MIMISTRY OF DEFEMNCE
(FProcurement Executive)

OFFICIAL DEFINITION OF

CORALG

Prepared by the Inter- Establishment Committes on
Computer Applications as a language standard for
military programming

London Her Majesty’s Stationary Office



T Crown copyright 1970

First published 1970

Seventh impression 19381

Exrracts may be reproduced proviged the source v arknowledged

ISBN O 11 470221 7



Preface

Coral 66 is a general-purpose programming language based on Alzal 60,
with some features from Coral 64 and Jovial, and some from Fortran, It was
originally designed in 1966 by I. F, Curric and M. Griffiths of the Royal
Radar Establishment in response to the need for a compiler on a fixed-point
computer in a control environment. In such ficlds of application, some
debasement of high-level languape ideals is acceprable if, in return, there is a
worthwhile gain in speed of compilation with minimal equipment and in
efficiency of object code. The need for a language which takes these require-
ments into account, even though it may notl be fully machine-independent, 1s
widely felt in imdustrial and mibtary work. We have therefore formalized the
definition of Coral 66, taking advantage of experence pained in the use of
the language. Under the auspices of the Inter-Establishment Commitles for
Computer Applications, we have had technical advice from stall of the Royal
MNaval Scientific Service, the Royal Armament Research and Development
Establishment, the Royal Radar Establishment, the Defence ADP Training
Centre, from serving officers of all three services and from imerested sections
of industry, to afl of whom acknowledgments are due.

The present definition 15 an inter-service standard for military program-
mung, and has also been widely adopted for civil purposes in the British
control and awtomation industey, Such civil usage is supported by RRE and
by the National Computing Centre at Manchester, on behall of the Depan-
ment of Industry. The NCC has agreed 1o provide information services and
training facilities, and enquiries about Coral 66 for industrial application
should be directed to that organization.

Roval Radar Establishment P, M., WOODWARD
Malvern F. B. WETHERALL
Waores. B, CHMMAN

June, 1074

i






Contents

FPAGE

1 Introduction
1.1 Special-purpose languapss 1
1.2 Real-time |
1.3 Syntax 1
1.4 Implementation 2
3
? The Coral 66 program 4
21 Ohbjects 4
22 Program 4
3 Scoping £
3.1 Block stnocture [
312 Cladhing of names 7
33 Globals T
314 Labels T
1,5 Resrictions connected with scoping K
4 Reference o dala g
4.1 MNumeric iypes 9
4?1 Simple reflerences 1)
4.3 Array references D
44 Packed data I
4.4.1 Table declaration 11
4.4.2 Table-glement declarntion |2
4.4.2.1 Whale-word table-elements 12
4422 Part-word iable-clements 12
4.4.3 Example of table declaration 13
444 Reference to tables and table-clements 14
4.5 Storapge allocation 14
4.6 Presetting 14
4.6,1 Presetting of simple references and arrays 15
46,2 Presetting of tabbes 1
4.7  Preservation of valees 16

48 Owverlay declarations 17



£ Place references —switches

6 Expressions
6.1  Simple expressions
6.0.1 Primarses
6.0.1.1 Untyped primaries
6.1.1.2 Typed primacies
Word references
Part-words
Locations

12Xl
1.2.2
1.2.3
1.2.4  Explicit type-changing
¥
1.2.6

g-.':l'-l?\-"-"-

&l
1
B,
d.
1.1 Functions
6.1.1 Iniegers

6.1.2 Word-logic
6.1.3 Evaluation of expressions

6.2 Conditional expiesiions
621 Conditeons

1.1  Assignments

7.2  (oto statements

7.3 Procedure statements
74  Apnswer siatemenis
1.5 Code statemenits

7.6 Compound statements
7.7 HBlocks

1.8 Dummy statements

1.9 Conditional statements

7.10 For statements

T.10.1 For-elements with STEP
T10.2 For-elements with WHILE

B Prooodures

B.1  Answer specificatson
8.2 Procedure heading
8.3 Parameter specification
3.1 Value parameters
832 Dan reference parameters
8.3.2.1 Word location parameters
3322 Array paramelecs

§.3.231 Table parameters

vi

FACE

I8



§.13 Place parameters
8.3.3.1 Label parameters
§3.3.2 Swich parameters
B34 Procedure parameiers
%335 Non-standard parameter specification
B4 The procedure bady

9  Commuenicators
o] COMMON communecaiors
.2 LIBRARY communicitors
5.3 EXTERMAL communicators
94 ABSOLUTE communicatons

10 Names amd constants
0.1 ldentificrs
10.2 MNumbers

0.3 Literal constanti
104 Sirings

11 Text processimg

1.1 Comment
11.1.1 Comment sentences
11.1.2 Brackeiod comment

1.1, END comment
11.2 Macro facility
11.2.1 Sinng replacement

11.2.2 Paraméters of macrod
11.2.3 MNesting of macros

11.24 Deletion and redefinition of macros
(1.3 Syntax of comment and macros

Appendinves 1 Syntax rules in alphabetical order
2 List of language symbols
3  Levels of implementation

Index of férms

Vil

PAGE

LSHRERG

&§8&3 2

e

41
41
42
43

48
54
56

57






Introduction

It B virmeally impossible to design a standard language such that programs
will run with equally high efficiency in all types of computer and in any
applications. Much of the design of Coral 66 reflects this difficulty. For
example, the language permits the use of non-standard “code statements’ for
any parts of a program where it may be important to exploit particular hard-
ware facilines. A special feature 15 scaled fixed-point arithmetic for use in
small fixed-point machines; the floating point facilities of the language can
be omitted when hardware hmitations make the use of floating-point arnith-
mete unéconomical. Other features also mav be dropped without reducing
the power of the language to an unaccepably low standard, Some reduced
levels of implemeéntation are suggested in Appendix 3 to thas definition.

1.1 Special-purpose languages

A clear distinction must be made between general-purpose languages for use
by skilled programmers, and more limited languages designed to incorporate
the inbuilt assumptions of specialized applications or to make direct com-
puter access practical for the non-specialist user, Coral 66 beélongs to the first
category. Languages in this ¢lass are suitable for writing compilers and
interpreters as well as for direct application. Special-purpose languages can
therefore be implemented by means of software written in Coral 66, backed
up as required with suites of specialized macros or procedunes. It is largely for
this reason that the facilities for using procedures have been kept as general
as possible, The main differences between Coral 66 procedures and those of
Algol 60 lie in the replacement of the Algol 60 dynamic ‘name parameter” by
the more cfficient “location’ or reference parameter used in Fortran, and the
requirement (o declare recursive procedures cxplicitly as such, again in the
interest of object-code efficiency.

1.2 Real time

The theory and structure of programming for real-time computer applica-
tions has not yet advanced to such a point that a particular chotee of language



Facilities is inevitable, Further, the design of real-time languages is handi-
capped by the lack of agreed standard software mterfaces for apphcations
programmers or compaler writers. This does not imply that real-time programs
cannal yet be written in high-level language. The use of Coral 66 in real-time
applications implies the presence of a supervisory system for the control of
communications, which may have been designed independently of the
compiler., The programmer’s control over external evems, and the com-
puter’s reaction 10 them, is expressed by the use of procedures or macros
which communicate with the outside world indirectly through the apency of
the supervisory software. No fixed conventions are laid down for the names
or action of such calls on the supervisor,

1.3 Syntax

The widespread use of syntax-driven methods of compilation lends increasing
importance 1o syntax methods of language descniption. The present definition
takes the form of a commentary on the svntax of Coral 66, and therefore
starts with broad strecture. working downwards to finer detail. For reasons
of legability, the customary Backus notation has been dropped in favour of a
system relying on typographical layour. Each syntax rule has on its left-hand
side & class name, such as Statement. Such names appear in lower case
without spaces, and with an initial capital letter. On the nght-hand sde of a
rule are found the various alternative expansions for the class. These alter-
natives are printéd each on a new line. Where a single alternative spreads
over more than one line of print, the continuation lines are inset in relation
1o the sarting position of the alternatives. Each alternative expansion
consists of a sequence of items separated by spaces, The items themselves are
gither further class names or “terminal symbols” such as BEGIN. The class
name Void is vsed for an empty cluss. For example, a typical pair of rules
might be

specimen = ALPHA Sign
BETA Sign
Sign
Voud
Examples of legal specimens are ALPHA -+ and BETA. The equals sign is

uscd 1o separate the lefi-hand side from the right. except after ms first
appearance in a rule.

2



1.4 Implementation

Considerations of software engincering have been allowed to influence the
design of Coral 66, principally 10 ensure the possibility of rapid compilation,
loading and execution. Conceptually, Coral 66 compilation 15 a one-piss
process, The insistence that identifiers are fully declared or specified before
use simplifies the compiler by ensuring that all relevant information is
available when required. The syntax of the language is transformable into
one-track predictive form, which enables fast svntax amalysers with no
back-tracking to be emploved. Features which require elaborate hardware
m the object machine for efficient program execution, lor example dynamic
storage allocation, are not included in the language. Unless run in a special
diagnostie mode, a Coral 66 compaler 15 not expected to generate run-time
checks on subscript bounds. No run-time checking of procedure entries 15
necessary. The arrangements for separate compilation of program segments
are designed to minimize load-time overheads, but the speaficanon of the
interface between a Coral 66 compiler and the loader is outside the scope of
the present document,



The Coral 66 program

A distinction is made between symbols and characiers. Characters, standing
only for themselves, may be used in “strings’ or as litgral constants. Apart
from such occurrences, & program is regarded as a sequence of symbaols,
each visibly representable by a unique character or combination of characters.
The symbols of the language are defined (Appendix 25, but the characters are
not. For the purpose of the language definition, words in upper case letters
are treated as single symbols, Lower case letters are reserved for use in
idensifiers, which may also include dipits in non-leading positions, Except
where they are used in strings, layout characters are ignored by a Coral 66
compiler.

21 Objects

A program is made up of symbols (such as BEGIN, =, 4) and arbitrary
identifiers which, by declaration, specification or setting acquire the status of
single symbols. Identifiers are names referring to objects which are classihed
as

data (numbers, arrays of numbers, tables)
places {labels and switches)

procedures (functions and processes)

2.2 Program

A program need not be compiled in one unit, but may be divided inio
segments for separate compilation. To make it possible to refer to chosen

objects in different segments, the names and types of such objects are written
outside the program segments in commumicaiors. Objects fully defined within
the program are rendersd accessible to all segments by their mention in a
COMMON communicator (sections 3.3 and 9.1). Objects whose full definition
lies outside the program, for example library procedures, can be made

4



accessible to all segments by mention in forms of communicator whose
definition will be implementation-dependent. A Coral 66 program will thus
COmMprise

name of program

optional communicators

named scgments

In someé appropriate sequence, Each program segment 15 i the form of a
block (section 3). The language definition does not specify how the program
or 115 segments shall be named or how the segments are (o be separated or
terminated, but when a whole program 15 compiled together, a typical form

raght be:
name of program
COMMON et ;
segment name 1
BEGIN . . . END ;
segment name 2
BEGIN . . . END
FIMNISH

The program staris running from the beginning of a segment, the choice of
which will depend upon a convention or mechamsm outside the definition of

the languape.



Scoping

A named object can be brought into existence for part of a program and
may have no existence elsewhere (but see section 4.7). The part of the
program in which it is declared to exist 1s known as its seepe. One effect of
scoping 15 10 increase the freedom of choosing names for objects whose
scopes do not overlap. The other effect is economy of computer storage space.
The scope of an object is settled by the block structure of the program as
described below,

3.1 Block structure

A block 13 a statement consisting, internally, of a sequence of declarations
followed by a sequence of statements puncivated by semi-colons and all
bracketed by a BEGIN and END. Formally,

Block = HEGIM Dechst : Statementlist END

Declist = Dec
Dec ; Dechist

Dec = Datadec
Owverlavdec
Switchdec
Proceduredes:

Datadec - Numberdec

Arravdec
Tabledec

The declarations have the purpose of fully classifying new objects and
providing them with names (identifiers). As a statement can be itself a block
merely by having the nght form, blocks may be nested to an arbitrary depth.
Except for global objects (section 3.3), the scope of an object is the block in
whuch 1t s declared, and within this block the object 13 sud to be focal. The
spope penetrates inner blocks, where the object is said to be non-local

f



3.2 Claghing of names

If two objects have the same name and therr scopes overlap, the clash of
definitions could give rise to ambaguity. Typically, a clash occurs when an
inner block is opened and a local object is declared o have the same name
as & non-local object which already exists, In this sitwation, the non-=local
object continues to exist through the inner block {e.g. a variable maintains its
vlue), but it becomes temporarily inaccessible, The local meaning of the
identifer always takes precedence.

3.3 Globals

A program consists of a number of segments, each of which may be described
as an ourermost dlock, as there is no formal block surrounding the sepments.
In addition o objects which are local to inner Blocks or outermost blocks,
global objects may be defined. Such objects may be used in any segment, as
their scope 15 the entire program. To become global, an obpect must be named
in @ communicator written outside the segments. For some types of object,
such as COMMON data references, this takes the form of a declaration {and
i5 the only declaration required). Other types of object, specifically
COMMON labels, COMMON switches and COMMON procedures, must
be fully defined within a segment. This means that COMMON labels must
be set, and COMMON switches and procedures must be declared, in one of
the outermost blocks of the program. Such objects are merely *specified” in
the COMMUON communicator, as described in section 9.1, and are treated as
local in every outermost block of the program. Global objects declared
outside the segments are treated as non-local. All globals are non-local in all
the inner blocks of any segment, With these rules of locality, guestions of
clashing are resolved in accordance with section 3.2

14 Labels

Any statement may be labelled by writing in front of it an indentifier and a
colon. The scope of a label is the smallest block embracing the siatement
which 13 labelled, extending from BEGIN to END. Thus labels can be wsed
before they have been set. It also follows that the only means of entering an
inner Mock 15 through its BEGIN. It s possible 1o jump into an outermost
block from a different segment by the use of a COMMON label (or switch or
procedure).



3.5 Restrictions connected with scoping

Mo identifier other than a label may be used before it has been declared or
specified. Specification means that the tvpe of object 1o which an identifier
refers has been given, but not necessarily the full definition of the object {see
section 9.1). Typically, a procedure identifier is specified as referring to a
certain type of procedure with certaun types of parameters by the heading of
the procedure declaration, but the procedure 15 not fully defined until the end
of the declaration as & whole, As an example of this, assume that two pro-
cedures T and g are declared in succession after the beginning of a segment,
Then the body of g may call on itsell or on the procedure f, but the body of f
may not call on the procedure g unless g has been specified in 8 COMMOMN
communicator. If a procedure is defined in a manner which directly or
indirectly calls on nself, that procedure is said to be recursive and must be
exphicitly declared as such.



Reference to data

4.1 Mumeric types

There are three types of nember, floating-point, fixed-point and integer,
Except in certain part-word table-elements (section 4.4,2.2), all three types
are signed. Numeric type is indicated by the word FLOATING or INTEGER,
or by the word FIXED followed by scaling constants which must be given
numerically, e.g.

FIXED {13,5)

This specifies five fractional bits and a minimum of 13 bits to represent the
number as a whole, including the fractional bits and a sign. The number of
fractional bits may be negative, zero or positive, and may cause the binary
point to fall outside the significant field of the number. It is assumed
throughout this definition that a8 number is confined within a single com-
puter word. If, in any implementation, a different system is adopted, e.g. two
words for a floating-point number, a systematically modified interpretation
of the language definition will be necessary, The syntax for numeric type is

Numbertype = FLOATING
FIXED Scale

INTEGER
Scale = ( Totalbits , Fractionbits )
Totalbits = Integer
Fractionbits = Signedinteger

4.2 Simple referencaes
The simplest objects of data arc single numbers of floating, fixed-point or
integer types. Identifiers may refer to such objects if suitably declared, e.p.
INTEGER i, j, k:
FIXED (13,5)x. ¥



and the declarations may cptionally include assignment of initial values,
This is known as presetting and is described in section 4.6, The synfax for a
number declaration is

Numberdec = Numbertvpe Idlist Presetlist

Idlist = Id
Id , Idhist
4.3 Array references

An array is restricted to a one or twe dimensional set of numbers all of the
sime type (including scale for fixed-point). An array is represented by an
identifier, suitably declared with, for each dimension, a lower and upper
index bound in the form of a pair of integer constants, e.p.

FIXED {13,5) ARRAY bj0:10];
FLOATING ARRAY c[1:3.1:3]

The lower bound must never exceed the corresponding uwpper bound. If more
than one array is required with the same numeric 1ype, and the same dimen-
sions and bounds, a list of array identifiers separated by commas may
replace the single identifiers shown in the above examples, Arrays with the
same numeric type but different bounds or dimensions may also be included
in & composite declaration, as shown below.,

INTEGER ARRAY p, q, rf1:3], s[1:4], 1, u[1:2, 1:3]

An array identifier refers (0 an array in its entirety, bul 115 use in statements
i$ confined to the communication of the array reference to a procedure.
Elsewhere, an array identifier must be indexed so that it refers to a single
array element. The index, i the form of an arithmetic expression enclosed in
square brackets after the array identifier, is evaluated to an integer as des-
cribed in section 6.1.3. The syntax rules for an array declaration, which
include a presetting lacility (section 4.6.1), are:

Arrayvdec = Mumbertype ARRAY Arraviist Presetlist

Arravlist = Arrayilem
Arrayitem , Arraylist

Arravitem == [dhist [ Sizelist ]

Sizelist = [Mmension
Drimension , Dimengion

10



Dimension = Lowerbound : Upperbound
Lowerbound = Signedinteper
Upperbound = Signedinteper

4.4 Packed data

There are two systems of referring to packed data, one in which an unnamed
field is selected from any computer word which holds data (see section
6.1.1.2.2), and one in which the data format is declared in advance. In the
latter system, with which this section is concerned, the format is replicated to
form a rable, A group of m words is arbitrarily partitioned into bit-fields {with
no fields crossing a word boundary), and the same partitioning is applied 1o
as many such groups (m say) as are required. The total data-space for a table
is thus mm words. Each group is known as a fable-entrp. The fields are named,
=0 that a combination of field identifier and entry index selects data from all
or part of one computer word, known as a rable-element, The elements in an
entry may occupy overlapping fields, and need not topether fill all the
available space in the entry.

4.4 Table declaration

A table declaration serves two purposes. The first is to provide the table
with an indentifier, and 1o associate this identifier with an allocation of word-
storage sullicient for the width and nurmber of entries specified. For example,

TABLE april [3,30]

15 the beginming of a declaration for the table ‘april’ with 30 entries each
3 words wide, requiring an allocation of 90 words in all. The second purpose
of the declaration is to specify the structure of an entry by declaring the
elements contained within if, as defined in section 4.4.2 below. Data-packing
is implementation dependent, and the examples will be found (o assume a
wordlength of 24 bits. The syntax for a table declaration is

Tabledec = TABLE 1d [ Width , Length ] [Elementdeclist
Elementpresetlist ] Presetlist

Elementdeclist = Elementdec
Elementdec ; Elementdeclist

Width = Integer
Length = Integer
Details of the two presetting mechanisms are given in section 4.6,2,
11



4.4.2 Table-element declaration

A table-element declaration associates an element name with & numeric

type and with a particular field of each and every entry in the table. The ficld
may be the whole or part of a computer word, and the form of declaration

differs accordingly. The syntax for an element declaration, more fully
developed in section 4.4.2.2, is
Elementdec = Id Numbertype Wordposition
Id Partwordtype Wordposition , Bitposition

Wordposition = Signedinteger
Bitposition = Intcper

Word-position and bit-position are numbered from zero upwards, and the
least significant digit of a word occupies bit-position zere. Normally, table-
elements will be located so that they fall within the declared widih of the
table, but a Coral 66 compiler does not check the limits. To improve program
legibality, it is suggested that the word BIT be permitted as an alternative to
the comma in the above syntax. The meaning of Bitposition is given in
section 4.4.2.2

4.4.21 Whaole-word table-elements

As shown in the syntax of the previous section, the form of declaration for
whaole-word table-elements is

Id Numbertype Wordposition
For example,
tickets INTEGER 0

declares a pseudo-array of elements named “uckets’. (True array elements
are located conseculively in store, section 4.5.) Each element refers to a

(signed) integer occupying word-position 2ero in an entry. Similarly,
weight FIXED (16,-4) |

locates "weight” in word-position |1 with a significance of 16 bits, stopping
4 bits short of the binary point. Floating-point elements are similarly per-
mmitted.

4.4.2.2 Part-word table-elements

Elements which occupy fields narrower than a computer word (and only
such elements) are declared in forms such as

12



ran UMNSIGNED (4,2) 2,0,
humadity UNSIGNED (6,6) 2.8;
temperature {10,2) 2,14

for fixed-point efemenrs, The fixed-point scaling is given in brackets (total
bits and fraction bats), followed by the word- and bit-position of the field
within the entry. Word-position s the word within which the field 15 located,
and bit-position s the bit at the least significant end of the field. The word
LUNSIGNED increases the capacity of the field for positive numbers at the
expense of eliminating negative numbers. For example, (4,2) allows numbers
from —2.00 to 1.75, whilst UNSIGNED (4,2) allows them from (LD 10
3.75, I the scale contains only a single inteper, ¢.g.

sunshine UNSIGNED (4) 2.4

the number i brackets represents the total number of bits for a part-word
integer. Though (4,0) and (4) have essentially the same sgnificance, the fact
that {4,0) indicates fixed-point type and (4} indicates an inteper should be
borne in mind when such references are used in expressions. The syntax of
Partwordiype, for substitution in the syntax of section 4.4.2, 15

Partwordiype = Elementscale
UNSIGNED Elementscale

Elementscale = { Totalbits , Fractionbits }
( Totalbits )

The rules for Totalbits and Fractionbits are in section 4.1. The number of
fraction hits may be negative, zero or positive, and it is permissible for the
binary point to lie outside the declared field.

4.4.3 Example of table declaration

TABLE april [ 3,30 ]
[ tickets INTEGER 0:
weight FIXED (16,4} 1;
rain UNSIGNED (4,2) 2.0:
sunshine LINSIGNED (4) 2.4;
humedity UNSIGNED (6,6) 2.8
temperature (10,2) 2,14 ]

It should be noted that all the numbers used to describe and locate fields
must be constants.

13



4.4.4 Reference to tables and table-elements

A table-element is selected by indexing its field identifier. To continue from
the example in section 4.4.3, the rain for april 6th would be written rain| 5],
for it should be noted that an entry always has the conventional lower bound
of zere, In use, the names of table-clements are always indexed. On the ather
hand, a table identifier such as ‘april” may stand on its own when a table
reference is passed 1o a procedure. The use of an index with a table identifer
does mot (other than accidentally) select an entry of the table. Tt sslects a
computer word from the table data regarded a3 a conventional array of
single computer words, with lower index bound zero, Thus the implied
bounds of the array ‘april’ are 0 : 89, A word so selected is treated as a
signed integer, from which it follows that april[6] in the example would be
equivalents to tickeis[2]. A table name is normally indexed only for the
purpose of running through the table systematically, for example to set all
data to zero, or to form a base for overlaying (section 4.8).

4.5 Storage allocation

Computer storage space for data is allocated awtomatically at compile time,
one word Tor each simple reference, one for each array element, and as many
a5 are declared for each table-entry. In any one composite declaration, a
Coral 66 compiler is explicity required to perform allocation serially. For
example, the declarations

INTEGER a .b ,c ;
INTEGER p , q ;

will make the locations of a,b,e become n, n+1, n42 respectively, and those of
P. q become m, m+ 1 where n and m are undefined and unrelated. In two-
dimensional arrays, the second index is stepped first: the declaration

INTEGER ARRAY a[l:2], b{1:2, 1:2]
will locate the elements
afl}, all], B{L,1}, B[LZ. b21], b[2.2]
in consecutive ascending locations.

4.6 Presetting

Certain objects of data may be initialized when the program is loaded into
store by the inclusion of a presetting clause in the data declaration. Presetting

14



15 not dynamic, and preset values which are altered by program are not reset
unless the program or segment is reloaded. An object is not eligible for
presetting if it is declared anywhere within

(a) the body of a recursive procedure, or
(b} an inner block of the program, or
{(¢) an inner block of a procedure bady,

Procedure bodies do not count as blocks for the purposs of (b). For example,
the integer i is eligible for presetting in a segment which begins as follows:

BEGIN PROCEDURE T:
BEGIN PROCEDURE g:
BEGIN INTEGER i

4.6.1 Presetting of simple references and arrays

The preset constants are fisted at the end of the declaration after an assign-
ment symbol, and are allocated in the order defined in section 4.5 As
examples,

INTEGER a, b, c 1, 2, 3;
INTEGER ARRAY k[1:2, 1:2) 11, 12, 2], 22

If desired for lembility, round brackets may be used to group items of the
presetlist, but such brackets are ignored by the compiler, The number of
constants in the presethist must not exceed, but may be less than, the number
of words declared, and presetting ceases when the presetlist is exhausted. In
special cases (see section 4.7), the preset assignment symbol may be the only
part of the presetlist which is present. The synlax is

Presethst = ¢« Constantlist
Void

Constantlist = Group
Group , Constantlist

Group = Constant
([ Constantlist )
YVoud

The main purpose of the final void will be seen in section 4.6.2. For the
expansion of Constant, see section 10.2.

|5



4.6.2 Presetting of tables

There are two alternative mechansms. If the interpal structure of a table is
completely disregarded, the table can be treated as an ordinary one-dimen-
sional array of whole computer words (4.4.4), and preset as such (4.6.1).
Alternatively, all the table-elements may be preset after their declaration list,
as shown at Elementpresetlist in the syntax of 4.4.1. For example,

TABLE gears [1,3]
[ teethl UNSIGNED (&) 0L0;
teath? UNSIGNED (&) 0,6;
ratio UNSIGNED (11.3) 0,12;
arc UNSIGNED (5,5) 0,12
PRESET (57,19,3.0, ). (30,25.2.0, ), (45.30,1.5, ) )

For table-clement presetting, the word PRESET is used instead of the
assignment symbol of 4.6.1. Each entry of the table is preset in succession
ag a proup of elements, taken in the order of ther declaraton. Voids in
the list imply absence of assignment. This may be necessary 1o avoud
duplication when fields overlap, as do “ratio” and "arc’ in the above example.
As in 4.6.1, brackets used for grouping constants in the list of presets are
ignored by the complier. The syntax is

Elementpresetlist = PRESET Constantlist
Voud
The previous example could, with equal effect but fess convenience, be
expressed in the form

TABLE gears [1.3]
[ teethl UNSIGNED (6) 0,0;
teecth2 UNSIGNED (&) 0,6,
ratio UNSIGNED (11,5) 0,12;
arc UNSIGNED (5,5) 0,12 ]
+— OCTAL{1402371), OCTAL{I003162), DCTAL{603655)

4.7 Preservation of values

Ohbjects of data may have no existence outside the scope of their declarations.
The values to which local identifiers refer must in general be assumed
undefined when a block s first entered and whenever it is subsequently
re-cnitered. This 15 due to the fact that a block-structured language 15 designed
for automatic overlaying of data. Local working space may therefore have
been used for other purposes between one entry (0 a block and the next. In

16



Coral 66 this is not invarably the case, When a data declaration contains a
presetlist as permitted by the rule given in section 4.6, the values of all the
objects named in that declaration will remain undisturbed between successive
entrigs to the block or procedure body, like ‘own’ variables in Algol 60 It is
sufficient that a preset assignment symbol appears at the end of the declara-
tion, even though the list of presel constants s void.

4.8 Overlay declarations

Owerlaying may be found desirable when COMMON data i3 required in
some segments and not in others, as it enables global data space to be
re-used for other purposes. However, indiscriminate use of overlaying
should be avoided. as it can lead to confusion and obscurity, The facility
cuuses apparently different data references to refer simultaneously to the
same ohiects of data, i.¢. a5 alternative names for the same storage locations,
To form an overlay declaration, an ordinary data declaration is preceded by
a phrase of the form

OVERLAY Base WITH

where Base is a data reference which has previously been covered by a
declaration in the same COMMON communicator or in the same segment,
The base may be a simple reference, one-dimensional array reference or 4
table reference treated as a oneé-dimensional array of whole words. If the
array or table identifier is not indexed, it refers to the location of its zero'th
element {which may be conceptualy. Storage allocated by the overlay
declaration starts from the base, proceeds serially {as in 4.5) and will not be
overluid by sfucceeding declarations unless these are themselves owverlay
declarations. The syntax of an overlay declaration 13

Overlaydec = OVERLAY Base WITH Datadec

Base w d
1d [ Signedinteger |

17



Place references—Switches

Place references refer to positions of program statements, and the simplest
position marker is the label (section 3.4). A swirch is a preset and unalterable
array of labels, which must be within scope at the switch declaration, Any use
of the indexed switch name refers to the corresponding label. For example,
the switch declaration

SWITCH s+—a. b ¢
causes 5{1] to refer 1o the label a, s[2] to b and s[3] to ¢. The syntax rules are
Switchdec = SWITCH Switch +— Labellist

Labellist = Label
Label , Labellist

Swiatch = Id
Label = Id

18



Expressions

The term “expression’ 15 reserved for arithmerie expressions. Coral 66 has no
designational expressions of Algol 60 type. As there are no Boolean variabies
and no bracketed Boolean expressions (see section 6.2.1), the expressions
after IF are known as conditions. The syntax lor expressions 18

Expression = Unconditionalexpression
Conditionalexpression

Unconditionalexpression = Simpleexpression
String

Strings are defined in section 10.4.

6.1 Simple expressions

Arithmetic is performed with the monadic and diadic adding operators
+ and —, and with the diadic multiplying operators = (multiply) and |
(divide). The plus and minus operators work on férms, which are combina-
tions of factors joined by multiplication or division. There s no exponen-
tiation operator. The syntax for simple expression begins as follows

Simpleexpression = Term
Addoperator Term
Simpleexpression Addoperator Term

Term = Factor

Term Multoperator Factor
Addoperator = +
Multoperator = =

19



6.1.1 Primaries

Primaries are the basic operands in expressions. For example, in the
analysis of the expression

X+ y*(adby—4

we discover three terms, the primary x, the term y*(a + b) and the primary 4.
The middle term is the product of two factors, the primary v and the primary
(a 4+ b). To complete the analysis, all expressions from within brackets are
similarly analysed until no further reduction is possible and no expression
brackets remain. When an expression contains no word-logical operators
(see sectiom 6,1,2), a factor must be a primary, which may or may not be of a
defined tvpe. Thus,

Factor = Primary
Booleanword

Primary = Untypedprimary
Typedprimary

6.1.1.1  Untyped primaries

Uintyped primaries are those operands which cannot be classed as integer,
floating-point or fixed-point (of known scale) without reference to their
context. For example, the number 3.1416 may be represented, with varying
degrees of accuracy, in many different ways within a computer word. The
same applies to an expression, whose type is determined by context (section
6.1.3)

Untypedprimary = Real
{ Expression )

A ‘real’ (section 10.2) is an unsigned numerical constant containing a decimal
or octal point or & tens exponent.

6.1.1.2 Typed primaries

Typed primarees are classified as follows

Typed primary = Wordreference
Partword
LOCATION { Wordrelerence )
MNumbertype ( Expression )
Procedurecall
Integer



6.1.1.21 Waord referances

A simple reference, or a reference to an array clement or whole-word table-
element. has a type defined in its declaration. Such references may be
described as word references because they refer to items of data for which
whole computer words are set aside. A further kind of word reference, the
anonymous reference, takes the form

[ Index ]

where the index is any expression evaluated as an integer to give the actual
location of a computer word. An anonymous reference possesses all the
properties of an identfied reference, except that it lacks an identifier. Just as
o variable i, declared as INTEGER i, may be used in an expression to refer
io the contents of the computer word allocated 1o i, 50 the use of an anony-
mous reference in an expression will refer to the contents of the address
defined by Index. Such contents are taken to be of numeric type INTEGER,
irrespective of any declaration which may have associated that word with
some olher type. See also section §.1.1.2.3, The syntax for word reference is

Wordreference = Id
Id [ Index |
Id | Index , Index ]
[ Tndex ]

Index « Expression

8.1.1.2.2 Part-words

Any single item ol packed data may act as i typed primary. Such @n item is
either

{a) a reference to a part-word table-clement, or
(b} a specified feld of any typed primary.
In case (a), the type is defined in the table declaration. In case (b), the desired
ficld is selected by a prefix of the form
RITS [ Totalbits , Bitposition ]

in front of the primary to be operated upon. The result of this operation 15
a positive* integer value of width Totalbits and 1 units of the bit at
"Bitposition”. The value will in general be implementation-dependent, even
though the operand must be typed, as no conventions are laid down for the
internal representation of foating-point or fixed-point items of data. In

*[t is assumcd that Totalbiis will nol be st equal to the full wordiengih.
21



all cases, however, the numeric type resulting from the application of BITS
15 INTEGER. The syntax for a part-word, which should be distinguished
from that of a *‘part-word reference’ (section 7.1, is

Partword = Id [ Index ]
BITS [ Totalbits , Bitposition ] Typedprimary

6.1.1.23 Locations

The computer location of any word reference is obtainable by the location
operator which 15 written in the form

LOCATION { Wordreference )

and has a valuee of type INTEGER. It may be noted that if i and j refer to
integers, [LOCATION()] is equivalent to i, and LOCATION ([j])is equivalent
to j. The reasoning is as follows. LOCATION (i )is the address of the
computer word allocated to i, Enclosure in square brackets forms an entity
equivalent to an identifier standing for this address, which by hypothesis is i.
Similarly, [23] is equivalent to an identifier for the address 23, and LOCA-
TION{[23]) 15 the address for which this fictitious identifier stands, which is
23 by hypothesis,

6.1.1.2.4 Explicit type-changing

A typed primary may have its type changed, and an untyped primary may
be typed, by enclosure within round brackets preceded by a specific Number-
type as descrnibed in section 6.1.3.

6.1.1.25 Functions

The call of a typed procedure (section §) may be treated as a function and
used as a primary in any expression. For the syniax of a procedure call, see
section 7.3,

611.26 Integers

An integer used in any expression (section 10.2) can be assumed to have the
numeric type INTEGER before any necessary type-changes are enforced by
context,

22



6.1.2 Waord-logic

Three diadic logical operators are defined for use between typed primaries.
The effect of these operators is implementation-dependent to the extent that
the word-representation of data is not defined by the language. The ith bit
of the result is a given logical function of the ith bits of the two operands,
and the result as a whole has the numeric type INTEGER. To avoid con-
fusion with Boolean operators in ‘conditions’ (section 6.2.1), a different
terminclogy is used. The operators are

DIFFER LUNION MASK

a1 01 o 1
0| i 0 1 0.0 0
1.1 D 1|1 1 P 01

DIFFER is recognizable as ‘not equivalent’, UNIOIN as ‘inclusive or® and
MASE as ‘and’. The operators are shown in order of increasing tightness of
binding. As bracketed expressions are untyped, the use of brackets 1o aover-
come binding priorities entails explicit integer scaling. For example,

a MASK INTEGER (b UNION ¢)

The Formal syntax, continued from 6.1.1, is

Booleanword = Booleanword2
Booleanwordd DIFFER Booleanword5

Booleanword?2 =- Booleamwaords
Booleanwordd UNION Booleanwordf

Booleanwordd — Booleanwordd MASK Typedprimary

Booleanwordd = Booleanword
Typedprimary

Booleanword® = Booleanword2

Typedprimary

Booleanwordt = Booleanword3
Typedprimury

6.1.3 Evaluation of expressions

Expressions are used in assignment statements, as value parameters of
procedures and as integer indexes, all of which conlexts determine the
numeric type finally required. Coral 66 expressions are automatically

23



evaluated to this type, bul in the process of calculation, data may be syb-
jected by the compiler to various intermediate transformations. Although an
algorithm for evaluating expressions does not form part of the official
definition of the language, all syntactically outermost terms in an expression
will be evaluated to the required numeric type before the adding operators
are applied. In the simplest cases, this rule ensures predictable results, though
it should he particularly noted that rounding-off errors will not be minimal,
and overflow may occur. If an expression is enclosed in round brackets, its
terms are not “outermost’, the rule no longer applies, and the algorithm for
the particular compiler determines the sequence of events. The programmer
can impose any desired system of evaluation by the use of [Numbertype
(Expression), which is a typed primary (section 6.1.1.2), any occurrence of
which behaves like a variable, ref (say), declared as

MNumbertype ref;
and assigned a value by

ref +— Expression

h:I'-I:I:I'E it 15 used. For example, if 1 and j are integer references and x is a
floating-point reference, the assignment stalement

X&—]—]
causes i and | to be converted to foating-point before subtraction, whilst
x +— INTEGER (i-j)

causes subtraction of integers before conversion to fleating-point. Although
the order of evaluation of an expression is undefined, the following rule
concerning functions will apply. ¥Value parameters of a function are peces-
sarily evaluated before the function itself is computed, so that the order of
evaluation of sin{cos{expn) ) will be expn, cos, sin. Apart from this type of
reversal, functions occurring in a simple expression will be evaluated in the
order in which they appear when the expression is read from left to right,
regardless of brackets.

6.2 Conditional expressions

A condittonal expression has the form

Conditionalexpression = IF Condition
THEN Expression
ELSE Expression
with the usual interpretation,

24



6.2.1 Conditions

A condition is made up ol arithmetic comparisons connected by Boolean
operators OR and AND, of which AND is the more tightly binding. The
permitted arithmetic comparisens are less than, less than or egual to, equal

to, greater than or equal to, greater than, and not equal to, The syntax rules
dre

Condition = Condition OR Sebcondition
Subcondition

Subcondition = Subcondition AND Comparison
Comparison

Comparison = Simpleexpression Comparator Simpleexpression
Comparator =

b SR TN |

The Boelean operators have their usual meanings, the OR being inclusive,
Conditions are evaluated from left to right only as far as is necessary to
determing their truth or falsity,

23



Statements
Statement - Label : Statement
Simplestatement
Condinonalstatement
Forstatement

Simplestatement = Assignmentstatement
Ciotostatement

Procedurecall
Answerstatement
Codestatement
Compoundstatement
Block
Dummystatement

Statements are normally executed in the order an which they are written,
gxcept that a goto statement may interrupt this sequence without return, and
a conditional statement may cause certain statements to be skipped.

7.1 Assignments

The lefi-hand side of an assignment statement 5 always a data reference,
and the right-hand side an expression Tor procuring a numerical value. The
result of assignment i5 that the left-hand side refers 1o the new value until
this is changed by further assignment, or until the value is lost because the
reference goes out of scope (but see section 4.7), The expression on the
right-hand side is evaluated to the pumesic type of the reference, with
automatic scaling and rounding as necessary. The left-hand side may be a
word reference as defined in section 6.1.1.2.1 or it may be a part-word
reference, ie. a part-word table-element or some selected field of a ward
reference, When assignment is made to a part-word reference, the remaining
hits of the word are unaltered. As examples of assignment,

[LOCATION(i) + 1] « 3.8
26



has the effect of placing the integer 4 in the location succeeding that allocated
to 1, and
BITS[2,6] x «— 3

has the effect of placing the binary digits 11 in bits 7 and & of the word
allocated to x. This last assignment statement is treated in a similar manner
o an assignment which has on its left-hand side an unsigned integer table-
element. The statement

BITS[1,23] [LOCATION() + 1]« |

would in a 24-bit machine, force the sign bit in the indicated location to “one’
The syntax of the assignment statement is

Assignmentstatement = Variable +— Expression

Varnable = Wordreference
Partwordreference
Partwordreference = Id [ Index |

BITS [ Totalbits , Bitposition | Wordreference
There i3 no form of mutiple assignment statement,

1.2 Goto statements

The goto statement canses the next statement for execution to be the one
having a given label. The label may be written explicitly after GOTO, or may
be referenced by means of a switch whose index must fic within the range | to
n where n is the number of labels specified in the switch declaration, See also
section 3.4 and section 5. The syntax is

Gotostatement = GOTO Destination

Destination = Label
Switch [ Index }

7.3 Procedure statements

A procedure identifier, followed in parentheses by a list of actual parameters
(if any), is known generally as a procedure call. If the procedurs possesses g
value, it may be used as a primary in an expression, but whether it possesses
i value or not, it may also stand alone as a statement. This causes

27



(i} the formal parameters in the procedure declaration lo be replaced by
the actuals in a manner which depends on the formal parameter
specifications (see section 8.3}

{ii} the procedure body to be executed before the statement dynamcally
following the procedure statement is obeyed.

The syntax for a procedure call 15

Procedurecall = 1d
Id { Actuallist )

Actuallist = Actual
Actual , Actualhist

Aciual = Expression
Waordreference
Destination
MName

Mame = Id
The purposes of the four types of actual parameter are defined n section 8.3,

7.4 Answear statements

An answer statement is used only within a procedure body, and is the means
by which a value is given to the procedure. It causes an expression to be
evaluated to the numeric type of the procedure, followed by automatic exit
from the procedure body. The syntax is

Answersiatement = ANSWER Expression

7.5 Code statements

Any sequence of code instructions enclosed by CODE BEGIN and END
may be used as a Coral 66 statement and 1t 15 recommended that code
statements provide for the inclusion of nested Coral teatl, The form of the
code is not defined ; it may be the assembly code for a particular compauter,
or it may be at a higher level enabling available compiler features to be
exploited. The code should, above all, enable the Coral programmer to
exploit all available hardware facilities of the computer. For communication

28



between code and other statements, it must be possible to use any identifier
of the program within the code statement, provided such identifiers are in
seope. In some implementations, a code statement may be said to possess a
villug, The “statement’ may then be used as a primary in an expression, lik= a
call of a typed procedure. Though not prohibited, this 5 not a standard
feature of Coral 66, and may not be exiended to other forms of statement.
The syntax for a code statement 15

Codestatement = CODE BEGIN Codesequence END

Codesequence = defined in a particular implementation

1.6 Compound statements

A compound statement is a sequence of statements grouped to form a single
statement. for use where the syntactic structure of the language demands.
Compound statements are transparent to scopes. It 15 therefore permitted
to goto a label which is set inside a compound statement. The syntax is

Compoundstatement = BEGIN Statementlist END

Statementhist s Statement
Statement ; Statementlist

1.7 Blocks
Ses section 3.
7.8 Dummy statements

A dummy statement 15 a vord whose execution has no effect. For example, a
dummy statement follows the colon in

. label: END
The syntax rule is

Dummysiatement = Youd



7.5 Conditional stataments

The two forms of conditional statement are

Conditionalstatement = IF Condition THEN Consequence
IF Condition THEN Consequence ELSE

Alternative

Consequence = Simplestatement
Label : Conseguence

Alternative = Statement

If the condition is true, the consequence 15 obeyed, If the condition is false
and ELSE i present, the alternative is obeyed. If the condition is [alse and
no ELSE is present, the conditional statement has no effect beyond evalua-
ton of the condition.

710 For statements

The for-statement provides a means of executing repeatedly a given state-
ment, the *‘controlled statement’, for different values of a chosen vaniable, the
‘control variable’, which may {or may not) occur within the controlled
statement. A typical form of for-statement is

FOR i+ | STEP | UNTIL 4,
6 STEP 2 UNTIL 10,
|5 STEP 5 UNTIL 30

DO Startement
Other lforms are exemplified by
FOR i+ 1,2 4,7, 15 DO Statement
which 15 self-explanatory, and
FOR i +1+1 WHILE x < y DO Statement

In the latter example, the clause ‘i+1 WHILE x < ¥° counts as a single
For-element and could be uzed as one element in a list of for-elements (1he
‘for-list"). As each for-element is exhausted, the next element in the list 15
taken. The syntax 13

Forstatement = FOR Wordreference +— Forhist DO Statement

Forlist = Forelement
Forelement ., Forlist

30



Forelement = Expression
Expression WHILE Condition
Expression STEP Expression UNTIL Expression

The controlled variable is & word reference, ie. either an anonymous
reference or a declared word reference.

7101 For-elements with STEP

Let the element be denoted by
el STEP &2 UNTIL &3

In contrast to Algol 60, the expressions are evaluated once only. Let ther
values be denoded by v1, v2 and v3 respectively. Then

{1} vl 1s assigned to the control variable,

{ir] vi s compared with vi. If (vl = v3} # v2 = 0, then the for-element is
exhausted, otherwise

{1} the controlled statement is executed,

{iv) the value v is set from the controlled vanable, then incremented by v2
and the cycle is repeated from (i),

7.10.2 For-elements with WHILE

Let the element be denoted by
el WHILE Condition
Then the sequence of operation is
(1) el is evaluated and assigned to the control variable,

(i) the conditron 1s tested. If false, the for-element is exhausted, otherwise

(i} the controlled statement is executed and the cycle repeated from (1),

Unlike those in section 7.10L1, the expression ¢] and those occurring in the
condition are evaluated repeatedly.

i1



Procedures

A procedure is a body of program, writien out once only, named with an
identifier, and available for execution anywhere within the scope of the
identifier. There are three methods of communication between a procedurs
and i3 program environment.

{a) The body may use formal parameters, of types specified i the heading
of the procedure declaration and represented by identifiers local to the
bodv. When the procedure is called, the formal parameters are
replaced by acfual parameters, in one-to-one correspondence.

(b} The body may use non-local identifiers whose scopes embrace the
body. Such identifiers are also accessible outside the procedure,

(c}) An answer statement within the procedure body may compute a single
value for the procedure, making its call suitable Tor use as a function
n an expression, A procedure which possesses a value 1s known as a
fyped procedure.

The syntax for a procedure declaration is
Proceduredec = Answerspec PROCEDURE Procedureheading
Statement
Answerspec RECURSIVE Procedurcheading
Statement

The second of the above alternatives is the form of declaration used for
recursive procedures (see section 3.5). The statement following the procedure
heading is the procedure body, which contains an answer statement (section
7.4) unless the answer specification 15 voud (B.1), and i3 treated as a block
whether or not it includes any local declarations (5.4).

B Answer specification

The value of a tvped procedure is given by an answer statement (section 7.4}
in its body; and its numeric type is specified at the front of the procedure

32



declaration. An untyped procedure has no answer stalement, POSsesses no
value, and has no answer specification in front of the word PROCEDURE.

Answerpec = Mumbertype
Voaud

8.2 Procedure heading

The procedure heading gives the procedure its name. It also describes and
lists any wlentifiers used as formal parameters in the body. On a call of the
procedure, the compiler sets up a correspondence between the actual para-

meters in the call and the formal parameters specified in the procedure
heading. The syntax of the heading is

Procedurecheading = Id
Id { Parameterspeclist )

Parameterspeclist = Parameterspec
Parameterspec ; Parameterspeclist

8.3 Parameter specification

Any object can be passed to a procedure by means of a parameter, whether

it be an ohject of data, a place in the program, or & process to be executed.
For data, there are two distinct levels of communication, maserical values

{for input to the procedure) and data references (for input or output). Table |
lists all the types of object which can be passed, the syntactic form of spec-
fication, and the corresponding form of the actual parameter which must be
supplied in the procedure call, The equivalent syntax rules are:

Parameterspec = Specifier Idlist
Tablespec
Procedurespec

Specifier = VALUE Numbertype
LOCATION Mumbertype
Numbertype ARRAY
LABEL
SWITCH

33



TapLE |

Paramerers af procedures
Crbject I Formal specification Actual parameter

n_u};;:ml valee i VALLUE Numbertype [d* | Expression
bocation of data word | LOCATION Mumbertyps [d4* - Wordreference
name of array i Mumbertype ARRAY [d* | Id

name of table Tablespec 1 1

place in program LABEL 1" : Destination

mame al switch SWITCH 1d* | 14

mame of procedure : Procedurespec] | 1d

sCampoene specificatiom ol similar peramctzrs bay RS @ place of §d.

+ 5 ppctinn E3.2,
$5ee section K14,

B.3.1 Value parameters

The formal parameter is treated as though declared in the procedure body;
upon entry to the procedure, the acfual expression 15 evaluated to the type
specified (including scaling if the numeric type is FIXED), and the value 15
forthwith assigmed to the formal parameter, The formal parameter may
subsequently be used for working space in the body ; il the actual parameter
is a variable. its value will be unaffected by assignments to the formal para-

meter.

8.3.2 Data raference parametars

Location, array and table parameters are all examples of data references.
Upon entry to the procedure, these formals are made to refer to the same
computer locations as those to which the actual parameters already refer.

Operations upon such formal parameters within the procedure body are
therefore operations on the actual parameters. For example, the values of

the actual parameters may be altered by assigniments within the procedure.
14



8.3.21 Word location parametars

The acteal parameter must be a word reference, ie. a simple data reference,
an array clement, an indexed table identifier, a whole-word table-slement or
an anonymous reference. Index expressions are evaluated upon entry to the
procedure as part of the process of obtaining the location of the actual
parameter. The numeric type of the actual parameter must agree exacily with
the formal specification, Part-word references, such as table-elements are not
allowed as word location parameters, An example of a procedure heading
and a possible call of the same procedure is

heading [(VALUE INTEGER n; LOCATION INTEGER m)
call  F(LOCATION (u[i]L[j])

8.3.2.2 Array parameters

As in an array declaration, the specified numeric type applies to all the
elements of the array named. The numeric tvpe of the aerual array name must
agree with this formal specification. By indexing within the body, the
procedure can refer to any element of the actual array.

8.3.2.3 Table parameters

The specification of a table parameter is identical in form to a table declara-
tion except that presetting is not allowed. The syntax rule is

Tablespec = TABLE Id [ Width , Length | [ Elementdeclist |

The element declaration list need include only such fields as are ysed in the
procedure body.

8.3.3 Place parameters

8.3.3.1 Label parametars

The actual parameter must be a ‘destination’, i.e. a label or @ swirch element,
In the latter case, the index is evaluated once upon entry to the procedure.
The actual parameter must be in scope at the call, even if it is out of wope
where the formal parameter is used in the procedure body.

35



§.3.3.2 Switch parameters

The actual parameter is a switch identifier. By indexing within the procedure
body, the procedure can refer to any of the individual labels which form the
glements of the switch.

8.3.4 Procedure parametars

Within the body of a procedure, it may be necessary (0 execute an unknown
procedure, i.e. a procedure whose name is to be supplied as an actual para-

meter. The features of the unknown procedure must be formally specified in
the heading of the procedure within which it is called. As an example, suppose
that a procedure g has been declared as

FIXED (24.2) PROCEDURE g(VALUE INTEGER 1, j; INTEGER
ARRAY a); Statement

and Turther suppose that a procedure g has a formal parameter f for which it
may be required 1o substitute g- A declaration of q, illustrating the necessary

specification (italicised for clarity) might be
PROCEDURE giLABEL b; FIXED (24, 2) PROCEDURE
MVALUE INTEGER, VALUE INTEGER, INTEGER ARRA ¥ih;

astatement
A typical call of g would be gilab,gh. At the inner level of parameter specifica-
tion, no formal identifiers are required, no composite specifications are
allowed (as for i and j in g) and the specifications are separated by commas,
To pursue the example to a deeper level of nesting, suppose that a procedure
c66 has a parameter p for which it may be required to substitute g. A
declaration of cbb might then be

PROCEDURE ct6{PROCEDURE p(LABEL, FIYED (24.2)
PROCEDURE); SWITCH s); Statement

A typical call of ¢66 would be c66(g.s5w). At the level of specification shown
i italics in the latter example, no further parameter specifications are

tequired. The syntax rules for a procedure apecification are
Procedurespec = Answerspec PROCEDURE Procparamiist

Procparamlist = Procparameter
Procparameter , Procparamlist

Procparameter = Id
Id { Tvpelst )

36



Typelist = Type
Type , Typehst

Type -« Specifier
TABLE
Answerspec PROCEDURE

8.3.6 Mon-standard parameter spacification

The need 1o specify numeric type for formal value and location parameters
places an undesirable constraint on the designer of input and output pro-
cedures. For such procedures it is desirable that the procedure should
adapt itself to the numeric type and scale of the actual parameters. The
following extension of the syntax for Parameterspec (section 8.3) is regarded
as an acceptable device im Coral 66 implementations:

Parameterspec = VALUE Formalpairhist
LOCATION Formalpairlist
Specifier 1dlist
elc

Formalpairlist = Formalpasr
Formalpair , Formalpairlist

Formalpair =1d : Id

At the call of the procedure, each formal pair corresponds to a single actual
parameter. The first identifier is used within the procedure body, with
numeric type integer, as a reference to the value of, or as the location of, the
actual parameter. The compiler arranges that the second identifier passes the
numeric type and scale of the actual parameter, represented in the form of an

integer by some implementation-dependent convention. For example, the
declaration of an output procedure might begin

PROCEDURE out{VALUE u:v})

If x i5 a variable of numernc type FIXED (24,12}, the procedure statement
oyt(x} would take account of this known scale.

8.4 The procadure body

For purposes of scoping, a procedure declaration may be regarded as a
block at the place where it appears on the program sheet (even though this

37



might be an illegal position). Everything except the body can be disreparded,
and the formal parameters treated as though declared within the body,
labels included, Identifiers which are non-local to the procedure bady arc
those inm scope at the place of the procedure declaration, subject to the
restrictions given in section 3.5, Actual parameters must, of course, be in
scope at the procedure call. For example, the block:
BEGIM INTEGER 1;
INTEGER PROCEDURE p; ANSWER i;
i 0;
BEGIN INTEGER i:
14— 2
print{p)
END
END
has the effect of printing 0.

38



Communicators

The segments of a program mayv communicaie with each other through
COMMON (sechion 9.1 below), and with objects external to the program by
meians of communicators such as LIBRARY, EXTERNAL or ABSOLUTE,
as defined in particular implementations.

9.1 COMMON communicators

Gitobal objects declared within a program (section 3.3} are communicated
to all segments through a COMMON communicator. This consists of a list
of COMMON jtems separated by semi-colons all within round brackets
following the word COMMOM, Such mems are of three kinds, corresponding
ta the division of objects into data, places and procedures. A COMMON data
iem 1% a declaration of the identifiers listed within it, exactly as in section 4,
storage being allocated as in section 4.5, presets and overlays as in sections
4.6 and 4.8, Commumcation of places and procedures takes the form of
specification, as in the equivalent parameters of a procedure declaration
(sections $.3.3 and 8.3.4). For each wentifier specified in a COMMON
communicator, there must correspond an appropriate declaration (or for
labels a setting) in one and only one outermost block of the program. The
syntax is

Commoncommuncator = COMMON { Commonitemlist )

Commonitembist — Commonitem
Commonitemn © Commonitemlist

Com o Lem = Datadec
Oreerlavdec

Placespec
Procedurespec
Vioid

Placespes = LABEL Idlist
SWITCH  Idlast

39



9.2 LIBRARY communicators

To make provision for the use of library procedures {and possibly also data
references used by such procedures), programs may include LIBRARY
communicators, These should begin with the word LIBRARY and be styled
to conform with the rest of the language. The relative importance attached to
COMMON and LIBRARY as means of inter-segment communication
borders on questions of implementation which fall outside the scope of the
present language defintion.

8.3 EXTERNAL communicators

Ii may be desirable to refer to an object external to a Coral &6 program by
means of an wdentifier, Provided the loader permits, this may be achieved by
an EXTERNAL communicator similar in form to a COMMON communi-
CHLar,

9.4 ABSOLUTE communicators

Coral 66 proprams may refer to objects having absolute addresses in the
computer by the use of ABSOLUTE communicators which associate an
ientifier with a specification of the “absolute’ object, including 1ts address.
The form recommended is that of a COMMON communicator, except that
each identifier to be associated with an absolute location takes the syntactic
form Id | Inteper.



10

Mames and constants

10.1 Identifiars

Identifices are used for naming obpects of data, labels and switches, pro-
cedures, macros and their formal parameters. An identifier consists of an
arbitrary sequence of lower case letters and digits, starting with a letter. It
careies no information in its form, ¢.g. single-letter identifiers are not reserved
for special purposes. It may be of any length, thoogh it is permissible for
compilers to disregard all but the first twelve printing characters. As layout
characters are ignored, spaces may be used in ientifiers withoul acting as
terminators.

Id = Letter Letterdigtstring

Letterdigitsiring - Letter Letterdigitstring
Digit Letterdigitstring
YVand

Letier = abecdefghijklmnopgrstuvwixyz
Digit = 0123456789

An obvious liberty is taken with the layout of alternatives in the above rules.

10.2 Numbers

Mumerical constanis appearing in other sections of this definition are of the
(ollowing types:

{a) "Constanis [or preseiting, optionally signed.

(b} Faregers and reals as primaries in expressions. A sign attached to a
primary belongs syntactically to the expression and not to the
number,

i¢) Inregers and signed integers used in declarations or specifications,
typically for defining fixed scales, bit-fields and array bounds.

41



The syntactic classification is as follows:

Constant = Mumber

Addoperator Number
Mumber = Real

Integer

Signedinteger = Inteper
Addoperator Integer
Real = Dhgithst . Dagithst
Dhgtlist |, Signedinteger
sa dignedinteger
Dngitlist . Digitlist ,, Signedinteger
OCTAL ( Octalhst . Octallise )

Integer = Dhgithist
OCTAL { Ocrallist )
LITERAL ( printing character )

The further expansions are
Digithist = Dhigit
Daigat Dagithist
Octallist = Octaldigit
Octaldign Octallist

Octaldipit =01234567
where 0 to 7 are alternatives,

10.3 Literal constants

A prinung character 15 assumed o have a unique IRLEger representalion
within the computer, dependent on some hardware or software convention.
The inleger value may be referred 1o withun the program by the LITERAL

operator. For example,
LITERALa)

has an integer value uniquely representative of ‘a’. The form is mcluded
within the syntax of integer (section 10.2). The printing characters will be
implementation-dependent, but it must be assumed that the set includes one
26-letter alphabet and a set of 10 digits (see Appendix 2). Layout characters

are not acceptable as arguments of LITERAL.
42



10.4 Strings

A string i3 any succession of characters (printing or lavout) enclosed in
quotation marks (string quotes). Assuming that the hardware representa-
tions of the opening and closing quote symbols are distinguishable, occur-
rence of such marks must be properly paired within the string (but see
Appendix 2). A string is classed as an unconditional expression (section 6),
and its value is its location, bul it may not be used as a LOCATION para-
meter. Procedures capable of selecting individual characters from a siring
should be designed 50 that characters are represenied by the same inleger
values as are defined for literal constants.

String = < sequence of characters with guotes marched ¥



"

Text processing

11.1 Commeant

A program may be annotated by the insertion of textual matter which is
ignored by the compiler.

11.1.1 Comment sentences

A comment sentence may be written wherever a declaration or statement
can appear. It consists of the word COMMENT followed by text and
terminated by a semi-colon. For obvious reasons, the text must not contain a
semi-colon. The entire comment sentence is ignored by the compiler.

11.1.2 Bracketed comment

Bracketed comment is any textual matter enclosed within round brackets
immediately after a semi-colon of the program. The text may contain
brackets provided that they are matched. Bracketed comment {including the
brackets) 1s ignored by the compiler,

11.1.3 END commaent

Annotation may be mserted after the word END provided that it takes the
form of an identifier only. The ‘identifier is ignored by the compiler.

11.2 Macro facility

A Coral 66 compiler embodies 4 macro processor, which may be regarded
as a sell-contained routine which processes the text of the Coral program
before passing it on 1o the compiler proper. Its function is to enable the

44



programmer to define and wse convenient macro names, in the form of
identifiers, to stand in place of cumbersome or obscure portions of text,
typically code statements. Once a macro name has been defined, the processor
expands it in accordance with the definition wherever it is subsequently used,
until the definition 15 altered or cancelled (11.2.4). However, the macro
processor treat comments and constant character strings (section 10.4) as
indivisible entities, and does not expand any ientifiers within these entities.
No chargcter which could form part of an identifier may be written adjacent
to the use of a macro name or formal parameter, as this would inhibat the
recognition of such names, A macro definition may be written into the source

program wherever a declaration or a statement could legally appear, and s
remaved from it by the action of the macro processor.

11.21 String replacement

In the simplest use, a macro name stands for a definite string of characters,
the macro body. For example, the (fictitious) code statement

CODE BEGIN 123456 END
might be given the name *shifté’. The macro definition would be writien
DEFINE shifté + CODE BEGIN 123456 END

The expansion, or body, can be any sequence of characters in which string
quotes are matched (but see Appendix 2). Care must be taken to include
brackets, such as BEGIN and END, as part of the macro body whenever
there is the possibility that the context of the expansion may demand them.

11.2.2 Parameters of macros

A macro may have parameters, as in the following example,
DEFINE shift{n} € CODE BEGIN 12345n END » ;

Subsequent occurrences of shift{6) would be expanded to the code statement
in 11.2.1. A formal parameter, such az n above, must be writlen as an identi-
fier. An actual parameter (c.g. 6) is any string of characters in which string
gquotes are matched, all round and square brackets ace nested and matched,
and all occurrences of a comma lie between round or square brackets. This
rule enables commas (o be used for separating actual parameters. The
number of actual parameters must be the same as the number of formals,
which are also separated by commas,

45



11.2.3 Nesting of macros

A macro defimtion may embody defintions or uses of other macros to any
depth. When 2 macro s defined, the body is kept but not expanded. When the
macro a5 used, it 15 as though the body were substituted mio the program
text, and it is during this substitution that any other macros encountered
are processed. The use of & macro with parameters may be regarded as
introducing virtual macro defimtions for the formal parameters before the
magcro body is substituted, Thus, to continue the example from 11.2.2, the
occurrence of shult{6) 15 equivialent to

DEFINEn £ 6 +
CODE BEGIN 123,45n END

followed immediately by deletion of the virtual macro n. Throughout the
scope of the macro “shift’, the formal parameter n may not be defined as a
macro name, A formal parameter may not be used in any inner nested
macre defnition; neither in 63 body nor as a macrd name nor as a formal
parameter. Furthermore, no wdentifier in an actual parameter string, or its
subsequent expansions, may be the same as anv formal parameter of the
¢ulling macro.

11.2.4 Deletion and redefinition of macros

Macro definitions are valid from the point of definition until either the end
of the program text is n::lchﬁi or the macro name 15 redefined or deleted.
The scope of a macro is independent of the block structure of the PrOEram.
Tao delete a macro, the command

DELETE Macroname |

15 used wherever a declaration or statement could appear. Alternatively,
a4 macro name can be redefined. Macro definitions which have the same name
are stacked, so that the most recent is the one which applies when the name
is used. If a redelined macro is deleted, it 1s the most récent definibion which
15 delered, and the previous one is reinstated. *Recent’ and *previous’ refer 1o
the sequence as processed by the macro processor,

11.3 Syntax of commant and macros

Commentsentence = COMMENT any sequence of characters not including
a semi-colon

46



Bracketedecomment = { any sequence of characrers o which round brackers
are maiched )

Endcomment =1d

Macrodefinition = DEFINE Macroname < Macrobody 3
DEFINE Macroname { Idlist ) € Macrobody 3

Macroname = Id

Macrobody w gny Sequence of charactérs In which string quoles are

miarched
Macrodeletion = DELETE Maocroname ;
Macrocall = Macroname

Macroname { Macrostringhst )

Macrostringlist = Macrostning , Macrostringhist
Macrostring

Macrostring = gny sequence of characters in which commas are
profected by round or fguare brackets and in
which such brackets are properly matched and
nesfed

47



Appendix - 1 Syntax Rules In Alphabetical Order

Adtual - Expression
Wordrelerende
Deestination
Mame
Actuallist — Actual
Actual , Actiallist
Addoperator = -+
Alternative = Statement
ARSWERPpeC = MNumbertype
Vioid
Answerstatement =~ ANSWER Expression
Arrayde: = Numberiype ARRAY Arravlist Presetlig
Arrayitern =— [dlist [ Sheelisg |
Arraylist = Arrayitem
Arrayitem , Arcavlise
Asdignmentstaternent — Variable +— Expression

Base — Id
Id [ Sigmvedinieper |
Bitposiion = Inteper
Block = BEGIN Declrd ; Statementlsl END
Booleanword — Booleanword2
Booleanword4 DIFFER Booleanword$
Booleanword? = Booleanword3
Booleanwords UNION Boolzanwordd
Boolepnwordl = Hooleanwordd MASK Typedprimary
Booleanwordd = Booleanword
Typedprimary
Booleanword’ = Booleanword?
Typodprimary
Booleanwordt — Booleanword3
Typedprimary
Brackeledcomment = { any seguence of characters in which rownd
brackels are maiched )

Cosbesequence = defived fn @ particular implementation
Codestatement — CODE BEGIN Codesequence ENDY
Commentsentence = COMMENT any sequence of characters mot
fmchuding o prmi-colow
Commoncommunicator = COMMON [ Commonitemllist )

45

7.3

13

6.1

19
8.1

7.4
4.5
4.5
4.1

.l

g
_l.plh

-
L R TR -

-
bt

1.3

kil
e s D

=
—



Commonitem = Datadec

Overlayde;

Placespec

Procedursipe:

Wil
Commonitendist = Commonitem

Commonitem | Commuonitembist

COomparator = < oF £ 0F = of = oF 2= oaF 3#

Comparisen — Simpleexpression Comparator Simpleexpression

Compoundstatement = BEGIMN Statementlist END
Conditeon = Condition OR. Suobcondition
Subcondition
Conditionalexpression = 1F Condition
THEM Expression
ELSE Expression
Conditsonalstaterment - IF Condition THEN Consecuence
IF Condition THEM Consequence
ELXSE Aliernative
Consequence = Simplestatement
Label ; Consequence
Constant = Number
Addoperator Number
Constantlist = Group
Ciroup , Constantlist

Datade: = Mumberdec
Arraydec
Tabledec
Dee = Datsdec
Overlnydec
Switchdec
Proceduredec
Declist = D
Dk < Dhechise
Destination — Label
Switch [ Index |
hgf = OorlorQoerdordordorborTorBor?
Dhgithist — Digit
gt Digatlist
Drimension = Lowerbound : Upperbound
Durmmyvstatement = Yaold

Elementdec = Id Numbertype Wordposiion
Id Partwordiype Wordposition , Bitposition
Elernentdeclsi = Elermentdec
Elementdec ; Elementdec]ist

2.1

2.1

621
6,21

16
6.1

1.9

1.9
10.2

4.6.1

i1

1.1

Ll

1.2
10.1
0.2

4.3

1.8

442

441

449



Elementpresetlist — PRESET Consianilist
Void
Elementscale = { Totalbats |, Fractionbits )
{ Totalbits )
Endcomment = Id
Expresston = Uncondilionalexpression
Conditionalexpression

Factor = Primary
Bookeanword
Forelement — Expression

Expression WHILE Condition
Expression STEP Expression UNTIL Expression

Forlist = Forelement
Forelement , Forlist

Forstatement = FOR Wordreference +Forlist DO Statement

Fractionbits = Signedinteger

Gotostatement = GOTO Destination
Group = Constant

{ Constantlist )

Wioad

Id = Letter Leterdigitstring
Idlist = Id
Id , Idlist
Index = Expression
Integer = Dagitlest
OCTAL { Octallist )
LITERAL { printing chavracier )

Label = Id
Labellist = Label
Label , Labellist

Length = Integer

Letter —aorborcor..,..orz

Letterdigitstring — Letier Letterdigitstring
Drigat Letterdigitstring
Youd

Lowerbound = Signedinteger

50

4.6.2

44,22

6.1.1
1.10

.1

710
41

5.
4.6.1

[ mam

G.0.1.4.1
1.2

La LA

a.4.1
1N
iy

%3



Macrobody = guy sequence o) cmaracters n owhich sieing guotes 11.3,

are marcked Appx. 2

Macrocall = Macroname 1.3
Macroname [ Macroatringlist §

Macrodefinition = DEFINE Macroname + Macrobody 3 1.3

DEFINE Macroname { Idlist } € Macrobody 3+ ;

Macrodeletion = DELETE Macroname | 1.3
Macroname - Id 11.3
Macrostring = @iy sequence of characrers in whick commas are 11.3
prodecied by rowid or fgaare brackers and in
which sweh brackers are properly matched
ard peshed
Macrostringlist = Macrostring I1.3
Macrostring . Macrostringlist
Multoperator = » 6.1
/
Mame = Id 7.3
Mumber = Real 10,2
[nieger
Mumberdec = Numbertype Idlist Presetlist 4.2
Mumbertype = FLOATING 4.1
FIXED Scale
INTEGER
Octaldigit = 0 or l or2or 3o dor Sor b or 7 10.2
Octallist = Octaldigit .2
Octaldigit Octallist
Chverlavdec = OVERLAY Base WITH Datadec 4.5
Paramseterspec = Specifier 1dlst B3
Tablespec
Procedurespec
Parameterspeclist = Parameterspec 82
Parameterspec ; Parameterspoclist
Partword = Id [ Index ] 6.1.1.2.2
BITS [ Towalbdts , Bitposition | Typedprimary
Partwordreference = Id [ Index | A
BITS [ Totalbits , Bitposition | Wordreference
Partwordivpe = Elementscale 44.2.2
UNSIGNED Elementscale
Placespec = LABEL Idhst 2.1
SWITCH Idlist
Presetlist = 4— Constanilist 4.6.1
Vout

3l



Primary — Untypedpoimary &.1.1
Typedprimary

Procedurecall — Id 1.3
Id { Actuallist )

Proceduredec = Answenipes PROCEDURE Procodurcheading - Statement B
Answerspec RECURSIVE Procedureheading | Statement

Procedurcheading = 1d .2
Id { Purameterspeclist )
Procedurespec = Answerspec PROCEDURE Procpuramlist 8.34
Procparameter = [d 214
Id { Typelist )
Procparamlist = Procparameter B34

Procparameter , Procparambisg

Real = Digilist . Dagatlist 0.2
Digathist , Signedinteger
e Signedinteger
Drigitlist . Digathise ,, Signedinteger
OCTAL { Octallst . Octallist )

Scale = { Totalbits , Fractionbits ) 4.1

Signedinteger = Integer 10.2
Addoperator Integer

Simpleexpression = Term 6.1

Addoperator Term
Simpleeapression Addoperator Term
Simplestaternent — Assignmenistatement 7
Crotostnlement
Frocedurecall
Answerstaterment
Codestatlement
Compoundstatcment
Block
Dummystatement
Sizeld = Dimension 43
Dimension , Dimendson
Specifier = VALUE Numberiyvpe 8.3
LOCATION Mumbertype
Mumbertype ARRAY
LABEL
SWITCH
Statement = Label : Statement 7
Simplestaterment
Conditionalitatement
Forstatement
52



Statementlist = Statement
Siatement ; Statemnentlist
Siring — 4 sequedce of characters witk guotes maliched

Subcondition = Subcondition AND Comparison
Comparison

Swich = 1d

Switchder = SWITCH Switch +— Labellist

Tablede: = TABLE Id [ Width , Length ]
[ Elementdeclist  Elementpresetlist ]
Priesetlist
Tablespec = TABLE Id [ Width , Length ] | Elementdeclist |
Term = Factor
Term Mulicperator Factor
Totalbits — Integer
Type = Specifier
TABLE
Amswerspee PROCEDURE
Typedprimary = Wordrelerence
Partword
LOCATION { Wordreference |
MNumbertype [ Expression )
Procedurecall
Integes
Typelist = Type
Type , Typelist

Unconditionalexpression — Simpleexpression
Siring
Untypedprimary = Real
{ Expression )
Upperbound = Signedinteger

Variable = Wordreference
Partwordreference
Width = Integer
Wordposition = Signedinteger
Wordreference = Id
Id [ Inddex |
Id [ Index . Index )
[ Index |

1.4

Lihd,
Appx. 2
621

iy

4.4.1

3.3.2.3
.

B34

6.1.1.]

4.3

Tl

4.4.1
4.4.2
6.1.0.2.1

33



Appendix 2 - List of language symbols

ABSOLUTE B4
AND 6.2.1
ANSWER T4
ARRAY 4.3
BEGIN 1), 1.6
BIT 4.4.2
BITS 6.0.1.2.2
CODE 1.3
COMMENT 1.1.1
COMMON 9.1
DEFINE .21
DELETE .24
DIFFER 6.l.
DO 7.10
ELSE 6.2 7.9
END 11,76

0123456789
abodelghijk imnopgratuvwayz

EXTERNAL

FIXED
FLOATING

FOR
GOTO

IF
INTEGER

LABEL
LIBRARY
LITERAL
LOCATION

MASK

OCTAL
OR

digits, 101
letners, 10,1

adding operators, 6,1
multiplving operators, 6.1
comparators, 62,1
expression brackets, ete,
inddex brackets, ete,
string quodes, 104, 11.2
separators for lsis

separator for bounds, 4.3
werminator for label setting, 7

OVERLAY 4.8
PRESET 4.6.2
PROCEDURE &
RECURSIVE &
STEP 7.10u1
SWITCH 3. B3, 21
TABLE 4.4.1
THEN 42,19
LUNION 6.1.2
UNSIONED 4422
UNTIL 7100
VALUE 83
WHILE 1102
WITH 48



+— assignment symbol, 4.6.1, 5, 7.1

paint, 10.2
"timees ten o the power of, 10,2

The above symbols are too numercus [or representation by single characters on
mdast printing peripheral equipment. It is recommended thai, where necessary, the
two alphabets be distingushed by enclosure of language words between primes or
accente, and that the following representations be adopted :

Official definirion Representarion
£ =
2 g
# < >
— =
£
+ "

The use of the 150 guote-character (") is a desirable representation, but as this
makes the opening and closing symbols indistinguishable, 11 B recommended thar
the Algol &8 sysiem be adopted (Mumerische Mathematik, 14, T9-218 (196%), para.
5.1.41, in which a quote-symbol within a string B represented by a pair of guote-
characters ("' "' L

33



Appendix 3 - Levels of implementation

The languape requirements for a particular machine or for paricular choses of
work, or gencrally for both, are not easily assessed. The rcher the language, the
larger ihe compiler may bocomse, and the more difficult it may be 10 compike into
efficient object-code. The balance between code efficiency and the human effont
necded 10 attain of & not easy o strike. The objective of Coral 66 development has
been to permat latilude, not in details, where there is lictke merit in diversity of
expression, but in the presence or absence of major features such as RECURSIVE

procedures, whicl may or may not be considered worth having, Other such major
features are:

TABLE fucility

FIXED numbers

BITS, DIFFER, UNION and MASE
OVERLAY of doa

FLOATING numbers

A full Coral 66 compiler handles all these lfeatures, but it would not normally be
expected that a compiler for an object machine lacking floating point hardware
should handle the FLOATING type of number. The use of additional features, mot
officially within the Coral 66 language, and not clashing with the official deflnation
or with cach other, may be approved for specific fickds of defence work.

36



Index of terms

For syaiay wargs, see Appoadic fn:.l.r |'.'.||u,!::'1m,|::'.'.' Wy, S .-'||I?|I'l1"'.'ll'||ll'.'l.' 2

Anonymous reference 6.0.1.2.1.
6.1.1.2.3

answer statement 7.4, &1
array 4.3, 4.4.4, 8322

assignment 7.1

Bitl numbering 4.4.2
bit posifion £.4.2.2
bit selection &.1.1.2.
Bk 3.1

bound 4.2

b

Character 2, 1003

clash 1.2

code 7.5

comment 11.1

common 2.2, 3.3, 9.1
componind statement 16
condition .21

constant 10.2

Declaration 3.1
chimension 4.3
dummy statement T.8

Element {tableh 4.4.2
evaluation 6,1.3
exponent o1
expression &

Factor &.1

fwcld 4.4, 6.1.1.2.2
fixed-poant 4,1
foating point 4.1
for statement 710
function & 1.1.2.5

Cilobal 3.3
Ealo statement 7.2

ldentifier 2, 10,1

implementation .4
mvdex 4.3, 4.4, 6121
imitinlizaticn 4.6

intemer &.0.0.2.6, 1.2
inleger type 4.1

Label 3.4, 5. 7.2, 4.1.2.1
lawoue 2, 101, 103
library 2.2, 9.2

heeral 2, 10.3

laeal 11

locadion 4.5, 6.1.1.2.5, 8311

Togw: 6.1.2, 6.2.1

Macro 11,2

Meating 3.0, 11.2.3
number [(R2
numeric tvpe 4.0

Orbjet 2.1
OCrator
arithmetic .1
bookecan 6.2.1
logecal 6.1.2
critermast Block 3.3
overkay 4.8
own AT

Packing 4.4
Enuneter 8.3, 11.2.2

part-word 4,4 2.2 6.1.1.2.2
I

part-word reference 7.
place 2.1, £.3.3
presetting 4.6
primary .
procedure

body 8.4

call 7.3

deglaraten 8

parameter 8,54
program 2.2

37



Ouote 104, 11.2.1, A2

Real &.1.1.1, 1.2
real time 1.2
recursion 3.5, Al
reference 4, §

Scale 4.1

scope 3, 76

segment 2.2

specification 1.5, 5.1
statement 3.0, 7

storape 4.5

strimg 2, 10.4

gwitch 5, 7.2, 8.3.3.1, 8332
symbol 2, A2

svnilax .3, Al

Table 4.4, 8.5.2.3

term 6.1

ype 4.1

type-changing 6.1.1.2.4, &.1.3,
321

Value cail 8.3.1

wareable 7.1

void 7.8

vioud preset 46,2, 4.7

Width 4.4.1
word position 4.4.2
word reference 6.1.1.2,1, 8.3.2.1

Primed an Englassd by Hee Majosee's Siatiorsry Oilice Press, Manor Farm

0101& DH&?8730 K10 2]Ed



