The previous example could, with equal effect but less convenience, be
expressed in the form

TABLE gears [1,3]
[teethl UNSIGNED (6) 0,0;
teeth2 UNSIGNED (6) 0,6;
ratio UNSIGNED (11,5) 0,12;
arc UNSIGNED (5,5) 0,12]
<« OCTAL(1402371), OCTAL(1003162), OCTAL(603655)

a7 Preservation of values

Objects of data may have no existence outside the scope of their declarations.
The values to which local identifiers refer must in general be assumed
undefined when a block is first entered and whenever it is subsequently
re-entered. This is due to the fact that a block-structured language is designed
for automatic overlaying of data. Local working space may therefore have
been used for other purposes between one entry to a block and the next. In

16

Coral 66 this is not invariably the case. When a data declaration contains a
presetlist as permitted by the rule given in section 4.6, the values of all the
objects named in that declaration will remain undisturbed between successive
entries to the block or procedure body, like ‘own’ variables in Algol 60. It is
sufficient that a preset assignment symbol appears at the end of the declara-
tion, even though the list of preset constants is void.

4.8 Overlay declarations

Overlaying may be found desirable when COMMON data is required in
some segments and not in others, as it enables global data space to be
re-used for other purposes. However, indiscriminate use of overlaying
should be avoided, as it can lead to confusion and obscurity. The facility
causes apparently different data references to refer simultaneously to the
same objects of data, i.e. as alternative names for the same storage locations.
To form an overlay declaration, an ordinary data declaration is preceded by
a phrase of the form

OVERLAY Base WITH

where Base is a data reference which has previously been covered by a
declaration in the same COMMON communicator or in the same segment.
The base may be a simple reference, one-dimensional array reference or a
table reference treated as a one-dimensional array of whole words. If the
array or table identifier is not indexed, it refers to the location of its zero’th
element (which may be conceptual). Storage allocated by the overlay
declaration starts from the base, proceeds serially (as in 4.5) and will not be
overlaid by succeeding declarations unless these are themselves overlay
declarations. The syntax of an overlay declaration is

Overlaydec = OVERLAY Base WITH Datadec

Base =1Id
Id [Signedinteger]

Place references—Switches

Plaqe_ references refer to positions of program statements, and the simplest
Position marker is the /abel (section 3.4). A switch is a preset and unalterable
array oflabels, which must be within scope at the switch declaration. Any use
of the indexed switch name refers to the corresponding label. For example,
the switch declaration '

SWITCH s« a,b,c
causes s[1] to refer to the label a, s[2] to b and s[3] to c. The syntax rules are
Switchdec = SWITCH Switch < Labellist

Labellist = Label
Label , Labellist

Switch =1d
Label =1Id

Expressions

The term ‘expression’ is reserved for arithmetic expressions. Coral 66 has no
designational expressions of Algol 60 type. As there are no Boolean variables
and no bracketed Boolean expressions (see section 6.2.1), the expressions
after IF are known as conditions. The syntax for expressions is

Expression = Unconditionalexpression
Conditionalexpression

Uncondi g
String

Strings are defined in section 10.4.

6.1 Simple expressions

Arithmetic is performed with the monadic and diadic adding operators
+ and —, and with the diadic multiplying operators * (multiply) and /
(divide). The plus and minus operators work on terms, which are combina-
tions of factors joined by multiplication or division. There is no exponen-
tiation operator. The syntax for simple expression begins as follows

Simpleexpression = Term
Addoperator Term
Simpleexpression Addoperator Term

Term = Factor
Term Multoperator Factor

Addoperator = -+

Multoperator =

6.1.1 Primaries

Prin_laries are the basic operands in expressions. For example, in the
analysis of the expression

xty=*(@+b—4
we discover three terms, the primary x, the term y*(a + i
C | 3 y y*(a + b) and the primary 4.
The middle term is the product of two factors, the primary y and the prim};ry
(g + b). To complete _lhe analysis, all expressions from within brackets are
similarly analxsed until no further reduction is possible and no expression
zarackels_ xergalug) W?en an expression contains no word-logical operators
see section 6.1.2), a factor must be a primary, which
i p Y, may or may not be of a
Factor = Primary
Booleanword
Primary = Untypedprimary
Typedprimary

6.1.1.1 Untyped primaries

Ur_xtypedl primaries are those operands which cannot be classed as integer.
floating-point or fixed-point (of known scale) without reference to lhei;
context. For example, the number 3.1416 may be represented, with varying
degrees of accuracy, in many different ways within a computer word. The
sa;n;) applies to an expression, whose type is determined by context (section

Untypedprimary = Real
(Expression)

A ‘real’ (secftion 10.2) is an unsigned numerical constant containing a decimal
or octal point or a tens exponent.

6.1.1.2 Typed primaries

Typed primaries are classified as follows

Typed primary = Wordreference
Partword
LOCATION (Wordreference)
Numbertype (Expression)
Procedurecall
Integer

20

6.1.1.2.1 Word references

A simple reference, or a reference to an array element or whole-word table-
element, has a type defined in its declaration. Such references may be
described as word references because they refer to items of data for which
whole computer words are set aside. A further kind of word reference, the
anonymous reference, takes the form

[Index]
where the index is any expression evaluated as an integer to give the actual
location of a word. An reference p: all the

properties of an identified reference, except that it lacks an identifier. Just as
a variable i, declared as INTEGER i, may be used in an expression to refer
to the contents of the computer word allocated to i, so the use of an anony-
mous reference in an expression will refer to the contents of the address
defined by Index. Such contents are taken to be of numeric type INTEGER,
irrespective of any declaration which may have associated that word with
some other type. See also section 6.1.1.2.3. The syntax for word reference is
Wordreference = Id

1d [Index]

1d [Index , Index]

[Index]

Index = Expression

6.1.1.2.2 Part-words

Any single item of packed data may act as a typed primary. Such an item is
either

(a) a reference to a part-word table-clement, or

(b) a specified field of any typed primary.
In case (a), the type is defined in the table declaration. In case (b), the desired
field is selected by a prefix of the form

BITS [Totalbits , Bitposition]

in front of the primary to be operated upon. The result of this operation is
a positive* integer value of width Totalbits and in units of the bit at
‘Bitposition’. The value will in general be implementation-dependent, even
though the operand must be typed, as no conventions are laid down for the
internal rep: ion of floating-point or fixed-point items of data. In

*Jt is assumed that Totalbits will not be set equal to the full wordlength.
21

all cases, however, the numeric type resulting from the applicati.

a 3 5 pplication of BITS
is INTEGER. The syntax for a part-word, which should be distinguished
from that of a ‘part-word reference’ (section 7.1), is

Partword = Id [Index]
BITS [Totalbits , Bitposition] Typedprimary

6.1.1.2.3 Locations

The computer I«_Jcation of any word reference is obtainable by the location
operator which is written in the form

LOCATION (Wordreference)

gnd has a value of type INTEGER. It may be noted that if i and j

integers, [LOCATION(i)]is equivalent to i, and LOCATION ([j]) is eél:ie\{:e::
to j. The reasoning is as follows. LOCATION (i) is the address of the
computer word allocated to i. Enclosure in square brackets forms an entity
:gul}valenl to an identifier standing for this address, which by hypothesis is i
Similarly, [23] is equivalent to an identifier for the address 23, and LOCA;
TION([23)) is the address for which this fictitious identifier stands, which is
23 by hypothesis.)

6.1.1.2.4 Explicit type-changing

A typed primary may h_avg its type changed, and an untyped primary may
be typed, by e'nclosure within round brackets preceded by a specific Number-
type as described in section 6.1.3.

6.1.1.2.5 Functions

The call ofq typed_ procedure (sgction 8) may be treated as a function and
usctq as 7a}pnmary in any expression. For the syntax of a procedure call, see
section 7.3. '

6.1.1.2.6 Integers

An integer used in any expression (section 10.2) can be assumed to h:

: . ave the
numeric type INTEGER before any necessary type-changes are enforced by
context.

22

6.1.2 Word-logic

Three diadic logical operators are defined for use between typed primaries.
The effect of these s is 1 i dent to the extent that
the word-representation of data is not defined by the language. The ith bit
of the result is a given logical function of the ith bits of the two operands,
and the result as a whole has the numeric type INTEGER. To avoid con-
fusion with Boolean operators in ‘conditions’ (section 6.2.1), a different
terminology is used. The operators are

DIFFER UNION MASK

01 01 01
0101 001 0,00
1o L 1 o1

DIFFER is recognizable as ‘not equivalent’, UNION as ‘inclusive or’ and
MASK as ‘and’. The operators are shown in order of increasing tightness of
binding. As bracketed expressions are untyped, the use of brackets to over-
come binding priorities entails explicit integer scaling. For example,
a MASK INTEGER (b UNION ¢)
The Formal syntax, continued from 6.1.1, is
Booleanword = Booleanword2
Booleanword4 DIFFER Booleanwords

Booleanword2 = Booleanword3
B ord5 UNION B« d

Booleanword3 = Booleanword6 MASK. Typedprimary

Booleanword4 = Booleanword
Typedprimary

Booleanword5 = Booleanword2
Typedprimary

Booleanword6 = Booleanword3
Typedprimary

6.1.3 Evaluation of expressions

Expressions are used in as value s of
procedures and as integer indexes, all of which contexts determine the
numeric type finally required. Coral 66 expressions are automatically

23

evaluated to this type, but in the process of calculation, data may be sub-
jected by the compiler to various intermediate transformations. Although an

il for luatis i does not form part of the official
definition of the language, all syntactically outermost terms in an expression
will be evaluated to the required numeric type before the adding operators
are applied. In the simplest cases, this rule ensures predictable results, though
it should be particularly noted that rounding-off errors will not be minimal,
and overflow may occur. If an expression is enclosed in round brackets, its
terms are not ‘outermost’, the rule no longer applies, and the algorithm for
the particular compiler determines the sequence of events. The programmer
can impose any desired system of evaluation by the use of Numbertype
(Expression), which is a typed primary (section 6.1.1.2), any occurrence of
which behaves like a variable, ref (say), declared as

Numbertype ref;
and assigned a value by
ref «— Expression

before it is used. For example, if i and j are integer references and x is a
floating-point reference, the assignment statement

Xei—j
causes i and j to be converted to floating-point before subtraction, whilst
x « INTEGER (i-j)

causes subtraction of integers before conversion to floating-point. Although
the order of evaluation of an ion is und; the fi ing rule
concerning functions will apply. Value parameters of a function are neces-
sarily evaluated before the function itself is computed, so that the order of
evaluation of sin(cos(expn)) will be expn, cos, sin. Apart from this type of
reversal, functions occurring in a simple expression will be evaluated in the
order in which they appear when the expression is read from left to right,
regardless of brackets.

6.2 Conditional expressions

A conditional expression has the form

Conditionalexpression = IF Condition
THEN Expression
ELSE Expression
with the usual interpretation.

24

6.21 Conditions

A condition is made up of arithmetic comparisons connected by Boolean
operators OR and AND, of which AND is the more tightly binding. The
permitted arithmetic comparisons are less than, less than or equal to, equal
to, greater than or equal to, greater than, and not equal to. The syntax rules
are

Condition = Condition OR Subcondition
Subcondition

Subcondition = Subcondition AND Comparison

Comparison
Comparison = Sii ion Comparator
Comparator = <

<

>

>

#

The Boolean operators have their usual meanings, the OR being inclusive.
Conditions are evaluated from left to right only as far as is necessary to
determine their truth or falsity.

Statements

Statement = Label : Statement
Simplestatement
Conditionalstatement
Forstatement

—A

Gotostatement
Procedurecall
Answerstatement
Codestatement
Compoundstatement
Block
Dummystatement

Statements are normally executed in the order in which they are written,
except that a goto statement may interrupt this sequence wuhoqt return, and
a conditional statement may cause certain statements to be skipped.

71 Assignments

The left-hand side of an assignment statement is always a (“.lata reference,
and the right-hand side an expression for procuring a numerical value. Thg
result of assignment is that the left-hand side refers to lt_xe new value until
this is changed by further assignment, or u_nul the value is lost because l:e
reference goes out of scope (but see section 4.7). The expression on l;
right-hand side is evaluated to the numeric type of the re_ferenc'e, ‘v)vn

automatic scaling and rounding as necessary. The l?ﬂ-hand side may ‘e 3
word reference as defined in section 6.1.1.2.1 or it may be a pun-u’or

reference, i.e. a part-word table-element or some selected field of av?\(_)rd
reference. When assignment is made to a part-word reference, the remaining
bits of the word are Itered. As les o

[LOCATION() + 1] 3.8
2

has the effect of placing the integer 4 in the location succeeding that allocated
to i, and
BITS[2,6] x « 3
has the effect of placing the binary digits 11 in bits 7 and 6 of the word
allocated to x. This last assignment statement is treated in a similar manner
to an assignment which has on its left-hand side an unsigned integer table-
element. The statement
BITS[1,23] [LOCATION() + 1] 1

would in a 24-bit machine, force the sign bit in the indicated location to ‘one’.
The syntax of the assignment statement is

A = Variable «— E

Variable = Wordreference
Partwordreference

Partwordreference = Id [Index 1

BITS [Totalbits , Bitposition] Wordreference

There is no form of mutiple assignment statement.

7.2 Goto statements

The goto statement causes the next statement for execution to be the one
having a given label. The label may be written explicitly after GOTO, or may
be referenced by means of a switch whose index must lie within the range 1 to
n where n is the number of labels specified in the switch declaration. See also
section 3.4 and section 5. The syntax is

G = GOTO D

Destination = Label
Switch [Index]

7.3 Procedure statements

A procedure identifier, followed in parentheses by a list of actual parameters
(if any), is known generally as a procedure call. If the procedure possesses a
value, it may be used as a primary in an ion, but whether it
a value or not, it may also stand alone as a statement. This causes

27

(i) the formal parameters in the procedure declaration to be replaced by
the actuals in a manner which depends on the formal parameter
specifications (see section 8.3),

(ii) the procedure body to be executed before the statement dynamically
following the procedure statement is obeyed.

The syntax for a procedure call is

Procedurecall = Id
1d (Actuallist)

Actuallist = Actual
Actual , Actuallist

Actual = Expression
Wordreference
Destination
Name

Name =1d

The purposes of the four types of actual parameter are defined in section 8.3.

74 Answer statements

An answer statement is used only within a procedure body, and is l_hc means
by which a value is given to the procedure. It causes an expression to b_e
evaluated to the numeric type of the procedure, followed by automatic exit
from the procedure body. The syntax is

Answerstatement = ANSWER Expression

7.5 Code statements

Any sequence of code instructions enclosed by}CODE BEGIN and END
may be used as a Coral 66 statement and it is recommended that code
statements provide for the inclusion of nested Coral text. The form of the
code is not defined; it may be the assembly code for a particular computer,
or it may be at a higher level enabling available compiler features to be
exploited. The code should, above all, enable the Coral programmer to
exploit all available hardware facilities of the computer. For communication

28

between code and other statements, it must be possible to use any identifier
of the program within the code statement, provided such identifiers are in
scope. In some implementations, a code statement may be said to possess a
value. The ‘statement’ may then be used as a primary in an expression, likz a
call of a typed Though not hibited, this is not a standard
feature of Coral 66, and may not be extended to other forms of statement.
The syntax for a code statement is

Codestatement = CODE BEGIN Codesequence END

Codesequence = defined in a particular implementation

7.6 Compound statements

A compound statement is a sequence of statements grouped to form a single
statement, for use where the syntactic structure of the language demands.
C d are tr to scopes. It is therefore permitted
to goto a label which is set inside a compound statement. The syntax is

G d = BEGIN list END

Statementlist = Statement
Statement ; Statementlist

7.7 Blocks

See section 3.

7.8 Dummy statements

A dummy statement is a void whose execution has no effect. For example, a
dummy statement follows the colon in

; label: END
The syntax rule is

Dummystatement = Void

29

7.9 Conditional statements

The two forms of conditional statement are

Conditionalstatement = IF Condition THEN Consequence
IF Condition THEN Consequence ELSE

Alternative
C =
Label : Consequence
Alternative = Statement

If the condition is true, the consequence is obeyed. If the condition is false
and ELSE is present, the alternative is obeyed. If the condition is false and
no ELSE is present, the conditional statement has no effect beyond evalua-
tion of the condition.

7.10 For statements

The for-statement provides a means of executing repeatedly a given state-
ment, the ‘controlled statement’, for different values of a chosen variable, the
‘control variable’, which may (or may not) occur within the controlled
statement. A typical form of for-statement is
FOR i« 1 STEP 1 UNTIL 4,

6 STEP 2 UNTIL 10,

15 STEP 5 UNTIL 30

DO Statement
Other forms are exemplified by

FOR i« 1,2,4,7,15 DO Statement
which is self-explanatory, and
FOR i« i+1 WHILE x <y DO Statement

In the latter example, the clause ‘i+1 WHILE x <y’ counts as a single
for-element and could be used as one element in a list of for-elements (the
“for-list’). As each for-element is exhausted, the next element in the list is
taken. The syntax is

For = FOR Wo

Forlist = Forelement
Forelement , Forlist

« Forlist DO Statement

30

Forelement = Expression
Expression WHILE Condition
Expression STEP Expression UNTIL Expression

The controlled variable is a word reference, i.e. either an anonymous
reference or a declared word reference.

7101 For-elements with STEP
Let the element be denoted by

el STEP ¢2 UNTIL &3

In contrast to Algol 60, the expressions are evaluated once only. Let their
values be denoted by v1, v2 and v3 respectively. Then

(i) vl isassigned to the control variable,

(ii) vl is compared with v3. If (vl - v3) * v2 = 0, then the for-element is
exhausted, otherwise

(iii) the controlled statement is executed,

(iv) the value vl is set from the controlled variable, then incremented by v2
and the cycle is repeated from (i).

7.10.2 For-elements with WHILE

Let the element be denoted by
el WHILE Condition
Then the sequence of operation is

(i) el is evaluated and assigned to the control variable,
(i) the condition is tested. If false, the for-element is exhausted, otherwise

(iii) the controlled statement is executed and the cycle repeated from (i).

Unlike those in section 7.10.1, the expression el and those occurring in the
condition are evaluated repeatedly.

31

Procedures

A procedure is a body of program, written out once only, named with an
identifier, and available for execution anywhere within the scope of the
identifier. There are three methods of communication between a procedure
and its program environment.

(a) The body may use formal parameters, of types specified in the heading
of the procedure declaration and represented by identifiers local to the
body. When the procedure is called, the formal parameters are
replaced by actual parameters, in one-to-one correspondence.

(b) The body may use non-local identifiers whose scopes embrace the
body. Such identifiers are also accessible outside the procedure.

(c) An answer statement within the procedure body may compute a single
value for the procedure, making its call suitable for use as a function
in an expression. A procedure which possesses a value is known as a
typed procedure.
The syntax for a procedure declaration is
Proceduredec = Answerspec PROCEDURE Procedureheading ;
Statement
Answerspec RECURSIVE Procedureheading ;
Statement
The second of the above alternatives is the form of declaration used for
recursive procedures (see section 3.5). The statement following the procedure
heading is the procedure body, which contains an answer statement (section
7.4) unless the answer specification is void (8.1), and is treated as a block
whether or not it includes any local declarations (8.4).

8.1 Answer specification

The value of a typed procedure is given by an answer statement (section 7.4)
in its body; and its numeric type is specified at the front of the procedure

32

declaration. An untyped procedure has no answer statement, possesses no
value, and has no answer specification in front of the word PROCEDURE.

Answerpec = Numbertype
Void

8.2 Procedure heading

The procedure heading gives the procedure its name. It also describes and
lists any identifiers used as formal parameters in the body. On a call of the
procedure, the compiler sets up a correspondence between the actual para-
meters in the call and the formal parameters specified in the procedure
heading. The syntax of the heading is

Procedureheading = Id
Id (Parameterspeclist)

F ist = Par; pec
Parameterspec ; Parameterspeclist

8.3 Parameter specification

Any object can be passed to a procedure by means of a parameter, whether
it be an object of data, a place in the program, or a process to be executed.
For data, there are two distinct levels of communication, numerical values
(for input to the procedure) and data references (for input or output). Table I
lists all the types of object which can be passed, the syntactic form of speci-
fication, and the corresponding form of the actual parameter which must be
supplied in the procedure call. The equivalent syntax rules are:

Parameterspec = Specifier Idlist

Tablespec
Procedurespec

Specifier = VALUE Numbertype
LOCATION Numbertype
Numbertype ARRAY
LABEL
SWITCH

33

TaBLE I

Parameters of procedures

T
Object } Formal specification | Actual parameter

numerical value ; 'VALUE Numbertype Id* | Expression

|
location of data word | LOCATION Numbertype Id* | Wordreference

name of array [Numbertype ARRAY Id* | 1d
name of table | Tablespec t |
place in program ; LABEL Id* | Destination
name of switch ‘ SWITCH 1d* | 1d
name of procedure | Procedurespect |14

*Composite specification of similar perameters has Idfist in place of Id.
1See section 8.3.2.3.
See section 8.3.4.

8.3.1 Value parameters

The formal parameter is treated as though declqred ,i" the procedure body;
upon entry to the d the actual sion is to the type
specified (including scaling if the numeric type is FIXED), and the value is
forthwith assigned to the formal parameter. The fgrmal parameter may
subsequently be used for working space in the bodyj if the actual parameter
is a variable. its value will be unaffected by assignments to the formal para-
meter.

8.3.2 Data reference parameters

Location, array and table are all les of data

Upon entry to the procedure, these formals are made to refer to the same
computer locations as those to which the ac!ua_l parameters already refer.
Operations upon such formal parameters within the procedure body are
therefore operations on the actual parameters. For e)}ar_nple. the values of
the actual parameters may be altered by assignments within the procedure.

34

8.3.2.1 Word location parameters

The actual parameter must be a word reference, i.e. a simple data reference,
an array element, an indexed table identifier, a whole-word table-element or
an anonymous reference. Index expressions are evaluated upon entry to the
procedure as part of the process of obtaining the location of the actual
parameter. The numeric type of the actual parameter must agree exactly with
the formal if ion. Part-word such as table-el are not
allowed as word location parameters. An example of a procedure heading
and a possible call of the same procedure is

heading f(VALUE INTEGER n; LOCATION INTEGER m)
call f(LOCATION (u[i])[j])

83.2.2 Array parameters

As in an array declaration, the specified numeric type applies to all the
elements of the array named. The numeric type of the actual array name must
agree with this formal specification. By indexing within the body, the
procedure can refer to any element of the actual array.

8.3.2.3 Table parameters

The specification of a table parameter is identical in form to a table declara-
tion except that presetting is not allowed. The syntax rule is

Tablespec = TABLE Id [Width , Length] [Elementdeclist]

The element declaration list need include only such fields as are used in the
procedure body.

8.3.3 Place parameters

8.3.3.1 Label parameters

The actual parameter must be a ‘destination’, i.e. a label or a switch element.
In the latter case, the index is evaluated once upon entry to the procedure.
The actual parameter must be in scope at the call, even if it is out of scope
where the formal parameter is used in the procedure body.

35

8.3.3.2 Switch parameters

The actual parameter is a switch identifier. By indexing within the procedure
body, the procedure can refer to any of the individual labels which form the
elements of the switch.

8.34 Procedure parameters

Within the body of a procedure, it may be necessary to execute an unknown
procedure, i.e. a procedure whose name is to be supplied as an actual para-
meter. The features of the unknown procedure must be formally specified in
the heading of the procedure within which it is called. As an example, suppose
that a procedure g has been declared as

FIXED (24,2) PROCEDURE g(VALUE INTEGER i, j; INTEGER
ARRAY a); Statement

and further suppose that a procedure q has a formal | parameter f for which it
may be required to g A ion of q, the necessary
specification (italicised for clarity) might be
PROCEDURE q(LABEL b; FIXED (24, 2) PROCEDURE
fIVALUE INTEGER, VALUE INTEGER, INTEGER ARRAY));
Statement

A typical call of q would be q(lab,g). At the inner level of parameter specifica-
tion, no formal identifiers are required, no composite specifications are
allowed (as for i and j in g) and the specifications are separated by commas.
To pursue the example to a deeper level of nesting, suppose that a procedure
c66 has a parameter p for which it may be required to substitute q. A
declaration of c66 might then be

PROCEDURE c66(PROCEDURE p(LABEL, FIXED (24,2)
PROCEDURE); SWITCH s); Statement

A typical call of c66 would be c66(q,sw). At the level of specification shown
in italics in the latter example, no further parameter specifications are
tequired. The syntax rules for a procedure specification are

Procedurespec = Answerspec PROCEDURE Procparamlist

Procparamlist = Procparameter
Procparameter , Procparamlist

Procparameter = Id
1d (Typelist)

36

Typelist = Type
Type , Typelist

Type = Specifier
TABLE
Answerspec PROCEDURE

8.3.5 Non-standard parameter specification

The need to specify numeric type for formal value and location parameters
places an undesirable constraint on the designer of input and output pro-
cedures. For such procedures it is desirable that the procedure should
adapt itself to the numeric type and scale of the actual parameters. The
following extension of the syntax for Parameterspec (section 8.3) is regarded
as an acceptable device in Coral 66 implementations:

Parameterspec = VALUE Formalpairlist
LOCATION Formalpairlist
Specifier Idlist
etc

Formalpairlist = Formalpair
Formalpair , Formalpairlist

Formalpair = 1Id : I

At the call of the procedure, each formal pair corresponds to a single actual
parameter. The first identifier is used within the procedure body, with
numeric type integer, as a reference to the value of, or as the location of, the
actual parameter. The compiler arranges that the second identifier passes the
numeric type and scale of the actual parameter, represented in the form of an
integer by some impl For example, the
declaration of an output procedure might begin

PROCEDURE out(VALUE u:v)

If x is a variable of numeric type FIXED (24,12), the procedure statement
oyt(x) would take account of this known scale.

8.4 The procedure body

For purposes of scoping, a procedure declaration may be regarded as a
block at the place where it appears on the program sheet (even though this

37

might be an illegal position). Everything except the body can be disregarded,
and the formal parameters treated as though declared within the body,
labels included. i which are local to the body are
those in scope at the place of the procedure declaration, subject to the
restrictions given in section 3.5. Actual parameters must, of course, be in
scope at the procedure call. For example, the block:
BEGIN INTEGER i;
INTEGER PROCEDURE p; ANSWER i;
ie0;
BEGIN INTEGER i;
ie2;

print(p)

END
END
has the effect of printing 0.

38

Communicators

The segments of a program may communicate with each other through
COMMON (section 9.1 below), and with objects external to the program by
means of communicators such as LIBRARY, EXTERNAL or ABSOLUTE,
as defined in particular implementations.

8.1 COMMON communicators

Global objects declared within a program (section 3.3) are communicated
to all segments through a COMMON communicator. This consists of a list
of COMMON items separated by semi-colons all within round brackets
following the word COMMON. Such items are of three kinds, corresponding
to the division of objects into data, places and procedures. A COMMON data
item is a declaration of the identifiers listed within it, exactly as in section 4,
storage being allocated as in section 4.5, presets and overlays as in sections
4.6 and 4.8. Communication of places and procedures takes the form of
speci] ion, as in the i s of a procedure declaration
(sections 8.3.3 and 8.3.4). For each identifier specified in a COMMON
communicator, there must correspond an appropriate declaration (or for
labels a setting) in one and only one outermost block of the program. The
syntax is

Commoncommunicator = COMMON (Commonitemlist)

C itemli: =C
Commonitem ; Commonitemlist

Commonitem = Datadec
Overlaydec
Placespec
Procedurespec
Void

Placespec = LABEL Idlist
SWITCH Idlist

9.2 LIBRARY communicators

To make provision for the use of library procedures (and possibly also data
references used by such procedures), programs may include LIBRARY
communicators. These should begin with the word LIBRARY and be styled
to conform with the rest of the language. The relative importance attached to
COMMON and LIBRARY as means of inter-segment communication
borders on questions of implementation which fall outside the scope of the
present language definition.

9.3 EXTERNAL communicators

It may be desirable to refer to an object external to a Coral 66 program by
means of an identifier. Provided the loader permits, this may be achieved by
an EXTERNAL communicator similar in form to a COMMON communi-
cator.

9.4 ABSOLUTE communicators

Coral 66 programs may refer to objects having absolute addresses in the
computer by the use of ABSOLUTE communicators which associate an
identifier with a specification of the ‘absolute’ object, including its address.
The form recommended is that of a COMMON communicator, except that
each identifier to be associated with an absolute location takes the syntactic
form Id / Integer.

10

Names and constants

101 Identifiers

Identifiers are used for naming objects of data, labels and switches, pro-
cedures, macros and their formal parameters. An identifier consists of an
arbitrary sequence of lower case letters and digits, starting with a letter. It
carries no information in its form, e.g. single-letter identifiers are not reserved
for special purposes. It may be of any length, though it is permissible for
compilers to disregard all but the first twelve printing characters. As layout
characters are ignored, spaces may be used in identifiers without acting as
terminators.

Id = Letter Letterdigitstring
Letterdigitstring = Letter L igitstring
Digit Letterdigitstring

oid

Letter =abcdefghijklmnopqrstuvwxyz
Digit =0123456789

An obvious liberty is taken with the layout of alternatives in the above rules.

10.2 Numbers

Numerical constants appearing in other sections of this definition are of the
following types:

(a) ‘Constants for presetting, optionally signed.

(b) Integers and reals as primaries in expressions. A sign attached to a
primary belongs syntactically to the expression and not to the
number.

(c) Integers and signed integers used in declarations or specifications,

typically for defining fixed scales, bit-fields and array bounds.
41

The syntactic classification is as follows:

Constant = Number
Addoperator Number
Number = Real
Integer

Signedinteger = Integer
Addoperator Integer

Real = t . Digitlist
st 1, Signedinteger
10 Signedinteger
Digitlist . Digitlist ,, Signedinteger
OCTAL (Octallist . Octallist)
Integer = Digitlist
OCTAL (Octallist)
LITERAL (printing character)

The further expansions are
Digitlist = Digit
Digit Digitlist
Octallist = Octaldigit
Octaldigit Octallist
Octaldigit =01234567

where 0 to 7 are alternatives.

10.3 Literal constants

A printing character 15 assumed to have a unique integer representation
within the dent on some hard or software convention.
The integer value may be referred to within the program by the LITERAL
operator. For example,

LITERAL(a)

has an integer value uniquely representative of ‘a’. The form is included
within the syntax of integer (section 10.2). The printing characters will be
implementation-dependent, but it must be assumed that the set includes one
26-letter alphabet and a set of 10 digits (see Appendix 2). Layout characters
are not acceptable as arguments of LITERAL.

42

10.4 Strings

A string is any succession of characlers (printing or layout) enclosed in
quotation marks (string quotes). g that the

tions of the opening and closing quote symbols are distinguishable, occur-
rence of such marks must be properly paired within the string (but see
Appendix 2). A string is classed as an unconditional expression (section 6),
and its value is its location, but it may not be used as a LOCATION para-
meter. Procedures capable of selecting individual characters from a string
should be designed so that characters are represented by the same integer
values as are defined for literal constants.

String = < sequence of characters with quotes matched %

43

1

Text processing

1.1 Comment

A program may be annotated by the insertion of textual matter which is
ignored by the compiler.

11.1.1 Comment sentences

A comment sentence may be written wherever a declaration or statement
can appear. It consists of the word COMMENT followed by text and
terminated by a semi-colon. For obvious reasons, the text must not contain a
semi-colon. The entire comment sentence is ignored by the compiler.

11.1.2 Bracketed comment

Bracketed comment is any textual matter enclosed within round brackets
immediately after a semi-colon of the program. The text may contain
brackets provided that they are matched. Bracketed comment (including the
brackets) is ignored by the compiler.

11.1.3 END comment

Annotation may be inserted after the word END provided that it takes the
form of an identifier only. The ‘identifier” is ignored by the compiler.

1.2 Macro facility

A Coral 66 compiler embodies a macro processor, which may be regarded
as a self-co_mained routine which processes the text of the Coral program
before passing it on to the compiler proper. Its function is to enable the

4

programmer to define and use convenient macro names, in the form of
identifiers, to stand in place of cumbersome or obscure portions of text,
typically code statements. Once a macro name has been defined, the processor
expands it in accordance with the definition wherever it is subsequently used,
until the definition is altered or cancelled (11.2.4). However, the macro
processor treat comments and constant character strings (section 10.4) as
indivisible entities, and does not expand any identifiers within these entities.
No character which could form part of an identifier may be written adjacent
to the use of a macro name or formal parameter, as this would inhibit the
recognition of such names. A macro definition may be written into the source
program wherever a declaration or a statement could legally appear, and is
removed from it by the action of the macro processor.

11.2.1 String replacement

In the simplest use, a macro nante stands for a definite string of characters,
the macro body. For example, the (fictitious) code statement

CODE BEGIN 123,45,6 END
might be given the name ‘shift6’. The macro definition would be written
DEFINE shift6 « CODE BEGIN 123,45,6 END % ;
The expansion, or body, can be any sequence of characters in which string
quotes are matched (but see Appendix 2). Care must be taken to include

brackets, such as BEGIN and END, as part of the macro body whenever
there is the possibility that the context of the expansion may demand them.

11.2.2 Parameters of macros

A macro may have parameters, as in the following example,
DEFINE shift(n) « CODE BEGIN 123,45,n END % ;

Subsequent occurrences of shift(6) would be expanded to the code statement
in 11.2.1. A formal parameter, such as n above, must be written as an identi-
fier. An actual parameter (e.g. 6) is any string of characters in which string
quotes are matched, all round and square brackets are nested and matched,
and all occurrences of a comma lie between round or square brackets. This
rule enables commas to be used for separating actual parameters. The
number of actual parameters must be the same as the number of formals,
which are also separated by commas.

45

11.2.3 Nesting of macros

A macro definition may embody definitions or uses of other macros to any
depth. When a macro is defined, the body is kept but not expanded. When the
macro is used, it is as though the body were substituted into the program
text, and it is during this substitution that any other macros encountered
are processed. The use of a macro with parameters may be regarded as
introducing virtual macro definitions for the formal parameters before the
macro body is substituted. Thus, to continue the example from 11.2.2, the
occurrence of shift(6) is equivalent to

DEFINEn « 6 » ;
CODE BEGIN 123,45,n END

followed immediately by deletion of the virtual macro n. Throughout the
scope of the macro ‘shift’, the formal parameter n may not be defined as a
macro name. A formal parameter may not be used in any inner nested
macro definition; neither in its body nor as a macro name nor as a formal
parameter. Furthermore, no identifier in an actual parameter string, or its
subsequent expansions, may be the same as any formal parameter of the
calling macro.

11.2.4 Deletion and redefinition of macros

Macro definitions are valid from the point of definition until either the end
of the program text is reached or the macro name is redefined or deleted.
The scope of a macro is independent of the block structure of the program.
To delete a macro, the command

DELETE Macroname ;
is used wherever a declaration or statement could appear. Alternatively,
a macro name can be redefined. Macro definitions which have the same name
are stacked, so that the most recent is the one which applies when the name
is used. If a redefined macro is deleted, it is the most recent definition which
is deleted, and the previous one is reinstated. ‘Recent’ and ‘previous’ refer to
the sequence as processed by the macro processor.

1.3 Syntax of comment and macros

Commentsentence = COMMENT any sequence of characters not including
a semi-colon ;

46

Bracketedcomment = (any sequence of characters in which round brackets
are matched)

Endcomment =1d

Macrodefinition = DEFINE Macroname < Macrobody + :
DEFINE Macroname (Idlist) « Macrobody # ;

Macroname =1d

Macrobody = any sequence of characters in which string quotes are

matched
Macrodeletion = DELETE Macroname ;
Macrocall = Macroname

Macroname (Macrostringlist)
Macrostringlist = Macrostring , Macrostringlist
Macrostring

Macrostring = any sequence of characters in which commas are
protected by round or square brackets and in
which such brackets are properly matched and
nested

47

Appendix - 1 Syntax Rules In Alphabetical Order

Actual = Expression
Wordreference
Destination

Name
Actuallist = Actual
Actual , Actuallist
Addoperator — -+
Alternative = Statement
Answerspec — Number(ype
Void

= ANSWER E:
Arraydec = Numbertype ARRAY Arraylist Presetlist
Arrayitem = Idlist [Sizelist]
Arraylist = Arrayitem
Arrayitem , Arraylist
Assignmentstatement — Variable «— Expression

Base — Id
1d [Signedinteger]
Bitposition — Integer
Block = BEGIN Declist ; Statementlist END
Booleanword — Buoleanwor
DIFFER 5
Booleanword2 = Booleanword3

5 UNION
Booleanword3 = Booleanw Drd6 MASK Typedprimary
Booleanword4 = Booleanword

Typedprimary
Booleanwords — Booleanword2
Typedprimary
Booleanword6 — Booleanword3
Typedprimary

Bracketedcomment = (any sequence of characters in which round
brackets are matched)

Codesequence = defined in a particular implementation
Codestatement = CODE BEGIN Codesequence END
Commentsentence = COMMENT any sequence of characters not
including a semi-colon ;
Commoncommunicator = COMMON (Commonitemlist)

48

73

7.3

113

Commonitem = Datadec
Overlaydec
Placespec
Procedurespec

Commonitemlist = Commonitem .
Commonitem ; Commonitemlist
‘Comparator = <or<or=or>or>or#
- .

Companson -
= BEGIN ist END
Condmon = Condition OR Subcondition
beondition
Conditionalexpression = IF Condition
THEN Expression
ELSE Expression

Conditionalstatement = IF Condition THEN Consequence
IF Condition THEN Consequence

ELSE Alternative
Consequence = Slmp]cslatemenl
Label : Consequence
Constant = Number
Addoperator Number
Constantlist = Group
Group , Constantlist

Datadec = Numberdec
Arraydec
Tabledec
Dec = Datadec
Overlaydec
Switchdec
Proceduredec
Declist = Dec
Dec ; Declist
Destination = Label
Switch [Index]
Digit =0or1or2or3ordor5Sor6orTor8or9
Digitlist = Digit
Digit Digitlist
Dimension = Lowerbound : Upperbound
Dummystatement = Void

Elementdec — Id Numbertype Wordposition

Elementdeclist = Elementdec
Elementdec ; Elementdeclist

9.1

6.2.1
6.2.1

62]

12
10.1
10.2

43
7.8

4.4.1

49

= PRESET C

Elementscale = (Totalbits , Fractionbits)
(Totalbits)
Id

Endcomment
ion = (
Conditionalexpression

Factor = Primary
Booleanword
Forelement = Expression
Expression WHILE Condition
ion STEP ion UNTIL

Forlist = Forelement
Forelement , Forlist

= FOR «Forlist DO
Fractionbits = Signedinteger

Gotostatement = GOTO Destination
Group = Constant

(Constantlist)

Void

1d = Letter Letterdigitstring
Idlist = Id
1d , Idlist
Index = Expression
Integer = Digitlist
OCTAL (Octallist)
LITERAL (printing character)

Label = Id
Labellist = Label

Label , Labellist
Length = Integer

Letter =aorborcor..... orz

L igitstring = Letter Letterdigitstrin,
Digit Letterdigitstring.
Voi

Lowerbound = Signedinteger

50

7.2
4.6.1

»3

6.1.1.2.1
10.2

44.1
10.1
10.1

43

Macrobody = any sequence o) cnaracters n which string quotes 113,

are matched Appx. 2

Macrocall = Macroname 113
[acroname (Macrostringlist)

= DEFINE € body » ; 113

DEFINE Macroname (Idlist) £ Macrobody » ;

= DELETE H 11.3

Macroname = Id 113

Macrostring = any sequence of characters in which commas are 13

protected by round or square brackets and in
which such brackets are properly matched

and nested
Macrostringlist = Macrostring 113
Macrostring , Macrostringlist
Multoperator = « 6.1
/
Name = Id 7.3
Number = Real 10.2
Integer
Numberdec = Numbertype Idlist Presetlist 4.2
Numbertype = FLOATING 41
FIXED Scale
INTEGER
Octaldigit =0or 1 or2or3ordorSor6ord 10.2
Octallist = Octaldigit 10.2
Octaldigit Octallist
Overlaydec = OVERLAY Base WITH Datadec 4.8
Parameterspec = Specifier Idlist 83
Tablespec
Procedurespec
Parameterspeclist — Parameterspec 8.2
Parameterspec ; Parameterspeclist
Partword = Id [Index] 6.1.1.2.2
BITS [Totalbits , Bitposition] Typedprimary
Partwordreference = Id [Index] 7.1
BITS [Totalbits , Bitposition] Wordreference
Partwordtype = Elementscale 4422
UNSIGNED Elementscale
Placespec = LABEL Idlist 9.1
SWITCH Idlist
Presctlist = «— Constantlist 4.6.1
Void
51

Primary = Untypedprimary
Typedpnmary
Procedurecall =
Id (Actuallist)
P PROCEDURE P

RECURSIVE F

Procedureheading —1d
1d (Parameterspeclist)

—A PROCEDURE P
Procparameter — 1d
1d (Typelist)

Procparamlist = Procparameter
Procparameter , Procparamlist

Real =

. Digitlist
st 5, Signedinteger

1 Signedinteger

Digitlist . Digitlist ,, Signedinteger
OCTAL (Octallist . Octallist)

Scale = (Totalbits , Fractionbits)
Signedinteger = Integer
Addoperator Integer
Simpleexpression = Term
Addoperator Term
Simpleexpression Addoperator Term
— Assi

Gotostatement
Procedurecall
Answerstatement
Codestatement
‘Compoundstatement
Block
Dummystatement
Sizelist = Dimension
imension , Dimension
Specifier = VALUE Numbenype
LOCATION Numbertype
Numbertype ARRAY
LABEL
SWITCH
Statement = Label : Statement
Simplestatement
Conditionalstatement
Forstatement

52

8.2

8.3.4
8.34

8.34

10.2

8.3

Statementlist = Statement
Statement ; Statementlist
String = & sequence of characters with quotes matched %

Subcondition = Subcondition AND Comparison
‘Comparison

Switch = Id

Switchdec = SWITCH Switch «— Labellist

Tabledec = TABLE Id [Width , Length]

[Elementdeclist Elementpresetlist]

Presetlist
Tablespec = TABLE Id [Width , Length] [Elementdeclist]

Term = Factor
Term Multoperator Factor
Totalbits = Integer
Type = Specifier
TABLE
Answerspec PROCEDURE
Typedprimary = Wordreference
Partword
LOCATION (Wordreference)
Numbertype (Expression)
Procedurecall
Integer
Typelist = Type
Type , Typelist

T

String
Untypedprimary = Real
pression)
Upperbound = Slgncdmuger

Variable = Wordreference
Partwordreference
Width = Integer
‘Wordposition = Signedinteger
Wordreference = Id
1d [Index]
1d [Index , Index]
[Index]

76

10.4,
Appx. 2
62.1

“wan

6.1.1.1
43

44.1
6.1.1.21

53

Appendix 2 - List of language symbols

ABSOLUTE 9.4 EXTERNAL 9.3 OVERLAY 48
AND 6.2.1
ANSWER 74 FIXED 4.1 PRESET 4.6.2
ARRAY 43 FLOATING 4.1 PROCEDURE 8
FOR 7.10 RECURSIVE 8
BEGIN 3.1,7.6
BIT 442 GOTO 72 STEP 7.10.1
BITS 6.1.1.2.2 SWITCH 5,83,9.1
1F 6.2,7.9
CODE 75 INTEGER 4.1 TABLE 4.4.1
COMMENT 11.1.1 THEN 6.2, 7.9
COMMON 9.1 LABEL 83,9.1
LIBRARY 9.2 UNION 6.1.2
DEFINE 11.2.1 LITERAL 10.3 UNSIGNED 4.4.2.2
DELETE 11.24 LOCATION 6.1.1.2,8.3 UNTIL 7.10.1
DIFFER 6.1.2
DO 7.10 MASK 6.1.2 VALUE 83
ELSE 6.2,7.9 OCTAL 10.2 WHILE 7.10.2
END 3.1,76 OR 6.2.1 WITH 4.8
0123456789 digits, 10.1
abedefghijkimnopgrstuvwxyz letters, 10.1
+ - adding operators, 6.1
s/ multiplying operators, 6.1
<< =>># comparators, 6.2.1
) expression brackets, etc.
(W] index brackets, etc.
£ » string quotes, 10.4, 11.2

s separators for lists

separator for bounds, 4.3
terminator for label setting, 7

54

« assignment symbol, 4.6.1, 5, 7.1

point, 10.2
» “times ten to the power of”, 10.2
The above symbols are too ¢ for ion by single on
most printing that, where necessary, the

two alphabets be distinguished by enclosure of language words between primes or
accents, and that the following representations be adopted:

Official definition Representation
< <=
> >=
#* <>
— =
< "
3 "

The use of the ISO quote-character (") is a desirable representation, but as this
makes the opening and closing symbols indistinguishable, it is recommended that
the Algol 68 system be adopted (Numerische Mathematik, 14, 79-218 (1969), para.
5.1.4), in which a quote-symbol within a string is represented by a pair of quote-
characters ("' ")

Appendix 3 - Levels of implementation

The language requirements for a particular machine or for particular classes of
work, or generally for both, are not easily assessed. The richer the language, the
larger the compiler may become, and the more difficult it may be to compile into
efficient object-code. The balance between code efficiency and the human effort
needed to attain it is not easy to strike. The objective of Coral 66 development has
been to permit latitude, not in details, where there is little merit in diversity of
expression, but in the presence or absence of major features such as RECURSIVE
procedures, which may or may not be considered worth having. Other such major
features are:

TABLE facllny

FIXED n

BITS, DIFFER UNION and MASK
OVERLAY of data

FLOATING numbers

A full Coral 66 compiler handles all these features, but it would not normally be
expected that a compiler for an object machine lacking floating point hardware
should handle the FLOATING type of number. The use of additional features, not
officially within the Coral 66 language, and not clashing with the official definition
or each other, may be approved for specific fields of defence work.

56

Index of terms

For syntax words, see Appendix 1; for language words, see Appendix 2

Anonymous reference 6.1

answer statement 7.4, 8.1
array 4.3, 4.4.4,83.2.2
assignment 7.1

Bit numbering 4.4.2
bit position 4.4.2
bit selection 6.1.
block 3.1

bound 4.3

Character 2, 10.3

clash 3.2

code 7.5

comment 11.1

common 2.2, 3.3, 9.1
compound statement 7.6
condition 6.2.1

constant 10.2

Declaration 3.1
dimension 4.3
dummy statement 7.8

Element (table) 4.4.2
evaluation 6.1.3
exponent 6.1
expression 6

Factor 6.1
field 4.4, 6.1
fixed-point 4.1
floating point 4.1
for statement 7.10
function 6.1.1.2.5

22

Global 3.3
goto statement 7.2

Identifier 2, 10.1

implementation 1 4
index 4.3, 4.4.4, 6
initialization 4.6
integer 6.1.1.
integer type 4.1

Label 3.4, 5, 7.2, 8.3.3.1
layout 2, 10.1, 10.3
library 2.2, 9.2

literal 2, 10.3

local 3.1

Tocation 4.5, 6.1.1.2.3, 8.3.2.1
logic 6.1.2, 6

Macro 11.2

Nesting 3.1, 11.2.3
number 10.2
numeric type 4.1

Object 2.1
operator
arithmetic 6.1
boolean 6.2.1
logical 6.1.2
outermost block 3.3
overlay 4.8
own 4.7

Packing 4.4
parameter 8.3,
part-word 4.4.
part-word reference 7.1
place 2.1, 8.3.3
presetting 4.6
primary 6.1.1
procedure

body 8.4

call 7.3

declaration 8

parameter 8.3.4
program 2.2

o
4

Quote 10.4, 11.2.1, A2 syntax 1.3, Al

Real 6.1.1.1, 10.2 Table 4.4, 8.3.2.3

real time 1.2 term 6.1

recursion 3.5, A3 type 4.1

reference 4, 5 type-changing 6.1.1.2.4, 6.1.3,
8.3.2.1

Scale 4.1

scope 3, 7.6 Value cail 8.3.1

segment 2.2 variable 7.1

specification 3.5, 8.3 void 7.8

statement 3.1, 7 void preset 4.6.2, 4.7

storage 4.5

string 2, 10.4 Width 4.4.1

switch 5, 7.2, 8.3.3.1, 8.3.3.2 word- position 4.4.2

symbol 2, A2 word reference 6.1.1.2.1, 8.3.2.1

Printed in England by Her Majesty's Stationery Offce Press, Manor Farm
01016 Dd698730 K10 2[81

