Open Research Online

The Open University's repository of research publications
and other research outputs

Software Portability
Thesis

The Open

iversity

Un

How to cite:

Smith, R. P. (1986). Software Portability. MPhil thesis The Open University.

For guidance on citations see FAQs.

© 1985 R. P. Smith

@w https://creativecommons.org/licenses/by-nc-nd /4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.21954 /ou.ro.0000f8fe

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright

owners. For more information on Open Research Online’s data |policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/doi:10.21954/ou.ro.0000f8fe
http://oro.open.ac.uk/policies.html

UNReSTRCTED
ISSUE 3

SUBMISSION TO'THE OPEN UNIVERSITY AS A THESIS FOR
THE DEGREE OF MASTER OF PHILOSOPHY

SOFTWARE PORTABILITY

AUTHOR : R P SMITH

Date of Submission * Februaty 1985
Date o] Aved. . 1.5, %6

ProQuest Number: 27775912

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 27775912

Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author.

Ail Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

SOFIWARE PUORTABLLITY

CONTENTS
1 INTRODUCTION
2 CONCEPTS OF PORTABILITY

2.1 The meaning of Portability
2.2 Transporting Programs

2.3 Tools
3 AN INTERMEDIATE LANGUAGE
3.1 1Ivor Abstract Machine
3.2 Program Segmentation
3.3 Definition Stream
3.4 Declarations
3.5 Operation Stream
3.6 Constant Stram
3.7 Example of Use
4 MULE
4.1 The Mule Language
4.2 The Pilot Implementation
4.3 Test Programs
4.4 Conclusions
5 REFERENCES
APPENDIX
ACKNOWLEDGEMENT
I gratefuly acknowledge the help of Mr M Taylor in the design of
the Case operations of the Ivor abstract machine. I acknowledge

also the assistance of my OU tutor, Dr Max Bramer.

SOFIWARE PURVABLLLILY

1. INTRODUCTION

This thesis represents the submission to the Open University for
the degree of Master of Philosophy.

The research topic lies within the discipline of computer science
and in particular problems associated with the transportability
of computer software are investigated.

The study period was organised into 3 parts :

— A literature search to look at what work had been done in
the area.

- The design of an intermediate language for a compiler.

- The specification, design and implementation of a
functional programming language in order to develop a
portable programming environment.

+his thesis covers the work of the period Sep78 to Jun82, &all of
which was performed by part time study.

The Thesis comprises 4 major sections and an appendix which shows
program listings. The sections are as follows :

— Section 1 : The introduction
- Section 2 : The result of a literature search.
- Section 3 : A design for a compiler intermediate language,

Ivor, covering the architecture of the underlying abstract
machine and the structure of the intermediate language.

- Section 4 : The design and implementation of a function based

programming language, Mule, including the structure of the
language and a description of the implementation.

SOFTWARE PORTABILITY

2 CONCEPTS OF PORTABILITY
2.1 The Meaning of Portability

In electronics hardware it is not surprising to talk about ’plug
compatible’ components developed by different manufacturers,
performing identical functions and being completely interchange-
able. Software has been treated differently and it is generally
accepted that a program running on one computer will not run
automatically on another.

The problem of having ’'plug compatible’ software is usually one
of specification. Hardware components can be specified (almost)
precisely and the language used to specify the component and its
environment are based upon basic scientific or engineering laws
and with well understood parameters. .For example : operating
temperature, voltage levels, capacitance, ohmic resistance,
frequency of applied signals, etc.

A software item is usually specified in terms of : the functions
the program is to perform, the acceptable inputs, the acceptable
outputs, performance requirements, reliability requirements and
(sometimes) environmental constraints. Acceptable inputs are
often defined in some form of BNF with semantics defined
informally as English prose. Rarely are all of the possible
- outputs defined, particularly error cases which are left to the
software designer to invent. The remainder of the specification
is usually written in an informal way and some of the
quantitative restrictions are not documented at all.

The problem of transportability of software 1lies with the:
specification which inadequately addresses the requirements of
the program and the definition of the operating environment.

The following sections will 1look at some of the documented
methods of reducing the problems associated with porting
programs, in particular : high level programming languages,
universal assemblers and abstract machines, specification
methods.

2.2 Transporting Programs

A customer usually does not want a program transported from one
environment to another, though he may express his requirements in
those terms. What the customer wants is an (almost) identical
set of facilities on the new environment. In [Reference 3 :

Brown (Editor)] a program is defined as portable if the effort
required to move the program is significantly less than that
required to rewrite it. It seems that in practice if more than 20%
of a program requires rewriting it is preferable to start again,
unless the software is very well structured.

Programs are not automatically transportable and portability
needs to be designed into the program. The following sections

SOFTWARE PORTABILITY

look at methods which may be employed to make programs more
portable.

2.2.1 High Level Languages

The high level 1language is an important tool wused in the
production of software. The disciplined use of a suitable high
level 1language ensures the production of a structured and well
produced program which can be supported and enhanced. In addition
a program written in a high level language can be (theoretically)
transported to any computer system for which there are language
support facilities.

There are many high level languages ranging from simple languages
like Fortran, Basic and Cobol through to systems type languages
like BCPL, BLISS, Lisp and the block structured languages like
Coral 66, Algol-68, Pascal, Ada and Chill. Some o0f these
languages are specified rigorously but many are not. Techniques
for specifiying languages better and with more precision are
becoming available. This is discussed further in [Reference 2
Lucas & Lauer 1970]. 1In addition mathematically based
"functional languages’ aimed at specifying systems fully are
appearing [Reference 1 : Backus 1978] and [Reference 37 : Allen].
The lack of rigour tends to produce differing interpretations
by language support implementors for some of the features of
the language. As a consequence a facility which operates in
one way on one machine may operate in a different way on
another.

As an example of this figure 2.2.1-1 shows a part of a CORAL-66
program which has,in fact, been designed to be portable. Even so,
it is unlikely that the program will operate without changes on
another computer for the following reasons : '

- The procedure uses names which are greater than 12
characters in length. The definition of CORAL-66 states that
names are significant to the first 12 characters but some
implementations restrict the implementation further allowing
less characters for external-names and for macro-expansion
names.

— On line 109 (and elsewhere) the statement ’'IF’ ALPHABETIC
M(CHAR IL) ... disquises in the macro call that the internal
character set of the underlying machine is being wused to
determine a condition, in this case the ICL-George 3 6bit
code. The macro definition would require changing if the
program were moved to, say, an ASCII or EBCIDIC character
set machine.

- On 1line 162 the character string uses "visible spaces"
which are expected by this particular compiler. The compiler
removes all spaces, including those within text strings. As
a consequence of this the "%" character needs to be wused
within a text string in place of a space. This is not the

oOuUr lwAnRL rvnilADLLlLL

case with all compilers.

— On lines 167 to 169 the procedure sets up a character
string which uses an integer to store the character string’s
location. The character string packing and internal
character set, including the storage of the length of the
character string, assumes a particular compiler
storage allocation strategy.

- On 1line 257 the code assumes a 6-bit byte, as do lines
317, 318 and 319 though the use of a 6-bit byte is dlsgulsed
by the use of macros.

002
098
099
100

103
105
106
107

109
112

114

118

121
123
125
126
127
129
130
132
134

139
141
143
144
146
148
151
153
155

157
158
159

161
162

164

166
.he
167
168
169

SOFIWARE PORTABLLILITY

Figure 2.2.1-1

PROCEDURE fetch element pg;

BEGIN

INTEGER ARRAY element dl[0O:char lit length m];
INTEGER char il,kl,hash il,string delimiter il;

COMMENT read the element;

char il := read a rel char pg;
element dl[1l] := char il;
kl := 2;

IF alphabetic m(char il) OR numeric m(char il) THEN
BEGIN
COMMENT the case of an element being an alpha-numeric
name or a literal value;
FOR char il := read a rel char pg
WHILE alphabetic m(char il) or numeric m(char il) DO
BEGIN

IF irrelevant skipped bg=true m THEN GOTO outl 1l1;

element dl[kl] := char il;
inc m(kl,1);
END;
outl 11:
END ELSE
BEGIN
COMMENT case of the element being an operator type (ie
non alpha-numeric) name or character string;
COMMENT check first for character string;
string delimiter il := char il;
IF string delimiter il = char lit 1 delimiter m OR
string delimiter il = char 1lit 2 delimiter m THEN
BEGIN
COMMENT this is a character string literal;
COMMENT fetch the string and return it ;
kl := 1;
FOR char il := ich m
WHILE char il <> string delimiter il DO
BEGIN
element dil[kl] := char il;
inc m(kl,1);

IF kl>char 1it length m THEN
errorhandler(LITERAL(e),
"Character%string%literal%is%too%long");

IF char il=new line m THEN
inc m(current line ig,1);
END;
Figure 2.2.1-1 (Continued)
element dl1[0]:=kl-1; (Character string length)
element type ig := ele char lit m;
element ig := LOCATION(element dl{0]);

170
171

173

175
177
179
180
181

183
184

185
186
187

188

195
197
199

201
202

204
206
207

208

209
210

211
213
215

221
225

227
229
231

235
237

SOFTWARE PORTABILITY

return m;
END;

FOR char il := read a rel char pg

WHILE non alpha numeric m(char il) DO

BEGIN
IF irrelavant skipped bg=true m THEN GOTO out2ll;
element dl[kl]:=char il;
inc m(kl,1);

END;

out2ll:
END;

back step m;
char buff mark ig := char buff mark ig-1;

‘element dl[0] := kl-1;

COMMENT at this stage the array 'element dl’ is set up such
that element-0 is the character length of the element and
element-1 to element-n contain the characters of the
element;

IF numeric m(element dl[1]) THEN
BEGIN
COMMENT case of a numeric constant being returned ;

kl := element dl[0]+1;
element ig := 0;

FOR kl:=kl-1 WHILE k1>0 DO

BEGIN
element ig := element ig+power of 10 dg[
element dl1[0]-kl]l*element dl[kl];

END;

element type ig := ele literal m;
return m;

END ELSE
BEGIN
COMMENT this is the complex part of the procedure where a
'name’ is to be returned. Firstly it is necessary to search
the object table to see if the name has been introduced
already;

hash il := 0;
search for name 1l1:

IF object string dg[hash il]<> empty m THEN
BEGIN
COMMENT compare string table with the elements stored
in ’'element dl’;
FOR kl:=0,kl+1 WHILE kl<= object string dg[hash il] DO
BEGIN '

239
241
243
245
246
247
248
250
256
257
259

261

262
264
266
268
273

277
278

SOFTWARE PORTABILITY

IF element dl[kl]<> object string dg[kl+hash il] THEN

BEGIN
COMMENT the name is not the element so try the next

name;

hash il := hash il+4+object string dg[hash il];
repeat m(search for name 11);

END;

END;

COMMENT this is the element name so fetch the object
table index and return it in ’'element ig’ whilst
setting 'element type ig’ to ’'ele operand m’;
hash il:=hash il+object string dglhash il]+1;
element ig:=object string dglhash il]*64%64 +

object string dg[hash il+1]*64 +

object string dgl[hash il+2];
element type ig := el operand m;

IF in intro bg <> false m AND
element ig <> rat dot m AND
element ig <> rat colon m THEN
errorhandler pg(LITERAL(e),
"Duplicate%introduction%of%an%object");
END ELSE
BEGIN
COMMENT this is the case where the name is not known
and hence the object must be declared;
COMMENT check that the static function nesting
depth is not >0 as declarations are not
allowed if this is the case;
IF func nest depth ig > 0 THEN
errorhandler pg(LITERAL(e),
"Names%cannottbe%introduced%in%a%nested%function%definition");

281
285
286

298
300

306

309
310

312
316
317
318
319
321
323
324
325
326
327

329
332
337
338
340
344
346
347
348

349

SOFTWARE PORTABILITY

COMMENT if this is not an introduction (ie USE ...) warn
the man that we are introducing an object; '

IF in intro bg=false m THEN
errorhandler pg(LITERAL(w),
"introduction%of%an%object%assumed");

obj size m[max obj table mark ig]:=default obj size m;
(£ill in object size)
obj str mark m[max obj table mark ig] := hash il;
(and the place where the name will be kept as
an index into the object string table. Use
the next free object table slot)
COMMENT now put the name of the object into the string table;

FOR kl:=0,kl+1 WHILE kl<=element d41[0] DO
object string dl[hash il+kl]:=element dl[kl];

COMMENT and now link back into the object table - into

3 bytes with the most significant first;

inc m(hash il,element dl[0]+1);

object string dg[hash il]:=byte 2 m(max obj table mark ig);
object string dg[hash il+l]):=byte 1 m(max obj table mark ig);
object string dgl[hash il+2]:=byte 0 m(max obj table mark ig);

COMMENT plant code to declare the objeéct;
program dg[prog mark ig] := rat declare m;
program dg[prog mark ig+l] :=

byte 2 m(max obj table mark ig);

program dg[prog mark ig+2] :=

byte 1 m(max obj table mark iqg);

program dg[prog mark ig+3] :=

byte 0 m(max obj table mark ig);

inc m(prog mark ig,4);

IF prog mark ig>prog size m THEN errorhandler pg(LITERAL(e),
"No%program%¥space%left");

COMMENT now set up the return values - firstly ’'element ig’
is set to the object table index of the object and

'element type ig’ is set to ’'ele operand m’;

element ig := max obj table mark ig;

element type ig := ele operand m;

COMMENT and finally.... tidy up by :
incrementing ’'max obj table mark ig’ checking for overflow
of the object, and object string tables;
inc m(max obj table mark ig,2);
IF max obj table mark ig>obj table size m OR
hash il+2>o0obj str size m THEN
errorhandler pg(LITERAL(e),"Too%many%names%introduced");

END;

10

SOFTWARE PORTABILITY
350 END;

352 return 1l1l:
353 END fetch element pg;

11

SOFTWARE PORTABILITY

The high 1level 1language, however ill defined, can be used
effectively in the transfer of software between machine
environments provided the language support system used is
very similar on each machine. Less effort will be required if
there are 1less differences between the support systems of the
different machines. The problem of portability is then
tansferred from the software item to the translation or
interpretation system. This is discussed further in section 2.3.

The wuse of a high level language, rather than not wusing one,
greatly improves the chances of being able to transport the
software from one computer to another. The large number of high
level 1languages and the lack of rigour in the definition of some
languages detracts from the ability to transport programs. The
situation is becoming better with the standardisation of many
languages, eg COBOL, Fortran 77, UCSD Pascal and latterly with
Ada and the introduction of formal methods for defining
languages.

In the past only the lanqguage syntax was specified rigorously
using BNF type constructions. The semantics were defined more
loosly either in English, or by example. In addition many
languages omitted program segmentation, concurrent process
communication and input/output. This leads to a family of
languages, each similar but with sufficient differences to make
program transportability difficult.

The problems associated with a language definition will be
explored with reference to the CORAL 66 language which is a
MoD standard language (Reference 4).

- Program segmentation is loosly defined by the COMMON,
EXTERNAL and ABSOLUTE communicators. Objects which are
introduced in a COMMON communicator may be used in the
program segment being compiled with, or without, being
declared in that segment.

EXTERNAL communicators are similar to COMMON communicators
except that the items being declared need not be declared in
any of the CORAL 66 program segments but may be linked from
a subroutine library.

ABSOLUTE communicators are intended to allow access to
absolutely addressed primitive facilities or machine
locations of the "underlying machine" of the program being
run.

It is this area of a CORAL 66 program which is particularly
loosly defined and implemented in a variety of ways. Most
implementations of CORAL 66 require that the introduction

of a CORAL 66 place specification, 1ie a procedure, label
or switch, in a COMMON communicator be mirrored by
a declaration of the object in the outer block of one
program segment. The same is not true for CORAL 66 data

12

SOUFIWARKE PURTABLLILITY

objects, ie integers, fixed decimal, arrays and ' tables,
where the language definition is ambiguous. In most
implementations it is required that the data objects be
declared in the COMMON communicator only and not in any
outer program segment.

The language definition does not define that the COMMON
communicator should be identical in each program segment
compiled. In some compilers it is essential that this is
the case as space for objects is allocated sequentially,
relying upon the relative position within a common area for
object addresses. In other compilers only COMMON data
object introductions need to be identical in each program
segment as place specifications are addressed symbolically,
ie by name. In other compilers the position of
introductions within a COMMON communicator is not important
as all addresses are treated symbolically and indeed it is
not necessary for communicated objects which are not used in
a program segment to be introduced in a COMMON communicator
for that segment.

The EXTERNAL communicator 1is intended to allow the
programmer to access operating system routines or procedures
which have been written in another language. External
communicators suffer from many of the problems described
above but in addition the character length of variables 1is
restricted further due to external constraints. In some
cases the external communicator is not implemented.

The ABSOLUTE communicator is always machine dependent.

- The character string is partially defined in CORAL 66 and
an assignment of the form :

s := "A character String";

assigns a location to the integer mode (or type) variable.
The location assigned is often different in differing imple-
mentations. For example the ICL George 3 implementation
assigns a 2 word block to each character string. The first
word is a pointer to the starting byte of the string whilst
the second word is the length of the string. In the Intel
8080 version of the CORAL 66 compiler the location of the
string is the first byte of the string which contains the
length of the string (which is thereby restricted to 256
characters).

There are no string manipulation, eg substringing,
constructs defined in CORAL 66.

- The CORAL 66 language assumes implicitly word addressing,
rather than byte. For example the declaration :

13

SUFITWARE PUKTABLLLLTYX

INTEGER i,3,k;

declares 3 integers with consecutive addresses such that
indirect references [LOCATION(i)+l] references the variable
j, and [LOCATION(i)+2] references k. Many implementations
introduce the concept of BYTE but do not allow indirect
references as shown above.

- Bit slicing of integers is permitted. If programs use
these constructs, transfer of programs to a machine with a
smaller word size can be difficult.

- Code inserts are permitted. The form of the code insert is
left to the implementation.

- No input/output is defined and implementations define
procedures to perform the functions. Procedures tend to be
different for different implementations.

- No process communication or syncronisation facilities are
provided for processes operating concurrently. Many
programs resort to code inserts to access operating system
facilities to provide these functions.

14

SOFIWARE FPURKTABLLITYX

0 2.2.2 Universal Assemblers

The use of a general assembler language which may be mapped, by
suitable means, to any reasonable assembler language of a real
machine has been used as a mechanism to achieve tranportability.
The general features of this method are discussed in [Reference 3
: Brown (Editor)] whilst in the implementation of STAB-12
[Reference 10 : Colin 1975)] the intermediate language (see
sections 2.2.3 and 2.3.1) is a low level, assembler like,
language. The assembler languages are generally of a low

level and can often be interpreted by using a
macroprocessor (see section 2.3.2). The low level means that the
effort required to provide an interpretation system on a new
computer may be significantly less than the effort required to
ether rewrite the program for the new machine, or provide a
compiler to support a high level language. The disadvantage 1is
that the effort required to produce the program initially may be
high. In addition the low level nature of assembler languages
and lack of structure may mean that the programs are difficult to
understand and modify subsequently. ’

2.2.3 Abstract Machines

An abstract machine is one defined with an architecture
which reflects that of a number of real machines. Abstract
machine basic features are discussed in [Reference 3 : Brown
(Editor)], and [Reference 5 : Warren 1976]. The BCPL compiler
implementation [Reference 6 : Richards 1971] utilises a simple
stack based abstract machine, as does the Mobile programming
system [Reference 7 : Coleman, Pool & Waite 1974]. Most
portable compiler systems incorporate an abstract machine
architecture within the compilation system. This is

discussed further in section 2.3.1.

Some abstract machines [Reference 13 : Poole 1971] are
multi-level with one level defined upon the level beneath.

There are various types of abstract machines defined:

For example -
- A simple 2-register machine where the registers are used
to store values of operands. Operations are defined on
these operands, eg COMPARE, ADD, MULTIPLY,.. etc.
These machines require storage for data objects and
operations to allow flow control both conditionally and
unconditionally. In addition operations are required to
allow data transfer between registers and storage.

- An extension to the 2-register machine is one with an
finite or infinite number of virtual registers.

The variations on this theme depend wupon the overall

15

SOFITWARE PURTABLLILITY

architecture of the abstract machine, eg all operations
could act upon the contents of the virtual registers,
including flow control operations. If this were the case
the virtual registers would contain references to both data
and program storage.

Conversely the virtual registers could be used in exactly
the same way as the 2-register machine uses its registers.
In this case the operations required would be similar to
those of the 2-register machine except that they would need
to reference source and sink virtual registers for the
operation.

- A tree structured machine where the structure of the
program is represented by a linked structure. The procedure
call

output(channel,time*100+offset)
may be represented by the tree :

CALL

/ N\

/ N\
/ PARAMETER

output [\
| \
| PARAMETER
channel | \
| \
+ NIL
7/ \
/ N\
* offset
/ N\

/ N\
time 100

The tree structure shown here is just one method of
portraying the procedure call and has omitted operand
identification nodes, eg a LITERAL node to show that the
number "100" is a literal, or an OPERAND node to show that
"time" is an operand.

This kind of abstract machine is interpreted by traversing
the tree in an ordered manner.

- A simple finite state machine where the current state
of the machine and the value of an input determines the
next state, and any output.

This can be extended to include a stack. In this case the
state that the machine takes is dependent upon the current
state, the value of the item on the stack and the value of
an input.

16

PUL LWALND TUVUNLINADLLL L L

Abstract machines can be used as vehicles for transporting
programs. They may be modelled as in [Reference 20 : Newey,
Poole and Waite 1972] but usually the transportation of programs
requires the realisation of the abstract machine in the new
environment. This can be by :

- Providing a simulator for the abstract machine in the new
environment, a technique used in the first stage
transportation of BCPL compilers [Reference 6 : Richards
1971] and in language interpretation systems for LISP
[Reference 25 : Taylor 1977] and Pascal [Reference 29 :
Ammann 1977].

- Translating the "object code" of the abstract machine into
the object code of the new environment. This would allow
the program to run directly in the new environment. This is
the favoured method for implementing efficiently compilers
on new machines as in [Reference 8 : Capon, Wilson, Morris
and Rohl 1972] and [Reference 27 : Wilcox 1971].

Abstract machines, as a method of achieving program portability,
are often used in conjunction with a compiler and this will be
discussed further in section 2.3.1.

17

SOFTWARE PORTABlL1TY

2.3 Tools

This section looks at software tools which provide for program
transportability.

2.3.1 Compilers

The name compiler is given to a program which will translate from
a high level language into an object code which can be directly
executed on a target machine.

So if a program is written in a high 1level language and a
compiler is available for that high level language on all
required machines then the program is portable to all of those
machines (subject to the constraints described in section 2.2.1).

It is desirable, therefore, to make the compilers themselves
portable. Techniques for making portable compilers, and wusing
compiler-compilers, or syntax generators, are well documented.

The most popular technique is the use of a 2-stage compilation
process. Such a method is used in implementing compilers for
BCPL [Reference 6 : Richards 1971], C [Reference 9 : Snyder
1975], Pascal [Reference 29 : Ammann 1977] and CORAL 66
[Reference 4]. The first stage is the lexical and syntactic
parsing, and syntax/semantic checking to the rules applied by the
language definition. The output from this stage is an
intermediate language representation which is logically
identical to the original program .

The intermediate representation is often the object code of an
abstract machine which is defined to fit the language being
implemented. There have been attempts to make the abstract
machine universal, ie applicable to all languages and all real
machines. None have been truly successful. This is often termed
the Uncol problem as the intermediate language, Uncol, was aimed
at being universal. Uncol was defined by Steel in 1961
[Reference 22 : Steel 1961]. The problem to be solved is
described in terms of ’'n’ languages requiring implementation on
'm’ target machines. If a 2-stage compilation process is used
then 'n*m’ phases would need to be implemented to provide all
languages on all machines. If any code generating phase for any
specific target machine can be used with all source languages
then only ’'n+m’ phases would need to be implemented. The major
problem of this approach is that the interediate language needs to
cater for the requirements of all (or at least a wide range) of
languages and map onto the real machine architectures of target
machines. In addition the intermedate language would need to be
flexible enough to take advantages of the evolution of future
languages and future machine architectures. These problems are
described in [References 12 and 24 : Koster 1974].

The second stage of the compilation process involves the
translation of the intermediate representation into the object

18

SUNIWARKE PURTABLLLTYX

code of a real machine, the target machine.

To transport a program it is necessary to have a second stage
capable of translating the intermediate representation of the
program to the desired target machine.

The machine on which the compiler executes is the host machine,
to avoid confusion with the target machine which was defined
above. It is not necessary for the host and target machines to
be the same. If the compiler generates object code for a machine
which is not the host it is called a cross compiler.

A cross compiler which 1is, itself, written in 1its source
language, ie the language that the compiler translates, can be
made to operate on its target machine (and thereby ceasing to be
a cross compiler) by exploiting a process known as bootstrapping.
Bootstrapping methods, with respect to the SNOBOL 4 language, are
discussed in [Reference 21 : Dunn 1973].

The sequence of events is :

- the source code of the compiler is input to the operating
compiler on the host machine.

This generates, firstly, an intermediate representation and
then the target object code representation.

- the target object code is transferred to the target
machine and the code run. The target machine then becomes
the host machine for the compiler which will generate object
code for the new host machine.

2.3.2 Macroprocessors

The macroprocessor has been used as a successful tool in program
transportability. Macroprocessor basics are discussed in
[Reference 3 : Brown (Editor)) and examples of their use appear
in [Reference 13 : Poole 1971].

A macroprocessor 1is a general purpose tool which performs text
processing and parameter substitution functions. It relies upon
2 stages, namely macro definition and macro expansion. '

For example a macro definition may be

MACRO &language-construct
CASE &language-construct IS
call: {LINE procé&l}
goto: {LINE goto LINE&l}
END-CASE
END-MACRO;

In the above example variables used in the macroprocessing ' stage

19

DU ITWARE PURTADLILJLLY

are preceded by the "&" character and "&l" is used to denote
actual parameter 1 to the macro expansion. Macroprocessor
keywords are shown in capital letters.

The example is of a fictitious macroprocessor input language and
is provided for example only. The macroprocessor recognises the
example as a macro definition. The macro is given the name
"glanguage-construct" which, in this example, can be either
"call" or "goto". The action taken, on expansion of the macro,
will be dependent upon which of these names is used.

The macroprocessor will wuse the above definition in macro
expansions, so :

call input ;
goto exit-label;

Will be expanded into :

10 procinput
20 goto 750

To translate source code which is in one language into another
language it is necessary to define macros for the source language
which, when expanded, will generate the target language. This
method can be used to transport programs from one machine to
another where the same high level language is not available on
the host and target machine. The program is translated by the
macroprocessor, using macro definitions produced specifically to
enable the transportation, from the high level language of the
host to that of the target.

Where the two languages are significantly different it is
possible to perform staged translation. This involves generating
an intermediate representation which is further processed to
generate either a further intermediate version (and again and
again if necessary), or the final target code.

The macroprocessor 1is a very flexible portability tool. Its
value depends upon the richness of the macro definition language
and its speed of execution.

2.3.3 Interpreters and Emulators

An interpreter is a program which executes the instructions of an
abstract machine, whilst the emulator executes the instructions
of either a real machine or an abstract machine. 1Interpretation
is a common method of implementing compilation systems quickly.
The interpreter executes the instructiions of the intermediate
language. Such techniques are used in implementing portable
compilation systems for BCPL [Reference 6 : Richards 1971],
Mobile programming system [Reference 7 : Coleman, Poole, Waite
19741, C [Reference 9 : Snyder 1975], STAB-12 [Reference 10 :

20

PUEL LWALLD CUNLADLMWL L.

Colin 1975], L-Star [Reference 23], Lisp [Reference 25 : Taylor
1977]. v

A program running on a machine relies, for its operation, upon
something executing the instructions which make up the logic of
the program. The possibilities are :

- The program is in the executable code of the host machine
and the code 1is interpreted by the hardware of the host
machine. It may be that the executable code is generated
as a result of compilation.

- The program is in some intermediate form, eg the code of
an abstract machine, and this is being interpreted by a
program called an interpreter. The language BASIC often
operates in this manner as does the PASCAL P-code compiler.

Transportation of the program can be accomplished, respectively,
by :

- Implementing on the target machine an emulator which
provides, in software, the ability to execute the code of
the host machine.

- Implement the abstract machine interpreter on the target
machine.

In practice the implementation of an abstract machine interpreter
is much simpler than implementing the instructions of a real (and
sometimes alien) machine and it can be simpler than implementing
a compiler for the target machine.

Interpretation can be used to aid program transportability either
as a primary aid or in conjunction with a compiler and abstract
machine interface. 1Interpreters may be slow in execution.

2.3.4 Total Environment

One method of ensuring that a program is completely portable is
to implement it in an environment which provides all of the
facilities that the program needs and bar access to facilities
which are provided outside of the environment.

To port the program to another identical environment should pose
no problems.

The problem with this approach is that the environment itself
needs to be portable. To overcome this the environment is
built from a small kernel of facilities, say fl. f1
facilities are produced wusing the host machine facilities,
eg PASCAL and Operating System calls. This kernel will need
rewriting if the environment is moved to another machine.

21

SUFITWAKE PURKLIADLLILLX

The environment is enhanced, say to f2 facilities wusing fl
facilities alone.

Again the environment is enhanced, to f£f3 facilities, but this
time using f£1+f2 facilities, ... and so on.

Each level of facility increase relies upon the facility level
below.

It is clear that the initial kernel must be both small for
minimum rewrite on porting but be large enough to provide for £2+
facilities without their recourse to using host operating system
facilities. _

22

oULI TWARL rFrunRlADLLILLL

3 AN INTERMEDIATE LANGUAGE

This section of the report describes an intermediate language
designed for a High Level Language Compiler. The intermediate
language could be used as the interface between a compiler and :

— a number of code generators which would provide the
ability to translate a high level language into the code of
a range of computers.

- an optimiser which would act upon the intermediate code
and transform it such that the code generator would generate
more optimal code, minimising either the run time of the
program, or the memory utilisation.

- an interpreter to permit the execution of the intermediate
code. The interpreter would act upon the intermediate code
and obey the instructions of the code giving the effect of
the program executing.

The intermediate language, which for ease of reference is called
Ivor in this document, is the code of an abstract machine. The
abstract machine and the Ivor language will be described in this
section.

The reason for designing Ivor was to assess the difficulty of
mapping modern programming structures into some intermediate form
and to assess the likely problems of generating code for a range
of target machines.

The design of Ivor was heavily influenced by the Chill and Ada
programming languages. Intermediate languages like O-code for
BCPL, P-code for PASCAL and Janus did not address the problems
associated with program segmentation and of programs operating
concurrently.

All practical compilation systems require programs to be
separated into manageable units, compiled separately and linked
to form executable program object code. In order to cater for
this a compiler needs knowledge about items used within a program
segment but which are extenal to it. No intermediate language
which was investigated during this research period provided for
program segmentation and separate compilation.

in addition to this, many compilers implement a particular
storage strategy and this is mapped, implicitly, into the
intermediate language structure. For example, a Fortran COMMON
approach is often adopted for external data. Data is addressed
via an offset from some data area and is positionally dependent
within the COMMON area. Any modifications to a program’s
external data would inevitably mean the recompilation of all
program segments. Data within procedures are often declared with
reference to a stack, or stacks. Both of the storage allocation
strategies are inherent in the design of the intermediate language.

23

QUL ITWARE FURTADLLLILXY

Concurrent processing primitives were a recent innovation at the
time of the research study and as a consequence did not feature
in any of the intermediate 1languages considered. Concurrent
processing facilities of the high level languages were developing
also and, as a result, it was not possible to adopt a single
strategy for handling concurrency. Two were chosen, the signal
and buffer (as in Chill) but a third type, the Event, would
probably be needed in order to cater for Ada.

In addition to the primary objectives stated above, secondary
design objectives were based upon:

- The lack of optimisation capabilities in intermediate
languages. For example A:=A+B can generate intermediate
code of the form :

STACK A
STACK B
ADD

STORE A

A non-intelligent code generator will not appreciate that
the variable 'A’ appears on both sides of the assignment
until too late. A better approach would be to give the code
generator the maximum amount of information in a single
operation, ie

add B to A result_in A

Also, labels are often generated during intermediate
language production. Optimisation of code across labels is
very difficult as execution can be transferred directly to
the 1label from an unknown program state. Path analysis,
using Graph Theory (as described by Wilson in reference 40)
can be wused, but the algorithms are complex and require
considerable processing time. A way of avoiding the problem
is to mark some labels as special, having a small number of
places from which execution can be transferred. The state
analysis for this case is much simpler.

— The lack of source related information to allow symbolic
debugging at interpretation or final execution stage is
apparent in the intermediate languages considered. It was
thought desirable to preserve source names and modes in Ivor
to facilitate high level debugging. Ivor did not go far
enough in this. Source line, and probably source column,
references would have been necessary to allow sensible
symbolic debugging.

The conclusion reached from performing this design exercise is
that the higher the number of basic concepts (or operations). in
an intermediate language the more difficult is the task of
generating code, though the task of implementing each construct
may be simpler if the intermediate language has simple operations

24

SOFTWARE PORTABILITY

defined.

The design described here uses :
- Simple linear operations
- Stacks and stack operations
- Flow control constructions
- Process syncronisation constructions

25

SOFTWARE PORTABILITY

3.1 1Ivor Abstract Machine

Fmm + Fomm e +
| Ivor | | Definition |
| Definition |-——-——-- >| Interpreter |
| Stream | e ——————— e +
Fom + ” "
I I
e —————— + |
l |
v \%
to—————— + Fm————— +
| Free | | Data |
| Space | | Table |
tmmm + dom————— +
| l
e ———————— + |
l I
Fom + A \
| Ivor | Fm———————— + e i +
| Constant |-——==e——-r >| Instruction | | Operand |
| Stream | | Interpreter |<---->| Stack |
Fom + Fom + Fommm—————— +
Fo—m + | | Fo——————— +
| Ivor | | e ———— >| Address |
| Operation |-———--—emm—- + | Stack |
| Stream | tm——————— +
Fom +

The 1Ivor abstract machine has the components shown above. To
cater for program segmentation the Ivor program is divided into
units. Units are sub-divided into streams. These are the
Definition, Constant and Operation streams. :

The definition stream introduces objects (more on these later)
and each object has an identification key. Objects are, for
example simple integers, arrays ..etc.

The constant stream introduces constant expressions, for example
(3+47/16) which need to be evaluated. The constant stream is
needed if the Ivor interface is to be used by a code generator
which 1is generating code for, say, a different word length
machine than that hosting the compiler. If it is necessary to
evaluate the constant expressions in the target machine
environment then this can be done.

The operation stream is the code of the abstract machine which
governs execution, data manipulation and concurrent processing.

26

SOFTWARE PORTABILITY

The abstract machine has 4 separate data areas: Free Space, the
Data Table, the Operand Stack and the Address Stack.

Free space, and the 2 stacks are used to hold the values of
objects whilst the data table holds information about objects.

To ensure that the structure of Ivor is free from some storage
allocation strategy the structure of free space is left
undefined, except that free space is not directly addressable and
must be addressed through the address stack, in the case of a
calculated address, or the data table for an introduced object.
The mode of any object held in free space is an integral part of
its address.

The 2 stacks are used for holding, temporarily, the results of
evaluated expressions either in address calculation, in which
case the address stack is used, or in other expressions, in which
case the operand stack is used.

The data table is used to hold information about objects
introduced, including the objects free space address and its
structure (more on this later). All objects are identified by a
key, the identification key, which is used to index the data
table.

The operation of the abstract machine is :

-~ The instruction interpreter selects the first ivor unit
for reading and starts with the constant stream.

- The constant stream of that unit is read and processed,
operation by operation, by the instruction interpreter.
The processing causes the evaluation of each constant
expression placing the result in the data table.
Future reference to the constant expression, ie in the
definition or instruction stream, is by an
identification key which indexes the data table.

- The definition interpreter reads and processes the
Ivor definition stream. In doing this the definition
interpreter reserves the right amount of free space and
puts a free space address in the data table of the object
introduced. The data table record for each object is
created from information provided in the definition
stream. :

- The operation stream is then read and each operation
executed. Generally the 1Ivor instructions are executed
sequentially. However some instructions provide for

the execution of particular parts of the Ivor program, eg
by branching to a procedure call. The valid operations will
be described later.

27

SOFTWARE PORTABILITY

The description of Ivor which follows will wuse the abstract
machine to describe the operation of 1Ivor’s functions. The
description will cover :

Program segmentation

The definition stream

The operation stream

The constant stream

Ivor will be described using a modified Backus-Naur form of
syntax description method. The semantics are described
informally in English.

Syntactic categories are referenced by one or more words
enclosed between angle brackets (ie <..... >) and is termed a non-
terminal symbol. The non-terminal symbol may contain comments,
for explanatory purposes, in which case the comment is
underlined, eg <procedure operand>. The comments do not form
part of the syntax description and in the above example the non-
terminal symbol, <operand> is exactly equivalent to <procedure
operand>.

Grouping of syntactic elements is by the use of braces (ie
{....}). The group may be repeated by specifying an upper and a
lower bound immediately following the braces, eg {<procedure
operand>}1:10 indicates that the non-terminal symbol must appear
once, and may be repeated upto 10 times. An indefinite upper
limit is shown by an asterix (*) as the upper bound. The special
case of a symbol being optional, eg {<procedure operand>}0:1,
may be represented using square brackets, eqg [<procedure
operand>].

Terminal symbols are shown, where appropriate, in capital
letters. Although the intermediate language is shown with
terminal symbols represented by English words it is expected that
the language will be compactly coded and not directly human
readable.

Other meta language constructs are as the standard Backus-Naur
and are described only briefly here.

| Denotes an alternative.
$i= Means "defines".

3.2 Program Segmentation

Definitions
{program> ::=

IVOR <system name>
{ UNIT <unit data>

28

SOFTWARE PORTABILITY

<definition stream> <constant streamd
<operation stream> ENDUNIT}O:*

<system name> ::=
<character string>

<unit data> ::=
<module name> {<seized data>}0:*

<module name> ::=
<character string>

{seized data> ::=
SEIZED <module name> <definitions> ENDSEIZED

<character string> ::=
CHARSTRING <character> ENDCHARSTRING

<character> ::=
CHARACTER <internal code of character number>

As has been said in the preceding section an Ivor program
consists of one or more units, each of which comprises the 3
streams, definition, constant and operation. One of the
requirements arising from the need for program segmentation is
that each unit needs to be completely separate from others and
needs to be self contained so that the Ivor abstract machine can
take unambiguaous action for every operation.

The wunit is part of a system which is specified by a system
name. The abstract machine will not permit the concurrent
operation of units with dissimilar system names.

Each unit is identified by a module name. The abstract machine
requires each unit of a system to have a unique module name.

In order to satisfy the requirements of separate compilation,
where a wunit uses objects which are introduced in a different
unit, eg a procedure is called in module "A" which is defined in
module "B", it is required that the object be introduced as a
"seized" object in the module using (but not defining) it. In
the module in which the object is introduced it is required that
the object be granted wider access, see section 3.3.

A seized object is introduced in exactly the same manner as one
which is introduced in the definition stream, except that it may
not be marked as "granted". To allow a compiler to provide
simply the information required seized objects are grouped so
that all of the objects seized from a particular unit appear in
the same seized data group in the unit. The name of the unit
from which the objects are seized is given by the module name of
the seized data. For example

29

SOFTWARE PORTABILITY

- A unit seizes objects "A","B" and "C" from a unit with
module name "M" and object "X" and "Y" from a wunit with
module name "N".

— The unit which seizes "a","B","C","X" and "Y" will contain
2 seized data entries. The first will specify module "M"
and introduce the objects "A","B" and "C" whilst the second
will specify module "N" and introduce object "X" and "Y".

The seized data may contain introductions of objects which are
not used in the unit in addition to those which are. It is not
required that each unit of a system have identical seized data
and introductions may be in any order in each unit. Seized data
is not 1like Fortran "common" data in that ordering is not
important. The abstract machine will 1link between units
symbolically, using the module name and the object’s
identification key.

3.3 Definition stream
Definitions :

<definition stream)> ::=
DEFINITIONS <definitions)» ENDDEFINITIONS

<definitions> ::=
{ABSTRACTION <abstraction data> <declarations)
ENDABSTRACTION}OQ:*

<abstraction data> ::=
<visibility> <nesting> <abstraction descriptor> <new
key>

<abstraction descriptor)> ::=
PROCEDURE <procedure data>
| INNERPROCESS | OUTERPROCESS

<procedure data)> ::=
{INLINE | GENERAL | SIMPLE} { RECURSIVE | NONRECURSIVE}
{CRITICAL|NONCRITICAL}

<visibility> :
GRANTED | BUILTIN | VISIBLE

<nesting> ::=
<life time defining key> <visibility defining key>

<new key> ::=
<character string> <key>

<key>

KEY <number>

The definition stream introduces Ivor identification keys which

30

SOFTWARE PORTABILITY

represent objects used later in Ivor operations. "An
object does not exist in isolation but exists only when an
abstraction is activated. The object is said to be tied to that
abtraction.

Ivor abstractions are procedures and processes with a special
type of process, the outer process, for which an instance is
always active when the system is active.

Processes can operate concurrently whilst procedures cannot.
Many instances of the same process can be active at the same
time. The abstractions are invoked, or activated, by Ivor
operations in the operation stream. Both procedures and
processes may have parameters, or return results as mechanisms
for passing arguments between invoking and invoked
environments. The parameters and results are defined in the
<declarations> immediately following the abstraction
introduction.

Both Ada and Chill allow operations on procedure mode objects, eg

p := proc_name;

Indirect calling of procedures in this way causes inefficiencies
in the run-time code, especially if all procedures are candidates
for indirect calls, even though some may never be called in that
manner. In Ivor procedures can be called indirectly only if they
introduced with appropriate attributes, see below.

To allow a compiler to indicate that some procedures can be
optimised (though they need not be if the code generator is
non-intelligent) special attributes are provided. Misuse of
these attributes by a compiler is likely to cause incorrect code
to be produced.

INLINE - The procedure code will be expanded in-line at the
point of call.

GENERAL- The procedure may be wused in an assignment
operation and may be invoked indirectly.

SIMPLE - The procedure may not be used in an assignment
operation.

RECURSIVE The procedure may invoke itself either directly,
through another procedure or indirectly.

NONRECURSIVE
— The procedure may not invoke itself in any way.

CRITICAL The procedure may be invoked only when no other

31

are

SOFTWARE PORTABILITY

procedure contained in a particular bracketed area
of the operation stream, termed a critical region,
is active.

NONCRITICAL
- A normal, non-critical procedure.

So that many storage allocation strategies are possible,
abstractions must not be nested in the Ivor definition stream.
The static nesting characteristics are given by specific nesting
attributes.

In addition, an object has a lifetime and a visibility. The
lifetime of an object is the period during which storage must be
allocated to the object. An object starts its life when its tied
abstraction is activated. Global objects are tied to the outer
process. An object can be living but not visible and visibility
is separately definable. This would cater for nested
declarations of the form :

BEGIN
DECLARE x INTEGER;

BEGIN

DECLARE x BOOLEAN; -- Outer x is not visible
.o —-— but it is alive

END;

END;
For example :

The four abstractions pl,p2,p3 and p4 are defined informally as
follows :

pl is the outer process.
p2 is an inner process which is tied to pl.

p3 is a procedure which is tied to pl but is visible only
when p2 is active.

p4 is a process which is tied to p2 and is visible whenever
pl is active.

The Ivor intermediate language caters for these «cases by
providing for a 1lifetime defining key and visibility
defining key to be specified as the nesting attribute.

The key specifies either a tied abstraction, in the case of a

lifetime defining key, or a bracket or abstraction name, for a
visibility defining key. ‘ »

32

SOFTWARE PORTABILITY

3.4 Declarations
Definitions :

<declarations) ::=
{<introduction>}0:*

<introduction> ::=
<object introduction>
| <mode introduction>
| <synonym introduction>
|<notion introduction>

Ivor declarations are used to introduce objects, modes, synonyms
and notions which are described further in the following

sections.

ALL identification keys used within the operation or constant
streams must be introduced. The only exception to this is the
temporary object of section 3.5.2.8.

3.4.1 Objects
Definitions :

<object introduction> ::=
OBJECT [<object introduction details)]
{<new object key>}1:* ENDOBJECT

<object introduction details> ::=
<visibility> <nesting> <initialisation> <accessibility>
<mode key>

<initialisationy ::=
LIFEINIT | REACHINIT | NOTINIT

<accessibility> ::=
DIRECT :
| ARGUMENT <abstraction key> <argument type>

<argument type> ::=
IN | OUT | INOUT | LOC | RESULT

Ivor objects occupy free space and the definition interpreter
reserves an appropriate amount of free space for the object and
places a free space address for the object in the data table
record which is referenced by the object’s identification key.

More than one object may occupy the same free space locations
provided that their tied abstractions cannot be simultaneously

active.

33

SOFTWARE PORTABILITY

Objects may be initialised by operations in the operation stream.
They may be initialised statically (ie once only when the outer
process is activated) or may be initialised every time that an
instance of the tied abstraction is activated. LIFEINIT is the
former case whilst REACHINIT is the latter.

Parameters to abstractions are introduced immediately
following the ABSTRACTION introduction as objects. They are
identified as having an accessibility attribute of ARGUMENT.
The identification key of the abstraction is included as an
attribute. The argument types supported by Ivor are :

IN The value of the actual parameter of the
procedure/process is copied to local storage
at the procedure/process invocation. The

local storage is wused throughout the
procedure/process execution and the original
actual parameter value is unchanged at the
procedure/process exit.

INOUT Identical to the IN argument except that at
procedure/process exit the value of the
parameter is copied to the location
represented by the actual parameter.

ouT Identical to the INOUT except that the value
of the actual parameter will not be wused
within the procedure/process.

LOC The actual parameter 1location will be
accessed for all read and write references to
the parameter within the procedure/process.

RESULT The argument will be used to hold the result
(eg in the case of a function call) of a
procedure/process.

The structure of an object is given by its mode which specifies
attributes such as whether the object is an array, or simple and
whether it can be used to hold integers, strings, etc. The
abstract machine uses the mode information to determine how much
free space is required and to determine the kinds of operations
which are allowable on the objects. The mode information 1is
obtained from a data table entry which is referenced by the mode
identification key. Modes are described next.

3.4.2 Modes
Definitions :

<mode introduction> ::=
MODE [<mode introduction details>] <new mode key>

34

SOFTWARE PORTABILITY

ENDMODE

<mode introduction details> ::=
<visibility> <nesting> <capability> <mode construction>

<capability> :
R | W | RW

<mode construction> ::=
<basic mode>
| REF <mode key>
| BUFFER <mode key>
<buffer length constant>
| <array mode>
| <structure mode>

<basic mode> ::=
BIT | FLAG | CHAR | LABEL | PTR |
BIT | FLAG | CHAR | LABEL | PTR |
PAIR | CASELABEL | RANGE <range> |
PROC | INSTANCE

{range> ::=
<lower bound constant>
<upper bound constant>

<array mode)> ::=
ARRAY <mode key> <range>

<structure mode> ::=
STRUCTURE { <field> }1l:* ENDSTRUCTURE

<field> ::=
<mode key> <new field key>

<constant> ::=
NUMBER <number>

<number> ::=
{ 0]11]2|3]4|5|6|7|8|9|A|B|C|D|E|F }4:8

The mode of an object defines the structure of the object and the
range of operations which may be performed on the object.

Iin addition it defines whether the object may be read from
and/or written to.

The capability attribute of the object specifies R for read only
access, W for write only and RW for read/write access.

The mode of an object is one of : basic, reference, buffer,
array or structure.

3.4.2.1 Basic Modes

35

SOFTWARE PORTABILITY

Objects which are defined to be a basic mode are simple and can
hold a value which is restricted to one valid for the basic mode.

Basic modes are
— BIT is a data item which can take the value TRUE or FALSE.
— FLAG is a data item which can take the value FREE or BUSY.

- CHAR can take the value of the internal code £for any
character which can be displayed and printed.

- LABEL is a reference to a point in the operation stream of
the Ivor program.

- PTR is a free space reference to any object.
- PAIR is a pair of integers.

— CASELABEL 1is a reference to a point in the operation
stream of an Ivor program which can be entered only by a
CASE operation.

- RANGE 1is an integer which can take a value which is
>= the lower bound specified and <= the upper bound.

- PROC 1is a reference to a point in the operation stream of
an Ivor program which represents the start of a GENERAL
procedure.

— INSTANCE is an identity given to a process when it is
executing. A process may be started by one or more process
start operations and each instance of the process can
execute concurrently. Each instance of the process is given
a unique process instance value by the Ivor abstract machine
and this may be assigned to an object of mode INSTANCE.

3.4.2.2 Reference Modes

A reference mode is a free space reference to an object which has
the mode specified by the mode identification key.

3.4.2.3 Buffer Modes

A buffer mode object is used for communicating values between
concurrent processes. The buffer has a mode specifed by the mode
identification key and has a length specified by the constant.
3.4.2.4 Array Modes

An array mode is an ordered set of elements each of identical
mode. The mode of each element is given by the mode

identification key, which may, itself, be an array mode. The
number of elements is given by the difference between an upper

36

SOFTWARE PORTABILITY

and lower bound (plus 1). An array element is referenced by
an index value which must be >= the lower bound and <= the upper
bound.

3.4{2.5 Structure Modes
A structure mode is a collection of elements, called fields, each

of which may be a different mode. The field mode is given by the
field mode identification key.

37

SOFTWARE PORTABILITY

3.4.3 Notions
Definitions :

<notion introduction> ::=
NOTION <notion introduction details> <new key>
ENDNOTION

<notion introduction details> ::=
<visibility> <nesting> <notion details>

<notion details> ::=
LABEL { STRUCTURED | UNSTRUCTURED }
| BRACKET <bracket type>
| SIGNAL

<bracket type> ::=
{ STRUCTURED | UNSTRUCTURED }
{ CRITICAL | NONCRITICAL }

Notion introductions introduce label, bracket and signal type
identification keys.

Label notions are used to mark points in the 1Ivor operation
stream where flow is transferred to directly, rather than
sequentially from the preceding operation. It is useful for a
code generator to know which labels (and brackets) are branched
to from a few, rather than many, places. This makes the job of
code optimisation simpler as the number of possible states
available at the label are fewer. Labels with few branches are
termed structured labels. Structured labels are usually
generated as a result of some high 1level language loop, or
conditional statement. An wunstructured label may be
branched to from many places, or may be assigned to a label mode
object.

A bracket notion is used to delimit a section of Ivor program
which is to be entered at its head and where an exit from the
bracket will transfer control to the operation following the
bracket. Brackets cater also for concurrent operation of
critical regions. If data which is shared between concurrently
operating processes is to be accessed it is desirable to prevent
concurrent (write) access to the data. this can be achieved by
specific programming which ensures that data accesses occur only
within a "critical region". 1If the bracket is marked as
critical only one process instance may have control
dynamically contained within the bracket at any time.

Signal notions are used in the syncronisation between
concurrently operating processes.

3.5 Operation Stream

38

SOFTWARE PORTABILITY

Definitions :
<operation stream> ::=
OPERATIONS { <sequential operation> |
<non sequential operation> |
<control operation> }0:* ENDOPERATIONS

<operand> ::=
{ <identification key> | <stack operand> |
<literal operand> } <operand descriptor>

<stack operand> ::
{ OPERANDSTACK | ADDRESSSTACK } <mode key>

<literal operand> ::=
<literal> <mode key>

<literal> ::=
<constant> | <character> | <character string> |
NULL | FREE | BUSY | TRUE | FALSE | UNDEF | NONE

<operand descriptor>
VALUE | CONSTANT

The operation stream introduces the operations which are to be
executed by the Ivor instruction interpreter to provide the logic
of the program. Operations are either sequential, non sequential
or control operations. Sequential operations are interpeted one
following the next. Non sequential operations transfer control
to particular Ivor instructions within the operation stream.

Operations wusually have one or more operands. The operands
provide the values and addresses used in the operations.

An operand can be one referenced by an identification key, in
which case the information about the object is obtained from the
abstract machine data table. Alternatively the object may be a
stack reference. If a stack reference is specified, either the
~address or operand stack, its mode is given by the mode key. The
mode information is stored in the abstract machine data table
record referenced by the identification key. An object may be a
literal and can be any of the appropriate literal types.

The operand descriptor gives the abstract machine information
about how to use the operand, ie :

- If the operand descriptor is VALUE the operand is used as

an address and the value of the operand obtained from it by

indirection. For example suppose the operand is :
OPERANDSTACK VALUE

The value from the top of the stack is used as the operand,

ie the operand OPERANDSTACK is used as the address of the

39

SOFTWARE PORTABILITY

top of the stack and indirection used to obtain a value. -
Conversely, suppose the operand is :
KEY x VALUE

In this case the value is obtained from a free space address
given in the data table record of the identification key x
and allocated to x.

The VALUE operand descriptor may not be used with literal
operands.

- If the operand descriptor is CONSTANT no indirection is
applied and the actual value or address is wused. If the
above examples are repeated with CONSTANT as an operand
descriptor the address of the stack top, and free space
address of the key x, respectively, will be used as
operands.

The operations will be defined with respect to the abstract
machine and the following notation is wused within the
description.

Firstly the syntactic definition is given, in exactly the same
manner as described under th definition stream, above.

Secondly a 1list of valid modes and notions are given for each
operand. The 1list describes the combination of modes which are
valid. Any other combinations are invalid and the abstract
machine will generate an error condition if an invalid
combination of modes or notions are provided.

The description of modes and notions follow the following
format: Firstly a "Modes" heading to indicate that the modes
and notions are being described. This is followed by a
heading indicating which part of the syntax description is
being categorised, for example, suppose the syntax definition was

40

SOFTWARE PORTABILITY

Definitions :
<relational operation> ::=
{ GT | GE | LT | LE | EQ | NE } <result operand>
<first source operand> <second source operand>
A Mode or notion section might be :

Modes :
For <relational operation> is GT
Order is <first source operand> <second source operand>
<result operand>

BIT BIT BIT
CHAR CHAR BIT
RANGE RANGE BIT

The meaning of this is is :

-~ If the relational operation is the GT operation then the
first operand may be a BIT mode in which case the second
operand must be a BIT mode which will generate a BIT mode
result operand, and so on for CHAR and RANGE mode first
operands.

- The "Order is .." part of the definition gives the order
of the modes with respect to the syntax definition.

For <relational operation> is GT | GE | LT | LE | EQ | NE
Order is <first source operand> <second source operand>
<result operand>

BIT BIT BIT
CHAR CHAR BIT
RANGE RANGE BIT

The above defines the modes for all of the <relational
operation> options and the following shorthand notation may
be used when the mode definition applies to all options.

For <relational operation>
Order is <first source operand> <second source operand>
<result operand>

BIT BIT BIT
CHAR CHAR BIT
RANGE RANGE BIT

The actual functions performed by the Ivor operations are
described with respect to a smaller number of pseudo operations
of the abstract machine, eg

Function :

For <relational operation> is GT
if value(<first source operand>) >

41

SOFTWARE PORTABILITY

value(<second source operand>) then
<result operand> := TRUE else
<result operand> := FALSE
endif

The meaning of this is : If the relational operation is GT then
the abstract machine executes the pseudo operations shown, in
this case if .. then ... else .. endif and value pseudo
operations. Pseudo operations are explained under a separate
heading at their first occurance. In this way the operations of
Ivor can be explained with reference to a smaller number of basic
constructs.

Where necessary, additional explanation will be given in order to
relate the Ivor constructs to high level programming language
features.

3.5.1 Sequential Operations

Definitions :

<sequential operation> ::=
<relational operation> |
<arithmetic operation> |
<logical operation> |
<numerical operation> |
<complex mode accessing operation> |
<assignment operation> |
<result operation> |
<syncronisation operation> |

Sequential operations cater for source language expressions, eg
arithmetic and logical expressions and array and structure
accessing. In addition Ivor operations are provided for the
mapping of returned values from procedures and processes.

Some bit manipulation operations are provided also.
3.5.1.1 Relational operation

Relational operations allow two operands to be compared, ie using
<,>,¢=,>=,/= and = operations, producing a boolean result.

Definitions :
<relational operation> ::=
{ GIT | GE | LT | LE | EQ | NE } <result operand>
<first source operand> <second source operand>

Modes
For <relational operation>
Order is <first source operand> <second source operand>
<result operand>
BIT BIT BIT
CHAR CHAR BIT

42

SOFTWARE PORTABILITY

RANGE RANGE BIT
Function :
For <relational operation> is GT

For

For

For

For

For

if value(<first source operand>) >
value(<second source operand>) then

<result operand> := TRUE else

<result operand> := FALSE

endif

<relational operator> is GE
if value(<first source operand>) >=
value(<second source operand>) then
<result operand> := TRUE else
<result operand> := FALSE
endif

<relational operator> is LT

if value(<first source operand>) <
value(<second source operand>) then

<result operand> := TRUE else

<result operand> := FALSE

endif

<relational operator> is LE
if value(<first source operand>) <=
value(<second source operand>) then
<result operand> := TRUE else
<result operand> := FALSE
endif

<relational operator> is EQ
if value(<first source operand>) =
value(<second source operand>) then
<result operand> := TRUE else
<result operand> := FALSE
endif

<relational operator> is NE
if value(<first source operand>) /=
value(<second source operand>) then

<result operand> := TRUE else
<result operand> := FALSE
endif

Pseudo operations :

value The reference level of operands 1is specified
explicitly in Ivor operands, see start of section
3.5. If B is an operand with VALUE specified as

an operand descriptor then (value(B)) is
value of the operand obtained from the free

address of the operand. If B is an operand with

CONSTANT specified then (value(B)) is the

43

SOFTWARE PORTABILITY

of the constant - which may be a free space
address.

if The (if .. then ... else .. endif) operation and
associated relational operations have the wusual
interpretation, ie suppose A and B are operands
then (if A>B then C else D endif) will cause C to
be executed if (A>B) or D to be executed

otherwise.

3.5.1.2 Arithmetic Operations

Arithmetic operations allow the common programming language

operations of addition, subtraction, multiplication, division,

modulo, absolute and remainder to be represented in Ivor.

Also

provided for are successor and predecessor functions. These are
defined specifically for integer, character and boolean type

operands.

Definitions :
<arithmetic operation> ::=
<monadic arithmetic operation) |
<diadic arithmetic operation>

<monadic arithmetic operation> ::=

{ SUCC | PRED | MINUS | ABSOLUTE } <result operand>

<source operand)

<diadic arithmetic operation) ::=
{ ADD | SUBTRACT | MULTIPLY | DIVIDE | MODULO |
REM } <result operand> <first source operand>
<second source operand>

Modes :
For <monadic operation> is SUCC | PRED :

Order is <first source operand> <second source operand>

<result operand>

BIT BIT BIT
CHAR CHAR CHAR
RANGE RANGE RANGE

For <monadic operation> is MINUS | ABSOLUTE
Order is <source operand> <result operand>
RANGE RANGE

For <diadic operation>

Order is <first source operand> <second source operand>

<result operand>
RANGE RANGE RANGE

Function :
For <monadic operation> is SUCC
<result operand> := successor(
value(<source operand))

44

SOFTWARE PORTABILITY

For <monadic operation> is PRED
<result operand> := predecessor(
value(<source operand>)

)

For <monadic operation> is MINUS
<result operand> := - value(<source operand>)

For <monadic operation> is ABSOLUTE

if value(<source operand>) < 0 then

<result operand> := - value(<source operand>) else
<result operand> := value(<source operand>)

For <diadic operation> is ADD
<result operand> := value(<first source operand>) +
value(<second source operand>)

For <diadic operation> is SUBTRACT
<result operand> := value(<first source operand>) -
value(<second source operand>)

For <diadic operation> is MULTIPLY
<result operand> := value(<first source operand>) *
value(<second source operand>)

For <diadic operation> is DIVIDE
<result operand> := <first source operand> /
<second source operand>

For <diadic operation> is MODULO
<result operand> := value(<first source operand>) //
value(<second source operand>)

For <diadic operation> is REM
<result operand> := remainder (value(<first source operand>) /
value(<second source operand>))

Pseudo operations :

successor If I is an integer then successor(I) is I+l.

i1f 1I+1 1is greater than the permitted range
the abstract machine generates an error
condition.
If C is a character then successor(C)
generates the next character in the ordered
set of characters. = If C 1is the last
character in the set the abstract machine
generates an error condition.
If B is a bit then successor(B) generates
true if B is false, or an error condition

otherwise.

45

3.5.1.3

predecessor

V4

remainder

Definitions :

SOFTWARE PORTABILITY

If I is an integer then predecessor(I) is I-
1. If I-1 is less than the permitted range
of I the abstract machine generates an error
condition.

If C is a character then predecessor(C)
generates the previous character in the
ordered set of characters. If C 1is

the first character in the set the
abstract machine generates an error
condition. If B 1is a bit then
predecessor(B) generates false if B is true,
or an error condition otherwise.

This is arithmetic minus and may be used 1in
modadic or diadic context. In monadic wuse
the effect is identical to the case of diadic
zero minus an operand.

This is arithmetic addition.
This is arithmetic multiplication.
This is arithmetic division.

This is the modulo operation which is defined
as follows. If I and J are integers then
1//J delivers a unique integer value K, where
0<=K<J, such that there is an integer value N
for which I=N*J+K is true.

If I and J are integers then remainder(I/J)
is the remainder after performing the
arithmetic division.

Logical Operations

Highly typed languages like Chill and Ada do not permit integers
and characters to be treated like bit strings. CORAL 66 does
allow this feature.
permitted on bits and bit strings only. To cater for this Ivor
provides AND, OR, XOR and NOT operations which can be applied to
single boolean values or arrays of boolean values, representing
bit strings.

Bit logical operations, eg AND, OR, XOR, are

<logical operation> ::=
<monadic logical operation> |
<diadic logical operation>

<monadic logical operation> ::=
NOT <result operand> <source operand>

46

SOFTWARE PORTABILITY

<diadic logical operation> ::=
{ AND | OR | XOR } <result operand>

<first source operand> <second source operand>

Modes :
For <monadic logical operation>
Oorder is <source operand> <result operand>
BIT BIT
BIT-ARRAY BIT-ARRAY

For <diadic logical operation>
Order is <first source operand> <second source operand>
<result operand>

BIT BIT BIT

BIT-ARRAY BIT-ARRAY BIT-ARRAY Both of the source operands and
the result operand must be of
exactly the same mode and
structure.

Function :
For <monadic logical operation> is NOT
<result operand> := not(value(<source operand>))

For <diadic logical operation> is AND
<result operand> := value(<first source operand>) and
value(<second source operand>)

For <diadic logical operation> is OR
<result operand> := value(<first source operand>) or
value(<second source operand>)

For <diadic logical operation> is XOR
<result operand> := value(<first source operand>) exclusive-or
value(<second source operand>)

Pseudo operations :
not If B is a bit then not(B) obeys the following

truth table :

B not(B)
0 1
1 0

If B 1is an array of bits the operation is
performed on all elements of the array
treating each element separately.

and If B and C are bits then (B and C) obeys the
following truth table :
B C (B and C)
0 0 0
1 0 0

a7

3.5.1

or

exclusive-or

.4

Numerical

Definitions :
<numerical operation)> ::=

Modes

<monadic n
<diadic nu

SOFTWARE PORTABILITY

0

0
1 1

1
1
If B and C are arrays of bits the operation
is performed on all elements of the array,
taking each element in turn, ie

first(B) and first(C) followed by

next(B) and next(C) until

last(B) and last(C).
B and C must have the same number of elements
otherwise the abstract machine will generate
an error condition.

This has identical semantics to the and
operation except that the truth table is :

B C (B or C)
0 0 0
1 0 1
0 1 1
1 1 1

This has identical semantics to the and
operation except that the truth table is

B C (B exclusive-or C)
0 0 0
1 0 1
0 1 1
1 1 0
Operations

umerical operationd> |
merical operation>

<monadic numerical operation> ::=
{ CARD | MAX | MIN | SIZE } <result operand>

{source op

erand)

<diadic numerical operation)> ::=

INCLUDE <r
<second so

esult operand> <first source operand>
urce operand>

For <monadic numerical operation> is CARD | MAX | MIN
Order is <source operand> <result operand>
BIT-ARRAY RANGE

For <monadic numerical operation)> is SIZE
Order is <source operand> <result operand>

BIT

RANGE

48

SOFTWARE PORTABILITY

RANGE RANGE
CHAR RANGE
FLAG RANGE

For <diadic numerical operation> :

Order is <first source operand> <second source operand>
<result operand>

BIT-ARRAY BIT-ARRAY BIT Both source operands must have the

Function :

same number of elements.

For <monadic numerical operation> is CARD
<result operand> := card(

value(<source operand>)

For <monadic numerical operation> is MAX
<result operand> := maximum(

value(<source operand>)

For <monadic numerical operation> is MIN
<result operand> := minimum(

value(<source operand>)

For <monadic numerical operation> is SIZE
<result operand> := size (

value(<source operand>)

)

For <diadic numerical operation> is INCLUDE
<result operand> := value(<first source operand>)
includes value(<second source operand>)

Pseudo operations

card

maximum

nminimum

size

include

If B is a bit-array then card(B) 1is an
integer which is the sum of the number of
elements of the bit-array which deliver a
true value. .

If B is a bit-array then maximum(B) is an
integer which is the highest index into the
array which delivers a true value.

If B 1is a bit-array then minimum(B) is an
integer which is the lowest index into the
array which delivers a true value.

If A is an object of valid mode then size(A)
is an integer which gives the number of bits
used to hold A.

If B and C are bit-arrays of identical

49

SOFTWARE PORTABILITY

structure then (B includes C) delivers true
if, and only if, for each element in C which
contains true there is a corresponding true
value in the first operand.

3.5.1.5 Complex Mode Accessing Operations

In some of the early programming languages it was not p0551b1e to
assign many values to array and structure elements without using
some kind of looping construction.

It is possible now to use features like :
a :=[1..10:0,6,b,14..20:0]

Which assigns 0 to elements 1 to 10 of array "a", 6 to element
11, the value of "b" to element 12, element 13 is unchanged and
elements 14 to 20 are assigned to 0

Ivor provides operations for creating values like those appearlng
on the right hand side of the assignment.

In addition, operations are provided for manipulating arrays, eg
by slicing a section from an array, or joining 2 arrays, to
create a new array. in addition it is possible to create
references to array elements and structure fields.

Definitions :
<complex mode accessing operation)> ::=
<monadic complex mode accessing operation> |
<diadic complex mode accessing operation>

<monadic complex mode accessing operation)> ::=
{ DEREF | TUPLE } <first operand>
<second operand>

<diadic complex mode accessing operation> ::=
{ JOIN | SLICE | RANGE | FOR | INDEX | SELECT |
ATUPLE } <result operand>
<first source operand> <second source operand>

Modes :
For <monadic complex mode accessing operation> is DEREF
Order is <second operand> <first operand>

REF-<basic mode> <basic mode>
REF-<array mode> <array mode>
REF-<structure mode> <structure mode>

For <monadic complex mode accessing operation> is TUPLE

Order is <second operand> <first operand>

<basic mode> <basic mode>-ARRAY Length of array depends
upon the number of TUPLE
operations.

50

SOFTWARE PORTABILITY

For <diadic complex mode accessing operation> is JOIN | SLICE
Order is <first source operand> <second source operand>
<result operand>

BIT-ARRAY BIT-ARRAY BIT-ARRAY
CHAR-ARRAY CHAR-ARRAY CHAR-ARRAY
RANGE-ARRAY RANGE-ARRAY RANGE-ARRAY

For <diadic complex mode accessing operation> is RANGE | FOR

Order is <first source operand> <second source operand>
<result operand>

RANGE RANGE PAIR

For <diadic complex mode accessing operation> is INDEX
Order is <first source operand> <second source operand>
<result operand>

BIT-ARRAY RANGE REF-BIT
CHAR-ARRAY RANGE REF-CHAR
RANGE-ARRAY RANGE REF-RANGE
FLAG-ARRAY RANGE REF-FLAG
LABEL-ARRAY RANGE REF-LABEL
PTR-ARRAY RANGE REF-PTR
PAIR-ARRAY RANGE REF-PAIR
PROC-ARRAY RANGE REF-PROC

<array mode>-ARRAY RANGE REF-<array mode>

For <diadic complex mode accessing operation> is SELECT

Order is <first source operand> <second source operand>
<result operand>

<structure <mode construction> REF-<mode

mode> construction>

For <diadic complex mode accessing operation> is ATUPLE
Order is <first source operand> <second source operand>
<result operand>

BIT RANGE BIT-ARRAY
CHAR RANGE CHAR-ARRAY
RANGE RANGE RANGE-ARRAY
FLAG RANGE FLAG-ARRAY
LABEL RANGE LABEL-ARRAY
PTR RANGE PTR-ARRAY
PAIR RANGE PATIR-ARRAY
PROC RANGE PROC-ARRAY
BIT-ARRAY PAIR BIT-ARRAY
CHAR-ARRAY PAIR CHAR-ARRAY
RANGE-ARRAY PAIR RANGE-ARRAY
FLAG-ARRAY PAIR FLAG-ARRAY
LABEL-ARRAY PAIR LABEL-ARRAY
PTR-~-ARRAY PAIR PTR-ARRAY
PAIR-ARRAY PAIR PAIR-ARRAY
PROC-ARRAY . PAIR PROC-ARRAY
Function :
For <monadic complex mode accessing operation> is DEREF
<first operand> := value(

51

SOFTWARE PORTABILITY

value(<second operand>)

)

For <monadic complex mode accessing operation> is TUPLE
next (<first operand>) := value(<second operand))

For <diadic complex mode accessing operationd> is JOIN
<result operand> := value(<first source operand>) join
value(<second source operand))

For <diadic complex mode accessing operation> is SLICE
<result operand> := value(<first source operand>) slice
value(<second source operand))

For <diadic complex mode accessing operation> is RANGE
<result operand> := value(<first source operand>)
range value(<second source operand))

For <diadic complex mode accessing operation> is FOR
<result operand> := value(<first source operand>)
for value(<second source operand))

For <diadic complex mode accessing operation> is INDEX
<result operand> := <first source operand) !
value(<second source operand))

For <diadic complex mode accessing operation> is SELECT
<result operand> := <first source operand)> .
value(<second source operand))

For <diadic complex mode accessing operation> is ATUPLE
<result operand> subarray value(<first source operand>) :=
value(<second source operand>)

Pseudo operations :
next If A is an array then next(A) references the
highest array element location at which there
is no value stored.

join If A and B are arrays then (A join B) is an
new array whose length is the sum of the
lengths of A and B.

slice If A is an array and X is a pair, say (3:4),
then (A slice X) will generate an array of
length 2 which will be the elements of A at
indices 3 and 4.

range If I and J are integers then (I range J)
generates the pair (I:J).

for If I and J are integers then (I for J)
generates the pair (I:I+J).

52

SOFTWARE PORTABILITY

If A is and array reference and X is an
integer then (A ! X) is a reference to the Xth
element of A.

If S is a structure and F is a field of the
structure then (S . F) is a reference to the
field of the structure.

subarray If A is an array reference and X is an
integer or pair then (A subarray X)
references one or more elements of A.

3.5.1.6 Assignment Operation

Definitions :
<assignment operation)> ::=
{ ASSIGN | INITIALISE } <sink operand>
<source operand>

Modes :
For <assignment operation>
order is <source operand> <sink operand>
<mode> <mode> Both operands must be of identical
mode.

Function :
For <assignment operation> is ASSIGN
<sink operand> := value(<source operand>)

For <assignment operation> is INITIALISE
<sink operand> <- value(<source operand>)

Pseudo operaton :

<- If A is a reference to an object and B is an
object of the same mode as that referenced
then (A <- B) causes the value of B to be
assigned to the location A once only when the
abstract machine first encounters the
operation. Thereafter the operation is
ignored and causes no action.

3.5.1.7 Result Operation

High level language functions can return a result which may be
used in an expression, eg :

x := fn()*3+b;
It is necessary in Ivor to indicate at the Abstraction
introduction (ie abstraction ’fn’ in this case) that the
abstraction will return a result. A special argument is
introduced, the result argument.

In the calling environment the result argument operand is used in

53

SOFTWARE PORTABILITY

the expression using the procedure result. 1In the called
environment a RESULT operation effectively assigns the value of
the result to the result argument operand immediately prior to
returning control to the calling environment.

Definitions
<result operation) ::=
RESULT <procedure result operand>
<result value operand>

Modes :
' For <result operation>
Order is <result value operand> <procedure result operand>
<mode> <mode> Both operands must be of identical
mode.

Function :
For <result operation>
<procedure result operand> := value(<result value operand>)

3.5.1.8 Syncronisation Operation

Definitions :
<{syncronisation operation)> ::=
SEND <buffer or signal operand>
<receiving process operand) |
RECEIVE <buffer operand>

Modes :
For <syncronisation operation> is SEND

Order is <buffer or signal operand> <receiving process operand>

BUFFER INSTANCE v
SIGNAL INSTANCE Signal is a notion, not a mode, but
is included here for completeness.

For <syncronisation operation)> is RECEIVE
BUFFER

Function :
For <syncronisation operation> is SEND
send <buffer or signal operand> to <receiving process
operand>

For <syncronisation operation> is RECEIVE
<buffer operand> := receive

Pseudo operations :
send If S8 1is a signal argument and P a process
instance value then (send S to P) causes the
value of S to be sent to the process instance
P.

If B is a buffer value and P a process

54

SOFTWARE PORTABILITY

instance value then (send B to P) causes the
value B to be sent to the process P.

Execution continues with the next instruction

immediately.
receive A concurrently operating process has an input
message dqueue in free space. The receive

operation causes the abstract machine to
fetch the message at the head of the queue
and delete the message from the queue. The
message is then available as a value to the
abstract machine and may be assigned to a
reference of identical mode.

If the queue is empty, the abstract machine

will wait until a message is placed in the
queue.

55

SOFTWARE PORTABILITY

3.5.2 Non-Sequential Operations

High level programming languages have procedures, blocks, labels
and processes to provide for modular or concurrent program
construction, or simply to allow control transfer. The simple
high level language statement

proc(p);

hides much of the environment creation and parameter passing
necessary to implement the feature.

Ivor’'s design aims at keeping the simplicity of the high level
language statement by providing explicit environment activation
operations. '

Procedures then become simple bracketed operations and a
procedure call simply enters at the bracket head.

Definitions :

<non-sequential operations> ::=
<entry operation> |
<exit operation> |
<procedure entry operation)> |
<procedure exit operation> |
<process start operation> |
<{process stop operation)> |
<case selection operation>

3.5.2.1 Entry Operation

Definitions :
<entry operation)> ::=
<conditional entry operation> |
<unconditional entry operation)>

<conditional entry operation> ::=
<boolean conditional entry operation)> |
<relational conditional entry operation)> |
<protected entry operation>

<boolean conditional entry operation> ::=
{ ENTERTRUE | ENTERFALSE } <source operand>
<bracket or label identification key operand>

<relational conditional entry operation> ::=
{ ENTERGT | ENTERGE | ENTERLT | ENTERLE | ENTEREQ | ENTERNE }
<first source operand> <second source operand)
<bracket or label identification key operand>

<protected entry operation> ::=

{ ENTERFREE | ENTERBUSY } <source operand>
<bracket or label identification key operand>

56

SOFTWARE PORTABILITY

<unconditional entry operation> ::=
ENTER <bracket or label identification key operand>

<identification key operand> ::=
<identification key> <operand descriptor>

Modes :
For <boolean conditional entry operation>
Order is <source operand>
<bracket or label identification key operand>
BIT LABEL
BIT BRACKET

For <relational conditional entry operation>
Order is <first source operand> <second source operand>
<bracket or label identification key operand>

BIT BIT LABEL
BIT BIT BRACKET
CHAR CHAR LABEL
CHAR CHAR BRACKET
RANGE RANGE LABEL
RANGE RANGE BRACKET

For <protected entry operation>
Order is <source operand>
<bracket or label identification key operand>

FLAG LABEL

FLAG BRACKET

For <unconditional entry operation>
LABEL

BRACKET

Function :
For <boolean conditional entry operation> is ENTERTRUE
if value(<source operand>) = TRUE then execute
<bracket or label identification key operand>

For <boolean conditional entry operation> is ENTERFALSE
if value(<source operand>) = FALSE then execute
<bracket or label identification key operand>

For <relational conditional entry operation> is ENTERGT
if value(<first source operand>) >

value(<second source operand>) then
execute <bracket or label identification key operand>

For <relational conditional entry operation> is ENTERGE
if value(<first source operand>) >=

value(<second source operand>) then
execute <bracket or label identification key operand>

For <relational conditional entry operation> is ENTERLT
if value(<first source operand>) <

57

SOFTWARE PORTABILITY

value(<second source operand>) then
execute <bracket or label identification key operand>

For <relational conditional entry operation> is ENTERLE
if value(<first source operand>) <=

value(<second source operand>) then
execute <bracket or label identification key operand>

For <relational conditional entry operation> is ENTEREQ
if value(<first source operand>) =

value(<second source operand>) then
execute <bracket or label identification key operand>

For <relational conditional entry operation> is ENTERNE
if value(<first source operand>) /=

value(<second source operand>) then
execute <bracket or label identification key operand>

For <protected entry operation> is ENTERFREE
if value(<source operand>) = FREE then execute
<bracket or label identification key operand>

For <protected entry operation> is ENTERBUSY
if value(<source operand>) = BUSY then execute
<bracket or label identification key operand>

Pseudo operations :
execute If X is a reference to a location within the
Ivor operation stream then (execute X) causes
the 1Ivor instruction interpreter to execute
the operation at location X and continue
execution from there.

3.5.2.2 Exit Operation

Definitions :
<exit operation> ::=
<conditional exit operation> |
<unconditional exit operation>

<conditional exit operation> ::=
<boolean conditional exit operation> |
<relational conditional exit operation> |

<boolean conditional exit operation> ::=
{ EXITTRUE | EXITFALSE } <source operand>
<bracket identification key operand>

<relational conditional exit operation> ::= ‘
{ EXITGT | EXITGE | EXITLT | EXITLE EXITEQ | EXITNE }
<first source operand> <second source operand>
<bracket identification key operand> '

<unconditional exit operation> ::=

58

SOFTWARE PORTABILITY

EXIT <bracket identification key operand>

Modes :
For <boolean conditional exit operation>
Order is <source operand>
<bracket identification key operand>
BIT BRACKET

For <relational conditional exit operation>
Order is <first source operand> <second source operand>
<bracket identification key operand>

BIT BIT BRACKET
CHAR CHAR BRACKET
RANGE RANGE BRACKET

For <unconditional exit operation>
BRACKET

Function :
For <boolean conditional exit operation> is EXITTRUE
if value(<source operand>) = TRUE then exit
<bracket identification key operand>

For <boolean conditional exit operation> is EXITFALSE
if value(<source operand>) = FALSE then exit
<bracket identification key operand>

For <relational conditional exit operation> is EXITGT
if value(<first source operand>) >

value(<second source operand>) then
exit <bracket identification key operand>

For <relational conditional exit operation> is EXITGE
if value(<first source operand>) >=

value(<second source operand>) then
exit <bracket identification key operand>

For <relational conditional exit operation> is EXITLT
if value(<first source operand>) <

value(<second source operand>) then
exit <bracket identification key operand>

For <relational conditional exit operation> is EXITLE
if value(<first source operand>) <=

value(<second source operand>) then
exit <bracket identification key operand>

For <relational conditional exit operation> is EXITEQ
if value(<first source operand>) =

value(<second source operand>) then
exit <bracket identification key operand>

For <relational conditional exit operation> is EXITNE

59

SOFTWARE PORTABILITY

if value(<first source operand>) /=
value(<second source operand)) then

exit

<bracket identification key operand>

For <protected exit operation)> is EXITFREE
if value(<source operand)) = FREE then exit
<bracket identification key operand>

For <protected exit operation> is EXITBUSY
if value(<source operand>) = BUSY then exit
<bracket identification key operand>

Pseudo operations :

exit

3.5.2.3

If a section of Ivor operations is bracketed
by the bracket X (which has a start of
bracket and an end of bracket) then exit
causes the instruction interpreter to execute
the operations following the closing bracket.

Procedure Entry Operation

Definitions :
<procedure entry operation> ::=

Modes :

ENTERPROC <procedure operand>

For <procedure entry operation>

PROC

Function

For <procedure entry operation>
execute value(<procedure operand>)

r:

Pseudo Operations

3.5.2.4

See section 3.5.3.2 - labelling
Procedure Exit Operation

Definitions :
<procedure exit operation) ::=

Modes :

EXITPROC <procedure identification key operand>

For <procedure exit operation)

PROC

Functions

For <procedure exit operation)
deactivate <procedure identification key operand>
return <procedure identification key operand>

Pseudo operations : .
deactivate The deactivate operation does the reverse of

the activate operation in that it releases

60

SOFTWARE PORTABILITY

the free space allocated to the procedure or
process.

return The return operation causes the instruction
interpreter to execute the operation (in the
operation stream) referenced by the return
address planted at the preceding activate
instruction.

3.5.2.5 Process Start Operation

Definitions :
<process start operation> ::= ,
' STARTPROCESS <process identification key operand>
<instance identification key operand>

Modes :
For <process start operation>
order is <process identification key operand>
<instance identification key operand>
PROCESS INSTANCE

Functions :
For <process start operation>
<instance identification key operand> :=
start <process identification key operand>

Pseudo operations :

start If P is a process and I is an instance object
then (I := start P) causes the instruction
interpreter to execute P concurrently with
the activating process. The activating
process continues execution with the
operation following the start operation.

In addition a value is returned which is the
identity of the instance of the process being
executed. This can be assigned to an instance
mode object.

3.5.2.6 Process Stop Operation
Definitions :
<process stop operation> ::=
STOPPROCESS

Modes :
None

Functions :

For <process stop operation>
stop

61

SOFTWARE PORTABILITY

Pseudo operations :
stop Causes the instruction interpreter to cease

execution of the process containing the stop
operation. All free space allocated by the
activate operation is released and execution
ceases. Only the particular process instance
is affected by the stop.

3.5.2.7 Case Selection Operation

Ivor caters for source languages having multi-dimensional case
statements. Three types of case statements use the same Ivor
accessing operations. The type depends upon the mode of the
accessing operand.

The first type considers the case to be a 1 to n dimensional
array of case labels (with holes, possibly). Control is
transferred to the caselabel delivered by indexing the array with
the case operands. The case label array is conceptual only as
implementation in this manner would not prove feasible.

The remaining types of case statements allow a message to be
obtained from one or more message queues, depending upon the
queue that contains the message, eg

CASE sl,s2,s3 ENDCASE;

If only queue "s2" contains a message then the message will be
received from "s2". If other queues contain messages then one
message will be received though the abstract machine does not
define the search order.

Definitions :
<case selection operation> ::=
CASE <case bracket identification key operand>
<case label array identification key operand>
<selection> ENDCASE

<selection> ::=
{ RANGE | BUFFER | SIGNAL }
{ <case selector operand> }1l:*

Modes :

For <case selection operation> is CASE <case label
identification key operand> <case label array
identification key operand> RANGE { <case
selector operand> }1:%

Order is <case bracket identification key operand>
<case label array identification key operand>
<selection>

CASELABEL CASELABEL-ARRAY RANGE

For <case selection operation> is CASE <case label
identification key operand> <case label array

62

SOFTWARE PORTABILITY

identification key operand> BUFFER { <case
selector operand> }1l:%*

Oorder is <case bracket identification key operand>
<case label array identification key operand>
<selection>

CASELABEL CASELABEL-ARRAY BUFFER

For <case selection operation) is CASE <case label
identification key operand> <case label array
identification key operand> SIGNAL { <case
selector operand> }1l:*

Order is <case bracket identification key operand>
<case label array identification key operand>
<selection>

CASELABEL CASELABEL-ARRAY SIGNAL

Functions :

For <case selection operation> is CASE <case label
identification key operand> <case label array
identification key operand> RANGE <case
selector operand>

execute value(<case label array identification key operand> !

value(<case selector operand>)

For <case selection operation> is CASE <case label
identification key operand> <case label array
identification key operand> RANGE <case
selector 1 operand> <case selector 2 operand>

execute value((<case label array identification key operand> !

value(<case selector 1 operand>)) !
value(case selector 2 operand>))

.... and so on.

For <case selection operation> is CASE <case label
identification key operand> <case label array
identification key operand> BUFFER <case
selector operand>

ostack := receive <case selector operand>

For <case selection operation> is CASE <case label
identification key operand> <case label array
identification key operand> BUFFER <case
selector 1 operand> <case selector 2 operand>

if message <case selector 1 operand> then
ostack := receive <case selector 1 operand>

orif message <case selector 2 operand> then
ostack := receive <case selector 2 operand>

.... and so on
For <case selection operation> is CASE <case label

identification key operand> <case label array
identification key operand> SIGNAL <case

63

SOFTWARE PORTABILITY

selector operand>
ostack := receive <case selector operand>

For <case selection operation> is CASE <case label
identification key operand> <case label array
identification key operand> SIGNAL <case
selector 1 operand> <case selector 2 operand>

if message <case selector 1 operand> then
ostack := receive <case selector 1 operand>

orif message <case selector 2 operand> then
ostack := receive <case selector 2 operand>

Pseudo operations :

orif B and Q are boolean and X is an integer.
(if B then X:=2 orif Q then X:=3) causes the
value of B and the value of Q to be obtained
concurrently. This will generate a
deterministic result only if B and Q do not .
change their values during the time taken to
evaluate the operation.

The orif condition will be evaluated
concurrently with the if condition in
addition to any other orif conditionals.

message If S is a signal or a buffer then (message S)
is TRUE if a message is available for receipt
by the process from the signal or buffer.

3.5.3 Control Operations

Definitions :

<control operations> ::=
<bracketing operation> |
<labelling operation> |
<environment set up operation> |
<parameter handling operation) |
<case association operation> |
<procedure bracket> |
<process bracket> |
<temporary varaible allocation>

3.5.3.1 Bracketing Operation
Definitions
<bracketing operation> ::=

<open bracket>» <operation list> <close bracket>

<open bracket> ::=
BRACKET <bracket identification key operand>

{operation list> ::=

64

SOFTWARE PORTABILITY

{ <sequential operation> |
<non-sequential operation> |
<control operation> }

<close bracket> ::=
ENDBRACKET <bracket identification key operand>

Modes :
For <open bracket>
BRACKET

For <close bracket>
BRACKET

Functions :
For <bracketing operation>
<bracket identification key operand>:
bracket{ <operation list> }

Pseudo operations :

: The : identifies a point in the operation
stream to which control may be transferred.

If L is a location within the operation
stream then L: identifies the location.

bracket{ The braces {....} identify sections of
operation stream which are bracketed.
identifier preceding the bracket defines the

type of the bracket, in this case a

bracket. Control may be transfered to
start of the bracket by an execute operation
and control may be transfered to the end

the bracket by an exit operation.

execute operation may be executed from
point in the program but an exit operation

may be executed only from within the
which is to be exited.

3.5.3.2 Labelling Operation
Definitions :

<labelling operation> ::=

LABEL <label identification key operand>

Modes :

For <labelling operation>

LABEL
Functions :

For <labelling operation>

<label identification key operand>

3.5.3.3 Environment Set Up Operation

65

bracket

Definitions :
<environment

SOFTWARE PORTABILITY

set up operation)> ::=

ACTIVATE <activation operation>

Modes :
PROC
PROCESS

Functions :

For <environment set up operation>
activate <activation operand>

Pseudo operations
activate

During the definition interpreter stage the
abstract machine assesses the free space
requirements for an invocation of a
procedure or process. The activate operation
allocates the free space and, in the case of
a procedure activation, stores within it the
address that the instruction interpreter is
to execute from (the return address) when it
meets a return operation.

3.5.3.4 Parameter Handling Operation

Definitions

<parameter handling operation> ::=
{ ARGUMENT | OUTARGUMENT } <formal parameter operand>

<actual

Modes :

parameter operand>

For <parameter handling operation> with <argument type> of

<formal

parameter operand>=IN

Order is <formal parameter operand>

<actual
<basic mode>

parameter operand>
<basic mode> All modes must be
identical.

REF-<basic mode> REF-<basic mode> All modes must be

<array mode>

identical.
<array mode> All modes must be
identical.

{structure mode> <structure mode> All modes must be

identical.

For <parameter handling operation> with <argument type> of

<formal

parameter operand>=INOUT

Order is <formal parameter operand>
<actual parameter operand>

<structure mode> <basic mode>
<structure mode> REF-<basic mode>
<strucure mode> <array mode>
{structure mode> <structure mode>

Note : 1If

the <actual parameter operand> is of a mode

66

SOFTWARE PORTABILITY

represented by the identification key "m" then the <formal
parameter operand> will be of mode

STRUCTURE KEY m KEY fpl "fpl"
KEY rm KEYfp2 "fp2"
ENDSTRUCTURE

Where :
fpl is the identification key of the first part of
the formal parameter and represents its value.

fp2 is the identification key of the second part
of the formal parameter which represents the
location of the actual parameter.

rm is the mode of fp2 which is REF m.

For <parameter handling operation> with <argument type> of
<formal parameter operand>=OUT or
<formal parameter operand>=LOC or
<formal parameter operand>=RESULT
Order is <formal parameter operand>
<actual parameter operand>

REF-<basic mode> <basic mode> Both <basic modeb>s
are identical.

REF-REF-<basic mode> REF-<basic mode> Both <basic mode>s
v are identical.

REF-<array mode> <array mode> Both <basic mode>s

are identical. :

REF-<structure mode> <structure mode> Both <basic mode>s

are identical.

Functions :
For <parameter handling operation> with <argument type> of
<formal parameter operand>=IN
<formal parameter operand> := value(<actual parameter
operand>)

For <parameter handling operation> is ARGUMENT

with <argument type> of <formal parameter operand>=INOUT
<formal parameter operand> . fpl :=

value(<actual parameter operand>)
<formal parameter operand> . :=

<- <actual parameter operand>

For <parameter handling operation> is OUTARGUMENT

with <argument type> of <formal parameter operand>=INOUT
value(<formal parameter operand> . fp2) :=

value(<actual parameter operand>)

For <parameter handling operation> is OUTARGUMENT

with <argument type> of
<formal parameter operand>=0OUT or

67

SOFTWARE PORTABILITY

<formal parameter operand>=LOC or

<formal parameter operand>=RESULT
value(<formal parameter operand>) :=

value(<actual parameter operand>)

3.5.3.5 Case Association Operation

In section 3.5.2.7 the case statement was described as a one to
"n" dimensional array of caselabels. The case association
operation associates a particular caselabel with an element of
the n-dimensional array. This could, conceivably, be performed
using the assignment statement. 1In order to permit an efficient
implementation, as the n-dimensional array is likely to have many
elements without caselabels (ie holes), a special CASE BIND
operation is provided.

Definitions :
<case association operation> ::=
BIND <case label identification key operand>
<case array identification key operand>
{ <case range pair> }1:* ENDBIND

<case range paird> ::=
<lower bound operand> <upper bound operand>

Modes :
For <case association operation>
Order is <case label identification key operand>
<case array identification key operand>
CASELABEL CASELABEL-ARRAY

For <case range pair>
Order is <lower bound operand> <upper bound operand>
RANGE RANGE

Functions :

For <case association operation> is

BIND <case label identification key operand>
<case array identification key operand>
<case range pair> ENDBIND

<case array identification key operand> !

<lower bound operand> to <upper bound operand> :=
<case label identification key operand>

For <case association operation> is

BIND <case label identification key operand>
<case array identification key operand>
<case range 1 pair> <case range 2 pair> ENDBIND

<case array identification key operand> !

<lower bound 1 operand> !

<lower bound 2 operand> to <upper bound 2 operand> :=
<case label identification key operand>

<case array identification key operand> !

<lower bound 1 operand> +1 !

68

SOFTWARE PORTABILITY

<lower bound 2 operand> to <upper bound 2 operand> :=
<case label identification key operand>

.... and so on until the first index= <upper bound 1 operand>

... and this is repeated for 3,4,.... n <case range pair>
operands. '

Pseudo operations :
to If A is an array then (A ! 1 to 3) represents
the 1st, 2nd and 3rd elements of A. The
assignment (A! 1 to 3 :=5) assigns the value
5 to the first 3 elements of A.

3.5.2.6 Procedure Bracket

Definitions :
<procedure bracket> ::=
BEGINPROC <procedure identification key operand>
<operation list>
ENDPROC <procedure identification key operand>

Functions :
For <procedure bracket>
<procedure identification key operand>:
procedure{ <operation list> }

Pseudo operations :

procedure{ The braces {....} identify sections of the
operation stream which are bracketed. The
"procedure" identifier preceding the bracket
defines this type of bracket as a procedure
bracket. Control may be transfered to the
start of the bracket by an execute operation
and control may be transfered to the end of
the bracket by an exit operation. The
execute operation may be executed from any
point in the program but an exit operation
may be executed only from within the bracket
which is to be exited.

3.5.2.7 Process Bracket

Definitions :
<process bracket> ::=
BEGINPROCESS <process identification key operand>
<operation list>
ENDPROCESS <process identification key operand>

Functions
For <process bracket> '
<process identification key operand> :
process{ <operation list> }

69

SOFTWARE PORTABILITY

Pseudo operations :

process{ The braces {....} identify sections of the
operation stream which are bracketed. The
"process" identifier preceding the bracket
defines this type of bracket as a process
bracket. Control may be transfered to the
start of the bracket by a start operation
and control may be transfered to the end of
the bracket by an exit operation.

3.5.2.8 Temporary Variable Allocation

Definitions :
<temporary variable allocation) ::=
ALLOCATE <temporary key> <mode key> |
FREE <temporary key>

Functions :
For <temporary variable allocation> is ALLOCATE
allocate <temporary key> of <mode key>

For <temporary variable allocation> is FREE
free <temporary key>

Pseudo operations :

allocate .. of If T is a temporary variable and M is a mode
then (allocate T of M) will cause free space
to be allocated within the current process or
procedure. The free space address allocated
will be attributed to T and placed in the
data table record of T. Free space allocated
in this way is not automatically freed at a
deallocate or stop operation and the abstract
machine will generate an error condition if
temporary storage is not freed before exiting
a procedure or process.

free If T is a temporary variable then (free T)
causes the free space allocated to T to be
released. The free operation in not

permitted on non-temporary variables.

70

SOFTWARE PORTABILITY

3.6 Constant Stream

Definitions :
{constant stream)> ::=
CONSTANTS <constant operations> ENDCONSTANTS

<constant operations. ::=
{ <constant sequential operation> }0:*

The constant stream may contain any sequential operation
provided:

- The operands are constants in that they can be fully
evaluated by the instruction interpreter without it having
to access any free space location. An assignment operation
will retain the value of the evaluated constant in the data
table record of the object being assigned - and not in the
object’s free space location.

71

SOFTWARE PORTABILITY

3.7 Conclusions

No other intermediate language considered during this research
period had incorporated concurrent processing features, nor did
they relate the intermediate code back to the original source
from which it was generated. 1Ivor addressed both of these areas
and in addition did not tie the code generator to a particular
storage allocation strategy.

The conclusions are :

3.7.1 The concurrent processing facilities would probably
require an 'event’ type operation where processing is suspended
until an event occurs.

3.7.2 More source related information will be required in order
to do effective high level debugging at the interpretation stage.
Identification of source line and column numbers would be
required.

3.7.3 1Isolation of storage allocation parameters until code
generation stage is viable and sucessfully accomplished in Ivor.
The price for this is a more complex code generation phase.

This could be replaced by two phases: storage allocation,
followed by code generation.

3.8 Example of Use

To 1illustrate the use of Ivor as an intermediate language the
example of fiqure 2.2.1-1 (reproduced here as figure 3.8-1) will
be translated into Ivor.

To simplify the description the following terminology has been
adopted :

- Identification key numbers are shown as lower case names.

- Character 1literals and character strings are shown as
their character representation and are enclosed in double
quotes, eg "A character string".

— Operand descriptors are omitted and CONSTANT is assumed.
Where a VALUE descriptor is appropriate the operand is
enclosed in square brackets, eg [KEY kl].

- Operations start on a new line with the operator name
occupying the first tabulation position. Operands occupy
subsequent tabulation positions and continuation is shown by
the first tabulation position being empty.
- Comments start with the characters "--".
In addition declaration of notions, ie labels and brackets have
been omitted. '

72

002
098
099
100

103

105
106
107

109
112
114

118

121
123
125
126
127
129
130
132
134

139
141
143
144
146
148
151
153
155

157
158
159

161
162

164

166
167
168
169

SOFTWARE PORTABILITY

FIGURE 3.8-1

PROCEDURE fetch element pg;

BEGIN

INTEGER ARRAY element dl[O:char lit length m];
INTEGER char il,kl,hash il,string delimiter il;

COMMENT read the element;

char il := read a rel char pg;
element dl[1l] := char il;
kl := 2;

IF alphabetic m(char il) OR numeric m(char il) THEN
BEGIN
COMMENT the case of an element being an alpha-numeric
name or a literal value;
FOR char il := read a rel char pg
WHILE alphabetic m(char il) or numeric m(char il) DO
BEGIN

IF irrelevant skipped bg=true m THEN GOTO outl 11;

element dl[kl] := char il;
inc m(kl,1);
END;
outl 11:
END ELSE
BEGIN
COMMENT case of the element being an operator type (ie
non alpha-numeric) name or character string;
COMMENT check first for character string;
string delimiter il := char il;
IF string delimiter il = char 1lit 1 delimiter m OR
string delimiter il = char 1lit 2 delimiter m THEN
BEGIN '
COMMENT this is a character string literal;
COMMENT fetch the string and return it ;
kl := 1;
FOR char il := ich m
WHILE char il <> string delimiter il DO
BEGIN
element dl[kl] := char il;
inc m(kl,1);

IF kl>char 1lit length m THEN
errorhandler(LITERAL(e),
"Character%string%literal%is%too%long");

IF char il=new line m THEN
inc m(current line ig,1);
END;
element d1[0]:=kl-1; (Character string length)
element type ig := ele char lit m;
element ig := LOCATION(element dl[0]);

73

170
171

173

175
177
179
180
181

183
184

185
186
187

188

195
197
199

201
202

204
206
207

208

209
210

211
213
215

221
225

227
229
231

235
237

SOFTWARE PORTABILITY

return m;
END;

FOR char il := read a rel char pg

WHILE non alpha numeric m(char il) DO

BEGIN .
IF irrelavant skipped bg=true m THEN GOTO out2ll;
element dl[kl]:=char il;
inc m(kl,1);

END;

out2ll:
END;

back step m;
char buff mark ig := char buff mark ig-1;
element dl[0] := kl-1;

COMMENT at this stage the array ’element dl’ is set up such
that element-0 1is the character length of the element and
element-1 to element-n contain the characters of the
element;

IF numeric m(element dl1[1]) THEN
BEGIN
COMMENT case of a numeric constant being returned ;

kl := element dl[{0]+1;
element ig := 0;

FOR kl:=kl-1 WHILE kl»0 DO

BEGIN
element ig := element ig+power of 10 dg[
element dl[0]-kl]*element dl[kl];

END;

element type ig := ele literal m;
return m;

END ELSE
BEGIN '
COMMENT this 1is the complex part of the procedure where a
'name’ is to be returned. Firstly it is necessary to search
the object table to see if the name has been introduced
already;

hash il := 0;
search for name 11:

IF object string dglhash il]J<> empty m THEN
BEGIN
COMMENT compare string table with the elements stored
in 'element dl’;
FOR kl:=0,kl+1 WHILE kl<= object string dg[hash il] DO
BEGIN \

74

239
241
243
245
246
247
248
250
256
257
259

261

262
264
266
268
273

277
278

SOFTWARE PORTABILITY

IF element dl[kl]<> object string dg[kl+hash il] THEN

BEGIN
COMMENT the name is not the element so try the next

name ;

hash il := hash il+4+object string dgl[hash il];
repeat m(search for name 11);

END;

END;

COMMENT this is the element name so fetch the object
table index and return it in ’'element ig’ whilst
setting ’'element type ig’ to ’'ele operand m’;
hash il:=hash il+object string dg[hash il]+1;
element ig:=object string dg[hash il]*64*64 +

object string dg[hash il+1]*64 +

object string dg[hash il+2];
element type ig := el operand m;

IF in intro bg <> false m AND
element ig <> rat dot m AND
element ig <> rat colon m THEN
errorhandler pg(LITERAL(e),
"Duplicate%introduction%of%an%object");
END ELSE
BEGIN
COMMENT this is the case where the name is not known
and hence the object must be declared;
COMMENT check that the static function nesting
depth is not >0 as declarations are not
allowed if this is the case;
IF func nest depth ig > 0 THEN
errorhandler pg(LITERAL(e),
"Names$cannot%be%introduced%in%a%nested%function%definition");

75

281

285
286
298
300

306

309
310

312
316
317
318
319
321
323
324
325
326
327

329
332
337
338
340
344
346

347
348

SOFTWARE PORTABILITY

COMMENT if this is not an introduction (ie USE ...) warn
the man that we are introducing an object;

IF in intro bg=false m THEN
errorhandler pg(LITERAL(w),
"introduction%of%an%object%assumed");

obj size m[max obj table mark ig):=default obj size m;
(fill in object size)
obj str mark m[max obj table mark ig] := hash il;
(and the place where the name will be kept as
an index into the object string table. Use
the next free object table slot)

COMMENT now put the name of the object into the string table;

FOR kl:=0,kl+1 WHILE kl<=element dl[0] DO
object string dl[hash il+kl]:=element d1l[kl];

COMMENT and now link back into the object table - into

3 bytes with the most significant first;

inc m(hash il,element dl[0]+1);

object string dglhash il]:=byte 2 m(max obj table mark ig
object string dg[hash il+l]:=byte 1 m(max obj table mark ig
object string dglhash il+2]:=byte 0 m(max obj table mark ig

COMMENT plant code to declare the object;
program dg[prog mark ig] := rat declare m;
program dg[prog mark ig+l] :=

byte 2 m(max obj table mark ig);

program dg[prog mark ig+2] :=

byte 1 m(max obj table mark ig);

program dg[prog mark ig+3] :=

byte 0 m(max obj table mark ig);

inc m(prog mark ig,4);

IF prog mark ig>prog size m THEN errorhandler pg(LITERAL(e)
"No%program%space%left");

COMMENT now set up the return values - firstly ’element ig’
is set to the object table index of the object and

'element type ig’ is set to 'ele operand m’;

element ig := max obj table mark ig;

element type ig := ele operand m;

COMMENT and finally.... tidy up by :
incrementing ’'max obj table mark ig’ checking for overflow
of the object, and object string tables;
inc m(max obj table mark ig,2);
IF max obj table mark ig>obj table size m OR
hash il+2>0bj str size m THEN
errorhandler pg(LITERAL(e),"Too%many%names$introduced");

76

);
);
);

14

SOFTWARE PORTABILITY

FIGURE 3.8-2

IVOR "mule"
UNIT "fetch element pg"
SEIZED "globals"
ABSTRACTION SEIZED KEY outer KEY outer OQOUTERPROCESS
KEY "outer" outer

—--Define the "built in" modes of boolean, byte, integer, character
--and string

MODE SEIZED KEY outer KEY outer RW BIT KEY boolean
"boolean" ENDMODE

MODE SEIZED KEY outer KEY outer RW RANGE 0 255 KEY byte
"byte" ENDMODE

MODE SEIZED KEY outer KEY outer RW RANGE -32768 +32767
KEY integer "integer" ENDMODE

MODE SEIZED KEY outer KEY outer RW CHAR KEY char "character"
ENDMODE ‘

MODE SEIZED KEY outer KEY outer RW ARRAY KEY char 0 255
KEY string "string" ENDMODE

—-Now define the global variables used within the procedure

-—firstly "irrelevant skipped bg"
OBJECT SEIZED KEY outer KEY outer NOTINIT DIRECT KEY boolean
KEY irrelevantskippedbg "irrelevant skipped bg" ENDOBJECT

—--now "current line ig"
OBJECT SEIZED KEY outer KEY outer LIFEINIT DIRECT KEY integer
KEY currentlineig "current line ig" ENDOBJECT

—— "element ig"
OBJECT SEIZED KEY outer KEY outer NOTINIT DIRECT KEY integer
KEY elementig "element ig" ENDOBJECT

—- "char buff mark ig"
OBJECT SEIZED KEY outer KEY outer LIFEINIT DIRECT KEY integer
KEY charbuffmarkig "char buff mark ig" ENDOBJECT

78

SOFTWARE PORTABILITY

"power of 10 dg" - requires both a mode and object introduction
MODE SEIZED KEY outer KEY outer RO ARRAY KEY integer 0 10
KEY mode_powerofl0dg "mode power of 10 dg" ENDMODE
OBJECT SEIZED KEY outer KEY outer LIFEINIT DIRECT
KEY mode_powerofl0dg KEY charbuffmarkig
"char buff mark ig" ENDOBJECT

"object string dg" - requires both a mode and object introduction
MODE SEIZED KEY outer KEY outer RW ARRAY KEY char 0 1000
KEY mode_objectstringdg "mode object string dg" ENDMODE
OBJECT SEIZED KEY outer KEY outer NOTINIT DIRECT
KEY mode_objectstringdg KEY objectstringdg
"object string dg" ENDOBJECT

"in intro bg"
OBJECT SEIZED KEY outer KEY outer LIFEINIT DIRECT
KEY boolean KEY inintrobg "in intro bg" ENDOBJECT

"obj size m" which is an array of restricted range (to 12 bits).
This is not fundamental to the design of the module and was chosen
to save space. Consequently to simplify the description
the object has been declared with mode integer.
MODE SEIZED KEY outer KEY outer RW ARRAY KEY integer 0 1000
KEY mode_objsizem "mode obj size m" ENDMODE
OBJECT SEIZED KEY outer KEY outer NOTINIT DIRECT
KEY mode_objsizem KEY objsizem "obj size m" ENDOBJECT

"obj str mark m"
MODE SEIZED KEY outer KEY outer RW ARRAY KEY integer 0 1000
KEY mode_objstrmarkm "mode obj str mark m" ENDMODE
OBJECT SEIZED KEY outer KEY outer NOTINIT DIRECT
KEY mode_objstrmarkm KEY objstrmarkm "obj str mark m"
ENDOBJECT

"max obj table mark ig"
OBJECT SEIZED KEY outer KEY outer LIFEINIT DIRECT
KEY integer KEY maxobjtablemarkig
"max obj table mark ig" ENDOBJECT

79

SOFTWARE PORTABILITY

—— "program dg"
MODE SEIZED KEY outer KEY outer RW ARRAY KEY byte 0 1000
KEY mode_programdg "mode program dg" ENDMODE
OBJECT SEIZED KEY outer KEY outer NOTINIT DIRECT
KEY mode_programdg KEY programdg "program dg" ENDOBJECT

-- "prog mark ig"
OBJECT SEIZED KEY outer KEY outer LIFEINIT DIRECT
KEY integer KEY progmarkig "prog mark ig" ENDOBJECT

ENDABSTRACTION

80

SOFTWARE PORTABILITY

And now define the seized global procedures, and procedure
arguments used by the module.

Firstly "read a rel char pg" which has one argument,
its returned result.

ABSTRACTION SEIZED KEY outer KEY outer PROCEDURE SIMPLE
NONRECURSIVE NONCRITICAL readarelcharpg "read a rel char pg"

And now the procedure arguments, only one the procedure result.
OBJECT SEIZED KEY readarelcharpg KEY readarelcharpg NOTINIT
ARGUMENT KEY readarelcharpg RESULT KEY integer
KEY result readarelcharpg "result read a rel char pg"
ENDOBJECT

And now the local variables of the procedure, it has one only
"char il".
OBJECT SEIZED KEY readarelcharpg KEY readarelcharpg
NOTINIT DIRECT KEY integer KEY charil "char il"
ENDOBJECT

ENDABSTRACTION

and finally the procedure "error handler pg"
ABSTRACTION SEIZED KEY outer KEY outer PROCEDURE SIMPLE
'NONRECURSIVE NONCRITICAL errorhandlerpg "error handler pg"

And now the procedure arguments, the first and second parameter
OBJECT SEIZED KEY readarelcharpg KEY readarelcharpg
NOTINIT ARGUMENT KEY readarelcharpg IN KEY char
KEY severityq "severity gq" ENDOBJECT

OBJECT SEIZED KEY readarelcharpg KEY readarelcharpg
NOTINIT ARGUMENT KEY readarelcharpg IN KEY string
KEY errorstringqg "error string g" ENDOBJECT

And now the local variables of the procedure, it has one only
l|k1|l .
OBJECT SEIZED KEY readarelcharpg KEY readarelcharpg
NOTINIT DIRECT KEY integer KEY kl "kl" ENDOBJECT

ENDABSTRACTION

ENDDEFINITIONS
ENDSEIZED

81

SOFTWARE PORTABILITY

—— Now the definitions of the Ivor unit are introduced in the
—— definition stream.
DEFINITIONS
ABSTRACTION VISIBLE KEY outer KEY outer PROCEDURE
SIMPLE NONRECURSIVE NONCRITICAL KEY fetchelementpg
"fetch element pg"

-- The procedure does not have arguments so introduce ..

-— the objects and modes which are local to the procedure
—— "fetch element pg"

—— Firstly "element dl"
MODE VISIBLE KEY fetchelementpg KEY fetchelementpg RW
ARRAY KEY integer 0 12 KEY mode_elementdl "mode_element dl"
ENDMODE
OBJECT VISIBLE KEY fetchelement KEY fetchelement NOTINIT
DIRECT KEY mode elementdl KEY elementdl "element dl"
ENDOBJECT

—— And finally the integers "char il", "kl1", "hash il",
—- "string delimiter il"
OBJECT VISIBLE KEY fetchelement KEY fetchelement NOTINIT
DIRECT KEY integer
KEY charil "char il"
KEY k1 "k1"
KEY hashil "hash il"
KEY stringdelimiteril "string delimiter il"
ENDOBJECT

ENDABSTRACTION
ENDDEFINITIONS

CONSTANTS
—— The constant stream does not contain any operations
ENDCONSTANTS

OPERATIONS
-— The operation stream gives the logic of the program.

—— Line 002 : PROCEDURE fetch element pg;
BRACKET KEY fetchelementpg

—— Line 105 : char il := read a rel char pg;
-— The procedure is activated and the result bound to the
—— variable <charil by the ARGUMENT operation. No assignment
—-—- is necessary at the procedure return.
ACTIVATE KEY readarelcharpg
ARGUMENT KEY result_readarelcharpg KEY charil
ENTERPROC KEY readarelcharpg

—— Line 106 : element dl[l] := char il;
—— First evaluate the address of the element onto the address stack

82

SOFTWARE PORTABILITY

INDEX ADDRESSSTACK KEY refinteger KEY elementdl
1 KEY integer
Now assign to the address the value of "char il"

ASSIGN [ADDRESSSTACK KEY refinteger] [KEY charil]
Line 107 : k1l := 2;
ASSIGN KEY k1 2 KEY integer
Line 109 : IF alphabetic m(char il) OR numeric m(char il) THEN
Note - "alphabetic(x)" is a macro which expands to "x>=LITERAL(A)
and x<=LITERAL(z)"
ENTERLT [KEY charil] "A" KEY char
KEY intermediatel09
ENTERLE [KEY charil] "Z" KEY char
KEY truel09
LABEL KEY intermediatel(9

Note - numeric(x) is a macro which expands to "x>=LITERAL(0) and
X<=LITERAL(9)"

ENTERLT [KEY charil] "0" KEY char
KEY falsel09

ENTERGT [KEY charil] ‘ "9" KEY char
KEY falsel09

LABEL KEY truel09

Line 118 FOR char il := read a rel char pg

Line 119 WHILE alphabetic m(char il) or numeric m(char il) DO
BRACKET KEY forlls8
ACTIVATE KEY readarelcharpg
ARGUMENT KEY result readarelcharpg KEY charil
ENTERPROC KEY readarelcharpg
ENTERLT [KEY charil] "A" KEY char
KEY intermediatell8
ENTERLE [KEY charil] "Z" KEY char
KEY truell8
LABEL KEY intermediatell$8
EXITLT [KEY charil) "0" KEY char
KEY forll8
EXITGT [KEY charil] "9" KEY char
KEY forll8
LABEL KEY truell8
Line 123 : IF irrelevant skipped bg = true m then goto out 1 11;
ENTERTRUE [KEY irrelevantskippedbg] KEY outlll '
Line 125 : element dl[kl] := char il;
INDEX ADDRESSSTACK KEY refinteger KEY elementdl
[KEY k1]
ASSIGN [ADDRESSSTACK KEY refinteger] [KEY charil]
Line 126 : inc m(kl,1);
Note - "inc m(x,y)" is a macro which expands to "x:=x+y"
ADD KEY Kkl [KEY k1]

1 KEY integer

83

SOFTWARE PORTABILITY

Line 127 : the end of the FOR loop of line 118
ENTER KEY forll8
ENDBRACKET KEY forll8

Line 129 : out 1 11:

LABEL KEY outlll

Line 130 : end of the "true" part of the "if....
then....else" statement of line 109 :
ENTER KEY £i109

LABEL KEY falsel09

Line 141 : string delimiter il := char il;
ASSIGN KEY stringdelimiteril [KEY charil]

Line 143 : IF string delimiter il

Line 144 : string delimiter il char lit 2 delimiter m THEN
Note - char lit 1 delimiter m is LITERAL(’) and
char 1lit 2 delimiter m is LITERAL(")
ENTEREQ [KEY stringdelimiteril] "*" KEY char
KEY trueld3
ENTERNE [KEY stringdelimiter] r"r REY char
KEY falseld3
LABEL KEY trueld3

Line 153 : k1l := 1;
ASSIGN KEY k1 1 KEY integer

Line 155 : FOR char il := ich m WHILE char il <>
string delimiter il DO

BRACKET KEY forl55

ACTIVATE KEY ichm

ARGUMENT KEY result ichm KEY charil

ENTERPROC KEY ichm

EXITEQ [KEY charil] [KEY

stringdelimiteril]

KEY forl55

Line 158 : element dl[kl] := char il

INDEX ADDRESSSTACK KEY refinteger KEY elementdl
[KEY k1]

ASSIGN [ADDRESSSTACK KEY refinteger] [KEY charil)

Line 159 : inc m(kl,1);

ADD KEY k1l [KEY k1]
1 KEY integer

Line 161 : IF kl>char lit length m THEN
error handler pg(LITERAL(E),"Character%string%literal
%is%too%long");

Note - "char lit length m" is a macro representing the

integer 63

ENTERGT [KEY k1] 63 KEY integer
KEY filé6l

84

char 1lit 1 delimiter m OR

SOFTWARE PORTABILITY

ACTIVATE KEY errorhandlerpg
ARGUMENT KEY severity "E" KEY char
ARGUMENT KEY errorstring "Character%string%

literal%is%$too%long"
KEY string
ENTERPROC KEY errorhandler

LABEL file6l
Line 164 : IF char il=new line m THEN inc m(current line ig,1l)
Note - "new line m" is a macro for the value "-1"
ENTERNE [KEY charil] -1 KEY integer
file4 .
ADD KEY currentlineig [KEY currentlineig]

1 KEY integer
Line 166 : end of the FOR loop started at line 155
ENTER KEY forl6é6
ENDBRACKET KEY forl66

Line 167 : element dl[0] := kl-1;

SUBTRACT OPERANDSTACK KEY integer [KEY k1]
1 KEY integer

INDEX ADDRESSSTACK KEY refinteger KEY elementdl
0 KEY integer

ASSIGN [ADDRESSSTACK KEY refinteger] [OPERANDSTACK

KEY integer]
Line 168 : element type ig := ele char lit m;

Note - "ele char lit m" is a macro for the value "2"
ASSIGN KEY elementtypeig 2 KEY integer

85

SOFTWARE PORTABILITY

Line 169 : element ig := LOCATION(element dl[0]);

INDEX ADDRESSSTACK KEY refinteger KEY elementdl
0 KEY integer

ASSIGN KEY elementig ADDRESSSTACK

KEY refinteger

Line 170 : return m;

Note - CORAL 66 does not have a procedure return statement.
The macro "return m" has been used consistently to mean
return from the procedure and will be interpreted as meaning
this.

EXITPROC KEY fetchelementpg

Line 171 : end of the IF statement of line 143
LABEL £il43

Line 173 : FOR char il := read a rel char pg WHILE

non alpha numeric m(char il) DO
Note - The macro "non alpha numeric m(x)" is translated into
"x<LITERAL(A) OR x>LITERAL(Z) AND x<LITERAL(0O) OR X>LITERAL(9)"
BRACKET KEY forl73

ACTIVATE KEY readarelcharpg

ARGUMENT KEY result readarelcharpg KEY charil

ENTERPROC KEY readarelcharpg

ENTERLT [KEY charil] "A" KEY char
KEY intermediatel?3

EXITLE [KEY charil] "zZ" KEY char
KEY forl73

LABEL KEY intermediatel?3

ENTERLT [KEY charil] "0" KEY char
KEY truel?73

EXITGT [KEY charil] "g9" KEY char
KEY forl73

LABEL KEY truel?73

Line 177 : IF irrelevant skipped bg=true m THEN
GOTO out 2 11;

ENTERTRUE [KEY irrelevantskippedbg] KEY out2ll

Line 179 : element dl [kl] := char il;

INDEX ADDRESSSTACK KEY refinteger KEY elementdl
[KEY k1]

ASSIGN [ADDRESSSTACK KEY refinteger] [KEY charil]

Line 180 : inc m(kl,1);
ADD KEY k1l [KEY k1]
1 KEY integer

86

Line 181
ENTER

ENDBRACKET

Line 183
LABEL

Line 184
LABEL

Line 185
ACTIVATE

ENTERPROC

Line 186
SUBTRACT

Line 187
SUBTRACT
INDEX
ASSIGN
Line 195
INDEX

ALLOCATE
DEREF

ENTERGE
ENTERGT
LABEL

Line 201
INDEX

DEREF

ADD

Line 202
ASSIGN

Line 204
BRACKET
SUBTRACT

SOFTWARE PORTABILITY

end of FOR loop of line 173
KEY forl73
KEY forl73

out 2 1ll:
KEY out2ll

end of false part of the IF statement of line 109

KEY £i109
back
KEY
KEY

space m;
backspacem
backspacen

char buff mark ig :=
KEY charbuffmarkig
1 KEY integer

element dl1[0} := kl-1;
OPERANDSTACK KEY integer

1 KEY integer

ADDRESSSTACK KEY refinteger
0 KEY integer

char buff mark ig -1;

[KEY charbuffmarkig]

[KEY k1]

KEY elementdl

[ADDRESSSTACK KEY refinteger] [OPERANDSTACK

KEY integer]

IF numeric m(element dl[1l]) THEN

ADDRESSSTACK KEY refinteger
1 KEY integer

KEY temporaryl95 KEY char
KEY temporaryl95

KEY
KEY
KEY
KEY
KEY

temporaryl95
truel95
temporaryl95
falsel95
truel95

kl := element 4dl[O0]+1;
ADDRESSSTACK KEY refinteger
0 KEY integer

OPERANDSTACK KEY integer

KEY k1l
1 KEY integer

element ig := 0;
KEY elementig

FOR kl := kl-1 WHILE k1l>0 DO
KEY for204

KEY k1

1 KEY integer

87

KEY elementdl

[ADDRESSSTACK
KEY refinteger]
"0" KEY char

"9" KEY char

KEY elementdl
[ADDRESSSTACK
KEY refinteger]

[OPERANDSTACK
KEY integer]

0 KEY integer

[KEY k1]

EXITLE [KEY k1] 0 KEY integer
KEY for204
Line 207 : element ig := element ig+power of 10 dg
[element dl[0]-kl]*element dl[kl]
INDEX ADDRESSSTACK KEY refinteger KEY elementdl
0 KEY integer
DEREF OPERANDSTACK KEY integer [ADDRESSSTACK
KEY refinteger]
SUBTRACT OPERANDSTACK KEY integer [OPERANDSTACK
KEY integer]
[KEY k1]
INDEX ADDRESSSTACK KEY refinteger KEY elementdl
[KEY k1]
DEREF OPERANDSTACK KEY integer [ADDRESSSTACK
KEY refinteger]
MULTIPLY OPERANDSTACK KEY integer [OPERANDSTACK
KEY integer]
[OPERANDSTACK KEY integer)
ADD KEY elementig [KEY elementig]
[OPERANDSTACK KEY integer]
Line 208 : end of FOR loop of line 204
ENTER for204
ENDBRACKET for204
Line 211 : end of true part of IF statement of line 195
ENTER £i195
LABEL falsel95
Line 221 : hash il := 0;
ASSIGN KEY hashil 0 KEY integer
Line 225 : seach for name 11:
LABEL KEY searchfornamell
Line 227 IF object string dg[hash il]<> empty m THEN
Note - "empty m" is a macro representing "-1"
INDEX ADDRESSSTACK KEY refinteger KEY objectstringdg
[KEY hashil]
DEREF OPERANDSTACK KEY integer [ADDRESSSTACK
KEY refinteger]
ENTEREQ [OPERANDSTACK KEY integer] -1 KEY integer
KEY £i227
Line 235 : FOR k1l := 0,kl+1 WHILE kl <=
object string dglhash il] DO
BRACKET for235
ASSIGN KEY k1l 0 KEY integer
ENTER KEY forstart235
LABEL KEY forelement2 235
ADD KEY k1l [KEY k1]
1 KEY integer
INDEX ADDRESSSTACK KEY refinteger KEY objectstringdg

SOFTWARE PORTABILITY

88

SOFTWARE PORTABILITY

[KEY hashill]

DEREF OPERANDSTACK KEY integer [ADDRESSSTACK
KEY refinteger]
EXITGT [KREY k1] [OPERANDSTACK
KEY integer]
KEY for235
LABEL KEY forstart235
Line 239 : IF element dl[kl]<>object string dg[kl+hash il]
THEN
INDEX ADDRESSSTACK KEY refinteger KEY elementdl
[KEY k1]
DEREF OPERANDSTACK KEY integer [ADDRESSSTACK
KEY refinteger]
ADD OPERANDSTACK KEY integer [KEY k1]
[KEY hashil]
INDEX ADDRESSSTACK KEY refinteger KEY objectstringdg
[OPERANDSTACK KEY integer]
DEREF) OPERANDSTACK KEY integer [ADDRESSSTACK
KEY refinteger]
ENTEREQ [OPERANDSTACK KEY integer] [OPERANDSTACK
KEY integer]
£i239
Line 245 : hash il := hash il+4+object string dglhash il];
ADD OPERANDSTACK KEY integer [KEY hashil]
4 KEY integer
INDEX ADDRESSSTACK KEY refinteger KEY objectstringdg
[KEY hashil]
DEREF OPERANDSTACK KEY integer [ADDRESSSTACK
KEY refinteger]
ADD KEY hashil [OPERANDSTACK

KEY integer]
[OPERANDSTACK KEY integer]

Line 246 : repeat m(search for name 11);
Note - "repeat m(x)" is a macro which expands to "GOTO m"
ENTER KEY searchfornamell

Line 247 : end of IF statement of line 239
LABEL KEY f£i239

Line 248 : end of FOR statement of line 235
ENTER KEY forelement2_ 235
ENDBRACKET KEY for235

Line 256 : hash il := hash il + object string dg[hash il]+1;

INDEX ADDRESSSTACK KEY refinteger KEY objectstringdg
[KEY hashil]
DEREF OPERANDSTACK KEY integer [ADDRESSSTACK
KEY refinteger]
ADD OPERANDSTACK KEY integer [OPERANDSTACK

KEY integer]
1 KEY integer

89

ADD
Line 257 :

INDEX
DEREF

MULTIPLY

ADD
INDEX
DEREF

MULTIPLY
ADD

ADD
INDEX
DEREF

ADD

Line 259 : element type ig := ele operand

SOFTWARE PORTABILITY

KEY hashil
[OPERANDSTACK KEY integer]

element ig :=

[KEY hashil]

object string dglhash il]*64*64+

object string dglhash il+1}*64 +
object string dglhash il+2];

ADDRESSSTACK
[KEY hashil]
OPERANDSTACK

KEY refinteger

KEY integer

OPERANDSTACK KEY integer
4096 KEY integer
OPERANDSTACK KEY
1 KEY integer
ADDRESSSTACK KEY refinteger
[OPERANDSTACK KEY integer]

OPERANDSTACK KEY integer

integer

OPERANDSTACK KEY integer

64 KEY integer
OPERANDSTACK KEY integer

[OPERANDSTACK KEY integer]
OPERANDSTACK KEY integer

2 KEY integer

ADDRESSSTACK KEY refinteger
[OPERANDSTACK KEY integer]
OPERANDSTACK KEY integer

KEY elementig

[OPERANDSTACK KEY integer]

KEY objectstringdg

[ADDRESSSTACK
KEY refinteger]
[OPERANDSTACK
KEY integer]

[KEY hashil]

KEY objectstringdg
[ADDRESSSTACK

KEY refinteger]

[OPERANDSTACK

KEY integer]

[OPERANDSTACK
KEY integer]

[KEY hashil]

KEY objectstringdg
[ADDRESSSTACK

KEY refinteger]

[OPERANDSTACK

KEY integer]

m;

Note - "ele operand m" is a macro for the value "1"
ASSIGN KEY elementtypeig 1 KEY integer
Line 261 : IF in intro bg <> false m AND
element ig <> rat dot m AND
element ig <> rat colon m THEN
Note - "rat dot m" is a macro for the value "2", and
"rat colon m" is a macro for the value "0"
ENTERTRUE [KEY inintrobg] KEY £i261
ENTEREQ [KEY elementig] 2 KEY integer
KEY fi261
ENTEREQ [KEY elementig] 0 KEY integer
KEY £i261
Line 262 : errorhandler pg(LITERAL(E),"Duplicate%
introduction%of%an%object");
... and the end of the IF statement of line 261
ACTIVATE KEY errorhandlerpg
ARGUMENT KEY severity "E" KEY char

90

ARGUMENT
ENTERPROC
LABEL
Line 264
ENTER
LABEL

Line 277

ENTERLE

ACTIVATE
ARGUMENT
ARGUMENT

ENTERPROC
LABEL

SOFTWARE PORTABILITY

KEY errorstring "Duplicate%introduction
$of%an%object" '
KEY string

KEY errorhandler

KEY fi261

end of the true part of the IF statement of line 227

KEY £i227
KEY false227

IF func nest depth ig > 0 THEN
errorhandler pg(LITERAL(E),"Names%cannot%be%
introduced%in%a%nested%function%definition");

[KEY funcnestdepthig] 0 KEY integer
KEY £i277
KEY errorhandlerpg
KEY severity "E" KEY char
KEY errorstring "Names%cannot%be%
introduced%in%a%nested%function%definition"
KEY string

KEY errorhandler
KEY £i277

91

SOFTWARE PORTABILITY

—— Line 285 : IF in intro bg=false m THEN
- errorhandler pg(LITERAL(W),"Introduction%of%an%
- object%assumed");

ENTERFALSE [KEY inintrobg] KEY £i285
ACTIVATE KEY errorhandlerpg
ARGUMENT KEY severity "E" KEY char
ARGUMENT KEY errorstring "Introduction%of%an%
object%assumed"
KEY string

ENTERPROC KEY errorhandler
LABEL KEY £i285

—— Line 298 : obj size m[max obj table mark ig] :=
-- default obj size m;

—-— Note - "default obj size m" is a macro for the value "4"
INDEX ADDRESSSTACK KEY refinteger KEY objsizem
[KEY maxobjtablemarkig]
ASSIGN [ADDRESSSTACK KEY refinteger] 4 KEY integer
—— Line 300 : obj str mark m[max obj table mark i] := hash il;
INDEX ADDRESSSTACK KEY refinteger KEY objstrmarkm
[KEY maxobjtablemarkig]
ASSIGN [ADDRESSSTACK KEY refinteger] KEY hashil

—— Line 309 : FOR kl:=0,kl+1 WHILE kl<=element dl1[{0] DO
- object string dl[hash il] := element dl[kl];

BRACKET KEY for309
ASSIGN KEY k1l 0 KEY integer
ENTER KEY forstart309
LABEL KEY forelement2 309
ADD KEY k1l [KEY k1]
1 KEY integer
INDEX ADDRESSSTACK KEY refinteger KEY elementdl
0 KEY integer
DEREF OPERANDSTACK KEY integer [ADDRESSSTACK
KEY refinteger]
EXITGT [KEY k1] [OPERANDSTACK
KEY integer]
KEY for309
LABEL KEY forstart309
INDEX ADDRESSSTACK KEY refinteger KEY objectstringdl
{KEY hashil]
INDEX ADDRESSSTACK KEY refinteger KEY elementdl
[KEY k1]
DEREF OPERANDSTACK KEY integer [ADDRESSSTACK
KEY refinteger]
ASSIGN [ADDRESSSTACK KEY refinteger] [OPERANDSTACK
KEY integer]

ENTER KEY forelement2_ 309
ENDBRACKET KEY for309 ‘

—— Line 316 : inc m(hash il,element dl[0]+1);

INDEX ADDRESSSTACK KEY refinteger KEY elementdl
0 KEY integer

92

SOFTWARE PORTABILITY

DEREF OPERANDSTACK KEY integer
ADD OPERANDSTACK KEY integer

1 KEY integer
ADD KEY hashil

[OPERANDSTACK KEY integer]
Line 317 : object string dg[hash il] :=

[ADDRESSSTACK
KEY refinteger]
[OPERANDSTACK
KEY integer]

[KEY hashil]

byte 2 m(max obj table mark ig);
Note "byte 2 m(x)" is a macro which delivers as an integer bits

12 to 17 (if the LSB is bit 0) of "x"

INDEX ADDRESSSTACK KEY refinteger
[KEY hashil]
RANGE OPERANDSTACK KEY pair
17 KEY integer :
CONVERT OPERANDSTACK KEY intbitstring
SLICE OPERANDSTACK KEY intbitstring
[OPERANDSTACK KEY pair]
CONVERT OPERANDSTACK KEY integer
ASSIGN [ADDRESSTACK KEY refinteger)
Line 318 : object string dg[hash il+1l] :=

KEY objectstringdg
12 KEY integer

KEY maxobjstringdg
[OPERANDSTACK
KEY intbitstring]

[OPERANDSTACK
KEY intbitstring]
[OPERANDSTACK
KEY integer]

byte 1 m(max obj table mark ig);
Note "byte 1 m(x)" is a macro which delivers as an integer bits

6 to 11 (if the LSB is bit 0) of "x"

ADD OPERANDSTACK KEY integer
1 KEY integer
INDEX ADDRESSSTACK KEY refinteger
[OPERANDSTACK KEY integer]
RANGE OPERANDSTACK KEY pair
11 KEY integer
CONVERT OPERANDSTACK KEY intbitstring
SLICE OPERANDSTACK KEY intbitstring
[OPERANDSTACK KEY pair]
CONVERT OPERANDSTACK KEY integer
ASSIGN [ADDRESSTACK KEY refinteger]
Line 319 : object string dglhash il+2] :=

[KEY hashil]
KEY objectstringdg
6 KEY integer

KEY maxobjstringdg
[OPERANDSTACK
KEY intbitstring]

[OPERANDSTACK
KEY intbitstring]
[OPERANDSTACK
KEY integer]

byte 0 m(max obj table mark ig);
Note "byte 0 m(x)" is a macro which delivers as an integer bits

0 to 5 (if the LSB is bit 0) of "x"

ADD OPERANDSTACK KEY integer
2 KEY integer
INDEX ADDRESSSTACK KEY refinteger
[OPERANDSTACK KEY integer]
RANGE OPERANDSTACK KEY pair

5 KEY integer

93

[KEY hashil]
KEY objectstringdg

0 KEY integer

SOFTWARE PORTABILITY

CONVERT OPERANDSTACK KEY intbitstring KEY maxobjstringdg
SLICE OPERANDSTACK KEY intbitstring [OPERANDSTACK
KEY intbitstring]
[OPERANDSTACK KEY pair]

CONVERT OPERANDSTACK KEY integer [OPERANDSTACK
KEY intbitstring]

ASSIGN [ADDRESSTACK KEY refinteger] [OPERANDSTACK
KEY integer]

Line 323 : program dg[prog mark ig] := rat declare m;

Note - "rat declare m" is a macro for the value "5"

INDEX ADDRESSSTACK KEY refinteger KEY programdg

[KEY progmarkig]l '
ASSIGN [ADDRESSSTACK KEY refinteger] 5 KEY integer

Line 324 : program dg[progmark ig +1] :=
byte 2 m(max obj table mark ig)

’
ADD OPERANDSTACK KEY integer [KEY progmarkig]
1 KEY integer
INDEX ADDRESSSTACK KEY refinteger KEY programdg
[OPERANDSTACK KEY integer]
RANGE OPERANDSTACK KEY pair 12 KEY integer
17 KEY. integer
CONVERT OPERANDSTACK KEY intbitstring KEY maxobjstringdg
SLICE OPERANDSTACK KEY intbitstring [OPERANDSTACK

KEY intbitstring]
[OPERANDSTACK KEY pair]

CONVERT OPERANDSTACK KEY integer [OPERANDSTACK
KEY intbitstring]
ASSIGN [ADDRESSTACK KEY refinteger] [OPERANDSTACK

KEY integer]

Line 325 : program dg[progmark ig +2] :=
byte 1 m(max obj table mark iqg);

ADD OPERANDSTACK KEY integer [KEY progmarkig]
2 KEY integer
INDEX ADDRESSSTACK KEY refinteger KEY programdg
[OPERANDSTACK KEY integer]
RANGE OPERANDSTACK KEY pair 6 KEY integer
11 KEY integer
CONVERT OPERANDSTACK KEY intbitstring KEY maxobjstringdg
SLICE OPERANDSTACK KEY intbitstring [OPERANDSTACK

KEY intbitstring]
[OPERANDSTACK KEY pair]

CONVERT OPERANDSTACK KEY integer [OPERANDSTACK
KEY intbitstring]
ASSIGN [ADDRESSTACK KEY refinteger] [OPERANDSTACK

KEY integer]

Line 326 : program dg[progmark ig +3] :=
byte 0 m(max obj table mark ig);

ADD OPERANDSTACK KEY integer [KEY progmarkig]
3 KEY integer
INDEX ADDRESSSTACK KEY refinteger KEY programdg

94

RANGE

CONVERT

SLICE

CONVERT

ASSIGN

SOFTWARE PORTABILITY

[OPERANDSTACK KEY integer]

OPERANDSTACK KEY pair

5 KEY integer

OPERANDSTACK KEY intbitstring
OPERANDSTACK KEY intbitstring

[OPERANDSTACK KEY
OPERANDSTACK KEY i

[ADDRESSTACK KEY refinteger])

pair]
nteger

0 KEY integer

KEY maxobjstringdg
[OPERANDSTACK
KEY intbitstring]

[OPERANDSTACK
KEY intbitstring]
[OPERANDSTACK
KEY integer]

Line 329 : IF prog mark ig > prog size m THEN
errorhandler pg(LITERAL(E),"No%program%space3left");
Note "prog size m" is a macro for the value "10000"

ENTERLE

ACTIVATE
ARGUMENT
ARGUMENT

ENTERPROC
LABEL
Line 337
ASSIGN

Line 338
ASSIGN

[KEY progmarkig]
KEY £i329

KEY errorhandlerpg
KEY severity

KEY errorstring

KEY errorhandler
KEY £i329

10000 KEY integer

"E" KEY char
"No%program$
space%left"”
KEY string

element ig := max obj table mark ig;

KEY elementig

element type ig :=
KEY elementtypeig

[KEY
maxobjtablemarkig]

ele operand m;

95

1 KEY integer

SOFTWARE PORTABILITY

—— Line 344 : inc m(max obj table mark ig,2);
ADD KEY maxobjtablemarkig [KEY
maxobjtablemarkig]

2 KEY integer

—-— Line 346 : IF max obj table mark ig > obj table size m OR
- hash il +2 > obj str size m THEN
— errorhandler pg(LITERAL(E),"Too%many%names%introduced");

-- Note - "obj table size m" is a macro for the value "1000" and
- "obj str size m" is a macro for the value "10000"
ENTERGT [KEY maxobjtablemarkig] 1000 KEY integer
KEY true346
ADD OPERANDSTACK KEY integer [KEY hashil]
2 KEY integer
ENTERLE [OPERANDSTACK KEY integer] 10000 KEY integer
KEY £i346
LABEL true346
ACTIVATE KEY errorhandlerpg
ARGUMENT KEY severity "E" KEY char
ARGUMENT KEY errorstring "Too%manysnames%
introduced"

KEY string
ENTERPROC KEY errorhandler
LABEL KEY £i346

—— Line 349 : end of false part of IF statement of line 227
LABEL KEY £i227

—— Line 350 : end of false part of IF statement of line 195
LABEL KEY £i195

—— Line 353 : end of procedure, and end of module
EXITPROC KEY fetchelementpg
ENDBRACKET KEY fetchelementpg

ENDOPERATIONS

ENDUNIT

96

SOFTWARE PORTABILITY

4 MULE

This section of the Thesis describes a function based programming
language called Mule. Mule was designed and implemented as part of
the research for this degree. The aims were :

- To provide a programming environment rather than a
language.

- To design the environment to be portable.
- To provide an environment which can evolve.

— To implement a pilot Mule environment in order to test out
the idea.

In many of the program portability methods researched portability
was achieved by reprocessing the program being ported using
either a compiler, macroprocessor, interpreter, etc in the new
environment. This gave the user of the program a new environment
to work in in addition to the program operating in the new
environment. For example, if a spread-sheet program is
transported from an IBM machine environment to an ICL machine
environment then only the use of the spread-sheet (assuming a
successful port) remains the same. The user needs to learn
(possibly) new logging on sequences, new ways of invoking
programs, and possibly new ways of invoking simple utilities like
editing.

A way of removing this problem is to provide a user with an
environment in which he works. The environment would provide all
of the facilities that he requires and he would never need to
venture outside of the environment, nor need to access any of the
native facilities of the underlying host machine.

So, if the user wishes to use his facility set on new machine it
would be necessary to move the whole environment to that new
machine.

This section of the research was aimed at investigating the needs
of such an environment and looking at ways of making it easy to
port. :

In order to meet the aims it was decided to define a kernel of
facilities to form the foundation of the mule environment. The
kernel will provide 1lst-level facilities. In order to provide a
greater number of facilities, say 2nd-level facilities, Mule
could be enhanced using lst-level facilities alone. So the
facilities available to a user would be both 1st and 2nd-level
facilities. In order to provide a greater range of facilities
still the Mule environment could be enhanced to provide, say 3rd-
level facilities, wusing the facilities of the 1lst-level and 2nd-
level ... and so on.

97

SOFTWARE PORTABILITY

The success, or otherwise, of this approach depends upon the
design of the kernel which should provide sufficient facilities
to allow the upper levels (ie 2nd, 3rd ... level facilities) to
be implemented but should be sufficiently small so that it can be
transported with relative ease.

The real success of such an environment, however, is in the
ability to produce applications on top of the basic environment.
The Mule language designed is probably rich enough for this but
this was not tested to any depth, except for the production of
language additions.

A Mule environment was designed and implemented and this is
described in the following sections, as follows :

— The Mule language

The Pilot Implementation

Test programs
- Conclusions

The major conclusions are :
- That it is easy to add new functions to Mule and that
these functions are identical to built-in or kernel

functions, as viewed by the Mule progammer.

- The concept of mode or type would be a useful addition and
could be added using kernel facilities alone.

- The kernel is small, but sufficient.

- The lexical analyser should be produced in Mule to obtain
maximum transportability.

98

SOFTWARE PORTABILITY

4.1 The Mule Language

The idea was to develop a function based language which had very
few basic concepts and a very simple underlying abstract machine.

The function was to be the way that facilities were provided.
Some base level functions were to form the Mule kernel and were
to be used in order to create higher level functions which could,
in the end provide applications, eg editing, data handling.. etc.

Little consideration was to be given to the syntax of the
language as it was the idea of a hierarchy of functions that was
to be addressed, rather than a syntactically elegant language.

What follows is a description of the design work performed in
order to meet these aims, and details about the Mule pilot
implementation.

The mule language assumes a very simple underlying machine with 4
data areas : data memory, program memory, a stack and an object
table.

Data memory is the main memory for holding the values of
introduced objects. Program memory holds the Mule function
definitions. Data and Program memory are totally separate
ensuring that data can never be treated as program and
inadvertantly executed.

Data memory comprises cells, each of identical (but unspecified)
bit size and with addresses starting at cell 0 and increasing by
1.

Program memory comprises cells, again with each having identical
(but wunspecified) bit size and with addresses starting at cell 0
and increasing by 1.

The stack is used for holding values during expression
evaluation.

The stack is a first-in last-off organised data structure which
can be wused to hold values. The Mule kernel provides the
programmer with facilities for adding objects to the stack and
for removing them.

The object table holds information about objects which are

introduced, or wused within a Mule program. Objects will be
described later but for now consider them to be the names of
variables and subroutines. Access to the object table is

obtained by using the object’s name as a key. The information
held in the object table is the start address of the object (ie
memory cell address) and the size of the object, in memory cells.

The Mule language will be described using the modified BNF of

99

SOFTWARE PORTABILITY

section 2. To simplify the syntax description space-character
and new line separators are not shown in the syntax description.
Both spaces and new lines are significant and multiple spaces, or
new lines, are exactly equivalent. 1In general spaces and new
lines are required wherever it would be ambiguous not to so do.

For example: USE A B. requires the space between the USE and the
name A and between the name A and name B.
USEA B. is ambiguous, and ...
USE AB. intoduces a single name, ie AB.

<mule language> ::=
{<object introduction> |
<stacking operation> |
<function call operation)> |
<function stacking operation> |
<infix stacking operation> |
<destacking operation> }0:*

The operations will be described in more detail in subsequent
section. They allow :

- Objects to be introduced and then used subsequently in
other operations.

- The results of, for example arithmetic or logical
operations, to be evaluated and placed on the stack.

- A value to be placed on the stack.
- A function to be defined and placed upon the stack.

- A function, which has been placed upon the stack, to be
executed.

- A value to be removed from the stack and placed in data
memory.

Objects may be introduced, though they need not be. They are

given names in a similar manner to other programming languages,
eg a vaid name might be:

CASHFLOW or PRINCIPAL

A number of data memory cells are allocated to the object and a
pointer to the first memory cell is placed in the data table
record for the introduced object.

The number of data memory cells is dependent upon the manner in
which the object is introduced. For example if an object is
introduced by :

USE cashflow:25.

100

SOFTWARE PORTABILITY

Then 25 data memory cells will be allocated to the object. The
introduction is executed every time it is met so that memory is
allocated and released as the program executes. So, an
introduction of the form :

USE principal:scale.

Will allocate a variable number of data memory cells, depending

upon the value of the object ’'scale’. There are defaults too. If an
object is introduced without the size being specified (or if the
object is not formally introduced at all) a default size of four data
memory cells is used.

Object names are not restricted to the more common kind of names,
like those shown above. Special names can be introduced too, eg:

USE ++ , SSS .

These names can be used in exactly the same manner as "normal"
names but they are provided in order to allow the Mule
environment to be enhanced by the addition of new operators, by
using the introduced names in order to invoke Mule functions.
Similarly, special names may have a size attribute specified.

Fundamental to the operation of Mule is the stack. Functions do
not have parameters (as such) and (strictly) there are no
expressions. Mule operations take items from the stack and
return items to the stack. An item may be an object’s value, an
object’s address or a constant value. The size of an object is
an integral part of its identity and when an object is placed on
the stack the top stack item assumes the size attribute of the
item being placed on the stack. Again, there are defaults. For
example an integer constant has a size of four memory cells, as
does an object address.

Functions can be defined in Mule by the use of the FUNCTION and END
brackets. The effect of the definition is to, effectively, place
the function definition on the stack. For example,

FUNCTION 123.72 END

is a function definition which, WHEN EXECUTED, will place 123.72 on
the stack. A more useful example is

FUNCTION
USE localstring:stringsize
-> @localstring
@localstring; outchar()
END

This function, when executed, takes a value from the stack and
assigns it to the data memory locations of the object
"localstring". It then prints the string via the built in function
"outchar"

101

SOFTWARE PORTABILITY

The function defined has no name. It is merely placed on the
stack. Functions can be executed from the stack by using the
function call operation, eg

FUNCTION 1234.72 END ()

will cause

a function to be placed on the stack which will be

immediately executed to cause the constant value, 1234.72, to be
placed on the stack.

It is more
The object
cells. 1In

normal to assign a function to an introduced object.
must have a size attribute of the default, ie 4 memory

created by assigning the function, as follows : :

USE outstring.

FUNCTION
USE localstring:stringsize
-> @localstring
@localstring; outchar()

END -> @outstring

In fact any value can be assigned to an object. The right hand

the previous case a new function, "outstring", can be

side of the "destacking" operation must be an address, hence the

"@" notation. For example

"A character string
containing line control <CR> characters" -> @string
1234->@constantvalue

4.1.1 Object Introduction

Syntax :
<object introduction> ::=
USE { <intro> { <intro>}0:* }1l:*

<intro> ::=
<name> { : <size> }

<size> ::=
<name> | <numeric constant)>

<name> ::=
<alpha-numeric name> |
<special name>

<alpha-numeric name> ::=
<letter> { <letter>|<digit>}0:11

<letter> ::=
A|B|C D|E|FIGIHI¥IqIKILIMINIOIPIQIRISITIUIVIWIXIYIZ|
albjc|d|e|flg|h]il|jlk]|Ll[m|n|olplglr]|s|t|ulv|w|x|y]|z

102

SOFTWARE PORTABILITY

<digit> :
0j1

2

3141516171819

<special name> ::=
{ <special character> }1:12

<special character>

VI"IElSIs]&] "] (])

<1< 1 CHCTY TSR IZ1> 1<+ =[=]@

Mule objects may be introduced in an object introduction. They
are introduced with the keyword USE and are given a name. The
name must be unique to the whole Mule environment. The name may
be either a more normal alpha-numeric name, ie a string of
characters commencing with an alphabetic character, or a special
name. Special names are composed entirely of what are
conventionally "operator" type characters and are intended to
allow the provision of enhanced operations, should this be
required. '

The effect of the object introduction is to create an object
table record and reserve data memory cells for it.

In addition to being given a name the object may be given a size
attribute which specifies the number of data memory cells the
object will occupy. If the size attribute is omitted 4 memory
cells will be reserved for the object.

An object may be used without being introduced in which case the
object is treated as if it had been introduced at the point of
use and is given the default size attribute of 4.

Restrictions:

An object introduction may not appear within a function stacking
operation which is 1itself nested within a function stacking
operation.

An object name must be unique to the whole Mule environment.

An object cannot be introduced with a size attribute of zero.

Only 12 characters are significant in an object name. Any
characters above the 12th are ignored.

Examples of use:
Valid object introductions are :

USE element character:l buffer:132.
USE char2:elel.

Introduces
element which occupies 4 (default) memory cells.
character which occupies 1 memory cell.
buffer which occupies 132 memory cells.

103

SOFTWARE PORTABILITY

buffer2 which occupies a variable number of memory
cells which is dependent upon the value of elel.
if the value of elel is 12 when the USE is
executed then 12 cells will be reserved.

USE :: <> () : 12.
Note the need for syntactic separation between () and :.

Introduces
:: which occupies 4 (default) memory cells.
<> which occupies 4 (default) memory cells.
() which occupies 12 memory cells.

Invalid object introductions are :
USE la <abc> abcdef:0 &é&&.

Because
la commences with a digit
<abc> mixes special characters and alphabetic
characters.
abcdef:0 allocates a size attribute of zero.
&&&. is a valid special name but the "." to signify the

end of the introduction would be missing. There
must be a space between the last special character
and the "." terminator.
4.1.2 Stacking Operation
Syntax:
<stacking operation> ::=
<name) |
@ <name> |
<constant> |

<function call operation> |
<function stacking operation>

<constant> ::=
<numeric constant> |
<character string constant>

<numeric constant> ::=
<integer constant> |
<decimal constant> |
<floating constant>

<integer constant> ::=
{ <digit> }0:* |
{ <hex digit> }1l:* |
{ <octal digit> }1l:* |
{ <binary digit> }1:%

H
o
B:

104

SOFTWARE PORTABILITY
<hex digit> ::=
<digit> |A|B|C|D|E|F

<octal digit> :
0]11]2]3/4

<binary digit> ::=
0|1

<decimal constant> ::=
{<digit>}1l:* . {<digit>}0:*

<floating constant> ::=
{<digit>}1:* E {<digit>}0:2

<character string constant> ::=
" {<letter>|<digit>|<special character>|
<line formatting characters>}0:* "

Semantics :

The appearance of a name, a constant or a function stacking
operation will cause a value to be placed upon the stack. The
value placed on the stack will depend upon the type of stacking
operation and the size attribute of any object being stacked.

Objects which are being stacked consecutively maybe separated by
commas or line formatting characters. Line formatting characters
are spaces, tabulation characters and new line characters.

Taking each in turn :

name - the appearance of a name will cause the contents of
the memory cells reserved for the object to be copied to the
stack. Each cell will be copied in turn and the stack top

will assume the size attribute of the original object. The
contents of the memory cells allocated to the named object
will be unchanged by the stacking operation.

@ name - the @ symbol indicates that the address of the
first data memory cell of the named object is to be placed
on the stack. The stack assumes a default size attribute

(ie 4).
numeric constant - the numeric constant is placed on the
stack and the stack assumes a defult size attribute. The

precision wused for decimal and floating constants is not
defined here.

character string constant - the character string is placed
on the stack. One memory cell is assigned to each character
and the stack assumes a size attribute which is equal to the
length of the character string. The character set
representation is ASCII.

105

SUFITWAKE PURKTADLLILI

function stacking operation - see section 4.1.4.

Examples of use :
element, 123, "Character
String which includes
New line and space characters", H:FFEB3,
<> , :: , ::= , @element, @ <>

4.1.3 Function Call Operation

Syntax:
<function call operation)> ::=

()

Semantics:

The function call operation will expect to find a function for it
to execute on the top of the stack. The effect of the operation
is to execute the function and, once done, continue execution at
the next Mule operation following the function call operation.

The function will be placed upon the stack by a function stacking
operation, or a stacking operation. Functions and the function
stacking operations are described in section 4.1.4.

Examples of Use :

FUNCTION element, "Element Handler" END ()

... causes a function to be placed on the stack (ie all
between the FUNCTION and END) and that function to be
executed. The execution causes the value of element and the
character string "Element Handler" (in turn) to be placed on
the stack.

4.1.4 Function Stacking Operation

Syntax:
<function stacking operation> ::=
FUNCTION <limited Mule language> END

<limited Mule language> ::=
{ <object introduction> |
<limited stacking operation> |
<function call operation> |
<limited function stacking operation> |
<limited infix stacking operation> |
<destacking operation> }0:*

<limited stacking operation> ::=
<name> |
@ <name> |
<constant> |
<limited function stacking operation>

<limited infix stacking operation> ::=

106

SOFIWARE PORTABLLILTY

(<limited expression> <operation>
<limited expression)>)

<limited expression> ::=
<limited stacking operation>
{<function call operation>}0:* |
<limited infix stacking operation)

<limited function stacking operation> ::=
FUNCTION {
<limited stacking operation> |
<function call operation)> |
<limited function stacking operation> |
<limited infix stacking operation> |
<destacking operation>
} END

Semantics:
A function 1is a collection of Mule operations bracketed by the

keywords FUNCTION and END. The effect of the function stacking
operation is to place the address of the start of the function
(in program memory) on the stack. The stack then assumes a size

attribute of 4 memory cells.

The function 1is called by the application of a function call
operation [ie ()]. The result of this is to cause execution of
the first operation within the function bracket and to continue
from there. When execution meets the function return, execution
continues from the operation following the function call which
caused the function to be executed.

A function (or strictly a function reference) may be assigned to
a mule object by a destacking operation, see section 4.1.6.

Restrictions :

A function may contain within it a nested function stacking
operation however, the nested function stacking operation may not
contain object introductions. This restriction applies to
explicit (ie USE type) and implicit (ie the appearance of an
object name) introductions.

Examples of use
FUNCTION
char
END
... Execution of this function will cause the value of char

to be placed on the stack.

FUNCTION FUNCTION char END END
... Execution of. this function will cause a function

reference to be placed on the stack. If this function 1is
then executed then the value of char will be placed on the
stack.

107

DU LVWHNANL S VhNLnDULILL &L

4.1.5 Infix Stacking Operation

Syntax:
<infix stacking operation> ::=
(<expression> {<operator> <expression>}0:1)

<expression> ::=
<named> {<function call operation>}0:* |
@ <name> |
<constant> |
<function stacking operation>
{<function call operation>}0:* |
<infix stacking operation>

<operator> ::=
<name>

Semantics:
The infix stacking operation is short hand for a function call
which takes its parameters from the stack and delivers its result
to the stack. For example

(a+b) is exactly equivalent to

a, b, + ()

The operator is any name which has been introduced either
explicitly or implicitly and which has had a function reference
assigned to it. : :

Restrictions :
The operator value must be a function reference.

Examples of use :

(a+b)

(£() AND (a OR b))

(FUNCTION a,b END() TRIADICOPERATION c)
(x())

4.1.6 Destacking Operation

Syntax:
<destacking operationd> ::=
-> <destacking expression>

<destacking expression> ::=
<name> |
@ <name> |
<constant> |
<infix stacking operation>

Semantics:

The destacking operation causes the value which is currently on
the stack to be transfered to the data memory address which is
provided as the right hand operand to the destacking operation.

108

SOUFIWARE PORYTABLLILY

The address may be one of :

@<name> - in which case the value is assigned to the memory
cells reserved for the object.

<name® - in which case an address is obtained from the value
of the object named. The object must be 4 memory cells in
size. The first 3 memory cells (cells 0 to 3) provide the
address in data memory whilst memory cell 4 provides the
size attribute of the object being referenced. An
assignment of the form :

@a -> @b

will <create a suitable reference such that cells 0 to 3 of
the object "b" will contain the cell address of "a", whilst
cell 4 of "b" will contain the value 4 which is the sigze
attribute of "a".

<constant> values, except for character strings, assume the
default size attribute of 4 memory cells. The constant, if
used as a data memory address must provide the address in
cells 0 to 3 and the size attribute in cell 4. As cell bit
size 1is not specified as part of the Mule language the wuse
of numeric constants in this way will make programs non-
portable. Character strings may be used and portability
maintained as each character occupies a memory cell and the
character set is specified.

An <infix stacking operation> which must deliver a value
which 1is an address reference which includes the sigze
attribute, as described above.

Restrictions:

Except for constant values placed on the stack the size attribute
of the stack value must be identical to that of the destack
operand.

If the stack value is a constant then :

- If the constant has a larger size attribute than the
destack operand then the constant is truncated to the same
size as the operand and the higher order memory cells are
discarded.

- If the constant has a smaller size attribute than the
destack operand then the constant is copied to the lower
order memory cells of the operand and the higher order
memory cells are left unchanged.

Examples of use :
3 -> @a
... The value 3 is assigned to the lower 4 memory cells of
the object "a".

109

SOFTWARE PORTABILITY

"The rain in Spain" -> @str

... The character string "The rain in Spain" is assigned to
the object "str" provided the object has a size attribute of
17 cells.

(a+ (b*c)) -> (index ARRAY @arrayname)
... Assigns the result of (a+ (b*c)) to an address
evaluated by the expression (index ARRAY @arrayname)

4.1.7 Built-in Functions

Mule provides a number of built-in functions which are part of
the kernel Mule environment. Although they are built-in they are
invoked in exactly the same manner as normal Mule functions, |ie
by the function call operation [ie ()].

The built-in functions expect their arguments to be on the stack
and the arguments must be valid for the uses specified. Arguments
are removed from the stack by the operation of the function.
Results are delivered to the stack.

4.1.7.1 Input/Output Functions

select Has one argument which is a value which represents an
input/output channel. Channels are represented by a
number between 0 and 100.

The function selects the designated channel and any
subsequent input or output is directed to that channel.

inchar Has a single argument which is a data memory address.
The function reads "n" characters from the currently
selected input/output channel and transfers them to
data memory at the address specified in its argument.
The value of "n" is given by the size attribute of the
data memory address of the argument.

outchar Has a single argument which is a data memory address.
The function copies "n" characters from data memory, at
the address specified in its argument, to the currently
selected input/output channel. The value "n" is given
by the size attribute of the data memory address of the
argument.

outint Has a single argument which is the result of an
expression involving numeric values. The function
expects a value with a size attribute of 4. The

function will interpret the lower order 4 cells as
strict binary with cell 0 providing the least
significant bits and cell 3 providing the most
significant. The argument is transferred to the
currently selected input/output channel as a decimal
representation of the binary value.

110

SOFTWARE PORTABILITY

4.1.7.2 Arithmetic Functions

Arithmetic functions have two arguments which represent numeric
values. The functions expect values with size attributes of 4
and either an integer, decimal or floating format. In the case
of integer arguments the function will interpret the lower order
4 cells as strict binary with cell 0 providing the 1least
significant bits and cell 3 providing the most significant.

In the descriptions which follow the top of the stack is the
second argument and the next stack item is the first argument.
The function removes both arguments from the stack.

+ The first argument is added to the second argument and
the result is placed on the stack.

- The second argument 1is subtracted from the first
argument and the result is left on the stack.

* The first argument is multiplied by the second argument
and the result is left on the stack.

/ The first argument is divided by the second argument
and the result 1left on the stack. In the case of
integer division the remainder is discarded and the
result truncated to the integer result.

The first argument is raised to the power of the second
argument and the result left on the stack.

4.7.1.3 Relational Functions

Relational functions have two arguments. Each argument may be
multi-celled and may have dissimilar size attributes. The rela-
tional operator compares each memory cell in turn, treating the
memory cell as strict binary with cell 0 representing the lower
order cell. Where one argument has a greater size attribute the
higher order memory cells of the lower size argument are padded
with cells of value binary zero until both arguments are of
identical size.

In the descriptions which follow the top of the stack 1is the
second argument and the next stack item is the first argument.
The function removes both arguments from the stack.

In the relational functions the first arument is compared with
the second. The result is a constant value which is placed on
the stack. The constant is either 1 (for a true relationship) or
0 (for a false relationship).

The functions are :

111

SOFTWARE PORTABILITY

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
= Equal

/= Not equal

4.1.7.3 Logical Functions

Logical functions have two arguments. Each argument may be
multi-celled and may have dissimilar size attributes. The
logical operation acts upon each memory cell in turn, treating
the memory cell as strict binary with cell 0 representing the
lower order cell. Where one argument has a greater size
attribute the higher order memory cells of the lower size
argument are padded with cells of value binary zero until both
arguments are of identical size.

In the descriptions which follow the top of the stack is the
second argument and the next stack item is the first argument.
The function removes both arguments from the stack.

AND The AND function acts upon each bit of its arguments in
turn such that bit 0 of the first argument is ANDed
with bit 0 of the second argument, and then bit 1, and
so on.

OR The OR function acts upon each bit of its arguments in
turn such that bit 0 of the first argument is OR’d with
bit 0 of the second argument, and then bit 1, and so
on. '

4,1.7.4 Miscellaneous Functions

IF The IF function has two arguments which are on the
stack. The second argument is the top stack item which
is a function reference. The first argument is the

second stack item which is a single celled value which
is either 0 or 1. This is typically produced by the
action of a relational or logical function or a
combination of the two in an infix operation.

The action of the IF function is to call its second
argument as a function if the first argument is the
value 1. If the value is not 1 no action is taken.

In either case the function removes its arguments from
the stack.

112

POP

STACKNAME

COMPILE

SUBSTR

SOFTWARE PORTABILITY

The POP function has no arguments. The action of the
function 1is to remove a return address from the
function return list. The effect of this is such that
at the next function return, execution will return, not
to the point of call of the currently executing
function, but to the point of call of the function
which called the currently executing function.

The STACKNAME function has a single argument which 1is
on the top of the stack. The argument is a reference
to an introduced object. The result of the function is
to place on the stack a character string constant which
exactly matches the name of the object, eg

@convoy STACKNAME()
will put the character string "convoy" on the stack.

The function COMPILE has one argument which is a
character string constant and is on the top of the
stack. The action of the COMPILE function is to stop
reading from the terminal and take its input from a
file which is given by the function’s argument. The
file name format is host machine dependent. Reading
returns to the user’s terminal if an error is found in
the file being read, or the end of file is reached.

The SUBSTR function has 3 arguments as follows :

- The 3rd argument is on the top of the stack and
is a numeric value which gives the length of a
substring.

- The 2nd argument is next on the stack and is
a numeric value which represents the start
position of a substring. The first cell is cell
zero.

- The first argument is next on the stack and is a
reference to an object.

The action of the function is to obtain a reference to
a portion of free space which is between cell 0 and
cell-n of the object referenced by the first argument,
where n is the size attribute (minus 1) of the object.
For example :

USE buffer:20.
@buffer 3,7 SUBSTR()

will ©place on the stack a reference to the free space
location (@buffer + 3) with a size attribute of 7.

113

VALUE

SOFTWARE PORTABILITY

The VALUE function has a single argument which is on
the top of the stack. The arqument represents a data
memory reference. The function causes the contents: of
the memory cells referenced to be copied to the - stack

top.

For example
USE buffer:20.
"ABC123DEF456GHI789JK" -> @buffer
@buffer 3,7 SUBSTR() VALUE()

will result in the character string value "123DEF4"
being placed on the stack.

114

SOFTWARE PORTABILITY

4.2 The Pilot Implementation

The Mule language was implemented in CORAL 66 on an ICL 2966
running the George 3 Operating System under DME. The
implementation was a pilot to test out the basic ideas and had
the following restrictions :

- Only wupper case characters were permitted (a George 3
restriction).

- Memory cells were 6-bits (again a George 3 restriction, 8
bits would have been better).

—~ The size attribute in an object introduction was
restricted to being a constant value.

- Only integer numeric values were implemented.
— Only decimal notation integer constants were implemented.

- In relational and logical functions the arguments were
assumed to be no greater than 4 memory cells and higher
order cells were discarded.

- The built in function "SELECT" was not implemented and all
input output was directed to channel-0.

- The separators "," and ";" were considered to be identical
to space and line separator characters and were completely
interchangeable. 1In addition comments were permitted at any
place where a separator was permitted. Comments were
enclosed in square brackets (ie[...]) and could not contain
either open or close square bracket characters.

The pilot implementation will be described in the following
sections in terms of : An overview, Lexical phase and the
interpretation phase.

4.2.1 Overview

The Mule Pilot Implementation (Mule-P) relies upon 2 stages,
namely the lexical analysis (and syntax checking) phase and the
interpretation phase.

Normally control passes to and fro between the phases as Mule-P
source code is read. For example suppose a user entered

(5 * 3) OUTINT()

The 1lexical analysis phase would be called to decide that this
was an infix stacking operation and to provide the wvalue 5. The
interpretation phase would then be called to cause the value 5 to
be placed upon the stack. The lexical analysis phase would then
read on and provide the value 3. The interpreter would be called

115

SOFTWARE PORTABILITY

again to cause 3 to be stacked. The lexical analyser would then
provide the multiplication function call which the interpreter
would execute, and so on.

This to and fro operation is the normal mode of the Mule-P and
allows fully interactive use with the user, for example, printing
the values of objects for debugging should execution cease for
any reason.

When the lexical analyser meets a function stacking operation it
does not allow the interpeter to execute the function immediately
but instead stores the body of the function in program memory and
only calls the interpreter to stack the function reference.

In order for this mechanism to operate the lexical analyser and
interpreter must share some common data structures.

The first is the linked object table and object string table
which provides information about introducd objects.

The object table consists of records of the following structure
referenced by an object table mark. Each record is identical.

- The size of the object, restricted to a range of 0 to 255.
This is represented by the name "OBJ SIZE M".

- An index into the object string table, restricted to a
range of 0 to 32767. This is represented by the name "OBJ
STRING MARK M".

- The data memory address of the object. This is
represented by the name "OBJ ADDRESS M"

The object string table is a character array represented by the
name "OBJECT STRING DG", each element being 6 bits. The object
string table is indexed by "OBJ STR MARK M" of the object table.

Starting at the index "OBJ STR MARK M" the characters have the
following meaning

Character-0 The 1length of the objects name in characters, eg
the name "CONVOY" has a length of 6. :

Character-1 to Character-n
The characters of the objects name.

Character-(n+l) to (n+3)
An index into the object table to provide the
record for the object. The least significant bits
are in character-(n+l).

The next data structure is data memory which is an array of 6-bit

cells represented by the name "MEMORY DG". The data structure is
indexed by "MEM MARK IG".

116

SOFTWARE PORTABILITY

Program memory is represented by the data structure "PROGRAM DG"
which is an array of 6-bit cells. Program memory is indexed by
the variable "PROG MARK IG". Program memory consists of operator
cells and operand cells. Operator cells are executed by the
Mule-P interpreter, the value of the operator dictating the
operation which 1is to be performed. Operator «cells are
structured as follows :

- Bits 4 to 5 represent the operation field which takes on
the following values.

0 - denotes that operand cells follow the
operator. '

1 - denotes that no operand cells follow the
operator. :

- Bits 0 to 3 represent an operation modifier field which is
used in conjunction with the operation field to denote the
operation which is to be performed, ie :

Operation Operation Operation
Field Modifier to be performed
Field

0 1 Stack a value.

0 2 Stack an address.

0 3 Stack a literal (non
character string
constant).

0 4 Stack a character
string literal

(constant).

5 Declare an object.
1 1 Function call.

2 A direct branch cau-
sing the interpreter
to index the program
memory at a particu-
lar index.

1 3 A Function Return.
1 4 A destack.

Operand cells appear immediately following, in program memory,
operator cells with operation modifier fields of the value "1".
The value provided as an operand will depend upon the preceding
operator as follows :

Operator Operand
Stack a value 3 memory cells interpreted as
strict binary with cell-0 providing

the 1lower order bits and cell-2
providing the higher order Dbits.

117

SOFTWARE PORTABILITY

The value provided is the index
into the Object Table for the
object value to be stacked.

Stack an address ditto.

Stack a literal As the only literal value which is
implemented is the integer the
value of the integer is represented
in 3 program memory cells with
cell-0 providing the lower order
bits and cell-2 providing the hig-
her order bits.

Stack a character The number of memory cells of the

string literal operand is dependent wupon the
number of characters in the
character string, ie the string
length. If n is the length of the
string then n+l program memory
cells form the operand. The first
memory cell provides the length of
the character string. Note that,
with 6-bit memory cells, a
character string is restricted to
64 characters.

Declare an object As stack a value.

The last data structure is the interpreter’s run-time stack. The
interpreter interacts with the stack during stack, destack and
operations which take their arguments from the stack, ie the
function call and direct branch. The stack is represented by 2
arrays, both indexed by the variable "STACK MARK IG" which,
unless in the process of being updated, always references the top
stack item. The arrays are "STACK DG" which holds the stack
operand and "STACK TYPE DG". Each element of "STACK DG" is 24-
‘bits, ie 4 memory cells and is interpreted as a binary value
using 2s complement notation. The meaning of the value of "STACK
DG" is dependent upon the value of "STACK TYPE DG", as follows :

STACK Meaning STACK DG
TYPE DG
0 Stack a value The index into the object
table for the object to
be stacked. When the

object is required its
value will be obtained
from the data memory
address referenced.

1 Stack an address The index into the object

118

SOFTWARE PORTABILITY

table for the object add-
ress to be stacked. When
the object 1is required
its data memory address
will be obtained from the

data table.

2 Constant The number of elements of

: STACK DG used will depend

upon the size attribute

of the constant. STACK

DG[STACK MARK IG] prov-

ides. the size attribute

of the constant. The

cells which make up the

constant are stored 4 to

each element of STACK DG.

Any unused space within

an element of STACK DG is
discarded.

3 Address Constant Is stored as a 4d-cell
constant.

The Mule-P implementation is modular with CORAL 66 procedures
forming the wunit of modularity. Each procedure is compiled
separately and communicates with other procedures through the
data structures described above, through parameters and returned
results and through global variables. Global variables are
defined in a separate modules as are macros which were used to
make changes to the code simpler.

In addition variable naming follows a convention with each
variable having a 2 letter suffix. The first 1letter denotes
usage and can be one of :

w

Boolean having the value "TRUE M" or "FALSE
M"

Integer

Loop Counter

Procedure

Data structure (eg array or table)

Procedure parameter

Label

Macro

BCO0O0OWRH

The second letter denotes scope and can be either :

L Local to the procedure or block.
G Global to the whole program.
C Common (declared in a CORAL 66 Common

119

SOFTWARE PORTABILITY

communicator).

Execution starts with the call of procedure "LEXIS PG", the
lexical analyser.

4.2.2 Lexical Analyser

Lexical Analysis (and syntax analysis) starts with the procedure
"LEXIS PG".

4,2.2.1 LEXIS PG

LEXIS PG is called repetitively to read Mule-P source code. By
calling other procedures it translates the source code into
operations and operands which it places sequentially in program
memory, PROGRAM DG. The sequence of events is :

If there are operations to interpret in PROGRAM DG, ie LEXIS PG
is operating in interactive dialogue mode, the procedure
INTERPRET PG 1is called to execute them. The program memory
marker PROG MARK IG is reset to its initial value after
execution.

The procedure FETCH ELEMENT PG is called to fetch an "element" of
Mule-P. It returns the element in 2 global variables ELEMENT IG
and ELEMENT TYPE IG. The meanings of the various options are as
follows :

Value of ELEMENT Value of ELEMENT IG Meaning

TYPE IG

ELE OPERAND M Index into the data The element was
table of the object an object name,

eg CONVOY, +, -
> and has an
entry in the
object table.

ELE LITERAL M The value of the The element was
literal (integers only a constant val-
are allowed) ue, eg 32, 123.

ELE CHAR LIT M A pointer to the start The element was
of the character a character st-
string which includes ring, eg "A char
the string length as acter string".

its first character.
No other element type is permitted and an error message 1is
produced, via the procedure ERRORHANDLER PG, if the element is
not one of the above.

The error message is :
SYNTAX ERROR - UNKNOWN ELEMENT

120

SOFTWARE PORTABILITY

If the element is an operand the action is dependent wupon the
value of ELEMENT IG, ie the index into the object table. Mule-P
symbols are introduced via LEXIS PG as normal objects during
system initialisation. As a result they are given specific
object table indices as follows :

Data Table Mule Symbol
Index

0 :

2 .

4 USE

6 (

8 FUNCTION
10 ->

12 ()

14 @

16 END

18)

20 '

22 n

Note that object table indices increase by 2 - this is a function
of the way that the object size, object string mark and object
address is mapped onto the data table array.

If the value of ELEMENT IG is < 19 (and ELEMENT TYPE IG is ELE
OPERAND M) the action taken by LEXIS PG is dependent upon the
value of ELEMENT IG, as follows : ~

ELEMENT IG=0, ie :
This is a development feature and can be used to signify the
end of an element to FETCH ELEMENT PG.

ELEMENT IG=2, ie .
The . denotes the end of introductions which is handled by
the procedure INTRODUCTION PG. LEXIS PG takes no action and
passes control to the exit point - see later.

ELEMENT IG=4, ie USE
The procedure INTRODUCTION PG is called to handle object
introductions. Control is then passed to the exit point -
see later.

ELEMENT IG=6, ie (
The procedure INFIX PG 1is called to handle the infix
operation. Control 1is then passed to the exit point - see
later. '

ELEMENT IG=8, ie FUNCTION
The variable REMAIN IN LEXIS KL is incremented to indicate
to the exit point that control is to remain within LEXIS PG
until the matching function-end is received. The procedure
FUNCTION DEF PG 1is called to deal with the function

121

SOFTWARE PORTABILITY

definition. Control is then passed to the exit point - see
later. '

ELEMENT IG=10, ie -> :
The procedure DESTACK PG is called to handle the destack
operation. Control is then passed to the exit point - see
later.

ELEMENT I1G=12, ie ()
The procedure FUNCTION CALL PG is called to handle the
function call operation. Control is then passed to the exit
point - see later.

ELEMENT I1G=14, ie @ :
FETCH ELEMENT IG is called to fetch the next Mule-P element
which should be an operand for the @ operator to act wupon.
The procedure STACK PG is then called to plant the stack
address operation in program memory. Control is then passed
to the exit point - see later.

ELEMENT 1G=16, ie END
The variable REMAIN IN LEXIS KL is decremented to counter
the increment at the corresponding FUNCTION. The procedure
END FUNCTION DEF PG is called to handle the operation.
Control is then passed to the exit point - see later.

ELEMENT IG=18, ie)
LEXIS PG should never receive a closed bracket as this is
handled by INFIX PG. There is a small design error in this
part of the procedure as LEXIS PG ignores any closed bracket
received, passing control to the exit point. An error
message should have been produced.

Any other value of ELEMENT IG, with ELEMENT TYPE IG having the
value ELE OPERAND M, represents a user introduced object which is
handled by the procedure STACK PG. ’

Similarly elements with ELEMENT TYPE IG of ELE LITERAL M or ELE
CHARLIT M are handled by the procedure STACK PG.

STACK PG causes the appropriate stacking operations, and
operands, to be planted in the program memory for interpretation
by INTERPRET PG. Control is then passed to the exit point.

The exit point of LEXIS PG performs a check on the value of the
variable REMAIN IN LEXIS PG. LEXIS PG will exit only if the
value of this variable is 0. LEXIS PG is called recursively from
INFIX PG and DESTACK PG and when called for Mule-P operations
like : ,

(FUNCTION (A+ FUNCTION X Y Z() END()) END() + B) ->
(FUNCTION (A<B) FUNCTION @A END FUNCTION @B END IFELSE())

It is required that LEXIS PG handle the Mule-P between the

122

SOFTWARE PORTABILITY
FUNCTION and END at the same recursion level.

4.2.2.2 INTRODUCTION PG

This procedure is called whenever an explicit introduction is met
in the Mule-P source, eg USE A:10.

The procedure sets the flag IN INTRO BG to TRUE M. This is used
by the procedure FETCH ELEMENT PG to indicate that it has been
called from within INTRODUCTION PG.

Control remains in INTRODUCTION PG until the "." character is
read to indicate the end of an introduction when the procedure
returns control to LEXIS PG after first resetting the f£flag 1IN
INTRO BG to FALSE M.

The following sequence is repeated for each object being
introduced.

An element is obtained from the Mule-P source by calling FETCH
ELEMENT PG. If the element obtained is not an operand, ie
ELEMENT TYPE IG is not equal to ELE OPERAND M, the error handler
procdure, ERRORHANDLER PG, is called. The error message generated
is : _

SYNTAX ERROR - UNKNOWN ELEMENT

The operand must be a new name being introduced. The
introduction of the object, planting of the declare operation in
program memory and creation of the object table record is all
performed by the procedure FETCH ELEMENT PG as is necessary when
the object is implicitly introduced (ie by using a name). It is
FETCH ELEMENT PG which checks for duplicate introductions of the
same object name. Allocation of data memory is done dynamically
during interpretation.

FETCH ELEMENT PG returns the object table index allocated to the
introduced object in ELEMENT IG. This is saved in a local
variable.

FETCH ELEMENT PG is called again to check for a ":", in the case
of :

USE A:12.
If the next element is not a ":" control returns to the head of

the repeated sequence but without reading an element as this has
been obtained already.

In the case of a ":" being read FETCH ELEMENT PG is called again
to read the numeric constant which follows. If a numeric
constant is not read ERRORHANDLER PG is called to print the error
message :
SYNTAX ERROR - A NUMERIC CONSTANT MUST BE SPECIFIED AS AN
ATTRIBUTE OF THE OBJECT INTRODUCTION.

123

SOFTWARE PORTABILITY

When FETCH ELEMENT PG introduced the object it was given a
default size attribute of 4 memory cells. This is now updated to
the wvalue specified in the actual introduction by updating the
field OBJ SIZE M of the object table record.

4.2.2.3 INFIX PG

INFIX PG 1is called at the opening bracket of an infix stacking
operation and control remains within INFIX PG until the matching
‘close bracket 1is received. INFIX PG is called recursively to
handle nested infix stacking operations.

INFIX PG causes the infix stacking operation to be translated
into two stacking operations and a function call, ie (A AND B) is
translated into A B AND(). The only complication is that the
operands A and B can be very complex involving infix stacking
operations, function calls and function stacking operations.

INFIX PG operates as follows :

The procedure LEXIS PG is called (recursively) to handle the
first operand. This will cause operations to be planted in the
program memory which will allow the interpreter to, wultimately,
provide the first operand from the stack. Calling LEXIS PG in
this way will cater for all possible types of operands and, in
the case of an infix stacking operation as the first operand,
INFIX PG will be called again, and recursively, from INFIX PG.

Having obtained the operand FETCH ELEMENT PG is called to obtain
the infix operator (which is a Mule-P object name!). However it
is possible that what is obtained is either (or a combination) :

- A function call symbol { () } in the case of (FUNCTION A
B END() TRIADIC B END), or multiple function call symbols,
eg in the case of (FUNCTION A B + END() () AND C).

If this is the case the procedure FUNCTION CALL PG is called
to plant the function call operation in the program memory
for each occurance of the function call symbol. FETCH
ELEMENT PG 1is then <called to obtain the actual infix

operator.
- A closed bracket in the case of a single operand, eg (X),
or (FN()). In this case a return from INFIX PG to its
calling procedure is performed.
INFIX PG checks that the operation name is valid, ie that ELEMENT
IG = ELE OPERAND M and that the name is not the "@" symbol as
this is invalid.

Once the actual infix operator name is obtained it is saved in a
local variable.

LEXIS PG is called again to obtain the right hand operand. The

124

SOFTWARE PORTABILITY

next element 1is fetched, by FETCH ELEMENT PG, and identical
action taken to that above, in the case of the element being
either a function call or closed bracket.

Finally STACK PG is called to plant operations in the program
memory to allow the interpreter to stack the infix operator name.
Then the procedure FUNCTION CALL PG is called to handle the
planting of the function call operator.

A <closed bracket, 1ie), 1is expected but it is possible that
a further infix operation name and associated operand(s) may be
obtained, eg (A + B * C - D). 1In this case INFIX PG repeats the
infix operator name and right hand operand handling for -each
operator/operand.

4.2.2.4 FUNCTION DEF PG

FUNCTION DEF PG 1is called whenever the start of a function
stacking operation is encountered in the Mule-P source (ie
FUNCTION) . The procedure END FUNCTION DEF PG 1is ~called to
service the corresponding end.

‘The Mule-P implementation restricts the nesting level of function

stacking operations to the value of FUNC STC SIZE M. If this is

exceeded ERRORHANDLER PG is called to deliver the error message :
NESTED FUNCTION DEPTH EXCEEDED

Both FUNCTION DEF PG and END FUNCTION DEF PG communicate
information through an integer array FUNCTION START DG. This is
indexed by FUNC NEST DEPTH IG, the current nesting depth, which
is incremented by FUNCTION DEF PG and decremented by END FUNCTION
DEF PG. FUNCTION START DG is used to hold an index into program
memory.

FUNCTION DEF PG plants the following in the program memory at the
index which is put into FUNCTION START DG.

- Firstly a stack 1literal "O" operation. This will Dbe
changed by END FUNCTION DEF PG to a constant which is the
index into program memory of the end of the function.

- Secondly a direct jump operation.

The effect of these operations will be to cause the interpreter
to branch over the operations of the function wuntil they are
called by a function call operation.

4.2,2.5 FUNCTION CALL PG

This procedure is called when a function call operation, ie (),
appears in the Mule-P source. It plants a function call

operation into program memory and returns.

4.2.2.6 END FUNCTION DEF PG

125

SOFTWARE PORTABILITY

END FUNCTION DEF PG is called when a function stacking operation
end, ie END, is obtained.

It is possible that a function end has been entered without a
corresponding FUNCTION symbol. If this is the case ERRORHANDLER
PG is called to display the error message :

FUNCTION END ENCOUNTERED WITHOUT A FUNCTION BEGIN
Before returning END FUNCTION DEF PG does the following :
Plants a function return operation in program memory.
Changes the value of the stack literal operation at the function
begin to the current program memory index (ie PROG MARK IG) from
its initial value of zero.
Calls the procedure STACK PG to plant operations in program
memory to cause the interpreter to stack the index into program
memory of the start of the function.

Decrements the value of FUNC NEST DEPTH IG.

126

SOFTWARE PORTABILITY

4.2.3 Interpreter

The 1lexical analyser, LEXIS PG, calls the interpreter, ie the
procedure INTERPRET PG, whenever there are any operations in the
program memory for it to interpret. Control remains in the
interpreter until it meets a halt-operation within program memory
when the interpreter returns control to LEXIS PG. Before
returning, INTERPRET PG plants halt instructions in program
memory for that portion of the program memory which represents
interactive dialogue between the user and Mule-P. This is to
prevent the operations from being re-executed by LEXIS PG on
return.

INTERPRET PG controls its execution firstly by using the value of
the operation field and then by using the value of the operation
modifier. This double switch enables INTERPRET PG to obtain the
operation’s operand via a central handler rather than obtaining
the operand for each operation.
In this way control is passed to particular parts of INTERPRET PG
dependent wupon the operation which is to be performed and in
particular the following sub-routines are provided :

- Halt.

- Stack a value.

~ Stack an address.

- Stack a literal.

- Stack a character string literal.

— Declare an object.

- Function call.

- Direct branch.

- Function return.

- Destack.
Built-in functions (see section 4.1.7) are part of the Mule-P
interpreter but are called in the Mule-P source like any other
function and the programmer is unaware that the function is

built-in. The interpreter recognises a built-in function by its
address field (ie OBJ ADDRESS M) of the data table record of the

built-in function object being negative. The absolute value of
this address is the built-in function number which is used by the
interpreter. Built-in function numbers are assigned to

introduced objects by a built-in function MAKEBUILTIN which has a
preset function number of 1. Suppose we wished to create a built

127

SOFTWARE PORTABILITY

in function name ADD with a function number of 4 (ie the same as
the "+" function). The function call

ADD,4 MAKEBUILTIN()

Will set the address field (OBJ ADDRESS M) of the data table
record of the object ADD to -4 signifying that the function is
built-in (ie the address is negative) and that the function
number is 4. The function number is used as a parameter to the
procedures BUILT IN PG which is called by INTERPRET PG whenever a
built-in function 1is to be called. BUILT IN PG has CORAL 66
routines for each of the built-in functions of section 4.1.7.
Control of execution within BUILT IN PG is by using the function
number passed as a parameter to the procedure.

Function numbers are as follows :

Function Function

Number : Name

1 MAKEBUILTIN

2 INCHAR

3 OUTCHAR

4 +

5 -

6 *

7 /

8 ~ (exponentiation)
9 <

10 >

11 (=

12 >=

13 =

14 <>

15 AND

16 OR :
17 (unallocated - reserved for exclusive OR)
18 IF

19 GOTO

20 POP

21 STACKNAME

22 OUTINT

23 COMPILE

24 SUBSTR

25 VALUE

128

SOFITWARE PORLTABLLLTY

4.3 Test Programs

At the outset of the design of the Mule-P implementation 3 tests
were devised

- Test A to test the basic operation of introductions and to
be operating prior to implementation of any other operation.

- Test B to test the infix stacking operation (and relying
upon Test A operating successfully).

- ACCEPTANCE which tests all of the features of the Mule-P
language and introduces 2 mule functions, via the COMPILE
built-in function, IFELSE which provides the
IF...THEN...ELSE capability and WHILE which provides the
WHILE...DO....ENDDO facility.

Mule-P passed all of these tests.
4.4 Conclusions

The Mule-P implementation is compact and operates in
approximately 18k words (around 64k bytes) which includes trace
code used during debugging. The whole environment was written in
CORAL 66 with the interpreter, which is the only part which needs
to be resident at all times, being approximately 1000 lines of
code (inclusive of comments). The IFELSE and WHILE functions
were very easy to produce and showed that the Mule-P environment
can be enhanced very easily. A programmer would be wunable to
tell that the IFELSE and WHILE functions were not part of the
Mule-P kernel. Other facilities, eg an editor, could be added in
the same manner.

For better structure to programs it would be useful to add the
concept of mode or type to Mule-P. This could be by, say, the
addition of a function TYPE to the built-in repertoire to assign
type to an introduced object and CHECK to check for correct use
of the type. For example

USE integerobject, referenceobject.
[Introduces two objects which may be of any type]l

integerobject, integer TYPE()

referenceobject, reference TYPE()
[Restricts "integerobject" to be of type "integer" and
"referenceobject" to be of type "reference"]

FUNCTION
USE pl,p2.
integer CHECK() -> @pl
integer CHECK() -> @p2
(pl + p2)
END -> @ ++
[Introduces a function called "++" which adds two

129

DUFITWAKDE FURLADLLLILIL

operands which it finds on the stack but checks that
they are "integer" type operands before allowing the
operation]

(integerobject ++ 3) -> @integerobject

[is legal as "integerobject" is an integer]
(referenceobject ++ 3) -> @referenceobject

[is illegal as "referenceobject" is a reference]

In order for this type of mechanism to operate successfully it is
necessary to bar access to the non-typed versions of the
functions, ie + in the above example. This could be achieved by
adding access control to Mule. For example if two functions
CLOSE and OPEN were added the following would be possible:

+ ++ OPEN()
[Open access to the "+" function from the "++"
function, ie allow the "++" function to call the R
functon]

+ CLOSE({)
[Close all other accesses to the "+" function. Now
only the "++" function can call the "+" function so
that to open access again the "++" function would need
to contain the OPEN function call]

OPEN CLOSE()
[Is lethal and closes all access to the OPEN function]

It is thought that only the above additions are necessary to the
Mule kernel to make it a truely wuseful environment for
transporting programs. The syntax of the language would require
improving but it was not considered that the syntax was important
in proving the concept of the Mule-P implementation.

A final improvement would be the implementation of the lexical
analyser procedures in Mule and translating them to the Mule
operations in program memory. If this was achieved it would be
necessary to transport the interpreter (some 1000 lines) only
when moving the Mule environment.

4.5 Mule-P Source Code
The Appendix contains the Coral 66 source code of the Mule-P
implementation, the George 3 command language instructions for
compiling and operating the Mule-P and the Mule-P source code for
building the environment and for testing.
The following are the files included and their uses

File Name Purpose

PCOR(/MACR) The CORAL 66 compilation macro used to invoke

the compiler. It uses another George 3 macro
(PINCLUDE) to include CORAL 66 source files

130

PINCLUDE(/MACR)

PCON(/MACR)

PMULE(/MACR)

SOFITWARE PURKTABLLLITY

in sequence for the compiler. Compilation
ceases if errors are found in a particular
source file. This is because the compiler’s

error handling is very poor.

A George 3 macro used with PCOR to present
each CORAL 66 source file in a sequence to
the compiler.

The linking, or "consolidation" George 3 maco
which brings together the compiled Mule
source and the standard input/output
libraries.

The George 3 macro which executes the Mule-P.

The following are the Mule-P source files.

HEADER

COMMON

MIDDLE

MACROS

VARIABLES

Compiler introduction statements.

Declaration of common objects and those which
will be wused from the standard subroutine
library.

CORAL 66 required statements between the
Common comunicator and the start of the
procedure declarations.

Macros definitions.

Global variable declarations

The following are Mule-P procedures.

TRACEPC

ERRORHANDLER

READARELCHAR

FETCHELEMENT

STACKPG

FUNCTIONCALL

INFIXPG

ENDFUNCTIOND

FUNCTIONDEFP

INTRODUCTION

Used for debugging.
ERRORHANDLER PG
READ A REL CHAR PG
FETCH ELEMENT PG
STACK PG

FUNCTION CALL PG
INFIX PG

END FUNCTION DEF PG
FUNCTION DEF PG

INTRODUCTION PG

131

SOFTWARE PORTABILITY

POPVALUEPG POP VALUE PG
POPADDRESSPG POP ADDRESS PG

POPINTEGERPG POP INTEGER PG

BUILTINPG BUILT IN PG
INTERPRETPG INTERPRET PG
MAPPG MAP LIST PG - used for providing a map of

memory addresses for each global variable.
Used for debugging.

LEXISPG LEXIS PG

END The start of executable code and compilation
end statements.

The following are Mule-P source files.

LANGSYMB(/MULE)
Contains a list of the Mule-P symbols and
built in routines which area read into the
Mule-P at system initialisation.

BUILTINS(/MULE)
Contains the calls of MAKEBUILTIN which
allocates built in function numbers to the
built in functions introduced above. This
file is executed immediately following system
initialisation.

TESTA(/MULE) Mule TEST-A.

TESTB(/MULE) Mule TEST-B.

IFELSE(/MULE) The if..then...else function.

WHILE(/MULE) The while function.

ACCEPTANCE(/MULE)
The Mule-P acceptance test.

132

10

11

SOFTWARE PORTABILITY

REFERENCES

Backus J 1978

Can programming be liberated from the Von Neuman Style. A
functional style and its algebra of programs.

CACM V21 N8.

Lucas P 1970

Lauer P

Sfigleitner H

Method and notation for the formal definition of programming
languages.

Brown P J (Ed)
Software Portability - An advanced course
Publisher - Cambridge University Press

HMSO
The Official Definition of Coral 66

Warren J C 1976

Software Portability - a survey of approaches and problems.
10th IEEE Computer Society International Meeting on
Technology to Reach the People.

Richards M 1971 A
The portability of the BCPL complier.
Software Practice and Experience V1 ppl35-146

Coleman S S 1974

Poole P C

Waite W M

The MOBILE programming system JANUS.
Software Practice and Experience V4 ppS5.

Capon P C 1972

Wilson I R

Morris D

Rohl J C

The MUS compiler target language and autocode.
Computer Journal V15

Snyder A et al 1975
A portable language for the language C
MIT MAC-TR-149

Colin A J T et al 1975
The translation and interpretation of STAB-12.
Software Practice and Experience V5 N2 pp 123-138.

Johnston S C

A portable compiler - theory and practice.
Bell Laboratories, New Jersey.

133

12

13

14

15

16

17

18

19

20

21

22

23

SOFTWARE PORTABILITY

Koster C H A 1974

Portable compilers and the Uncol problem.
Machine Oriented High Level Languages.
North Holland Publishing Co, Amsterdam.

Poole P C 1971
Hierarchical abstract machines.

Proceedings of the Culham Symposium on Software Engineering.

HMSO

Poole P C 1970
Waite W M

Building Mobile Software.
Computer Journal V13 N28

Orgas R J 1969

Waite W M

A base for a mobile programming system.
CACM V12 N11

Brown P J 1972
Levels of language for Portable Software.
CACM 15.

Abrhams P S 1971
An APL machine - PhD Thesis
Report NB SLAC 114 Stamford California

McCracken D D 1973
Revolution in Programming
Datamation December 1973.

Dijkstra E W 1972
The Humble Programmer
CACM V15 N10 1972 pp 859-866

Newey M C 1972

Poole P C

Waite W M

Abstract machine modelling to produce portable software.
Software Practice and Experience V2 pp 107-136.

Dunn R C 1973
SNOBOL 4 as a language for bootstrapping a compiler.
Sigplan Notices V8 pp28-32

Steel T B 1961
The first version of Uncol.
Procs IFIPS WJCC V19.

L Star - An interactive, symbolic implementation system.

CMU Pittsburgh.
NTIS AD-A050 119/7GA

134

24

25

26

27

28

29

30

31

32

33

34

35

SOFTWARE PORTABILITY

Koster C H A 1974

Portable Compilers & the Uncol Problem.
Machine Oriented Higher Level Languages.
North Holland Publishing Company, Amsterdam.

Taylor J R 1977
A compiler interpreter for a LISP dialect.
Research Establishment RISO Report; Denmark.

Brown P J 1976
Throw away compiling.
Software Practice and Experience.

Wilcox T R 1971 ,
Generating Machine Code for High Level Programming Lan-
guages.

Bauer F L 197%

(Editor)

Lecture notes in Computer Science 30 : Software Engineering
and Advanced Course.

Ammann U 1977
On Code Generation in a Pascal compiler.
Software Practice and Experience V7 N3 pp391-423

Lecharm O et al 1974

A (Truely) Usable & Portable Compiler Writing System.
Information Processing 74, pp218-221

North Holland Publishing Company, Amsterdam.

Miller P L 1971
Automatic Creation of a Code Generator from a Machine
Description.

Project MAC TR-85 (May 1971)

Lauer P E 1977

Abstract Tree Processors with netwoeks of state machines as
control - their use in programming language definition.
Colloquium on Trees in Algebra and in Programming, 5-7 Feb
1976, pp96-128 (Lille - France).

1978
Computer Software - Transferability & Portability;
Bibliography with Abstracts.
NTIS PS-78 00552 6GA

The Structure of Directly Executed Languages - A New Theory
of Interpretive System Design.

Stamford University California - Digital Systems Lab.

NTIS AD-A051 835 7GA

Lecrame O 1973
An Experience in Structured Programming and Transferability.

135

36

37

38

39

40

41

42

SOFTWARE PORTABILITY

ACM Sigplan Notices V8 N9 Sep 73 pp956.

Cheriton Et al 1978

Thoth, A Portable Real Time Operating System.

Allen J
The anatomy of Lisp.
Publisher - McGraw Hill.

Chevance R J 1977

Design of High Level Language Oriented Processors.

Sigplan Notices V12 N11, pp40-51

Chung L L 1977
Elements of Discrete Mathematics

Wilson R J 1972
Introduction to Graph Theory.

Publisher - New York Academic Press.

McCarthy Et Al 1965
Lisp 1.5 Programmers Manual
MIT Press

Akin D C 1978
Allen B C

Simulation of the Direct Execution of Higher Order

NTIS AD-A055 235 6GA

136

Languages

SOFTWARE PORTABILITY

APPENDIX

The Appendix contains the Coral 66 source code of the Mule-P
implementation, the George 3 command language instructions for
compiling and operating the Mule-P and the Mule-P source code for
building the environment and for testing.

The following are the files included and their uses :
File Name Purpose

PCOR(/MACR) The CORAL 66 compilation macro used to invoke
the compiler. It uses another George 3 macro
(PINCLUDE) to include CORAL 66 source files
in sequence for the compiler. Compilation
ceases if errors are found in a particular
source file. This is because the compiler’s
error handling is very poor.

PINCLUDE(/MACR)
A George 3 macro used with PCOR to present
each CORAL 66 source file in a sequence to
the compiler.

PCON(/MACR) The linking, or "consolidation" George 3 maco
which brings together the compiled Mule
source and the standard input/output
libraries.

PMULE(/MACR) The George 3 macro which executes the Mule-P.

The following are the Mule-P source files.

HEADER Compiler introduction statements.

COMMON Declaration of common objects and those which
will be wused from the standard subroutine
library.

MIDDLE CORAL 66 required statements between the

Common comunicator and the start of the
procedure declarations.

MACROS Macros definitions.
VARIABLES Global variable declarations
The following are Mule-P procedures.
TRACEPC Used for debugging.

ERRORHANDLER ERRORHANDLER PG

137

SOFTWARE PORTABILITY

READARELCHAR READ A REL CHAR PG

FETCHELEMENT FETCH ELEMENT PG

STACKPG STACK PG

FUNCTIONCALL FUNCTION CALL PG

INFIXPG INFIX PG

ENDFUNCTIOND END FUNCTION DEF PG

FUNCTIONDEFP FUNCTION DEF PG

INTRODUCTION INTRODUCTION PG

POPVALUEPG POP VALUE PG

POPADDRESSPG POP ADDRESS PG

POPINTEGERPG POP INTEGER PG

BUILTINPG BUILT IN PG

INTERPRETPG INTERPRET PG

MAPPG MAP LIST PG - used for providing a map of

' memory addresses for each global wvariable.

Used for debugging.

LEXISPG LEXIS PG

END The start of executable code and compilation
end statements.

The following are Mule-P source files.

LANGSYMB(/MULE)
Contains a 1list of the Mule-P symbols and
built in routines which area read into the
Mule-P at system initialisation.

BUILTINS(/MULE)
Contains the calls of MAKEBUILTIN which
allocates built in function numbers to the
built in functions introduced above. This
file is executed immediately following system
initialisation.

TESTA(/MULE) Mule TEST-A.

TESTB(/MULE) Mule TEST-B.

IFELSE(/MULE) The if..then...else function.

138

SOFTWARE PORTABILITY

WHILE(/MULE) The while function.

ACCEPTANCE(/MULE)
The Mule-P acceptance test.

139

{

ARBTIABTIABTIRAT ST SXBTSxBTIAETInBTINBTInBT

ELISTING OF $222222221ZIN.PCOR(32/MACR) PRODUCED (1]

£OUTPUT BY LISTFILE IN ':TLFAK=1U.RPSMITH'! ON 16AUG82 AT 10,54.47 USING 1381

DOCUMENT

Ve e s

- b
ST OXNIVET LN=ST

-—eedmd e ek -
VXN WM WLN

2y
21
22
23
24
25
26
27
24
29
30
31
32
33
34
35
36
37
38
39
Li
41

PCOR(32/M4ACR)

IF MOP,RP FB,CM,CToLG,OJ

WE COMERR,EX

IF NOT EXIC(CMULE),CE CMULE(XDA,KWOR15,BUCKT)
£L0 3LIBLPROGRAM CORA

LOAD SUTILITY.BCORALG66=325

EN

AS #DA7,CHULECWRITE)

AS wLPULERRURS

PINCLUDE HEADER,XA

RL »*LPU

AS wLPO

PINCLUDE COMMONSXA

PINCLUDE HMIDVDLE,4A

PINCLUDE MACROS,ZA

PINCLUDE VARIABLES,ZA

PINCLUDE TRACEPC,ZA

PINCLUDE ERRURHANDLERPG,XA
PINCLUDE READARELCHARPG,XA
PINCLUVE FETCHELEMENTPG,ZXA
PINCLUDE STACKPG,XA

PINCLUDE FUHCTIONCALLPG,XA
PINCLUDE INFIXPGsXA

PINCLUDE ENDFUNCTIUNDEFPG,XA
PINCLUDE FUNCTIONDEFHG,XA -
PINCLUDE InTRODUCTIONPG,XA !
PINCLUDE VESTACKPG,AA

PINCLUDE PUPVALUEPG.,%XA

PINCLUDE POPAUDRESSPG,XA
PINCLUOE PUPINTEGERPG,XA
PINCLUDE BUILTINPG/AA

PINCLUDE INTERPRETPG,XA

PINCLUDE MAPPG,XA

PINCLUDE LEXISPG,XA

IF MOP,RP FUsCM,LGACT

PINCLUDE EMND,XA

1PCOR

DP O,LAST FILE CUMPILED WAS gt XX
IF DELCFIEXPCK)»CDP U COMPILED UK)ELSECDP 0,
IF COR,OL :
IF NOT DELCFIEXPCK)o,LF ERRORS,FR2
1F MOP,RP FB,CHM

EX

10EC81 AT 19,34,52

e RRRAK

u:mqutmquncdutmqu:mqu;mqu;wquﬁmqutmdu:mqu»mdutwqutm«utmquwmqu&cqwlmuu:mqu1r)

COMPILED WITH ERRORS)

u:ssmqu-mqu.mqu::quxzaunxqunxqu:squ.m«utmqu‘mqu:mqu:mqutwqu:mqunmqu:c-u.wqu:mqu»mquswqu:mqu:mqu'mau:wqu:w«unmqu»m«u.m»;»

.

~

-~

ﬂ::aut:qu»mqunmqutaquimqu:mdutmdutxquanuﬁcqw'mquthutmqu»mqutwqurmdu:mthmqu*m4u:mqunmuu:muu;m«usmdu:cqutmquwmqutwquls»

ELISTING OF $222Z2IZILZZLINLPINCLUDE(S6/MACR) PRODUCED ON 1DEC81 AT 19,40,04 . .

£OUTPUT 8Y LISTFILE IN '":TLFAK=10,RPSMITH! ON 16AUG82 AT 10,59.53 USING 1381

DOCUMENT PINCLUDE (6/MACR) -~
) SP AsC(XA)(1,12) -
1 KL *LPU _

2 SP X,REPLY(21,21) y
3 IF NOT STR(4X)®(0),60 1PCOR ;
4 TIF ABS(xSH),DP 0,%A
5 falL 7?2,=2 ’ .,
6 AL 7T4,=2 -
7 AS xTRU, XA
8 IN ERKORS,T$335,P5 ,)
o -
10
11 COMPILED XA WITH ERKORS
12 $333 : " :
13 AS ALPOL,ERROKS CAPPEND)
16 SP Ws(X) :
15 SP avs(%A) ‘ -
16 RM R
17 SP VsREPLY))
14 SP oW, (XA=XV)
19 IF NOT FALLEDC(FILE *TRO EXHAUSTED),G6O 1PCOR C T
21 EXIT -
AxARBTI*HTI*BTIABTInBT 3BT IXBT 3BT 3ABT3XBT A TSwBT3xBTIABTIABTIABTINBTIRBTIABTINBTINBTINBTIXBTINBIIxBTINBTSnBTIABTIngARA
*
'
~

.

.thqutmqutmquthutxquncqu&mﬂunmqutmdutmqutmqw:xqu&mqutmﬂmtmqutmqutmdusmqutwduicqutmdutmau:mdutwqu;mdutwdutaqutmqutmqbnta
£LISTING OF 32222222Z222ZU.PCON(5/MACR) PRODUCED ON BAPRB1 AT 13,04,58
£OUTPUT BY LISTFILE IN "ITLFAK=10,RPSMITH' UN 16AUGB2 AT 10.54.41 USING 1381

DOCUMENT PCONCS/MACR)

"IF MOP,REPURT FB,CHsLG

1 IF EX1ISTSCLINKMAP),ER LINKMAP

¢ CE |

3 IN J,TS330

4 w1 (CHULE)

S «LI8 ED (IOLIB)

6 =LIB ED (SUBGROUPCORA)

7?7 xL1ST

3 KRN

9 3338)

10 CONSOLIDATE *TR]),*xLPLINKMAP,INCMULE,INSLIB.IOLIB,INSLIB,SUBGROUPCORA

11 ER |

12 AS *LP1,LINKMAP(APPEND) “
13 EN 7 .
14 SP X,CORE

15 SP X VALUE(XX+1)

106 AL 27,%X

17 SV BMULE M -

18 LL

19 IF MUP ,KEPORT Fb,CM b

24 EX)

Ntttmqu&maw:qutmdutmqusmqutcqutcdutmau&Wqutmqutmﬂutmqu:m«utm«u:@qutmqwﬁquIWAutm«uIGAUlmqu'mqunmdu:w~u:cqu&mqu:m4Uthl>

-

Ntwqutmqutmqu:mqunmqu:cqu:aau:mqunxqu:mqutmqu:mdutwﬂutwqwtmqu»mqutw«u»&qutwﬁutmqutmqunmqutmqutmqulmqulm«utmqu»muu:qunt»
ELISTING OF $2222ZZZZ2LLINLPMULECT/MACR) PRODUCED ON 31MARBZ AT 17,364,34 o

£0UTPUT BY LISTFILE LN 'STLFAK=10,RPSHITH' ON 16AUG82 AT 10,57.51 USING 1381

DOCUMENT PMULE (?/MACR)
~7

0 LF IR P S.0U.PMULE,FRS/MULE/,LI1

1 RP FB,CM,LG,0J,CT

2 IF STR(XA)=(),GO 18YPASS »
5 IF NOT EXI(XA),G0 1ERROR

4 1UYPASS

5 LO R P S.0ULHMULE .
6 AS *CRU,IR P S.O0U.LANGSYMB) -
7 AS %LPO

8 EN

9 AS *CRO,3R P S,0U.BUILTINS -
10 EN 1

11 IF PRE(xTA),ON X(%TA) .
12 IF PRECALID (AL 29,%(xLI))ELSECAL 29,0) “ =
13 AS WCRU,XA

14 EN 1 =
15 1RETUKN IF HALCIN),GO 1IN .

16 IF HAL(ST)»GU 1ST . .

17 RP mm.n; - -

18 EX -
19 1IN SP x‘eumvr>< .-

20 AS *CR1,%X .
21 RM - -
22 En 2 ;

23 GO 1RETURN - - v ;

24 1ERROR LF 3R P S,0U.PMULE,FRS/ERROR 1/,LI1
25 RP FB,CM

26 EX

27 1ST LF 3R P S,0U.PMULE,FRS/STOPHPED/,LET : - -
28 RP FB,Ci

29 EX ’

30 MULE V1 = DEFECT FIX LEVEL O =
31 ERROR 1 = MULE FILE PASSED AS A PARAMETER DOES NOT EXIST .

32 STOPPED TU ALLOW DEBUG = CORE IMAGE & PERIPHERALS PRESERVED, TYPE RM TO nozq . ._w. . . ol

):.tﬁm._,u*m-utm-u*m«u:mqutmqu&wquxmqutmqu&mqus@_‘wtm._..u:m._.unc...ulmdutmqunm._.u:m«utwqutmdu‘mquanutmqwtmﬂutmdu:m,-ulm._.u‘c._,ulm:t> .. .

| NS
>:mqu*=qu'cquuzqu:mqu.mquuc_unmquimﬁu:c4u:mau.mqu.mqutmqunmqu:mqu:mqu;mquanunmqunmqunu«unc_u-u_u-u.u:u.u-a.u-c.c:c.n,-
. ELISTING OF $Z222TLLLLLLNLJHEADER(TY) PRODUCED ON B8APRB1T AT 13,05.16 3
~ £OUTPUT BY LISTFILE IN ":TLFAK=1U,RPSMITH' ON 16AUGB2 AT 10,57.18 USING 1381
DOCUMENT HEADER(1/)
'PROGRAMY MULE
YERRORLIST?!
YSENDTO? (CMULE,C)

"LEADERS'
kKK

SN =

rttlmqunmqurmqu:mqu:mquthu:un»m-u:cqu:c<un:«u:m«u*mqmtmqu:mqurmqu:mqusmdutmqutmqu:mdutmqutmauimqut&qurm«u:mau»&qu&m:t)

S AMBTINB 3BT 3#BTSAUT SABTSxBT S4BT 3*BTIABTIXBTI*BTI*BTIABTIBT3*BTIXBTInBTINBTINBTIaBTIxBTIABTIABTI#BTInBTINGTIABTINBTINA"
_ £LISTING OF $ZZZZZIZZIZZN.COMMON(15/) PRODUCED ON 20JANB2 AT 17,40.15
£OUTPUT 8Y LISTFILE IN ':;TLFAK=T0.RPSMITH' ON 16AUGB2 AT 10.57.21 USING 1381

DOCUMENT COMMONC15/)

CCOMMONY

*PROCEDURE' DISPLAY ('VALUE''INTEGER');

YPROCEDURE' ERROR HANDLER PG('VALUE''INTEGER','VALUE''INTEGER')]

PROCEDURE' BACKSPACE;

VINTEGER''PROCEDURE" REAV;

VINTEGER'Y'PRUCEDURE" READCHAR;

YPROCEDUNE' WRITETEXT('VALUE''INTEGER')]

YPROCEDURE' PRINT('VALUE""INTEGERY);

'PROCEDURE' SPACESC'VALUE''INTEGER');

YPROCEDUREY HEWLINES

11) YPRUCEDURE' PRINTCHC(Y'VALUE'VINTEGER")}

11 'PROCEOURE' SELECTUUT('VALUE''INTEGER');

12 'PRUCEDUREY SELECTIN ('VALUE''INTEGEK')} “
13 YPROCEVDURE' LEXIS PG;) :
14 'PROCEDURE' INFIX PG;

VXN NS WN=O

u::smqw:mqu:mqu;mqu»mqunmqu»mqu:wqutmqumqu»mqu:mqu;mqu:mqunm«m:mqu:m«u-mquamqu;mqunmau:mqu:mqu:m4u:m<u:mdu'mqu;mqu;cx;>

ARBTIRHTIABTIRBIIABT ST 3BT 3ABTIxuTIABTINBTI*BTINBTInBTSnBTI*BTIXBYINBTINBTIABTINBTIXBTINBTIABTIXBTIRBIINHIIRBIIRGIINRN"™
ELISTING OF $2ZZ2LTLLTIINLMIDOLE(2/) PRODUCED ON BAPRB81 AT 13,05,.27
£OUTPUT BY LISTFILE IN YITLFAK=TU,RPSMITH' ON 16AUGB2 AT 10.58.48 USING 1381
DOCUMENT MIDDLE(2/)
0 "PROGRAM' HMULE
1 'HEGIN?
2 VINTEGER® KEEP CUMPILER SWEET /7 _

Ntnimqu:mdutmquxmduthutm«u»mqm:mdutmqusmau&m«utmau::qurmqutmqutmqutmqutwquimqutaqurGAUtmqutmqu‘wqmtmquanusmqu:mqunwlt)

RE ISR ISPHISHBISRBISIABISRBIIRBISRBISI RN I SRR TSREBIORH I OWBIDRHBIORD IONB I OB IZIRBISABTI3*B I 3BT ISRBYIRBTIIRBTI®BIIRBT S
OF $22221212Z17N.MACROS(52/) PRODUCED ON 3DJULBZ AT 15,%0,23
Y LISTFILE IN "3TLFAK=1U. RPSMITH® ON 16AUGB2 AT 10,59,35 USING 1381

MACROS(52/7)

DEFINE® ELE LITERAL M"O"
DEFINE® ELE OPERAND M"q™
DEFINE® YA PxOQOC M"0"
DEFINE® EXIT M"'GOTO' EXIT LL" &
DEFINE' JCHAK MUREADCHAR" ;
DEFINE® NEW LINE M"eq® ;
DEFIKE® FALSE M“Q" ;
DEFINE® RELAVANT M(Q)"Q<>16 YAKD' @<>=1 PAND' QC>28 *AND' Q<>11 'AND' QCO'LITERAL'CL)I"
DEFINE' TRUE M"q" ; :
DEFINE' REPEAT M(u)"'GOTO!' 6" ;
DEFINE' BACK STEP M"BACKSPACE"
DEFINE' MAME LENGTH M"62" 2
DEFINE' ALPHABETIC M(Q)"O0>=m'L ITERAL'(A) 'AND' Q<='LITERAL'(Z)" ;
DPEFINE® WUMERIC HMCQ)"™Q@>='LITERAL'(0) 'AND' Q<='LITERAL'(9)" ;
DEFINE' INC M(Q1,u2)"0G1:=mQ1402" ;
DEFINE' NON ALPHANUMERIC M(Q)"G>m10 'AND' @<=32"
DEFINE' RETURN M"'GOTO' RETURN LL"
DEFINE' EMPTY M™43" ; .4
DEFINE' DEFAULT 0BJ SIZE #"4" ;
DEFINE' BYTE 2 M(Q)"'BITS'[6,1230" ;
DEFINE' BYTE 1 M(@)"'BITS'[6,0610" ;
DEFINE' BYTE O mM(Q)"'BITS'[6,0JQ" ;
DEFIKNE' OBS TABLE SIZE »"1000" ;
DEFIHE' OBJ STR SIZE M"10000" 2
DEFINE' PROG SIZE mM"10000" 3
DEFINE®' RAT DECLARE M"S" 3
‘DEFINE' 0BJ SIZE M"'8ITS'[8,16)0BJ TAB DG"
DEFINE' 0BJ STK MARK M"'RITS'[16,0)0B4 TAB DG"
‘DEFINME' OSEL M(Q)MSELECT OUT(Q)" ;
'DEFINE' OMAPF M"q"™ 3
'DEFINE®' PTRACE M(Q@1,Q2) "TRACE PC(01,Q2)";
'DEFINE' ONL i "NEWLINE" 2
"DEFINE® OSP M(Q) "SPACES(O)" ;
'"DEFINE® OTEXT M(0) “WRITETEXT(Q)" ;
"DEFINE® OINT F(Q) "PRINT(Q)Y;
'"DEFINE® ICH M "READ CHAR"}
'DEFINE® OCH M(Q) "PRINTCH(Q)";
'"DEFINE® RAT COLON M "(Q¥;
'DEFINE' RAT DOT M "2v;
'DEFINE' ISEL M(Q) “SELECT IN(Q)";
'"DEFINE' TINITF W "1%;
"DEFINE' STOP CHAR M "OLITERAL'(2)";
'"DEFINE® RAT EnD H"16";
'"DEFINE' &AT BRANCH M'"18";
"DEFINE® RAT ST VAL #"1%; . ! y ,
'"DEFINE' RAT ST ADD M™2"; - ' ¢ .
'DEFINE' RAT ST LIT mM"3"; :
'DEFINE' RAT AT H"14"; :
'"DEFINE' RAT CRD ~"18";
'"DEFINE® RAT ORD CRD m “12";
'"DEFINE' RAT FN CALL M"q7%;
"DEFINE' vAL HELD ™M"0";
'DEFINE® ADDR HELD M"q";
'DEFINKE® LIT HELD m"2";
YDEFIKE' HWE™ SIZE ™ "10000";
YOEFINE"™ FUwC STC SIZE ® "25";
‘DEFINE' STACK SIZE ™ "200%;
P COMMENT (AR R AR A T KRR KRR AR AR AR R AR AR AR KRR KR AR AR RR AR R A RARRARA AR R R AR AN
TH1S MACRU HAD TO BE COMMENTED OUY R MADE INTO A PROCEDURE BECAUSE OF THE
INABILITY OF THE CUMPILER TO HANDLE IT = SEE PROCEDURE TRACE PC
*DEFINLE® UPSTACK M "STACK MARK IG :m STACK MARK IG+1;

YIF' STACK MARK 1GDSTACK SIZE #H 'THEN!

'BEGIN?Y

ERROR HANDLER PG(6,""RUNXTIMEXERROR"")?

'END'";
END OF COMMENTED OUT SECTION
KA AR R R KR AR N AR AR KRR AR KRR RI R RARI AR RN AT AR R AR AR KRR RARRRRRARKRA RN R AR)
"DEFINE' RAT DESTACK M"20%;
'PDEFINE' RAT Fr RET M "q9";
SDEFINE® ELE CHAR LIT m "2";
YOEFINE' CHAR LIT 1 DELINMITER M "18":
YDEFINE® CHAR LIT 2 DELIMITER M "23";
"DEFINE' CHAK LIYT LENGTH M "63";
"DEFINE®' RAT ST CHAR LIT M "4";
YDEFIME' ISEL M(Q) “SELECTIN(G)™:
'DEFINEY IF TTY M “gn;
"DEFINE" IF COMPILE W "q";
YODEFINE®' MULE MESSAGE M (01,02) "oxspLAY(OZ);'CODE"BEGIN' SUSWT('LIT'(Q1))'eENp»;

e Yo

RT3*xBT3xBT3x8TInRT 3*BT 3BT 3#BT3wRTIxRTIXBTIABT3*BT3%BTIxBY S4BT I%BT34BTI*RT3xRT3wBTI.BTIxBT3*BTI#BTI#BTInBTI#¢

™~

N»maut:qutzqutmqutzqutcﬂutxqu'mqut:qutrqulzquﬁw4unxdu:wqutmqu»wau»wdusmqutmﬂu»wau»wqu»mqu.mqu:m4ul34utnqu»mqunu4utwqu»t>

~ SLISTING OF 2222222Z112IN.VARIABLES(2B/) PRODUCED ON 4MARSB2 AT 17,04,.12

-

£0UTPUT

DOCUMENT

30
32

AY LISTFILE IN ":TLFAK=10,RPSMITH' ON 16AUGB2 AT 10.53,59 USING 1381

VARTARLES(28/)

TINTEGER'

ELEMENT 1G, 'COMMENT' AN ELEMENT OF MULE 3

ELEMENT TYPE IG, °‘COMMENT® THRE TYPE OF ELEMENT READ ¢ .

IRRELAVAUT SKIPPED BG, 'COMMENT' A FLAG WHICH IS SET TO TRUE IF AN IRRELEVANT CHARACTER WAS READ DURING THE =
LAST READ;

CURRENT LINE IG, 'COMMENT' THE LINE NUMBER IN THE FILE BEING READ?

ORJ TAR WARK IG, 'COMMENT' WHERE WE ARE UP TO IN THE OBJECT TVABLE 3}

MAX 0OBJ TARLE MARK IG, CCOMMENT' WHERE WE ARE UPTO (MAXIMUM) IN THE ORJECT TARLE?

TA PROC PRINT TG» 'COMMENMT' THE NUMBER OF TRACE MESSAGES OUTPUT 2

LATEST PROCEDURE IG, 'COMMENT! THE LAST PROCEODURE CALLED 3

PROG MARK TGy 'COMNMENT' POINTER INTO PROGRAM MEMORY}?

KG, '"COMMENT' GLORAL COUHTER ~ USE CAREFULLY TO AVOID CONCURRENT USE?}

FUNC MEST DEPTH IG,"COMMENTY THE STATIC NESTING LEVEL OF FUNCTION DEFINITIONS)

RUM TIME PROG MARK IG, 'COMMEMT' YHE PROGRAM MEMORY MARKER DURING INTERPRETATIONS

START HERE 1G,'COMMENT® THE PLACE TO START THE INTERPRETATIONS

GTACK MARK IGs, "COMMENT® PUN TIME STACK MARKER?Z

FUNC STC MARK IG, 'COMMENT' THE RUN TIME FUNCTION STACK MARKERS

NEM MARK I1Gs'COMMENT® THE MOMORY MARKER]

CHAR BUFF MARK IG, 'COMMENT' THE CHARACTER RUFFER MARKER 3

IN INTRO BG, °*COMMENT' FLAG SET IF AN INTRODUCTION IS BEING PROCESSEDS

SIZE OF ORJECT 1G» 'COMWMENT' SIZE OF REFERENCED _OBJECT RETURNED FROM "POPADDRESS PG" 3

DUMMY

’ .

"COMMENT' PRESET 2 o -
TCOMMENT! , :
"INTEGER' .

=

L4 -ar

SRYTE' 'ARRAY! .

ORJECT STPING DGLOSOBJ) STR SIZE M],
PROGRAM DGLNEPROG SIZE M), '"COMMENT' PROGRAM MEMORY 3

STACK TYPE LGLUESTACK STZE M],

MEMORY UGLOSNMEMSIZE M),

CHARACTER BUFFER DGL021201, "COMMENT' THE CHARACTERS INPUT BUFFER FOR THE CHRRENT LINE?
puUMMYATLU:21)

4

VINTEGER'Y 'ARRAY'

0ay TAB NGLUURY TABLE SIZE M), YCOMMENT? THE OBJECT TABLE ?
STACK DGLUSSTACK SIZE M],

FUNC MEMORY DGLO:FUNC STC SIZE MJ,

FUNC STACK DGLNgFUNC STC SIZE M),

FUNC NAME DGLUOTFUNC STC SIZE M),

FUNCTION START DGLUSFUNC STC SIZE M]3,

nuMMYIACND:1]

.
4

TCOMMENT' PRESET;
TINTEGER! 'ARRAY!
POWER OF 10 DGCOz6] »
POWER OF 2 PGCOs1S],
pumMmyYPIALOs1)

54 1,10.100,1000,10000,100000,1000000,
55 1,206+8,16,32,64+1284256+512,1024,2048,4096,8192,16384,32768,

56 0 .
57

AwaRBT3ABT3nHT 3BT 3aBT SAHT 3BT 3XBTIxBTINBTSABTINBTIABTI#BTI#BTI#BTIxBTI#BTI#BTIXBTI#BTINEBTIABTIABTIABTIABTIABTI*ATInBRNA

<4

3xRTInBT 3BT 3BT SaBTSRBT 3BT InBT3xBTInBTIABTINBTInBTInBTInBTIaBTIxBTIRBTInBTIABTINBTINBTIXBTINBTI*BTIETI*BTY

OF $2227171112IN.VARIABLES(28/) PRODUCED ON 4MAR82 AT 17,064,112

BY LISTFILE IN ':TLFAK=T0.,RPSMITH' ON 16AUG82 AT 10.53.59 USING 1381
VARTABLES(28/)

YINTEGER'

ELEMENT IG, 'COMMENT' AN ELEMENT QF MULE 2
ELEMENT TYPE IG, 'COMMENT' THE TYYPE OF ELEMENT READ ¢

IRRELAVANT SKIPPED B8G, ‘COMMENT' A FLAG WHICH IS SET TO TRUE IF AN IRRELEVANT CHARACTER WAS

LAST READ; :
CURRENT LINE IG, "COMMENT' THE LINE NUMBER IN THE FILE BEING READ?
0RJ TAR MARK IG, PCOMMENTY WHERE WE ARE UP TO IN THE OBJECT TABLE
WAX 0B8J TABLE MAKK TG, 'COMMENT' WHERE WE ARE UPTO (MAXIMUM) IN THE OBJECT TABLE;
TA PROC PRIWNT IG, *COAAEMT' THE NUMBER OF TRACE MESSAGES OUTPUT
LATEST PROCEODURE IG, 'COMMENT' THE LAST PROCEDURE CALLED
PROG MARK IGs 'COHAENTY POINTER INTO PROGRAM MEMORY;
KGs P'CUMMENT' GLOBAL COUNTER = USE CAREFULLY TO AVOID CONCURRENT USE?
FUNC HEST OEPTH IG,'COMMEHT! THE STATIC NESTING LEVEL OF FUNCTION DEFINITIONSS
RUN TIHAE PROG MARK IG, YCOMMENT' THE PROGRAM MEMORY MARKER DURING INTERPRETATION:
START HERE IG,"COMMENT® THE PLACE TO START THE INTERPRETATION:
STACK “ARK IGs "COMMENT' RUN TIME STACK MARKER?
FUNC STC “ARK IG, 'COMMENT' THE RUN TIME FUNCTIUN STACK MARKER?
MEM (fARK IG,»*COMHENT® THE MOMORY MARKER;
CHAR BUFF “ARK IG, 'COMMENT' THE CHARACTER BUFFER MARKER 3
IN INTRO BG, 'COMMENT' FLAG SET IF AN INTRODUCTION IS BEING PROCESSED;
SIZE OF OJJECT 1G, "COMMAENT' SIZE OF REFERENCED OBJECT RETURNED FROM "POPADDRESS PG"
pUMMY

e

YCOMMENT' PRESET

TCOMMENT!

YINTEGER'

= :

H . 4

'BYTE' 'ARRAY! .
0BJECT STRING PGLO:0OBJ STR SIZE M1, : ' .
PROGRAM DGLUSPROG SIZE “], "COMMENT'! PROGRAM MEMORY ;
STACK TYPE DGLUSSTACK SIZE M1,

MEMORY pGLOIMEMSIZE M], '

CHARACTER BUFFER DGL0:120), "COMMENT' THE CHARACTERS INPUT BUFFER FOR THE CURRENT LINE;
PUMMYA([JU:11]

’

YINTEGER' 'ARRAY!

0BJ TAB nGLUsUBY TABLE SIZE M], YCOMMENTY THE OBJECT TABLE 2
STACK DGLUSSTACK SIZE MJ,

FUNC MEMORY DGLOSsFUNC STC SIZE MI,
FUNC STACK DGLO:sFUNC STC SIZE MJ,
FUNC NAME DGLUsFUMC STC SIZE M1
FUNCTION START DGLO:FUNC STC SIZE ™1,
ouMMYIACfUz1]

’

*COMMENT' PRESET,

*INTEGER' 'ARRAY!

POWER OF 10 D5GLO:6] ,

POWER OF 2 DGCO:1S),

DUMMYPIALY:21]

‘=

1,10,100,1000,10000,100000,1000000,
1s2+608016+32,66,128,2560512,1024,2048,4096,8192,16384,32768,
0

H “ ko

READ DURING THME

BT3xBT3xBT3xBT3xATIXBI34xBTIxBTI*BTIABTI*BTI*BTIABTI*BTI#BTI*BTIABTInBTI#RTI*BTI*BTI*BTIXBTI*BTI*BTI*BTI4BT 31

It 3 ar ™ ¥ M ¥ w T ¥ e e v e s e t e ke e e e v v ot e e sttt w m e = = = - i

"ING OF $ZZZXIIZZIZIN.TRACEPC(18/) PRODUCED ON 29JULB2 AT 17,04,26
'UT BY LISTFILE IN '3TLFAK=10,RPSMITH' ON 16AUGS2 AT 10.58.51 USING 138%

IENT TRACEPC(18/)

0 "PROCEDURE' DUMMY PC; 'BEGIN' 'END' DUMMY;
1 .

2

3 'PROCEDURE' TRACE PC ('VALUE' "INTEGER' TRACE CODE Q, TRACE STRING @)3
4 'AEGIN'

5

6 '"COMMENT' TRACE PROCEDURE SWITCHED BY 'ON' OPERATIONS,IE

? ON 23 PROCEDURE TRACE

8 ON 22 VALUE PRINT TRACE

9 ON 21 STRING PRINT TRACE

10 YIF' TRACE CODE Q=TA PROC M 'THEN' LATEST PROCEDURE IG im TRACE STRING Q}
11

12

13 'IF' CURRENT LINE I6<[29]

14 YTHEN' RETURN M;

15

16 SIF' (L30] 'WASK' POWER OF 2 0GCTRACE CODE Q)) 'DIFFER' POWER OF 2 OGCTRACE CODEQl=D
17 THEN?

18 YBEGIN®

19 YSUITCH! SELECT TRACE SL :=PRGC LL.,

20 VAL PRINT LL.»

21 STRING LIST LL;

22 1GOTO' SELECT TRACE SLLTRACE CODE Q+11;

23

24 PROC LL:

25

26 YIF' TA PROC PRINT IG>?

27 YTHEN? \

28 YHEGIN® :

29 TA PROC PRINT IG := 0; :

30 ONL ™} :

31 "END'; oy .
32 OSP M(1)3 : L
33 OTEXT M(TRACE STRING Q);

34 INC MCTA PROC PRINT I6,1);

35 EXIT M3

36

37 VAL PRINT LL3:

38 :

39 TIF' TA PROC PRINT IG > 4

40 TTHEN' ONL ™3

41 OTEXT M("£VALUEXINX")}

42 OTEXT A(LATEST PROCEDURE IG):

43 USP M(1); .

46 OINT MCTRACE STRING Q);

45 OCH MCTRACE STRING Q)3 .
46 TA PROC PRINT IG = 10’

4“7 EXIT M;

48

49 STRING LIST LL:

59 ONL ®™;

51 OTEXT M("£STRINGXINX™)?

52 OTEXT M(LATEST PROCEOURE I6);

53 0SP M(1);

54 OTEXT M(TRACE STRING Q)7 N .
55 TA PROC PRINT IG :="105 ~ ~ = = T
56 EXIT M}

57

58 EXIT LL:

59 YEND'; s
60

61 RETURN LL:

62 "END'TRACE PC’

63

04

65 YCOMMENT' THIS PROCEDURE SHOULD BE A MACRO BUT THE COMPILER COULDN'T
66 HANDLE IT2

67

68

69 'PROCEDURE' UPSTACK M}

70 'BEGIN'

7 INC M(STACK MARK IG,1):

72

73 'IF' STACK MARK IG>STACK SIZE M

74 THEN' ERROR HANDLER PG(6,"STACKIOVERFLOW");
75 'ENO'S

BT3%BT3xBT3*BTIABTIABTIxdTIxBTInBTIABTIABTI*BTI*BTInBTI*BTIABTInBTI*BTIABTIABTIABTIABTIABTIXBTInBTI*BTIXBT 31

TING OF 32ZZZIZIZZZINERRORHANDLER(15/) PRODUCED ON 24MARBZ AT 19,40.32
PUT BY LISTFILE IN ":TLFAK=10,RPSMITH' ON 16AUG82 AT 11,04,09 USING 1381
MENT ERRORHANDLER(15/)

0
1
2 'PROCEDURE' ERROR HANDLER PG('VALUE® 'INTEGER' ERROR SEVERITY Q,ERROR STRING Q)3
3

4 YCOMMENT!
S PURPOSE

6 OUTPUT ERROR MESSAGES TO THE USER IN THE FORMAT g
7 ERROR NUMBER(FIRST PARAMETER),SPACE,ERROR STRING(SECOND PARAMETER)
8 MACROS
9 OCH M

10 OINT M

11 ONL M

12 OTEXT M

13 OSP M

14 ISEL M

15 IF TTVY M

16 GLOBAL VARIABLES v

17 CHARACTER BUFFER 06 (R)

18 CHAR BUFF MARK IG (R)

19 RESTART LC (E) .

20 LOCAL VARIABLES

KL (LOOP COUNTER)
METHOD

1. THE ERROR SEVERITY CAN BE W (WARNING), E (ERROR) OR R(RUN TIME ERROR)
24 2. ACTION IS TAKEN APPROPRIATE TO THE SEVERITY
25 3. W = MESSAGE GIVEN

NN N
WN =

26 E = MESSAGE GIVEN & COMPILATION STOPPED

27 R = MESSAGE GIVEN & EXECUTION STOPPED

28 ; .

29 '

30 'BEGIN' !

31 YINTEGER' KL; .

32 ONL M} ! o
33 ’

34 'COMMENT' THE ACTION WERE IS DEPENDENT UPON THE SEVERITY OF THE ERROR;
35

36

37 YIF' ERROR SEVERITY Q@ s 'LITERAL'(W)
38 SOR' ERROR SEVERITY Q@ = 'LITERAL'(E)
39 YTHEN®

40 TBEGINY

41

42 TCOMMENT' A COMPILE TIME MESSAGE = PRINT THE CURRENT LINE BEING PROCESSED;
43

4h OTEXT M(“LINEX");

45 OINT M(CURRENT LINE I16):

46 0SP M(1);

47

48 YEOR' KL s® 0 'STEP' 1 'UNTIL' CHAR BUFF MARK IG+1

49 'D0' OCH M(CHARACTER BUFFER DGLKL));

50 OTEXT M("Xm=X");

51 OTEXT M(ERROR STRING Q)}

52

53 YIF' ERROR SEVERITY Q. = 'LITERAL'(E)

54 TTHEN! , o) e B ,
55 'BEGIN" T ST N : . ’ e mmm e
56 ISEL M(IF TTY M);

57 $GOTO' RESTART LC 3

58 TEND';

59 YEND! s

60 TELSE"

61 1BEGIN

62 OTEXT M("RUNXTIMEXERRORY);

63 0SP M(1);OTEXT M("X==X")}

64 OTEXT M(ERROR STRING Q);

65 ONL Mg

66 '6OTO' RESTART LC;

67 RUN TIME PROG MARK IG g® PROG SIZE M ; (TEMPORARY MEASURE)

68 YEND'?
69 ONL M;
70 *END'ERROR HANDLER PG’

kBT 3%BT3xBTI*BTIABTIxBTI#8TIxBTIxBTIxBT3#BTI*BTIxBT 3BT IXBTIABTIXBTIABTIABTIXBTINBTI¥BTI*BTIxBTI2BTI*BTI*BT3

AXBTI*RT3I*BT

@LLISTING OF 22222111L222ZNREADARELCHAR(18/) PRODUCED ON 23JUNB1 AT 19.00,20

£OUTPUT BY LISTFILE IN ':TLFAK=10,RPSMITH' ON 16AUGB2 AT 11,02,26 USING I381

DOCUMENT

VINITNHWN=-T

- e
N =T

-
& w

15
16
17
18
19
20
21
22
23
24
25
26
27
28

30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49
50

29 -

READARELCHAR(18/)

VIMTEGER' 'PROCEDURE' READ A REL CHAR PG}

YCOMMENT'
PHURPOSE

THIS PROCEDURE READS THE INPUT STREAM AND RETIRNS ONLY "RELAVANT"
CHARACTERS. RELAVANT CHARACTERS ARE ALL CHARACTERS BUT SPACES,
NEWLINES««ETC,COMMAS AND SEMICOLONS, A NEWLINE CHARACTER

RECEIVED CAUSES THE LIME COUNTER CHARACTER TO BE INCREMENTED, IF AN
JRRELAVANT CHARACTER IS ENCOUNTERED IN THE INPUT STREAM AND

SKIPPED OVER BY THIS ROUTINE THE GLOBAL FLAG "IRRELAVANT SKIPPED RG"
IS SET TO "TRUE M", THIS IS NEEDED BECAUSE IRRELAVANT CHARACTERS
ARE. USED. TO TERMINATE MULE ORJECT NAMES, EG "USE A" IS 2 NAMES
WHEREAS "USEA" IS ONE NAME, '

GLORAL VARIABLES

IRRELAVANT SKIPPED BG (W)

CURRENT LINE IG (R/W) : ..
CHARACTER BUFFER DG(W)

CHAR HUFF MARK IG (RW) .

LOCAL VARIABLES

CHAR IL (THE CHARACTER READ FROM THE INPUT STREAM)

MACROS

ICH M ..--:
oNL M

NEW LINE M -
FALSE M

RELAVANT M~ ; .
TRUE M

REPEAT M

INC M

STOP CHAR M)

RETURNS .

THE RELAVANT CHARACTER READ FROM THE INPUT STREAM

METHOD

.
”

1.THE FLAG IRRELAVANT SKIPPED BG IS SET TO FALSE M

2.A CHARACTER IS READ FROM THE INPUT STREAM

3,IF IT IS RELAVANT THE CHARACTER IS RETURNED

4,IF IT IS IRRELAVANT THE FLAG "IRRELAVANT SKIPPED BG" 1S SET TO
TRUE M,

5.A NEWLINE CHARACTER WHICH IS READ CAUSES THE CURRENT LINE COUNT TO
BE INCREMENTED,

6oONLY RELAVANT CHARACTERS ARE RETURNED,

7.COMMENTS, IE THOSE DELIMETED BY [,.] ARE SWALLOWED

YREGIN®

*INTEGER' CHAR IL?
PTRACE M(TA PROC M,"#");
IRRELAVANT SKIPPEND RG t= FALSE M}

3aRTINBTIAEB G.::naqu.xqu.mqu:mqu.mqu'mqusmqutmqunmqu.mqu»mqunm«u:m;»m._.u'mqutm«u;..utm«u;:u:m«u;m«u;m«un»»

55 TTHEH' CHAR BUFF MARK 1G :® =1;(JUST IN CASE = BY SOME FLUKE WE OVERRUN THE LINE)

o 50 INC M(CHAR BUFF MARK 16,1); ®
57 CHARACTER BUFFER DGLCHAR BUFF MARK 1G) t= CHAR ILJ
58 :

@ 59 VTCOMMENT' CAUSES AN INSTANT HALT TO OCCUR WHEN THE “STOP CHARACTER" o
ou IS READ, THE REST OF THE LINE IS SWALLOWED SO THAT WHEN
61 THE PROGRAM IS REENTERED THE BUFFERS ARE CLEAN (HOPEFULLY)}

® 62 ®
63
64 *IF' CHARIL®STOP CHAR ™

@ 65 TTHEN? ®
66 YBEGIN'
67

o 68 YFOR' CHAK IL 3= ICH M 'WHILE' CHAR IL <> NEWLINE M o
09 "'oY ; _
70 OnNL M3

o 71 YCOVE' 'BEGIN' ®
72 SUSWT('LITERAL'(ST))
73 VEND 'S

® 74 VEND 'S @
75
76 YIF' RELAVANT M(CHAR IL)

® [&4 YTHEN® h ®
78 THEGIN'
79

® 80 YIF' 'BITS'L1,0)0301m1 *AND' CURKENT LINE 16 >= [29] ®
41 YTHEN' OCH M(CHAR IL);
82 VANSWER' CHAR IL : ’

L 33 VEND'® ®
84 TELSE' .
85 'HEGIN'

o 86 IRRELAVANT SKIPPED BG 3= TRUE ™; T ®
87 ’
88 *IF' CHAR IL ® NEW LINE M -

o 8y 'THEN!]
9u 'geEGIN! . ’
91 INC M(CURRENT LINE 16,1);

L 92 CHAR BUFF MARK IG = =1; - o
93 YEND'S
94

® 95 YIF' CHAR IL ® 'LITERAL'CD) o
96 YTHEN?
97 YBEGIN? ’

o 98 _ Y
99 'YCOMMENT® MULE COMMENTS ARE DELIMITED BY [.eJs THIS CODE SWALLOWS COMMENTS) .
100

® 101 o
102 YFORY CHAR IL g™ ICH M 'WHILE' CHAR IL<>'LITERAL'(])
103 o' .

o 104 YEEGIN' o
105
106 YIF' CHAKR IL® NEW LINE M

® 17 YTHEN' INC M(CURRENT LINE IG,1); @
108 VEND?;
109 YEND';

[] 110 REPEAT M(FETCH CHAR LL): 9
1M YEND'; .
112 'END'READ A REL CHAR PG:

o _ ®

AaaBT S BT IRBTIABTIAB 3RO T IR TIXBTIXBTIABT3#BTIXBTI#BTINOTIAOTIABTIABTINOTIXBTI#BTI#BTIXBTIXNBTIABTInBTI®BTI«BTINET IR
® ®
D [

Mﬁnquwm4u»mqu:nqunmau:mqu::quxmqu;nquscqu»nqu*maunaqu:wqutmqu.mqu;mqu:aqu:mqutmquwcau:mq

@ LLISTING OF 222222122222NFETCHELEMENT(30/) PRODUCED ON BAPRB2 AT 14,23.35

fouTPUT
®

DOCUMENT

CTNTWVI & NN =

25
26
27
2R
29
34

32
33

35
36
37
38
39
40
41
42
43
44
45
L6
67
)
49
51)
51

® & & & & o o6 0o 0o 0o 0o 0 & 0o 0o o o o

34.

AY LISTFILE IN 'sTLFAK=10,RPSMITH' ON 16AUGB2 AT 11.02.59 USING 1381

FETCHELEMENT(30/)

'PROCEDURE" FETCH ELEMENT PG2

' COMMENT "

PIURPOSE
THIS PYOCEDURE 1S RESPONSIRLE FOR READING THE MULE INPUT STREAM
AND TRANSLATING IT INTO YELEMENTS' OF MULE. ELEMENTS ARE COMBINATIONS
OF CHARACTERS WHICH ARE GROUPED INTO NAMES, THE CHARACTER GROUPS ARE
TERMINATED HY EITHER TABULATION CHARACTERS (EG SPACE, NEWLINE), COMMAS,
SEMICOLONS, OR CHARACTERS OF A DIFFERENT ELEMENT TYPE, ELEMENT TYPES
ARE 3.

.= AN ALPHABETIC CHARACTER FOLLOWED BY ALPHARETIC OR NUMERIC CHARACTERS

« A COLLECTION OF NUMERIC CHARACTERS :

e A COLLECTION OF NON=ALPHABETIC AND NON=NUMERIC CHARACTERS
COMPLETELY MUMERIC ELEMENTS REPRESENT LITERAL CONSTANTS (NOTE THIS
PROCEDURE RESTRICTS THE MULE TO INTEGER CONSTANTS ONLY) WHICH ARE
RETURNED INTO THE GLORAL VARIABLES "ELEMENT IG" WHICH IS SET TO THE
CONSTANT VALUE AND "ELEMENT TYPE 1G" IS SET TO “ELE LITERAL M"

TO DEMOTE A COMSTANT VALUE,.

OTHER ELEMEMTS REPRESENT "MAMES" (EG VALID NAMES ARE ANAME,
NAME1,ANOTHERMAME» 3A%=, | ,&m/£)

IN MULE IF AN ORJECT IS USED WITHOUT FIRST REING INTRODUCED THE USE OF

THE NAME AUTOMATICALLY INTRODUCES THE OBJECT. THIS PROCEDURE DEALS WITH

THE INTRODUCTION
GLOBAL VARIABLES

ORJECT TABLE DG (R/W)

FUNC NEST DEPTH IG (R)

IN INTRO BG (R) -

OBJ TAHLE MARK IG (R/W)

OBJECT STRING DG (W)

IRRELAVANT SKIPPED BG (R)

POWER OF 10 DG (R)

ELEMENT IG (W) ’

ELEMENT TYPE 16 (W)

MAX ORJ TABLE MARK IG (R/W)

PROGRAM DG (W)

PROGRAM MARK IG (R/W)
LOCAL VARIABLES

STRING DELIMITER IL (THE STRING DELIMITER USED RY THE USER)

ELEMENT DL (ARRAY CONTAINS CHARACTERS OF ELEMENT BEING READ)

CHAR IL (CHARACTER READ FROM MULE STREAM)

KL (LOOP CHARACTER)

HASH IL (HASHING VALUE INTO THE OBJECT STRING TABLE)
MACROS

0HJ SIZE M (W)

0OBJ STR MARK M (W)

BACK STEP “

NAME LEMGTH M

ALPHABRETIC M

NUMERIC M

TRUE ™

3RBT3INRTIABTSABTIARTIABTIRATINGA

“»

>

5%
56h
57
53
59
Hih
61
62
63

65
66
67
68

70

90
91
92
93
24
9
96
97
9R
Q9
104)
101
102
103
106
195
106
107
108
109
110
111
112
113
116
115
1106
117

ELE UPERAND

RETURN "
EMPTY H
DEFAULY 0BJ SIZ2E M
BYTE 2 ¥
AYTE 1 M
RYTE O M
ORJ TAULE SIZE ¥
OBJ STR SIZE H
PROG SIZE i
RAT DECLARE M
ELE CHAR LITERAL M
CHAR LIT 1 DELIWITER M
CHAR LIT 2 DELIMITER M
CHAR LIT LENGTH M
ICH M
MEW LINE M
PROCEDURES CALLED
READ A REL CHAR PG
ERROR HAMDLER PG
MESSAGES PRODUCED

2
3

TOO MANY NAAES INTRODUCED
NO PROGRAM SPACE LEFT

METHOD .

a'

2.

u.
be

L 1)

| v
RELAVANT CHARACTERS (IE ALL CHARACTERS RUT SPACE, COMMA , SEMICOLON:
AND NEWLINE) ARE READ FROM THE MULE INPUT STREAM, AS THE READ
PROCEDURE 'READ A REL CHAR PG' RETURNS THE RELAVANT CHARACTERS READ
ONLY IT IS NECESSARY FOR IT TO SET THE FLAG 'IRRELAVANT SKIPPED BG'
WHEN AN IRRELAVANT CHARACTER HAS BEEN SKIPPED IMMEDIATELY FOLLOWING
A RELAVANT CHARACTER, THIS PERMITS NAMES TO BE TERMINATED BY AN
IRRELAVANT CHARACTER WITHOUT "SEEING" THE IRRELAVANY CHARACTER,
A MULE ELEMENT 1S READ COMPLETELY AND PACKED CHARACTER BY CHARACTER
INTO A LOCAL ARRAY 'ELEMENT oL' COMMENCING AT ELEMENY *1' OF THE
ARRAY. ELEWMENT 0 OF THE ARRAY CONTAINS THE -CHARACTER LENGTH OF THE

ELEMENT,.

A HUMERIC ELEMENT OR A CHARACTER STRING-LITERAL WHICH IS READ IS "RETURNED",

A NON=HUMERLC ELEMENT WHICH IS READ IS TREATED AS A "NAME". IF THE NAME
1S KHOWNW ALREADY TO THE MULE ENVIRONMENT (ENFRY EXISTS IN THE OBJECT
STRING TABLE) ITS ORJECT TABLE JNDEX IS "RETURNED", IF IT IS NOT

KNOWN TO THE MULE ENVIRONMENT THE OBJECT IS .INTROOUCED AND ITS OBJECT
TABLE INDEX (NEWLY CREATED) IS “RETURNED",

YTHEGIN' .
YINTEGER® "ARRAY' ELEMENT OLCLOSCHAR LIT LENGTH M)}
TINTEGER' CHARIL,KL,HASH IL,STRING DELIMITER ILJ
PTYRACE M(TA PROC M,"FETCHELE")]

YCOMMENT' READ THE ELEMEN

.
.

CHARIL t® READ A REL CHAR PG
ELEMENT OLLT1):= CHAR IL?

KL

= 25

YIF' ALPHABETIC M(CHAR IL)
YOR' MUMERIC M(CHARIL)
"THEN'

YBEGIN'

TCOMMENTY CASE OF ELEMENT IS AN ALPHA=NUMERIC NAME OR A LITERAL VALUE

.

a et m A e miiammmma AN ARN PN

9 I 0

‘9

® ¢ 0 © ¢ © ¢ o

122
123
124
125
126
127
128
129
134
131

132

133

134
135
136
137
138
139
140
141
142
143
144

145

146

147
148

149

150

151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
163
169
170
171
172
173
176
175
176
1?7
178
179
1380
181

182
183

184
18K

tEN

ourTiLL
TEND!

TELSE!
'BEGIN

YCOMMENT?

"COMMEMT' CHECK FIRST FOR CHARACTER STRING LITERAL}

STR
Y1F
'oRr
'TH
"BE

CCOMMENT?

YCOMMENT!

EGIN

YIF! IRRELAVANT SKIPPEL BG = TRUE ™M
YTHEN' 'GOTO' OUT1 LL:

ELEMENT ODLLKL]:= CHAR IL?

INC M(KL,1)2

ne;

.
.

CASE OF ELEMENT IS AN "OPERATOR" TYPE NAME (IE NON ALPHA=NUM=NUMERIC)

OR A CHARACTER STRING LITERALS

ING OELIMITER IL = CHAR IL;

' STRING DELIMITER IL ® CHAR LIT 1 DELIMITER M
' STRING DELIMITER JIL = CHAR LIV 2 DELIMITER M ;

EN'
GIN®

THIS IS A CHARACTER STRING LITERAL:

FETCH THE STRING AND RETURN IT:
KL = 1;)
"FOR' CHAR IL = ICH M 'WHILE' CHAR I o

ELEMENT b [KL) :m CHAR IL -
INC M(KL,1)2

YIF' KLDCHAR LIT LENGTH M

STRING DELIMITER IL

'THEHW' ERROR HANDLER PG('LITERAL'(E),"CHARACTERXSTRINGXLITERALXISXTOOXLONG")S

"IF' CHAR IL ®» NEW LINE M
YTHEN' INC M(CURRENT LINE IG,1)3
YEND';

ELEMENT DLLDJ = KL=17 (CHARACTER STRING LENGTH)

ELEMENT TYPE 1G :m ELE CHAR LIT M}
ELEMENT IG 2m YLOCATION' (ELEMENT DLCOY)?
RETURN M}

YEND';

.nOw. CHAR IL :® READ A REL CHAR PG 'WHILE' NON ALPHA NUMERIC M(CHARIL)
00
"BEGIN'

'IF' IRRELAVANT SKIPPED BG®TRUE M
"THEN' 'GOTO' oUT2LL?

ELEMENMT PLLKL] sw CHAR IL;

INC M(KL,1):

TEND'

our2LL:

YEND'?

RArrY CeTrCD Mo

@ O 9 e

® @& ¢

187 ELEMENT DLLU) = KL=1;

188

149 YCOMMENT' AT THIS STAGE THE ARRAY YELEMENT DL' IS SET UP SUCH
19 THAT ELEMENT=0 IS THE CHARACTER LENGTH OF THE ELEMENT AND ELEME
191 NHT=1 TO

192 ELEMEMT=N CONTAIN THE CHARACTERS OF THE ELEMENT]

193

194 :

195 YIF' NUMERIC M(ELEMENT DL[1])

196 YTHEN?

197 *BEGIN'

198

199 YCOMMENT' CASE OF A NUMERIC CONSTANT BEING RETURNED?

200

201 KL = ELEMENT DLCOJ+1;

202 ELEMENT JG tw 02

203

204 YFOR' KL :w KL=} 'WHILE' KL > O

205 'po?

206 "BEGIN'

2u? ELEMENT IG :m ELEMENY IG¢POWER OF 10 DGLELEMENT DLLO)=KLI®ELEMENTOLIKL]?Z
278 YEMD'; .

200 ELENENT TYPE IG :w» ELE LITERAL M}

214 RETURN M2

211 TEND'

212 YELSE'

213 "HBEGIN'

214

215 'COMMENT' THIS IS THE COMPLEX PART OF THE PROCEDURE WHERE A "NAME" IS
216 T0

217 BE RETURNED, FIRSTLY IT IS NECESSARY TO SEARCH THE OBJECT TA
218 ALE TO SEE IF .

219 THE MAME HAS REEN INTRODUCED ALREADY}

220

221 HASH IL := 0; (WORK OUT THE HASHING VALUE = CURRENTLY NO HASH ONLY A
222 LINEAR

223 SEARCH) T

224

225 SEARCH FOR NAME LL: o

226

227 "IF' OBJECT STRING DGLHASH IL) <> EMPTY M

228 YTHEM?

229 THEGIMN'

230

231 'COMMENT' COMPARE STRING TARLE WITH THE ELEMENT NAME STORED IN ELE
232 MENT DL? ’

233

236

235 *FOR' KL :® 0),KL+1 "WHILE' KL <= OBJECT STRING DGLHASH ILJ
236 'ho?

237 YHEGIN'

238

239 'IF' ELEMENT DLELKL] <> ORJECT STRING DGCKL+HASH ILJ]
240 "THEN?®

241 "HEGIN?

242

243 'COMMENT' THE NAME IS NOT THE ELEMENT SO TRY THE NEXT NAME;

244

245 HASH TIL 3w HASH IL+4+0BJECT STRING DGCHASH ILIS
2406 REPEAT M(SEARCH FOR NAME LL);

Y4 YEND';

248 YEND'?

249

250 'COMMENT? THIS 1S THE ELEMENT NAME S0 FETCH THE OBJECT TARLE INDEX

e e e e o

)

253
254
255
256
257
258
259
260
261
262
263
266
265
266
2o?
268
269
ern
271
272
273
274
275
274
277
278
279
28N
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
306
305
306
37
308
309
310
311
312
313
314
315
316

-a

e e s o e e e & Wt s B e 4 3 FoPod TP gheba i a2 A Sy e £ s e Y 4 s e i 8 =

16”710
"ELE OPERAND M";

HASH IL 3@ HASH IL +0BJECT STRINGOGLCHASH ILI+1}
ELEMENT IG t® OBJECT STRING DGLHASH ILI#*64%64+0BJECTSTRING DGLHASH uroaunmaoom;mndudnuznomn

HASH IL+2)?
ELEMENT TYPE IG t= ELE OPERAND M;

YIF' IN INTRO BG <> FALSE M 'AND' ELEMENT IGCDRAT DOT M 'AND' ELEMENT IG<DRAT COLON M
YTHEN' ERRORHANDLER PG('LITERAL'(W),

TINTRODUCTIUNXOFXANXORJECTXWHICHXHASXBEENXINTRODUCEDXPREVIOUSLY")?
YEND?
YELSE'
*BEGIN'

*COMMENT' THIS IS THE CASE WHERE THE NAME IS NOT KNOWN AND WENCE T

ORJECT MUST HE DECLARED?

TCOMMENT' CHECK THAT THE STATIC wcznducz NESTING DEPTH IS NOT > O
AS DECLARATIONS ARE NOT PERMITTED IF THIS IS THE CASE}

Y1F' FUNC NEST DEPTH IG > 0
YTHEN' ERROR HANDLER PG('LITERAL'(E),

“NAMESXCANNOTXREXINTRODUCEDXINXAXNESTEDXFUNCTIONXDEFINITION")

YCOMMENT' IF THIS IS NOT AN INTRODUCTION (IE A "USE ..e") WARN THE
MAN THAT WE ARE INTRODUCING AN ORJECT?

"IF' IN INTRO BG = FALSE M
YTHEN' ERROR HANDLER PG('LTITERAL'(W),"INTRODUCTIONXOFXANXOBJECTXASSUMED")? -

YCOMMENT' A HASHING METHOD HAS NOT BEEN woxz=r>4mo AS YEY AND THER
EFORE Te

THE CODE WHICH NEEDS TO ALTER THE VALUE OF HASH IL TO ENS
URE THAT THE s

OBJECTS STRING DOES NOT CROSS . HASHING BOUNDARY IS NOT P
RESENT, AT THE

MOMENT A SIMPLE LINEAR SEARCH nm USED = THIS WILL BE CORR
ECTED, 'HASH IL!'

NOW POINYS AT THE NEXT FREE OBJECT STRING TARLE LOCATION}

0BJ SIZE MCMAX ORJ TABLE MARK 1G)3i= DEFAULY OBJ SIZE MJI(FILL IN OB

JECT SIZE)

0BJ STR MARK MCMAX 0BJ TABLE zhzx 16)1m HASH ILSC(AND THE PLACE WHE

RE THE

NAME WILL BE KEPT AS AN INDEX INTO THE OBJECT STRING TABLE,. USE

THE NEXT

FREE OBJECT TABLE mroqv

"COMMENT' NOW PUT THE NAME OF THE OBJECT INTO THE STRING TABLES

'"FOR' KL 1@ 0,KL+1 'WHILE' KL <= ELEMENT 0LCOJ
'PO' OBJECT STRING DGLHASH IL+#KL)gm ELEMENT DLCKLIZ

'COMMENT' AND NOW LINK BACK TO THE OBJECT TABLE = INTO 3 BYTES WIT
H THE

MOST SIGNIFICANT BYTE FIRST}
INC MCHASH IL,ELEMENT DLLOJ+1): !

SN T

~

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
340
350
351
352
353

s emee e . we - o cea e e [L k£t S e 189 01308 St .

OBJECT STRING OGLHASH TIL+2) fw BYTE O M(MAX 0BJ TABLE MARK

YCOMMENT' PLANT CODE TO DECLARE THE OBJECT)

PROGRAM DGLPROG MARK 1G] i® RAT DECLARE M2

PROGRAM DGLPROG MARK IG+1) 3= BYTE 2 M(MAX 0BJ TABLE MARK 16G)}
PROGRAM DGLPROG MARK IG+2] 1w BYTE 1 M(MAX 08J TABLE MARKIG)}
PROGRAM DGLPROG MARK I1G+3)tw BYTE O M(MAX 0BJ TABLE MARK IG)J
INC M(PROG MARK IG,4);

'IF' PROG MARK IG > PROG SIZE M
"THEN' ERROR HANDLER PG('LITERAL'CE),"NOXPROGRAMXSPACEXLEFT")}

YCOMMENT' NOW SET UP THE RETURN VALUES = FIRSTLY “ELEMENT IG" IS §
ET TO
THE OBJECT TABLE INDEX OF THE OBJECT AND "ELEMENT TYPE IG" IS SETV
TO "ELE OPERAND M";

ELEMENT IG g= MAX OBJ TABLE MARK 16}
ELEMENT TYPE IG t= ELE OPERAND M}

YCOMMENT' AND FINALLY TIDY UP, FIRSTLY INCREMENT THE "MAX OB TABLEMARK IG"
AND THEN CHECK FOR OVERFLOW OF THE OBJECT TABLE AND OBJEC
T STRING TARLE}

INC M(MAX OBJ TABLE MARK 1G,2);}

"IF' MAX 0BJ TABLE MARK IG > O0BJ TABLE SIZE M

'"OR' HASH IL+2 > 0OBJ STR SIZE M

'THEN' ERROR HANDLER PG('LITERAL'(E),"TOOXMANYXNAMESXINTROOUCED")}
YEND'? :
YEND?Y; . .

RETURN LL: - -
YEND'FETCH ELEMENT PG? .

»t»tmdutrqutmqutaqutmqutwdu&wqu*aqutaqutmqutm«utm«%tmqutwqu&mdutmdwtmdu’m«utwdutmqutmqutmqwtwqu»cdutwdutwqutmqutmquwmtlr

M

SAH I SABISNBTSABTIABTIRBTINBTSHEISABIINH | SRB I SRB I ORB I SXB I SRETIRBTIABTIXBTIABTIRBIONY IORDIINBIITHIINBIIXOIINT
TING OF 322ZZII211ZIN.STACKPG(8/) PRODUCED ON 20JAN82 AT 19,03,.51
PUT BY LISTFILE IN *3TLFAK=T10.,RPSMITH' ON 16AUGB2 AT 10,59.57 USING 1381

MENT STACKPG(8/)

OPERAND TYPE Q (THIS IS THE VALUE OF THE INSTRUCTION TO BE USED IN THE
STACK OPERATION OF THE MULE MACHINE)

0

1

2 'PROCEDURE' STACK PG('VALUE' 'INTEGER' OPERAND TYPE Q);

3

4 YCOMMENT!

5 PURPOSE

6 TO PLANT CODE TO STACK THE OPERAND HELD IN "ELEMENT 16",
7 PARAMETERS

8

9

10 GLOBAL VARIABLES

1" ELEMENT 1IG (R)

12 PROG MARK IG (RW)
13 MACROS

14 INC M

15 BYTEOQ ™

16 BYTET M

17 BYTEZ2 W

18 LOCAL VARIABLES

19 LOOP END IL (LOOP CONTROL VARIABLE)

20 PROCEDURES CALLED

21 ERROR HANOLER PG

22 MESSAGES PRODUCED

23 3 NOR PROGRAM SPACE LEFT

24 METHOD

25 1, THE STACK INSTRUCTION IS PUT INTO PROGRAM MEMORY
26 2. THE OPERAND IS PUT INTO MEMORY

27 3. MEMORY IS CHECKED FOR OVERFLOW !

28 5 :

29 :

30 'BEGIN' .o, .

31 YINTEGER' KL,LOOP END ILZ : i ;
32 PROGRAM DGLPROG MARK IG] := OPERAND TYPE Q@

33

34 YIF' OPERAND TYPE Q@ < &4

35 YTHEN®

36 YBEGIN'

37 PROGRAM DGLPROG MARK IG+1] := BYTE2M(ELEMENT 16)3
38 PROGRAM DGLPROG MARK IG+2] := BYTEIM(ELEMENT I6);
39 PROGRAM DGLPROG MARK IG+3] := BYTEOM(ELEMENT IG);
40 INC M(PROG MARK IG,4);

41 YEND!

42 YELSE'

43 YBEGIN'

44

45 "COMMENT' STACKING A CHARACTER STRING LITERALZ -
4é :

47 INC M(PROG MARK I1G,1);

48 LOOP END IL :=[ELEMENT IGI+ELEMENT 163 ("ELEMENT IG" POINTS

49 AT THE STARTING LOCATION OF THE STRING AT WHICH THE CHARACTER
50 STRING LENGTH IS STORED)

51

52 TFOR' KL := ELEMENT IG 'STEP' 1 'UNTIL' LOOP END IL

53 'po! _ _ o o , _
54 'BEGIN'

55 . PROGRAM DGLPROG MARK IG] w» ([KL]; ’
56 INC M(PROG MARK IG,1);

57 YEND';

58 P

59 YIF' PROG MARK IGDPROG SIZE M

60 "THEN' ERROR HANDLER PGC('LITERAL'CE),"NOXPROGRAMXSPACEXLEFT")}

61 'END';

62 YEND'STACK PG

BT 3%BT3%xBT3#BTI*BT3ABT34RTIXBTIABTI*BTI*BTIxBT3xBT3xBT3XBTI*BTI*BTI*BTIxBTIABTIXBTI*BTIXBTIABTIxBTIxBTInET

ARBT3alTSnBTIaBTSwBTInBT 3BT 3ABT SxBT 3wt T3%BT3nBT3ABTIABTI*BTINBT3nBTIABTIXBTIABTInBT 3BT IABTInBTIRBTIABTINBIIxBTI*ETInn

ELISTING OF 3TZZ22ZZZILVLIN.FUNCTIONCALL(S5/) PRUODUCED ON 24AUGB1 AT 18,54,58

£0UTPUT

DOCUNENT

f=4

CEXNT VSN =

21
22
23
24
25
20
27
28
29

BY LISTFILE IN "STLFAK=T1URPSMITH' ON 16AUGH2 AT 11,06.710 USING 1381

FUNCTIONCALL(S/)

'PROCEDURE' FUNCTIUN CALL PG3

YCOMMENT*
PURPOSE
DEALS WITH THE MULE FUNCTION CALL OPERATION
GLOBAL VARIAHLES
PRUGRAM DG (u)
PROG MARK IG (RW)
MACROS
RAT FN CALL ™
INC 1
PROG SIZE M
PHOCEDURES CALLED)
ERROR HANDLER PG ’

MESSAGES PROLUCED) -

3 N0 PROGRAM SPACE LEFT
METHOD .
JUST PUTS THE FUNCTION CALL INSTRUCTION INTO PROGRAM MEMORY
“ .
'BEGIN' . .
PTRACE M (TA PROC M,"FUNCCALL");
PROGRAM DGLPROG MARK 1G] 3= RAT FN CALL M} -
INC M(PROG MARK I1G,1);

TIF' PRUG MARK IG > PROG SIZE M
"THEW' EHRUR HAWULER PGC'LITERAL'(E)»"NOXPROGRAMXSPACEXLEFT")}
YENDYFUNCTION CALL PG

ARNNBTIXBT 3BT 3xBTEWBTIxBT3nBT SABTInBTInNBTINBT 3BT I*BTIxATIRBT3ABTIABTIABTINBTIABTINBTIRBTINBTIABTIABTIBTIABTIABTInBNRA

C

CELISTING OF $Z2ZZZLLLLLINJINFIXPG(13/) PRODUCED ON 17MAREZ AT 13.34.,08

£OUTPUT BY LISTFILE IN 'V:TLFAK=10,RPSMITH' ON 16AUGH2 AT 11,01.07 USING 1381

DOCUMENT

CXNOWVMET VW=D

29
3U
31
32
33
34
35
36
37
38

40
41
42
43

45
46
Y4
48
49
50
51
52
53

INFIXPG(13/)

YRECURSIVE' INFIX PG}

TCOMMENT®
PURPOSE
DEALS WITH THE MULE INFIX STACKING OPERATION
GLOBAL VARIABLES
ELEMENT IG (KW)
ELEMENT TYPE IG (RW)
LOCAL VARIABLES
ELE IL (STORE FOR ELEMENT 16)
FINAL ELE IL, FINAL ELE TYPE IL (THE CLOSING OPERATOR, IE
THE CLOSE ROUND BRACKET IN THE CASE OF (A+B) =
THE THIRD OPERATOR IN THE CASE OF (A+Bteawee) ETC)
MACROS
ELE OPERAND M
RAT AT i -
RAT CRD M
RAT ST VAL i : T

REPEAT M .

RAT URD CRL M
PROCEDURES CALLED '

LEXIS PG C(RECURSIVELY) ~

FETCH ELEMENT PG

FUNCTION CALL PG

STACK PG

ERROR HANDLER PG
MESSAGES PROVUCED

1 SYHNTAX ERROR = UNKNOWN ELEMENT ,,

7 THE OPERATOR IS NOT VALID

METHOD
1¢ THE INFIX STACKING OPERATION IS OF THE FORM "(OPERAND1 OPERATOR OPERAND2)"

WHERE BUTH OPERAND?1 AND OPERAND2 CAN BE INFIX STACKING
OPERATIUNS THEMSELVES
2. LEXISPG IS CALLED RECURSIVELLY TO SORT OUT OPERAND1, IV MAY CALL
"INFIX PG"™ AGAIN,
2A. THE OPERATOR WAY BE A FUNCTION CALL IN WHICH CASE IT IS NOT THE
THE INFIX OPERATOR AND “LEXISPG" MUSRT BE CALLED AGAIN
TO FIUD THE UPERATOR = AND SO ON,
3, THE UPERATOR MAY BE A SPECIAL SYMBOL,EG +s=s%,//,m=mf OR A FUNCTION
NAME, IT IS FETCHED, VIA "FETCH ELEMENT PG",AND CHECKED FOR VALIDITY,
4o "LEXIS PG" IS CALLED AGAIN TO DEAL WITH OPERANDZ,

.
’

‘BEGIN'
YINTEGER' ELE ILoFINAL ELE JL,FINAL ELE TYPE ILZ

YCOMMENT! .
CALL "LEXIS PG" TO CAUSE STACKING OF THE FIRST OPERAND WHETGER IT IS
AN INFIX UPERATION OR NOT3

LEXIS PG;

INFIX OPERATOR LL:

Nnmﬁutmqmtmqunmdmt:quimqutxqu»xquamdu*mqutuau'mqutm«uicquﬁm«ulmquimqutm«u:mduum«utwqut04Utmqu:mqutmqutmqunmqulmqurmqu&tb

-t

~

55 YCOMMENT' FETCH FHE OPERATOR;

56 \
57 FETCH ELENENT PG}

58

50 TCOMMENT' CHECK FOR VALIPITY;

60 :

61

62 DIADIC AND RHS LL: .

63 "IF' ELEMENT TYPE 16 <> ELE OPERAND M

64 '0R' ELEMENT IG = RAT AT M

6% YTHEN!

66 THEGIN® .

67 ERROR HANDLER PG('LITERAL'CE),"THEXOPERATIONXISXNOTIVALID')S
68 YEND®

69 YELSE'

70 TREGIN'

71

72 'COMMENT' CHECK TO SEE IF ITS A FUNCTION CALL OPERATOR AND IF SO
73 CALL THE FUNCTION CALL HANDLING PROCEDURE ("FUNCTION CALL PG") AND TRY

74 AGAINS

75

76

7 *IF' ELEMENT IG = RAT ORD CRD M
’8 YTHEN!

(44 *BEGIN?

80 FUNCTIOMN CALL PG’

81 REPEAT MCINFIX OPERATOR LL)3
82 YEND!

835 'ELSE''IF' ELEMENT IG = RAT CRD M 'THEN' 'BEGIN'.

864 'COMMENT' THIS IS THE CASE OF A SINGLE OPERAND SURROUNDED BY BRACKETS,EG
85 (X) OR (X()) IMN WHICH CASE A RETURN IS PERFORMED 3

86 RETURN ™M}

A7 'END'; .

88

89 YCOMMENT' REMEMBER THE FETCHED ELEMENTZ

9

1 ELE IL t= ELEMENT 16} —
92

93 YCOMMENT' STACK THE SECOND_OPERAND VIA "LEXIS PG":
94

95 LEXIS PG?

96

97 INFIX END LL:®

93

99 YCOMMENT®' FETCH NEXT ELEMENT = IT COULD BE THE CLOSING ROUND BRACKET
100 , A FUNCTION CALL OPERATOR OR ANOTHER OPERATOR ,EG A4B4C....

101 SO IF IT IS NOT THE PROGRAM IS IN ERROR;

102

103 FETCHELEMENT PG/

1046

105 YCOMMENT' CHECK TO SEE IF ITS A FUNCTION CALL OPERATION AND IF SO

104 CALL THE FUNCTION CALL HANDLING PROCEDURE ("FUNCTION CALL PG") AND TRY
107 AGAIN FOR THE CLOSED ROUND BRACKET?

108

109

110 YIFY ELEMENT 1G = RAT ORD CRD M
111 YTHEN?

112 "HEGIN'

113 FUNCTION CALL PGS

114 REPEAT MCINFIX END LL)?

115 TENDY?

116 FINAL ELE IL 3= ELEMENT 167
117 FINAL ELE TYPE IL = ELEMENT TYPE IGJ

121 ELEAENT 16 s= ELE IL 7

(o 122 ELEAENT TYPE IG tw ELE OPERAND M3
125 STACK PGCRAT ST VAL ™): :
124 FUNCTIOH CALL PG}

o 125 'IFY FINAL ELE ILCDRAT CRD M YTHEN!
126 'REGINH!
127 YCOMMENT' THMIS 1S THE CASE OF ANOTHER OPERATOR FOLLOWING, EG A+B4CwDJ
() 128 ELEMENT IG s®» FINAL ELE IL?
129 ELEMENT TYPE IG tm FINAL ELE TYPE ILJ
130 REPEAT M(DIADIC AHD RHS LL)/;
~ 131 'EnND';
132 YEND';
133 RETURN LL:
~ 136 "END'INFIX PG/

Ntttnqwtzqu:mauthm»:ﬁutmdut:ﬂutmqm»34utmqutmqutmqutmqmtantmdutmdutmqutwqutmqutmdutwdutmqutwdutmdutmdutwqmtmdutmﬂu»w:t)

r—~

TING OF 3Z2Z22Z21IZIN.ENDFUNCTIOND(8/) PRODUCED ON 24AUGBT AT 18,57.08
PUT BY LISTFILE IN ';TLFAK=10.RPSMITH' ON 16AUG82 AT 10,53.01 USING I381

MENT ENDFUNCTIOND(8/)

-

'PROCEDURE® END FUNCTION DEF PG

'COMMENT!
PURPOSE
TO MARK THE END OF A FUNCTION DEFINITION, WHAT HAS BEEN GENERATED
TO DATE IS A BRANCH TO ZERO AT THE START OF THE FUNCTION, THE PROGRAM
ADDRESS OF WHICH IS REMEMBERED IN "FUNCTION START IG". THE BRANCH TO
ZERO MUST BE CHANGED TO A BRANCH TO THE CURRENT PROGRAM MEMORY LOCATION
10 AND A STACK OF THE FUNCTION START LOCATION MADE,
11 GLOBAL VARIABLES
12 START HERE I6
13 FUNCTION START DG (RW)
14 FUNC NEST OEPTH IG (R/W)
15 PROG MARK IG (RW)
16 ELEMENT IG (W)
17 ELEMENT TYPE IG (W)
18 LOCAL VARIABLES
19 REMEMBER PROG MARK IL (MEMORY FOR :THE PROGRAM MEMORY MARK)

CAXNOWVNST WS

20 MACROS
21 ELE LITERAL ™ .
22 INC ™

23 RAT FN RET ™

24 RAT ST LIT &

25 PROCEDURES CALLED

26 ERROR MANDLER PG
27 STACK PG

28 MESSAGES PRODUCED

29 6 FUNCTION END ENCOUNTERED WITHOUT A FUQCTION BEGIN

3

30 METHOOD

31 1. A CHECK IS MADE ON WHETHER A nuucrlon DEFINITION IS BEING

32 PROCESSED , IF NOT THE PROGRAM IS°IN ERROR,, ‘

33 2. THE BRANCH TO ZERO AT THE PROGRAM MEMORY LOCATION DENOTED BY THE STACK ITEM
34 “FUNCTION START DG" IS CHANGED TO A BRANCH TO THE CURRENT MEMORY

35 LOCATION,

36 2A. A FUNCTION RETURN INSTRUCTION IS PLANTED BEFORE THE STACK INSTRUCTION

37 3. A STACK INSTRUCTION IS PLANTED USING THE FUNCTION START ADORESS AS

38 ITS OPERAND,

39 4, THE FUNCTION STACK IS "DOWN"ED TO DENOTE A REOUCTION IN THE FUNCTION NESTING LEVEL
IV)

41
42 'BEGIN' ‘
43 'INTEGER' REMEMBER PROG MARK IL;
64
45 TIF' FUNC NEST DEPTH IG6 < O }
46 YTHEN!?
47 'BEGIN'
48 ERROR HANDLER PG('LITERAL'(E),"FUNCTIONXENDXENCOUNTEREDXWITHOUTXAXFUNCTIONXBEGIN")
49 YEND®
S0 YELSE!
51 'BEGIN'
52
53 YCOMMENT' PLANT A FUNCTION RETURN;
54
5§ PROGRAM DGLPROG MARK IG] := RAT FN RET M;
56 INC M(PROG MARK 1G,1);
57 REMEMBER PROG MARK IL :® PROG MARK 163
58 PROG MARK IG 3= FUNCTION START OGLFUNC NEST DEPTH I61;
59 ELEMENT I6 :® REMEMBER PROG MARK IG3 - o -
60 ELEMENT TYPE IG :m ELE LITERAL M}
61 STACK PG(RAT ST LIT M)3(PUT CURRENT PROGRAM MEMORY LOCATION INTO “BRANCH AROUND™ CODE)
62 FUNCTION START DGLFUNC NEST DEPTH IG] :m PROG MARK IG+1;
63 (UPDATE FUNCTION STACK TO POINT AT THE FUNCTION START NOW AND
64 NOT THE BRANCH AROUND THE FUNCTION)
65 PROG MARK IG s® REMEMBER PROG MARK ILJ(RESTORE THE PROGRAM MEMORY MARKER)

66 'COMMENT' TELL THE INTERPRETER ("INTERP PG") WHERE TO START,
67 IE AFTER THE FUNCTION DEFINITIONS;
68 START HERE IG = PROG MARK 167

69 ELEMENT IG := FUNCTION START OGCFUNC NEST DEPTH I61 ;

70 ELEMENT TYPE IG := ELE LITERAL ™3

71 STACK PG(RAT ST LIT M);(STACK THE FUNCTION START ADDRESS & THEN CLEAN UP)
72 FUNC NEST DEPTH IG tm FUNC NEST DEPTH = 13

73 YEND*

74 YEND'END FUNCTION DEF PG’

BT3ABTIxBT 32T I%BTIABTI#BTINBTInBT3*BTI#B8TI4BTIABTIxBTI*BT 3BT IABTIxBTIxBTIABTInBTIXBTIABTI#xBTInBTIABTIATI

STING OF $ZZZ2ZZILZ2IMFUNCTIONDEFP(7/) PRODUCED ON 24AUGBT AT 18,.58,.26

TPUT BY LISTFILE IN 'sTLFAK=T10.RPSMITH' ON 16AUGB2 AT 10.52.19 USING 1381

JMENT FUNCTIONDEFP(7/)
0
1
2 'PROCEDURE' FUNCTION DEF PG}
3
4 TCOMMENT®
5 PURPOSE
6 THIS PROCEDURE IS CALLED WHEN THE "FUNCTION" LANGUAGE SYMBOL IS
7 ENCOUNTERED. FUNCTIONS ARE ANONYMOUS IN MULE & WENCE THEIR
8 VALUES NEED TU BE ASSIGNED TO AN INTRODUCED IDENTIFIER, THIS
9 PROCEODURE CAUSES A BRANCH AROUND THE ACTUAL FUNCTION CODE TO BE

10 GENERATED AND REMEMBERS THE START ADDRESS OF THE FUNCTION,
11 GLOBAL VARIABLES

12 FUNCTION START 0G (W)

13 FUNC NEST DEPTH IG (R/W)
14 PROG MARK IG (RW)

15 PROGRAM DG (W)

16 ELEMENT IG (W)

17 ELEMENT TYPE IG (W)

13 LOCAL VARIABLES

19 ELE IL (ELEMENT READ FROM THE MULE STREAM)

2V MACROS

21 RAT END ™

22 ELE LITERAL M

23 RAT BRANCH H

24 RAT ST LIT M

25 INC M

26 PROCEDURES CALLED

27 ERROR HANDLER PG 'LITERAL'(E)

28 FETCH ELEMENT PG :

29 STACK PG 1

30 MESSAGES PRODUCED

31 5 NESTED FUNCTION DEFINITIONS ARE NOT PERMITTED

32 METHOD i

33 2. THE CURRENT PROGRAM MEMORY MARK IS USED TO REMEHBER THE START

34 LOCATION OF THE FUNCTION,

35 3. THE BRANCH AROUND THE FUNCTION CODE IS GENERATED,

36 2

37

33 'BEGIN'

39 PINTEGER' ELE ILJ

40

41 INC M(FUNC NEST DEPTH 16G,1);

42 YIF' FUNC MNEST DEPTH IG > FUNC STC SIZE M

643 'THEN?

4i 'BEGIN®

45 ERROR HANDLER PGC'LITERAL'(E),"NESTEDXFUNCTIONXDEPTHXEXCEEDED")
46 YEND! -
47 YELSE!

48 YBEGIN!

49 FUNCTION START OGLFUNC NEST DEPTH IG] := PROG MARK 16

50 (THIS IS TO REMEMBER WHERE THE FUNCTION STARTS IN MEMORY = EXCEPT THAT
51 THE FUNCTION STARTS AFTER THE BRANCH WHICH IS ABOUT TO S8E PLANTED)
52

53 YCOMMENT' NOW PLANT A BRANCH AROUND THE FUNCTION CODE:

54

55 ELEMENT IG := 0;

56 ELEMENT TYPE IG :m ELE LITVERAL M;

57 STACK PG(RAT ST LIT ™M);

58

59 'COMMENT® INITIALLY PUT IN A BRANCH TO ZERO (APOVE STACK IS CONSTANT ZERO)
60) UNTIL THE FUNCTION END IS ENCOUNTERED, THE PRECEOING CODE PLANTED THE
61 "STACK CONSTANT O CODE™ SO NOW wWE PLANT THE BRANCH CODE ;

62

63 PROGRAM DGLPROG MARK IG) := RAT BRANCH M}
66 INC M(PROG MARK 1G,1)?

65 YEND!

66 'END'FUNCTION DEF PG’

*BT3xBT3xBT348T34BT3nBT3*RT34xBTIxBTI*BT 3BT 3ABTI*BT34BTIABT3*BTI¥BTI0BTIxBTI*BT3xBTIXBTI*BT3xBTI#BTI4BT 3BT

1

[RPOR | .o S) N

(@

Ntwqwt:qutw«u»:qut:qut:qmizqutmqu»r~utmqu:mqu:w«unmdulmqutwqu»mqut@quncauxm#urm«ut@aut:«ulm«utwdutwqutmqulmquthunmqu»»)
.Avmrumduza OF $7227Z11222ZIN,1HTRODUCTION(6/) PRODUCED ON 24AUGB1T AT 16,01.28
£0UTPUT RY LISTFILE IN “:TLFAK=10,RPSMITH' ON 16AUG82 AT 10,54.12 USING 1381

[9]
DOCUMENT IHTRODUCTIUNCGKY)

'PROCEDURE® INTRODUCTION PG,

YCOMMENT?
PURPOSE
THIS PROCEDURE DEALS WITH THE MULE "ORJECT INTRODUCTION" SYNTAX,
IT USES THE PROCEOURE "FETCH ELEMENT PG" TO FETCH THE ELEMENTS OF
MULE WHICH ALSO INTRODUCES THE OBJECTS, "FETCH ELEMENT PG" CAUSES
THE ORJECT TO HE IMTRODUCED WITH DEFAULT ATTRIBUTES, IF THE ATTRIRUTES

CXINIV LN

- 10 ARE SPECIFIED EXPLICITLY IN THE INTRODUCTION THIS PROCEOURE
11 CAUSES THE DATA TABLE RECORD TO BE OVERWRITTEN WITH THE SPECIFIED
12 ATTRIBUTES,
C 1% GLOBAL VARIABLES
164 ELEMENT 16
15 ELEMENT TYPE IG
(- 16 IN INTRO BG (W) ..
17 LOCAL VARIABLES
13 RAMD IL (UPERAND INOEX NUMBER) .

C 19 HMACROS .
20 RAYT COLON 1 .- -
21 ELE OPERAND M .
C 22 ELE LITERAL ™ -

23 RETURN M

24 0By SIZE -
C 25 RAT DOT ™

26 REPEAT M . .

27 oBJ SIZE ™

C 28 TRUE #
29 FALSE M
30 PROCEDURES CALLEVD .
C 31 FETCH ELEMENT PG .
32 ERROR HAWOLER PG
33 MESSAGES PRODUCED)
(e 346 4 SYNTAX ERROR = A NUMERIC CONSTANT MUST RE SPECIFIED AS AN ATTRIBUTE
35 OF THE UBJECT INTRODUCTION
30 1 SYNTAX ERROR = UNKNOWH ELEMENT .,
o 37 METHOD ’
34 1. AN ELEMENT OF MULE IS OBTAINED VIA "FETCH ELEMENY PG"
39 2e 1F THE ELEMENT IS AN OPERAND (IE A NAME) "FETCH ELEMENTY PG6" WILL
C 490 HAVE INTRODUCED THE NAME ALREADY,
41 3, THE NEXT ELEMENT IS FETCHED & CHECKED AGAINST THE "31" ELEMENT
42 WHICH DENOTES THAT THE SIZE ATTRIBUTE IS BEING SPECIFIED
o L3 IF THE ":" IS PRESENT THE SIZE ATTRIBUTE IS FETCHED
L4 4. IF ALL IHTRODUCTIONS HAVE BEEN OBTAINED THE PROCEDURE RETURNS
45 3
C 46
47 'BEGIN?
48 YINTEGER' RAND ILJ
o IN INTRO BG :=m TRUE M3 (SET TO DENOTE THAT AN INTRODUCTION

49
;i mn e mmaArAseal

54 CMECK ELEHENT LL1

55
- 56 YIFY ELEMENT TYPE IGw ELE OPERAND M
57 STHEW?
54 SUEGINY
59 CIFY ELEMENT [GaRAT DOT M VTHEN' RETURN M;
60 RAUD JL ¢w ELEMENT IG; (REMEMBER DATA TABLE INDEX)
61 FETCH ELEMENT PGs (FETCH ANOTHER ELEMENT AND CHECK IT FOR A COLON)
62 : '
63 VIF' ELEMENT IG » RAT COLON M
64 YTHENY
65 ‘HELIN? .
6o FETCH ELEMENT PGs C(FETCH ANOTHER ELEMENT, EXPECT A NUMBER WHICH IS
o7 THE SIZt ATTRIBUTE) :
o8
6y YIFY ELEMENT TYPE IGC>ELE LITERAL M
70 YTHENY
71 SHEGIN?
72 ERROR HANDLER PG('LITERAL'(E),
73 “SYNTAXXEXKRURX=XA4NUMERICXCONSTANTXMUSTXBEXSPECIFIEOXASXANXATTRIBUTEXOFXTHEXOBJECTXINTRODUCTION")S
74 RETURN ™M}
75 YEND® i
76 YELSE! . o
7 YHEGIN?
78 OBJ SIZt MLCRAND XLJ:w ELEMENY IG; (UPDATE SIZE ATTRIBUTE)
79 YEND Y
a0 YEHDL!)
81 YELSE' REPEAT M(CHECK ELEMENT LL)3: -)
82 YEno!
83 VELSE! - T
84 YBEGIW!
85 . -
86 ERKRUR HANDLER PGCY'LITERALY(E),"SYNTAXXERRORX=XUNKNOWNXELEMENT")
a7 RETUKRN IMj - o
38 YENDYS ! .
a9 REPEAT M(STAKT LL); "
9u

91 RETUKRN LL:
92 IN INTRU BG :® FALSE M 5 (NO LONGER PHOCESSING AN INTRODUCTION)

93 YEND'INTROVDUCTION PGJ
r-;:mquamﬂu:m—u::qu.:quizquxcqu:mqu;mqurmdu;mqu»mau;mqu»mqu:mqu»m<u:mqu:mqu:uqu:mqu»mqu'mqu-mqu:mdu;m.u;mqu»mqu:mqu:cus>

ANBT 3BT SxBTSABI SABTSAUT SAUT SABT SAUTSaBTSRUTSABTIRBTSABT 3BT SnBT SnBTInBT SnBTInBTInBTIABTInBTSABTIxBTInBTIXBTINBTIAETINNA
ELISTING UF 3222222221720 .0ESTACKPG(5/) PROVUCED ON 24AUGB1T AT 19,02.17
£OUTPUT HY LISTFILE In Y3TLFAK=10.RPSMITHY ON 10AUGB2 AT 10.59417 USING I381

DOCUMENT DESTACKPG(S/)

=

YRECURSIVE' DESTACK PG3:

YCOMMENT?
PURPUSE
DEALS WITH THE DESTACKING OPERATION MULE SYNTAX
GLOBAL VARIADLES
PRUOG MARK IG (RW)
PRUGKAN 0G (W)
PROCEDUKES CALLED
10 LEXIS PO
11 ERROR HANDLER PG
12 MACKOS
13 RAT DESTACK ™
14 PROG SIZE i
19 SESSAGES PRODUCED
16 3 NO PROGRAM SPACE LEFT

VXNV LN =

17 HETHOD

18 1., CALLS "LEXIS PG" TO VEAL WITH THE STACKING OF THE RIGHT HAND

19 OPERAND OF THE OESTACK T

2u 2a PLAHTS THE DESTACKING CODE INTO PROGRAM MEMURY

21 3 -
22 .

25 YHEGIW! - -

24 '

25 YCOMMENT' CALL "LEXIS PG" TU DEAL WITH THE RIGHT HAND OPERANDS -

26

27 LEXIS PG; -

28

29 YCOMMENT! PLAWT THE DESTACK OPERATION;

30

31 PROGRAM DGULPROG MARK 1G] 3= RAT DESTACK M;

32 INC A(PROG HMARK 1G,1);

33

34 PIFY PRUG MARK IG > PHOG SI2E M .

35 YTHEW® ERROR HANDLER PGC'LITERAL'(E) »"NOXPROGRAMXSPACEXLEFT")} . . i

36 YENWDP'DESTACK P63
w.:nmqu:mqu.m_uxmquxcq“nmau;mqu*mqu.mqu:cqu;c_u:mqw:mqusmqu'mqu‘m-u»mqu-mqu;mqu:mqu:wqu:mqu;mquﬁmqu;w«u;mqu‘uqu:cqu,m::>

LN

Ntmqu-mqm:cqutaquﬁmau:cqu:a«uncqu:wquthu-mqu;tqu:&«u:mau&&«uxc—u:cquthuamqutmququu:m«u‘wqu:cduimqu:mquacdu:mau»mqusni
ELISTING UF 3222LL2L2LLINLPOPVALUEPG(10/) PRODUCED ON 26JANBZ2 AT 13.,23.U5 .
£OUTPUT HY LISTFILE IN V3TLFAK=10.RPSMITH' ON 16AUGB2 AT 10,52.36 USING I381

DOCUMENT POPVALUEPG(106/)

[}

1

2 YINTEGER' 'PRUCEDURE' POP VALUE PG ('WALUE' YINTEGER' SI1Zt DEFAULT Q):)
k]

& YCOMMENT?

5 PURPOSE

3 TO POP THE STACK VALUE AND CONVERT IT INTO A VALUE SIGNIFICANT TO

7 THE NUMBER UF BYTES SPECIFIED IN ITS PARAMETER (SUBJECT TO

8 MOST COUSTRAINTS ALSOU) .

9 GLUBAL VARIAULES

10 STACK TYPE vG (i)

11 STACK uG (R) “
12 STACK MAKK IG (Rw)

13 084 TAB V6 (R)

14 MEMORY G (R)

15 LOCAL VAHRIAJLES .
16 OPERAND IL C(INDEX INTO THE DATA TABLE FOR THE OPERAND) . i -

17 SIZE IL COPERAHD MEMORY CELL SIZE)
18 MAX SIZE IL (OPERAND SIZE IF < “SIZE DEFAULT Q" OR “SIZE DEFAULT Q" OTHERWISE)

19 STEP STARY lL, STEP END IL, KL (LOOP CONTROL VARIABLES)

2V MACROS
21 LIT HELL M s
22 ADDR HELD M - --

23 0BJ SIZE m (R) :

24 PARAMETERS :
25 SIZE DEFAULT @ (THE NUMBER OF MEMORY CELLS OF THE STACKED VALUE WHICH ARE

26 SIGNIFICANT) .-
27 mETHOV
28 1« CHECK HE TYPE OF “VALUEY HELD ON THE STACK

29 2. A CUONSTANT IS MERELY RETURNED
30 4. All "ADORESS"™ IS FETCHED FRUM THE DATA TAHBLE RECORD & IS RETURNED
31 4o A VALUE IS CONVERTED S0 THAT ITS VALUE DOES NOT EXCEED THE DEFAULT

32 SIZE OF THE PARAMETER & IF IT DOES THE VALUE IS TRUNCATED
35 ;

34

35 YHEGIN!

36 VINTEGEK® UPEWAND IL,SIZE ILsMAX SIZE IL,STEP START JL,STEP END IL,KL,ANSWER IL}
37 PTRACE 4 (TA PROC M,"POPVALU");

38

49 YCOMMENT® CHECK FOUR THE CASE OF THE STACK VALUE BEING A LITERAL J

LU .

41

42 VIFY STACK TYPE DGESTACK MARK IG] = LIT HELD M

43 STHEN? :

A THEGINS

45 STZE IL 3= STACK DGLSTACK MARK 161

40 STACK MARK IG 3@ STACK MARK 1G=SIZE IL/4=(

«7 YIFY VINFEGER' (SIZE IL/4)%4mSIZE IL

«d YTHEN® O

49 YELSEY 1);

Su ANSWER IL 1% STACK DGLSTACK MARKIG] 3(ONLY THE LEAST SIGNIFICANT 4 BYTES ARE WANTED)
51 VELiD!

52 YELSE!

53

z e e ma n e an een e ALer AP Tuc CvAPrK Al 0 LETUAR AN ANNRESSZ2

e T T L e re e Ca -

(o 56
57 TIFY STACK TYPE DGLCSTACK MARK 1G JmADDR HELD M
58 YTHEN® ANSWER IL :w ORJ TAB DGLSTACK DGLSTACK MARK IGJl+1]
@ 59 'ELSE'
60 YREGIN!
61
C 62 'YCOMMENT' CASE OF A VALUE BEING HELD?
63
64 OPERAND IL t= STACK DGLSTACK MARK 1G]’
cC 65

66 "COMMENT® CHECK IF THE ADDRESS IS NEGATIVE & IF SO JUST RETURN THE :
67 ADDRESS AS IT IS A BUILYT IN ADDRESS WHICH HAS NO VALUEJ

- 68
69 .
70 YIF' 0BJ TAB DGLOPERAND IL+11<0
71 TTHEN® ANSWER IL :m OR) TAR DGLOPERAND IL+1]
72 'ELSE!
73 YREGIN?
- 76 SIZE IL := OHBJ SIZE MLOPERAND IL]S
?5 MAX SIZE IL :=
76
~ 7?7 Y1F' SIZE IL>SIZE DEFAULT @
74 YTHEN' SIZE DEFAULT @
79 VELSE' SIZE IL3:
[80

K1 YCOMMENT?! RETURN THE LEAST SIGNIFICANT MEMORY CELLS (AS AN INTEGER) WHICH
B2 MUST HE LESS THAN OR EQUAL TO "SIZE DEFAULT Q"3

! A3 .-
’ 84 STEP END IL 2m OHJ TAB DGLOPERAND IL+1]1+4SIZE ILJ
85 ANSWER IL = 03 .
[86 STEP START IL :=STEP END IL~MAX SIZE ILJ . ;
87 : - -
RA YFOR' KL $=STEP START IL,kL+1 'WHILE®' KL<SSTEP END IL .
r a9 00! ANSWER IL 3$wANSWER IL %64 +MEMORY DGIKLI3
0 TENDY;
91 YENDY; .
~ 92 STACK MARK IG := STACK MARK IG=13
93
94 VIF' STACK MARK 16 < =T .)
" 95 'THEN' ERWOR HANDLER PG('LITERAL'(R),"STACKXUNDERFLOW")}
96 YANSWER® ANSWER IL3
9?7 'END'POP VALUE PG’
~
RN BTIART3*BI3NRTSASTIRBTINBT SAHTIABTINBT3ARTS#BTINAT34BTINBTIART34B8TIABTIABTInBTIABTI#BTIABTIABTINBTIABTI®ATIXATIARA
~
-~
P
—~

ARBTSAUTSRUTSAUT SR T SABT IR SAUT SABTINBT A IInBTINBTInHTINBTIAET AT InBT SxBTIABTINBTInBTINBTINBTINBTINBTIABTIABTI*BTInA
ELISTING OF $Z22Z22L121L1.PUOPADDRESSPG(2/) PRODUCED ON 6MAYE1 AT 13,10,23

£OUTPUT BY LISTFILE IN 'STLFAK=1U0.RPSHMITH® ON 16AUGH2 AT 10,53.,54 USING 1381

DOCUMENT PUPADURESSEG(2/)
)
(U
1
2 'INTEGER' 'PRUCEDURE' POP ADDRESS PG;
3
4 YCOMMENT!
5 PUHPUSE
o T POP [HE STACK VALU & CONVERT IT INTO ADODRESS FORMAT
7 MACROS
6 ODEFAULT ubd SIZE M
. 9 NETHOD _
10 USES "POP VALUE PG" CONVERTING THE VALUE TO ADDRESS MODE BY CONSIDERING)
11 “DEFAULT ObJ SIZE M™ NUMBER OF MEMORY CELLS TO BE SIGNIFICANT
12 ; -
13
14 'BEGIN®
15 PTRACE M(TA PRUC M,"POPALD");
16 PANSWER' POP VALUE PG(DEFAULT 0BJ SIZE M);

17 YENLD'POP ARDDRESS PGJ
AT SnETIXBT3aTIABT AndT SABT SaUT 3nBTINBTIAUTSNBTIwBTInBTIABTIABTINBTIABTIXBTSABTInBTI3nBTIXRBTINBTSABTINBTIABTIABTIABRARA

ANBT ST SWET SRUT SabTSABTSNET SAUT SAUTIABT SABTInH T SnUT 3BT SABT3ABTIABTINBT SABTINBTInBTIABTINBTIXGTIXKBTInT IR TInBTIABTInNA
ELISTING OF $2222222222INJPOPINTEGERPG(2/) PRUDUCED ON 6MAYB1 AT 13.08,31

LOUTPUT BY LISIFILE IN '3TLFAK=TU.RPSMITH'! ON 10AUGB2 AT 10,53.18 USING I381

DOCUMENT PUPINTEGERPG(2/)

V)

d .

2 YINTEGER' 'PRUCEDURE' POP INTEGER PG:

3

4 PCOMMENT®

5 PUKRPOSE

6 TO PUP THE STACK VALUE & CONVERT IT TO INTERNAL ARITHMETIC CINTEGER)

? FORMAT

METHOD . :

9 USES "POP VALUE Pu" CONVERTING THE VALUE TO INTERNAL ARITHMETIC .
140 CIWTEGER) FORMAT BY CONSIDERING & MEMORY CELLS AS SIGNIFICANT
11 .
12 B
135 YHEGIN!
14 PTRACE M(TA PRUC WM, "PUPINT"):
18 TANSWER® PUP VALUE PG(4)}

16 YEND'PUP INTEGER PG/

AxARBTSABT 3BT SatT SnBT 30T InBT 3BT 3nBTSnBTSnBTSnBT w8 TIA8T3x8T3xBTIABTINBTIxBTIXNBTInOTIXBTIABTInETIABTINBTINBTIABTIxBRRA

S PV P I SOV S et R TR

(o
n»m«ufzqu:wqunzqutzqu-xﬁu:mau»aqutw«uimqu:aqu:mqu:z«u»mqu:zausmautm«u»mqu;mqu:mqytmqunmqu;aqunmqu:wqu:mqu:mqutmqu:mqu:t>

M LLISTING OF $I2Z2ZZIZZ2ZINLBUILTINPG(LT/) PRODUCED ON 4MAR82 AT 19.31.29

£0UTPUT BY LISTFILE IN ":TLFAK=10,RPSMITH' ON 16AUGB2 AT 11.04,27 USING 1381
o
DOCUMENT BUILTINPGC4T/)

r~

TPROCEDURE® HBUILT IN PGC'VALUE' 'INTEGER' BUILT IN ROUTINE SELECTOR Q)J

SCOMMENT?
PURPOSE
CALLED FROM "INTERPRET PG" TO DEAL WITH THE NON=MULE BUILT
IN ROUTINES WHICH CAN HE CALLED HY THE MULE USER
GLOHAL VARIABLES
MEMORY 0G (RW)
) 08J TAB LG (W)
~ 11 STACK MARK IG (RW)
12 STACK DG (Rw)
13 STACK TYPE DG (RW)
-~ 14 RUN TINE PROG MARK IG (RW)
15 FUNC STC MARK IG (RW)
16 PROCEDURES CALLED

CETNDDANAP AN =C

-
=

-~ 17 POP ADDRESS PG
18 POP INTEGER PG S
19 MACROS
- 24 ORJ SIZE M .
21 I CH M ;
22 ONL M .- .
~ 23 OCH I

264 EXTT M e
25 UP STACK M
-~ 26 RETURN M -
27 LIT HELD M
28 LOCAL VARIABLES . .
-~ 29 BUILT INS SL (THE MAIN SELECTION SWITCH)
30 SIZE IL C(LUCAL OBJECT SIZE)
31 START LOOP IL, KL (LOUP COUNTERS)

-~ 32 DIADICS SL (DIADIC OPERATORS SELECTION SWITCH)
33 BYTE STACK DL (A BYTE-ARRAY OVERLAYED ON THE ACTUAL RUN TIME STACK
34 TO ALLOW ACCESS TO THME STACK BYTE BY BYTE)

L 35 BYTE STACK MARK IL (STACK MARKER FOR BYTE STACK)

36 ADDRESS IL (AN OPERANDS ADDRESS IN DATA MEMORY)
37 CHARACTER STRING DL C(CHARACTER STRING STORAGE)

-~ 34 CHAR STKR POIMTER DL (2 WORD POINTER FOR RMCS CORAL STRING)
39 PARAMETERS
)] BUILT Iti ROUTINE SELECT Q@ (INDEX INTO MAIN SELECTION SWITCH)
~ 41 METHOO

42 THE MAIN SELECTION SWITCH STEERS CONTROL TH THE CODE TO DEAL WITH THE
43 BUILT IN ROUTINE CALL

~ L4 2
45
46 'BEGIN'
L Y4 VINFEGER® SIZE IL,START LOOP IL,KL,RH IL,LH IL,RESULT IL,BYTE STACK MARK IL,ADDRESS ILJ
48 YBYTE'PARRAY® CHARACTER STRING DLCO263]:
49 VINTEGER' 'ARRAY' CHAR STR POINTER DLLO:112
~ 50 POVERLAY' STACK DGLN] 'WITH' *BYTE''ARRAY' ABYTE STACK pLLO0:313
51 'SWITCH' BUILT INS SL :=MAKE RUILT IN LL.,

52 IN CHAR LL,

4)

Fe 4

81

.o . ve Ny R e O A TR R Y

DIADICS LL.,
DIADICS LL,
NIADICS LL,
DIAVICS LL,
DIADICS LL.,
0IADICS LL,
DIADICS LL.
DIADICS LL,
DIADICS LL,
DIADICS LL.»
DIADICS LL,
DIADICS LL.,
DIADICS LL,

IF LL,

GOTO LL,

POP LL.,

STACK NAME LL,
PRINT INT LL,
COMPILE LL,
SUBSTR LL»
VALUE LL;
PTRACE HM(TA PROC M,"RUILTIN");
*GOTO' BUILTINS SLLCBUILT IN ROUTINE SELECTOR Q)3

YCOMMENT?
12 MAKEBUILTIN
PIURPOSE
TO ALTER THE DATA TAHLE RECORD YO MAKE A KNOWN FUNCTION NAME INTO A BUILT
IN FUNCTIOH NAME ..
PARAMETERS
1. NAME OF THE BUILT IN FUNCTION, EG 'NAME" .
2. A CONSTANT WHICH OENOTES THE BUILT IN FUNCTIONS NUMBER

~.

MAKE BUILT IN LL:
PTRACE M(TA PROC M,"IBMAKE BUILT IN ") .
RH IL = POP INTEGER PG/
ORJ TAH DGLSTACK DGLSTACK MARK IG1+11 1= =(RH IL)3
POP ADDRESS PG;(REMOVE THE YTEM FROM THE STACK)
EXIT M;

SCOMMENT?

22 INCHAR .

PURPOSE
TO READ A HUMRBER OF CHARACTERS INTO A DATA AREA PASSED AS A PARAMETER,
THE WUWBER OF CHARACTERS READ CORRESPONDS TO THE SI2E, IN MEMORY CELLS,
OF THE DATA AREA,

PARAMETERS
1. THE ADDRESS OF THE OBJECT WHICH IS TO RECEIVE THE CHARACTERS FROM A

FILE, EG OBUFFER
; .

IN CHAR LL:
PTRACE M(TA PROC M,"IRBIN CHAR ")3
SIZE IL = 08) SIZE MLSTACK OGLSTACK MARK IGJlJ);
START LUOP IL = POP ADDRESS PG

"FOR' KL 3= START LOOP IL °'STEP' 1 'UNTIL' START LOOP JL+SIZE IL=1
'p0O' MEMORY DGLKLI :=] CH M;
EXIT M3

B R s L T I A

PERSS

122
123
124
125
120
127
128
129
130
131

132
135
134
135
136
137
138
139
140
141

142
1473
144
145
146
147¢
144
149
150
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
17
171
172
173
174
1?5

176

177
178
179
180
181
182
143

pa

.

rear A o

7217 10 OUTPUT A NUMUER OF CHARACTERS FROM A DATA AREA 70 A FILE, T

OF CHARACTERS OUTPUT IS GIVEN BY THE LENGTH OF THE DATA AREA,.

RAMETERS :

1. THE ADDRESS OF THE BUFFER FROM WHICH THE CHARACTERS WILL WOE
FOR OUTPUT, EG IDUFFER

OUT CHAR LL:

PTRACE M(TA PROC M,"IROUT CHAR ")}
SIZE IL :m UBJ SIZE MCSTACK DGLSTACK MARK 161J;
START LOOP IL := POP ADDRESS PG ;

'FOR' KL $® START LOOP IL 'STEP' 1. 'UNTIL' START LOOP IL+SIZE
.co-
YBEGIN'

1IF' MEMORY DGLKLIm63
YTHEN' ONL M
YELSE' O CH M(HEMORY DGLKL]):

YEND'?

EXIT M2
DIADICS LL:

PTRACE M(TA PROC M,"IROIADICS ")
YCOMMENT?
DIADIC OPERATORS
4 +
9 = ..
6t %
7: / .
8s A
O~ < -
103 >
11: <= .
12: >=
13: = -
142 <>
15: AND - .
143 OR

17: UNALLOCATED

»

RH IL := POP INTEGER PGS
LH IL := POP INTEGER PG:
TBEGIN'
'SUITCH' DIADICS SL := PLUS LL,
MINUS LL,
MULTIPLY LL,
DIVIDE LL,
EXPONENT LL»
LSS LL,
GRT LL,
LSE LL,
GRE LL.,
EqU LL,
HEQ LL,
AND LL»
OR LL»
1G0TO? OIADICS SLCBUILT IN ROUTINE SELECTOR Q=31

PLUS LL:

R it

HE NUMBER

OBTAINED

IL=1

147
184
149
190
191

192
193
194
1958
196
197
198
190
200
2u1
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
240
247
248
240

B Cee e . T AT T VE TR e gty S AORA LAY e

MINUS LL:
PTRACE M(TA PROC ™,"1B MINUS ")
RESULT IL = LH JIL=RH IL3
EXIT "5

MULTIPLY LL:
PTRACE M(TA PROC M,"IR MULTIPLY)2
RESULT IL = LH IL*RH IL;
EXIT M2

DIVIDE LL:
PTRACE M(TA PROC M,"IB ODIVIDE ")3
RESULT IL s=m LH IL/RHIL;
EXIT M;

EXPOMNENT LL:
PTRACE M(TA PROC M,"IR EXPONENT ")
EXIT M;

LSS LL:
PTRACE M(TA PROC #M,"1IB LSS ")
RESULT IL :=

Y1FY LH ILSRH IL
YTHEN' 1

YELSE' 0,

EXIT M;

GRT LL:
PTRACE M(TA PROC M,"IR GRT ");
RESULT IL :=

YIF' LH IL>RH IL
YTHENY 1

'ELSE' U’

EXIT M;

LSE LL: -
PTRACE M(TA PROC M,"IH LSE
RESULT IL :=

VIF' LH IL <= RH IL
"THEN' 1 -
YELSE' 02

EXIT M7

GRE LL:
PTRACE M(TA PROC M,"IB GRE "):
RESULT IL :=

CIF' LH IL>=RH IL
'THEN' 1

YELSE' 03

EXIT M;

EQU LL:
PTRACE M(TA PROC M,"IB EQY “);
RESULT IL ;=

YIF' LH ILmRH IL
YTHEN' 1
YELSE® O

VML Ve Y e e

FRTpTS S

SRS R

&

I

252
253
254
255
250
257
258
259
2611
261
262
263
264
265
266
267
268
269
27Y
271
2?2
273
274
275
276
277
278
279
28N
281
282
2R3
2R84
2895
286
287
284
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
3o
307
308
309
310
311
312
313
314

224 8

NEQ LL:
PYRACE M(TA PROC M,"I1B NEQ ") 3
RESULT IL :m=

TIF' LH IL<ORH IL
YTHEN' 1

SELSE' O;

EXIT M;

AND LL:
PTRACE M(TA PROC M,"IB AND ");
RESULT IL := LH JIL 'MASK' RH IL2
EXIT M;

ORrR LL:
PTRACE M(TA PROC M,"IB OR ')}

RESULT IL 3w LH IL *UNION' RH IL?

EXIT M;

EXIT LL¢

PTRACE W(TA PROC M,"IB EXIT ")

UPSTACK M}

STACK DGLSTACK MARK IG) = RESULT 1IL3

UPSTACK M;

o 4 e YA B e AP VAT

STACK TYPE DGLSTACK MARK 1G] :w LIT HELD M3
STACK DGLSTACK MARK I6) 3= 4; (THIS IS THE MEMORY CELL SIZE OF THE STACK

ITEM)
YEND';
EXIT M2

YCOMMENT®

18: IF
PURPOSE

PROVIDES THE “IF o4e THEN" FACILITY OF A noz<mzquoz>r

HIGH LEVEL PROGRAMMING LAHNGUAGE
PARAMETENRS

1., THE RESULT OF A “BOOLEAN'" EXPRESSION

2. A FUNCTION WHICH WILL BE APPLIED IF THE FIRST v>x>3mqmz EVALUATES

TO HON=ZERO

2. THE RESULT OF A "BOOLEAN" EXPRESSION

w,

IF LL: -
PTRACE M(TA PRUC M,"IRIF ")
ADDRESS IL 3= POP ADDRESS PG
RESULT IL = POP INTEGER PG’

VIF' RESULT IL<OD

-4Imz.

'"BEGIN'
RUN TIME PROG MARK IG 3m ADDRESS
RETURN M3

YEND';

EXIT M:
SCOMMENT !

19t GOTO
PURPOSE

IL=12

[OOSR S

NOY INTENDED FOR USER CONSUMPTION, ALLOWS THE DIRECY BRANCH TO BE TAKEN

PARAMETERS

1 A APONCTANT WHICH DENMNTEQ A RFIATYVF

1ACATION TN THF PROGRAM MOMORY

e & o O

]

.~

318
319
320
321

322
323
324
325
320
327
328
329
330
331

332
335
3354
335
350
357
338
3359
340
341

342
343
344
345
340
347
348
34y
350
351

352
353
354
355
350
357
354
359
30U
301

362
303
304
365
300
307
3o0b
369
370
371

372
373
374
375
370
377
378
379
380
381

3482

GOTO LLz
PIRACE M(TA PKUC H,"IBGLTO "),
RUN TIME PROG MARK IG t® RUN TIME PROG MAKRK JIG+POP INTEGER PG=1)
EXIT m;

SCOMMENT?

20: POP

PURPOSE
TO REMUVE A RETURWN ADDRESS FROM THE FUNCTION STACK TO ALLOW A FAST RETURN
TO BE PROVIDED

0 PARAMETERS

.
.

POP LL3S
PTRACE M(TA PROC M,"IBPOP");
FUNC STC MARK I6G 3™ FUNC STC MARK 16=1;
EXIT M3

YCOMMENT ¢

212 STACKWAME

PURPOSE
TO PUT THE STRING REPRESENTING A NAME OF A VARIABLE ON THE STACK GIVEN
ITS OBJECT TABLE INDEX

PARARMETERS .
1. THE WAWME OF THE VARIABLE

.
[

STACK WAME LL:
PTRACE W(TA PRUC :\:ncwhz>3:u~
STAHT LUOP IL i@ 0BJ STR MARK MLSTACK DGLSTACK MARK IGJIJ(THE OBJECT wdmnzn TABLE OFFSET)
POP ALDRESS ‘PG; (REMOVE AN ITEM FROM THE STACK)
UPSTACK]
BYTE STACK MARK IL 3® STACK MARK IGw»4; ..
SIZE IL 3w UBJECT STRING DGELSTART LOOP ILI; '

TFORY KL 3% START LOOP IL+1 'STEP' 1 PUNTIL' START LOOP IL¢SIZE IL
.OC-
YREGIN®
BYTE STACK DLIBYTE STACK MARK IL] 3= OBJECVT STRING DGLKLYS
INC M(BYTE STACK MARK IL.1)3
CENDY
STACK MAKK IG 3® BYTE STACK MARK IL/4+(
VIFY YJHTEGERY (SIZE IL/4)x4mSIZE IL '
YTHENY U :
VELSE! 1)
STACK LGLSTACK MARK IGJ = SIZE IL J .
STACK TYPE DGLSTACK MARK IGJ 3w LIT HELD M}
EXIT s

VCOMMENT?
222 OUTINT
PURPOSE
TO DISPLAY THE VALUE OF AN OBJECT IN INTEGER FORMAT
PARAMETEKS
1. THE WAME OF THE VARIABLE

PRINT InT LLS
PYRACE M(TA PRUC M,"IBOUTINTI"):
OINT M(PUP INTEGER PG)}

16

€

«

«

¢

3de
385
386
347
388
389y
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
449
410
411
412
413
414
415
414
417
418
419
421
421
422
423
424
425
L26
427
428
429
4350
431
432
433
L34
435
L3606
437
438
439
440
L4
442
b4}
bbh
445
446
L6?

RO W . e SR L mne emmemamsn et we s oo mmbee an g e ¢ e 5 o At e <1 2ot

EXIl H3

YCOMMENT?
233 COMPILE
PURPOSE
TO CAUSE THE TRANSLATION OF A MULE FUNCTION WHICH IS STORED IN A FILE
PARAMETERS
1. A CHARACTER STRING LITERAL WHICH REPRESENTS THE FILE NAME

e

COMPILE LL:
PTRACE M(TA PROC W,"IHCOMPILE");

"COMMENT! CREATE A CHARACTER STRING IN RMCS CORAL FORM « IMPLEMENTATION
DEPENDENTZ

KL = 07
START LOOP IL s STACK MARK IG=STACK DGLSTACK MARK YGl/h =(
YIF' PINTEGER®' (STACK DGLSTACK MARK 1G)/4)*4mSTACK DGLSTACK MARK IG)
STHEN' 0
YELSE' 1)2

START LOOP IL :m START LOOP ILw4; (BYTE STACK POSITION)

'FOR' START LOOP IL 3= STARYT LUOP IL 'STEP' 1 'UNTIL' START LOOP IL+STACK DGLSTACK MARK IGl=1

.OO.
YHEGIN'® .
CHARACTER STRING DLLKL) :®BYTE STACK DLLSTART LOOP IL1}
INC M(KL,1)2
-MZO.M .
CHAR STR POINTER DLLOY :m'LOCATION® (CHARACTER STYRING DLCOJ)S
CHAR STR POINTER DLL1] = STACK DGLSTACK MARK I61]3-
POP INTEGER PG> (REMOVE ITEM FROM THE STACK)
COMMENT' HOW SEND A MESSAGE TO GEORGE 3 TO ALLOW HIM
TO ASSIGN THE FILES .

MULE MESSAGE M (IN,'LOCATION' (CHAR STR POINTER DLC01)):
ISEL “(IF COMPILE M);
EXIT M2 . .

YCOMMENT®
242 SUBSTR
PURPOSE .
T0O PROVIDE THE VECTOR INDEXING ABILITY, SUPPOSE A MULTI CELLED OBJECT waS$
INTRODUCED AS
USE VECTOR : 30 ,
THE VECTOR CAN BE CONSIDERED AS 30 SINGLE CELLS, 15 DUAL CELLED OBJECTS.e ETC
THIS FUNCTION PROVIDES THE VECTOR SUBSTRING CAPABILITY & RETURNS TO THE
STACK THE LOCATION OF AN ELEMENT OF THE VARIABLE AS SPECIFIED
BY THE PARAMETERS,
PARAMETERS
1« THE LOCATION OF THE VECTOR, EG AVECTOR
2¢ THE START CELL NUMBER,FIRST CELL IS ZERO ’
3. THE SIZE OF THE SUBSTRING IN MEMORY CELLS

.

SUBSTR LL1
PTRACE M(TA PROC M,"IBSUBSTR");
RH IL 3=POP INTEGER PG2 (SIZE OF SUBSTRING)
LH IL t= POP INTEGER PG ; (START CELL NUMBER)
ADDRESS IL &= POP AODDRESS PG> (START ADDRESS OF THE VECTOR)

G anirmie i w AliAL Reain Wil mmme Ae Wil s oo a

e | g o s o v h1n

450
451
L52
453
LS54
455
456
457
454
459
460
461
462
463
LbG
465
L4606
467
468
469
479
471
472
473
L4746
4?5
476
Lr?
478
479
480
481
LR2
443
484
445
LB6
LR7
488
489
490
491
492
L9535
494
495
496
497
498
499
500
501
su2
503
S04
505
506
507
508
509
510
511

S

pwr e e e A sl s MRS

YIF' STACK TYPE DGLSTACK MARK IG+11<>ADDR HELD M
YTHEN'
YHEGIN!

TCOMMENT' THIS IS AN EVALUATED ADDRESS CONSTANT WHICH IS OF
THE FOLLOWING FORMAT

BOTTOM 18 BITS = THE MEMORY ADDRESS

TOP 6 BITS = THE UBJECTS SI1ZE}

SIZE IL 3= *'BITS'(6,18]JA0DRESS 1IL:
AODRESS IL 3= 'BIVTS'C18,0]ALDRESS IL;

YIF' SIZE IL = O
"THEN® ERRORHAMDLER PG('LITERAL'(R),"THEXXVALUE

YPASSEDXTOX'SUBSTR*YISXNOTXANXADDRESSXVALUE"):
VEND! .
VELSE' SIZE IL := 0BJ SIZE MLSTACK DGLSTACK MARK IG+113;

YIF' RH IL+LH ILDSIZE IL
YTHEN' ERROR HANDLER PG('LITERAL'(R),"SUBSTRINGXISXOUTSIDEXTHEXVECTORXRANGE")}
UPSTACK M}
STACK DGESTACK MARK IG) t®ADDRESS IL+#LH IL+RH IL%2621443
(VECTOR ADDRESS WITH THE SIZE IN THE TOP 6 BITS)
UPSTACK M7
STACK TYPE DGLSTACK MARK IG] t= LIT HELD M3
STACK DGLSTACK MARK JG] s=64; (LITERAL HELD WITH A LITERAL SIZE OF 4 = IMPLEMENTATION DEPENDENT)

EXIT M3

TCOMMENT?

VALUE .

PURPOSE . .
TO PROVIDE A DEREFERENCING FACILITY, .- -
CAUSES THE VALUE OF THE OBRJECT REFERENCED TO BE PLACED UPON THE STACK :

PARAMETERS e .
1. THE ADDRESS TO BE OEREFERENCED

25:

e

VALUE LL:
PTRACE M(TA PROC M,"IR VALUE")? ;

YIF' STACK TYPE DGLSTACK MARK IGJ<> ADDR HELD M
*THEN® .
YBEGIN®

1COMMENT' CASE OF AN ADDRESS VALUE WHICH IS STORED AS
YOP 6 BITS = REFERENCED OBJECT SIZE
BOTTOM 18 BITS = REFERENCED OBJECT ADDRESS

.

ADDHESS IL 3= POP ADDRESS PG
SIZE IL = *BITS'L6,1BJADDRESS IL3 .
ADDRESS IL :® 'RITS'C18,0JA0DRESS IL? :

YEND?
YELSE'
'BEGIN!

PCOMMENT® CASE OF AN ADDRESS CONSTANT ;

SIZE IL gw 0OBJ SIZE MCSTACK DGLSTACK MARK 161]:
AODRESS IL t= POP ADDRFSS PG:

g A e AT e S

(]

~

514
517
518
519
52U
521
522
523
524
525
526
527
528
529
530
531
532
533
534
53%
536
.537
538
539
540
S41
542
543
544
545
546
547

YEOR® KL t® ADDRESS TL VETEPY {7 VUNTIL® ADORESS TUSSTZIE IL-1
.ccc .
*REGIN?
BYTE STACK DLLBYTE STACK MARK IL] gw MEMORY DGIKLI]
INC M(BYTE STACK MARK TL#1);
YENDY,
STACK WARK IG $mSTACKMARKIG+'INTEGER'(SIZE IL/4)+(

YIF' YINTEGER' (SIZE IL/4)%4mSIZE IL
CTHEN' 1)
YELSE' 1),
STACK TYPE DGLSTACK MARK IG] 3= LJT HELD M;
STACK DGLSTACK MARK IG) = SIZE IL?
EXIT M2

EXIT LL:
PTRACE HM(TA PROC M,"IBEXIT ")}

YCOMMENT!
CAUSE A "RETURN" OPERATION TO THE MULE ABSTRACT MACHINE BY DOWNING

THE FUNCTION STACKS
FUNC STC MARK IG tm FUNC STC MARK IG=1J

TCOMMENT® & THEN TRANSFER CONTROL TO THE NEXT INSTRUCTION BY SIMPLY
RETURNING AS “INTERPRET PG" DEALS WITH THE INCREMENTING OF
THE PROGRAM CUOUNTERS

RETURN LL:
PTRACE M(TA PROC M,"JIRRETURN ")3

YEND'RUILT IH PG

Mttthulzdulmqu;wqutmﬂu»:qutmﬁu}zqutmdulmqunmqwtmautzqutﬂ%utmquamqutm«u:mqutmdutmquﬁmqutWAutmqutwqutmquwmqu&adu»mdutmt:>

“»

“»

S

Lo

AT *ATI*ATIABT3BTS#B T SART 3ABTINGTIwBT3ABTIART 3BT IR TI#BTIABTIABTINBTI#BT34BTInBTINATIXBTI#BTINBTIABTIABTI#OTI#BTInA

CELISTING OF $222ZZZ1ZZZ7ZMJINTERPRETPG(4B/) PRODUCED ON 26JANB2 AT 13,47.32

~

.

r~

fouTPuT

DOCUMENT

VENT AT WN D

BY LISTFILE IN V"3TLFAK=T10,RPSMITH' ON 16AUGB2 AT 10.,55.22 USING X381

ITNTERPRETPG(4H/)

"PHOCEDURE"' 1HTERPRET PG:

CCOMMENT?
PURPOSE
TO INTERPRET THE MULE OPERATIONS & PROVIDE MULE EXECUTION FACILITIES
GLOBAL VARIAHLES
RUN TIME PRUG MARK JG (RW)
START HERE IG (R)
PROGRAM DG (R)
STACK TYPE IG (w)
STACK MARK IG (RW)
STACK Du (RW)
HEMW MARK 16 (RuU)
0oBJ TAR DG (R)
FUNC HMEMORY DG (RW)
FUNC STC MARK G (RW) .
FUNC STACK DG (Rw)
FUNC NAME DG (RW) .
LOCAL VARTAHLES
OPERATOR IL (TiHE OPERATOR FETCHED) P
OP MO0 IL (THE OPERATION MODIFIER)
OP CODE IL (THE OPERATION CODE) e mm
INTERP ERROR JIL C(INTERHAL ERROR CODE)
SIZE IL (OPERAND SIZE) .
0BJ ADD IL (UPERAND ADDRESS)
CASE 1 SL,CASET1 X SL,CASE2 X SL (SELECTION SWITCHES)
HAX RT PROG MARK IL (THE MAXIMUM VALUE OF "RUN TIME PROG MARK IG"
DURING THIS INTERPRETATION)
MACROS
VAL MELD ™ .
ADDR HELD ™ .
LIT HELD M
08J SIZE M (RW)
MEM SIZ2E M
FUNC STC SIZE M
UpP STACK M
PROCEDURES CALLED
POP ADDRESS PG
BUILT IN PG
METHOD
1« INTERPRETATION IS BY MEANS OF READING THE PROGRAM WHICH IS IN PROGRAM
MENORY STARTING AT "START HERE IG" UNTIL EITHER A "HALT"™ INSTRUCTION
IS ®MET, UR A RUN TIME ERROR OCCURS, BOTH OF THESE CAUSE A RETURN TO
THE CALLING PROCEDURE "LEXIS PG",
2e THE OPERATION IS DECODED INTO THE OPERATION AND OPERATION
MODJFIER FIELDS,
3. CONTROL IS SWITCHED ON THE OPERATION FIELD TO CASE=1 (NOTES 4 TO 10 HERE)
AND CASE=2 (HUTES 11 TO 14 HERE)
4o OPERATION FIELD ZERO OPERATIONS HAVE AN OPERAND FOLLOWING THE OPERATOR,
THIS 1S FETCHED INTO "OPERAND IG",

T I T Nt e ke n hr s o et st Annsr - R T TS s e v ra—————

c:q:,_:m;;»~z STACK AND THE STACK MARKED FOR "yALUE OPERAND WELD", ’ o - T -

N 56 "OPERAND IG" IS AN INDEX INTO THE OPJECT TAULE WHERE THE ADORESS OF THE) \
5?7 OBJECT CAN RE OBTAINED, AND HENCE 1TS vALUE,
SH 8. CASE=1,3: A "“STACK ADDRESS" OPERATION CAUSES "ADDRESS NELD" AND
\ 59 . “"OPERAND IG" TO AE COPIED T0 THE STACK,)
60 9e CASE=1.43 A "STACK LITERAL" OPERATION CAUSES THE OPERAND TO BE COPIED
61 TO THE STACK AND THE STACK MARKED AS "LITERAL HELD", :
o~ 62 10, CASE=1.5: A “DECLARE UPERATION"™ CAUSES SPACE TO BE ALLOCATED \
6% In MEYM0RY FOR INTRODUCED OBJECTS & THEIR ADDRESSES To BE PLACED IN THE
64 OHJECT TAHLE,
o 65 11, CASE 2.,1: A "FUNCTION CALL" OPERATION CAUSES THE FUNCTION ~
66 RETURW ADDRESS TO HWE PUT ONTO THE FUNCTION STACK ("FUNC STACK bG") .
67 TOGETHER WITH SUME DEHIG INFORMATION AND CAUSES CONTROL TO HE TRANSFERRED
™ 68 TO THE INVOKED FUNCTION BY ALTERING THE RUN TIME PROGRAM MARKER : \
69 (RUN TIAE PRUG MARK IG)
7 12, CASE=2.1: A CALL OF a BUILT IN FUNCTION (SEE 19 AROVE) IS DETECTED
~ 71 BY THE STACKED VALUE BEING NEGATIVE, THIS PROCEODURE HANDLES BUILT .
72 TH FUNCTIONS BY CALLING "BUILT IN PG"
73 13, CASE=2.2: A "DINWECT BRANCH OPERATION IS DEALT WITH BY ALTERING THE
™ 74 PROGRAM MEMORY MARKER, N
© 7?5 14, CASE=2.3: A "FUNCTION RETURN" OPERATION CAUSES THE FUNCTION STACK
76 TU RE DUWNED B A FUNMCTION RETURN PERFORMED RY ALTERING THE PROGRAM .
~ 77 MEMORY MARKER,) A
75 2 i
79
- 80 YREGIN® v
41 'INTEGER' OPERATOR [L,0P CODE IL,O0P MOD IL,INTERP ERROR IL,SIZE IL,0BJ ADD IL,OPERAND IL,
82 MAX RT PROG MARK IL,LW SIZE IL,RHN SIZE IL,KL,BYTE STACK MARK IL}j
a. 83 'OVERLAY' STACK DGLOJ 'WITH' 'BYTE'"ARRAY' BYTE §TACK oLLOs1);
84 'SWITCH' CASE 1 SL :wCASE 1 LL,
85 CASE 2 LL; .
o He 'SWITCH' CASE 1 X SL I=CASE 11 LL, .
a7 CASE 12 LL, . .. - ,
Al CASE 13 LL, :
" 4o CASE 14 L., o
90 CASE 15 LL,
91 CASE 16 LL; =
o 92 'SWITCH' CASE 2 X SL ssEXIT LL,
93 CASE2 FN CALL LL., .
94 CASE2 DIRECT BRANCH LL,
o 95 CASE2 FN RETURN LL,
96 CASE 2 DESTACK LL:
9?7 PTRACE M(TA PROC M,"INTERP");
-~ 94 RUN TIWE PROG MARK IG s= START HERE 163
99 MAX RT PROG MARK IL sm (;
100
- 101 START LL:
102
103 'IF' MAX RT PROG MARK IL < RUN TIME PROG MARK 16
104 'THEN' “AX RT PROG MARK IL gm RUN TIME PROG MARK 163 N
105 OPERATOR IL 3m PROGRAM DBGLRUN TIME PROG MARK IG);(GET THE OPERATOR & DECODE IT)

106 OP CObLE IL ¢ .zmam.nuxbucnmx>dcz IL; (THE OPERATION CODE)
107 0P MOU JIL :m .muqm.nbn:uovmn>qow IL(THE OPERATION MODIFIER))
108
100 YIF' 0P CUDE IL > 1
110 YTHEN?) . b}
111 "AEGIN?
112 ERRUR HANDLER 1aa.r~qmn>r.Axv\:cvma>quszx:zxz0tz:uu
' 113 YEnD? 0
114 'ELSE' 'GOTO' CASE 1 SLIVP CODE TL+1];
15
116 CASE 1 (L:

117

14U MrAMUCILI e e

121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
133
139
1410
141

142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

PR

CCOMMENT® FETCH THE OPERANDS

YIFY 0P MOD IL <> RAT ST CHAR LIT M

YTHEN'

YHEGIN'
OPEKAND IL :m PROGRAM DGLRUN TIME PROG MARK IG+1I64%64+PROGRAM DGLRUN TIME
264+PROGRAM DGCRUNM TIME PROG MARK 16+31;3
INC M(RUN TIME PROG MARK 16,3)3

YEND':
CIFY OP MOD ILDS
YTHEN!
THEGIN!
ERROR HANDLER vmﬁ.r-mz>r.anv.:ovmz>4~czxxoo~m«mnnAcvn:zxzocz:v“
YEND'

YELSE® 'GOTO' CASE 1 X SLLOP ®OD IL+1];

CASE 11 LL:
PTRACE HM(TA PROC M,"IHALT")}

YCOMMEWT'OPERATION CODE IS ZERO = OPERATION MODIFIER IS HALTJ

*COMMENT' REMUVE THE PROGRAN WHICH HAS BEEN STORED
INTERACTIVELY AS IT WANTS EXECUYING ONCE ONLY3

YFORY 0BJ ADD IL = START HERE 16 *STEP' 1 'UNTILY MAX RT PROG MARK IL
1509 PROGRAM DGLOBJ ADD ILJ = 07

PROG MARK 1G g= START WERE IGJ .

RETURN i}

CASE 12 LL:
PTRACE M(TA PROC M,"ISTCVAL")] S

YCOMMENT' OPERATION CODE IS ZERO = OPERATION MODIFIER IS "STACK VALUE"S
UP STACK M3

YCOMMENT' MARK THE STACK AS "VALUE"™ HELD}
STACK TYPE DGLSTACK MARK IG) 3m VAL HELD M3

YCOMMENT® PUT DATA q>mrm,uzamx ON THE STACK3

STACK OGLSTACK MARK IG) := OPERAND 1L 2
EXIT M2

CASE 13 LL:
PTRACE M(TA PROC Mm,"1STCADD");

YCOMHMENT' OUPERATION CODE IS ZERO = OPERATION MODIFIER IS "STACK ADDRESS"?
:v.mq»nx H

YCOMMENT® MARK THE STACK AS "ADDRESS HELD"?
STACK TYPE DGCSTACK MARK 163 iw= ADDR HELD ™3

YCOMMENT' PUT DATA TABLE IKDEX ONTO THE STACKS

evary RGISTACK MARK IGJ) := OPERAND IL3Z

PROGMARKIG+2)

”

b

)

187

144
149
190
191
192
193
194
195
196
197
198
199
200
21
202
203
204
295
206
207
Ul
209
210
211
212
213
214
215
2106
217
21R
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

PTRACE M(TA PRUC H,"ISTCLIT™)

'COMMENT! OPERATION CODE 1S 2ERQ = OPERATION MODIFIER IS "STACK LITERAL"}
UPSTACK 1}
YCOMMENT! PUT THE LITERAL ON THE STACKJ

STACX DGLSTACK MARK IG) :m OPERAND IL}
UP STACK M

YCOMMENT® MARK THE STACK AS "LITERAL HELD"S
STACK TYPE DGUSTACK MARK 1G] :m LIT HELD M}
'COMMENT® PUT THE LITERAL SIZE ON THE STACK?

STACK DGLSTACK MARK IG] :m 4; (IMPLEMENTATION DEPENDENT)
EXIT M2

CASE 15 LL:
PTRACE M(TA PROCM,"ISTCHLIT");

'COMMENT' OPERATION CODE IS 2ZERO « OPERATION MODIFIER IS
"STACK CHARACTER LITERAL";

UPSTACK M;
BYTE STACK MARK [L 3m STACK MARK [Gx&

'FOR' KL :mRUN TIME PROG MARK IG+2 "STEP' 1 'UNTIL' RUN TIME PROG MARK IG+ PROGRAMDGLRUN
TIME PROG HARK IG+1]+1 .
'por
‘REGIN? . -
BYTE STACK DLLBYTE STACK MARK IL] 3= PROGRAM DGLCKL]: f
INC M(BYTE STACK MARK 1L,1)?
YEND';
STACK MARK IG t= BYTE STACK MARK IL/4+(.
'IF* YINTEGER' (BYTE STACK MARK IL/4)%4mBYTE STACK MARK YL
*THEN' D
YELSE' 1)=12

'COMMENT® PUT CHAR STRING LITERAL SIZE ON THE STACK AND MARK THE STACK
AS LITERAL HELD;

UPSTACK M3

STACK DGLSTACK MARK IG) :mPROGRAM DGLRUN TIME PROG MARK IG+113C(STRING LENGTH)
STACK TYPE DGLSTACK HMARK IGl :m LIT HELD M}

INC M(RUN TIME PROG MARK IG»PROGRAM DGLRUN TIME PROG MARK 1G+11+1);

EXIT 13

CASE 16 LL:
PTRACE M(TA PROC M,"IDCL™);

YCOMMENT' OPERATION CODE IS ZERUO = OPERATION MODIFIER IS "DECLARE";

'COMMENT' FETCH THE SIZE OF THE OBJECT BEING DECLARED;
SIZE IL := ORJ SIZE MLOPERAND IL) ;

'COMMENT' CHECK MEMORY FOR OVERFLOW?

P e S et g e < s A e . - AR e e R v ke ASeges uan

-t - g

D T

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
2R9
290
291
292
293
294
295
296
297
298
299
301()
3
302
303
304
305
316
3407
3n8
309
310
311
312
313

314
15

im0 ke A fea i s L s s a1 AT e L mner e s s e e e

"EAROR HANDLER PG(PLITERAL'(R),"MEMORYXISXFULLY)}
YENDY;

VCOMMENT® PUT MEMORY ADDRESS INTO OATA TARLE;

0B8J TAB DGLOPERAND IL+1) :m MEM MARK IG;
INC M(MEM MARK 1G,SIZE IL)}

SCOMMENT' REMEMBER HOW MUCH MEMORY THE FUNCTION USED3

FUNC MEMORY DGLFUNC STC MARK 16=1) gtm FUNC MEMORY DGLFUNC STC MARK IG=1)+SIZE IL;
EXIT 2

CASE 2 LL:

YCOMMENT® OPERATION CODE IS ONE;Z

YIFY 0P MOD IL>S4

YTHEN!

TREGIN® ’ .
ERROR HANDLER PGC('LITERAL'(R),"OPERATIONXMODIFIERX(1)XUNKNOWN")}

TEND?®

YELSE!' '6GOTO' CASE 2 X SLTOP MOD IL+1]:

CASE 2 FHN CALL LL:

PTRACE M(TA PRUC M,"IFNCALL")}
FUNC STACK DGLFUNC STC MARK IG) sw RUN TIME PROG MARK IG;(REMEMBER RETURN ADDRESS)

FUNC HMAME DGLFUNC STC MARK IG) 3® STACK DGLSTACK MARK IG];(REMEMBER WHICH FUNCTION IS CALLED)
FUNC MEMORY DGLFUNC STC MARK IG) 3w 03(ZERO MEMORY USE INDICATOR)

INC MCFUHC STC MARK IG,1);

"COMMENT' CHECK FOR STACK OVERFLOW; ; -

SIFY FUNC STC MARK IGD>FUNC STC SIZE M '
VTHEN!
YHEGIN®

ERROR HANDLER voa.ruwmx>r.Aav\:doou3>z<um:@n«uozmn:)<mnmmmzxn>rrmc:vu
TEND!; R

PCOMMENT® FETCH THE STACK VALUE AND CONVERT IT INTO "ADODRESS" FORMAT}

0BJ ADD IL 3= POP ADDRESS PG/

TCOMMENT® CHECK FOR BUILT=IN ROUTINE;

YIF' ORJ ADD IL<O

PTHENT' BUILT 14 PG(=0BJ ADD IL)
YELSE*

'BEGIN®

YCOMMENT' ALTER PROGRAM COUNTER (AS THIS IS A MULE FUNCTION CALL) TO
TRANSFER noqucrN

RUN TIME PROG MARK IG s 0OBJ ADO IL=1;
YEND'S
EXIT M}

CASE 2 DIRECT BRANCH LL:

PIRACE M(TA PROC M,"IGOTO");

o

2 2 & o

319
32n
321
322
323
324
325
326
327
328
329
330
331
352
333
334
335
336
337
334
330
340
341
342
343
344
345
3406
347
348
349
350
351
352
353
354
355
356
357
358
359
360
3an1
362
363
364
3645
366
367
368
369
370
371
372
373
374
375
370
377
374
379
380
341

o —— i S g s = ey

. S e ey ey e —

EXIT i

CASE 2 Fil RETURN LL¢

PTRACE IM(TA PRUC M,"IFHNRET"™).

*COMMENT' A FUNCTION RETURN FROM A MULE FUNCTION = DOWN THE FUNCTION STACKS

FUNC STC HMARK IG sm FUNC STC MARK IG=1J

'COMMENT' AHD THEH ALTER THE PROGRAM MEMORY COUNTER TO TRANSFER CONTROL}

RUN TJ"E PROG MARK IG 3m FUNC STACK DGLFUNC STC MARK IG]) 3
MEM MARY IG zm MEH NMARK IG=FUNC MEMORY DGLFUNC STC MARK IG)3

(RELINGUISH DYNAMICALLY ALLOCATED MEMORY)

EXIT 13 .

CASE 2 DESTACK LL:

PTRACE H(TA PROC M,"IDESTC"):

"COMMENT® A DESTACKING OPERATIUN;

TCOMMENT® DESTINATION OF THE DESTACK MUST BE AN ADDRESS = CHECK IT}

'IF' STACK TYPE DGLSTACK MARK IGI<>ADDR HELD M
YTHEN®
THEGTIN?
ORJ ADD IL :m POP ANDRESS PG’ .
RN SIZE IL :m *RAITS'(6,18)0BJ4 ADD IL:
0BJ ADD IL := 'BITS'C1R,03084 ADD IL? .
YIF' RH SIZE IL=0 .- -
YTHEN' ERRORHANDLER PGC'LITERAL'(R),"DESTINATIONXOFXANXASSIGNMENTXISXNOTXANXADDRESS")}
YEND? .
YELSE'
'BEGIN' .
RH SIZE IL := 0BJ SIZE MISTACK DGLSTACK MARK 1G1}J}3 (THE OBJECT SIZE OF
THE DESTINATION OF THE DESTACK) .
OHJ ADD IL 3= POP ADDRESS PG 3 (THE DESTINATION ADDRESS)
YEND' 3
OPERAND TIL gm STACK TYPE DGLSTACK MARK IG]2 (FEVYCH THE TYPE OF THE SOURCE
OPERAND)] \
LH SIZE IL ;= .

‘IF' OPERAND XL = LIT HELD M
STHEN' STACK DGLSTACK MARK IG)
VELSE'

YIF' OPERAND IL=VAL HFLD M
YTHEN' UBJ SIZE WISTACK DGLSTACK MARK 1G]]
'ELSE' DEFAULT 0BJ SIZE M;(FIND OUT THE SIZE OF THE OBJECT = A LITERAL'S SIZE IS ON THE STACK)

YCOMMENT' THE LEFT AND RIGHT HAND SIZES MUST BE THE SAME e CHECK IT

esese BUT HOT IF THE OPERAND IS A CONSTANT AS A CONSTANT CAN
BE VARTABLE SIZE;

YIF' OPERAND IL <> LIT HELD M
YTHEN?
'BEGIN®

YIF' LM STZE TL<>RH SIZE IL

D

1Y

346
3IK7
388
389
3949
391
392
393
394
395

396

397
398
399
«00
401
402
403
406
405
406
407
408
4u9
410
et
L12
413
414
415
L16
17
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
L34
435
436
437
438
439
L4l
441
L4
443
L4
445
L4n
LL?

"IF' OPERAND IL=LIT HELD M
STHEN®
YREGIN!

$COMMENT' SOURCE IS A LITERAL $0 COPY VALUE FROM THE STACK INTO MEMORY}

BYTE STACK MARK IL :m (STACK MARK IGeLH SIZE IL/4e=(
PIF' 'TUTEGER' (LH SIZE IL/4)*4mLH SIZE IL

YTHEN® D)

VELSE' 1))%4;

"COMMENT® CHECK THAT THE CONSTANT VALUE IS NOT "POSSIBLY"

A SMALLER SIZE THAN THE OPERAND OTHERWISE RUBBISH WIiLL BE COPIED
FROM THE STACK INTO THE OPERANDS LOCATION?

'IF' RH SIZE IL > LW SIZE IL

YTHEN?

YHEGIN!
08J ADD IL OBJ ADD IL+(RH SIZE IL=LH STZE IL)}3
RH SIZE IL LH SIZE IL ;

YEMD Y

'ELSE' BYTE STACK MARK IL s RYTE STACK MARK IL +(LH SIZE IL=RH SIZE IL);

YFOR' KL 3w OBJ ADD IL 'STEP' 1 YUNTIL' 0BJ ADD IL4RH SIZE ILe=t
-—von '
TREGIN'
MENORY DGCKL]) :m BYTE STACK DLLBYTE STACK x-xx (R
INC M(BDYTE STACK MARK IL,1);
YEND'
POP INTEGER PG} (REMOVE ITEM FROM THE STALK)
YEND'®
'ELSE

YIF' OPERAND IL®VAL HELD M
YTHEN?
YREGIN!

YCOMMENT® SOURCE OPERAND IS A VALUE HELD IN MEMORY = DO A MEMORY TO MEMORY COPY}

YFOR' KL :=0BJ TA® =anmq>ox DGLSTACK MARK IG1}+1) 'STEP' 1 VUNTIL! 0BJ TAB DGCSTACKDGC
STACKMARKIGI+1J+LH SIZE 1L=1'D0?
YREGINY
MEMORY DGLOBJ ADD IL) 3= MEMORY pGLCKL]:
INC M(0BJ ADD IL,1);
YEUDY
POP INTEGER PG; (REMOVE ITEM FROM THE STACK)
YEND!
YELSE®
‘BEGINH®

CCOMMENT® OPERAND IS AN ADDRESS SO STORE THE ADDRESS IN MEMORY}

LH S1ZE IL = 0BJ SIZE MLSTACK DGLSTACK MARK I61)3(SIZE OF ORJECT »mwmnmznmcu
OPERAND IL :m POP ADDRESS PGS(ADDRESS OF OBJECT REFERENCED)

YCOMMENT® AN ADDRESS REFERENCE IS MADE UP 0OF
HOTTOM 1HUYTC = Anhhoccoe

3

e~

i
b
451
452
453
454
455
456
457
458
459
461
461
462
463
Léb4
465
466
467
468
469
470
471
472
473
L74
475
476

OPERAND TL 7m Un S12€ TUn26294440PERAND IL]

'"FOR' KL tm DEFAULT ORJ SIZE M ,KL~1 'WHILE' KL>O

-C:-

"HEGIN? v
MEMORY DGLORJ ADD IL+KL=1] :m AYTE 0 M(OPERAND IL)}
OPERAND IL = DPERAND IL/643 :

YEND

YENDY;
EXIT N3

ERROR LL:
ERROR HANDLER PGC'LITERAL'(R),"UNTRAPPEDXRUN XTIMEXERROR")3(TEMPORARY MEASURE)

EXIT LL:
INC M(RUN TIME PROG MARK XG,1):

'IF' RUN TIME PROG MARK IG > PROG SIZE M
STHEN!
‘HEGIN®
ERROR HANDLER PG('LITERAL'(R),"PROGRAM XMEMORYXLIMITXVIOLATION")}
YEND 2
REPEAT M(START LL);

RETURN LL:
YENDYINTERPRET PG:

ey o mes oy R € S e s e A+ i e S e

R

wtt:&<u:mqut:qut:~u;m—u::qutm«u:cau*mqu»mqutmqutmqutwqunmqu‘mqwnmqutwdunmdutmﬂutmqutmqw:mqutw«unaqUtmqu:mqutmquswau‘mnt>

-——— —a——

)

M

»-zqu.cqu.cqu.cqu.nau~cqu:;qu:aqu‘:quﬁc_u‘zqu;mqu:mqu::qunmq“.zqu.mqu:mqu.mquumqu‘mqu:mqu»cqu:c_u:cquanuncqu.aau;cdu».>

ELISTING UF 32Z2222L2LLLWoAAPPG(T/) PRUVUCED ON 4MARB2 AT 17.11.02

£0UTPUT HY LISTFILE I '3TLFAK=1U.RPSMITH' ON 10AUGBZ AT 10,5726 USING 1381
DOCUMENT MAPPG(T/)
) VPROCEDURE® MAP LIST PG('VALUE''INTEGER' @1,Q2);
1 'HEGIN? .
2 OINT M(uwl)iJ
3 osSP m(1),
4 OTEXT 1(@2)s
5 ONL M3
6 SENDY AP LIST PG
7 YPROCEDURE' MAP PG/
8 VYHEGIn®
9 QSEL H(UHAPF M),
10 AP LIST PGC'LUCATION'CELEMENT IG),"ELEMENT 16")J
11 MAP LIST PO('LUCATIONYCELEMENT TYPE IG),"ELEMENT TYPE 16");
12 MAP LIST PGC('LOCATION' (IRKELAVANT SKIPPED BG) »"IRRELAVANT SKIPPED B8G")3
13 maP LIST PGC('LOCATIUN' (CURRENT LINE IG)+"CURRENT LINE 1G");
14 AP LIST PG('LOCATION'(OBJ TAB MARK JG)."0BJ TAB MARK 16'");
15 MAP LIST PGCYLOCATION'(MAX UBJ TABLE MARK IG),"MAX 0BJ TABLE MARK 16")3
16 MAP LIST PG(YLOCATION*(TA PROC PKINT 1G),"TA PROC PRINT 16")3
17 MAP LIST PG('LUCATIONY(LATEST PROCEDURE 16)»"LAYEST PROCEDURE 16")3 .
18 WwAP LIST PG('LOCATION'(PKOUG MAKK IG),"PROG MARK 16");
19 AP LIST POC('LUCATION'(KG) ,"KG") 3 "
200 MAP LIST PG('LOCATION'(FUNC NEST DEPTH IG),"FUNC NEST DEPTH IG")3
21 WAP LIST PUC'LOCATIOWY(RUN TIME PROG MARK IG)»"RUN TIME PROG MARK 16")3 ~~°°°
22 MAP LIST PG(YLOCATION? (START HEKRE 1G)»"START HERE IG6");
24 WAP LIST PGCY'LOCATION'(STACK MAKK 1G),"STACK MARK I16")3 -
26 MAP LIST PGC'LOCATION'(FUNC STC MARK TG),"FUNC STC MARK I6')3 \
25 MAP LIST PO('LOCATION'(MEM MARK I6),"MEM MARK IG'"); ’
26 MAP LIST PGC('LOCATIUNY(CHAR BUFF MARK 1G),"CHAR BUFF MARK IG")}
27 WAP LIST PG(YLOCATION'(IN INWTRO BG),"IN INTRO 86") 3 o
28 MAP LIST PG('LOCATIUN'(SIZE OF UBJECT 1G)»"SI2ZE OF OBJECY IG")3
29 mAP LIST POCYLOCATIONY (OUNMMY) ,"DUMMY*); .
50 MAP LIST PG('LOCATIUN'(OBJECT STRING DGLO1) ,"OBJECT STRING DGLOSOHBJ STR SIZE MI™)}
31 mAP LIST POC'LOCATION® (PROGRAM DGLOD),"PROGRAM DGLOIPROG SIZE Mi") 3 .
52 MAP LIST PGC('LOCATIONY (STACK TYPE DGLDI),"STACK TYPE OGLOSSTACK SIZE MI") 3
43 AAP LIST POGC'LUCATION® (MEMURY DGLOJ),"MEMORY DGLUIMEHSIZE Mi®);
34 MAP LIST POU'LUCATIUN® (CHARACTER BUFFER DGCNI),"CHARACTER BUFFER DGLO11201");
35 WAP LIST POCYLOCATIONY (DUMAYALUJ) ,"DUMMYALO$11");
30 MAP LIST POCYLOCATION' (0B TAB PGLOJ),"0BJ TAB DGLOs0BJ TABLE SIIZE Mi") 3
37 WAP LIST PGCYLUCATION'(STACK DGL0OY),"STACK DGLOISTACK SIZE MI'")J
35 mAP LIST PGC'LOCATION® (FUNC MEMORY DGLUJI),"FUNC MEMORY DGLOgFUNC STC SIZE Mmir);:
59 MaAP LIST PGCYLOCATIONY (FUNC STACK D0GLO1),"FUNC STACK DGLCOgFUNC S$TC SIZE m1Y);
400 MAP LIST PGC('LOCATIUNY (FUNC NANME DGLOI)»"FUNC NAME DGLOIFUNC STC SIZE mlv) 3
wl mAP LIST POCY'LOCATIONY (FUNCTION START BGLOY) +"FUNCTION STARY DGLUSFUNC STC 812k M1
42 MAP LIST PGCY'LOCATIONY (DUMMYTIALUY) ,"DUMMYTALO311")3
43 MAP LIST PG('LOCATION'(PUWER OF 10 06CH1),"POWER OF 10 DGLNL6) “y;3
“e MAP LIST PGC'LOCATION'(POWER UF 2 DGLOD),"POWER OF 2 p6L0:151")3
45 MAP LIST PGCYLUCATION? (COUMMYPIALOD) »"DUMMYPTIACUL1I")}
Lo "ENDY AAP PG

wu'-zqu:c-u:c-ux:-u.:-ua:-uumqu»cqu‘:duxmqu;mqunzqu:mqu*zqu;zqw:mqusm«u:m«uzmquswqu:mquxmqu;mqu»aqusaq

SxBT3xBT3xBTIaBARA

-

~/

C.
>anuswqutzquthu‘mqu:=qu'm«usm«u::«u*cqunx-u»:qu:m«utaaunmqusm4uscqu'cquwzqunm«u:s«uscqurmqu;mqu:aqu»mqu:m~u.m«urm«u».>

CLLISTING OF $Z2222Z2ZLZIN.LEXISPG(37/) PRODUCED ON 13AUG82 AT 08,44,.09

£OUTPUT RY LISTFILE IN '3TLFAK=10.RPSMITH' ON 16AUGB2 AT 11.00,18 USING 1381

DOCUMENT LEXISPG(37/)
c
0
1 "RECURSIVE' LEXIS PG
r 2 .
3 YCOMHENT?
4 PURPOSE
v S THIS PROCEDURE IS THE START UP PROCEDURE OF THE MULE ENVIRONMENT
) IT CALLS THE PROCEDURE 'FETCH ELEMENT PG' WHICH RETURNS AN
7 ORJECT TABLE INDEX HUMBER REPRESENTING THE ELEMENT READ, SOME
- 8 ELEMENTS ARE BUILT=IN TO THE MULE ENVIRONMENT AND HENCE RETURN A
9 KNOWN JHNOEX VALUE, THIS PROCEODURE RELIES UPON THE FOLLOWING 3
140 OBJECT TABLE MARK ELEMENT
- 1 LT 1T PRY YR Y YTy “—woewee
12 4 USE
13 [AN OPEN ROUND BRACKET
i 14 8 FUNCTION
15 J 0 -) N
rr 1? 14 8 i
14 16 END
19 18 A CLOSED ROUND BRACKET:
C 2i) s
21 THIS PRUCEDURE STEERS CONTROL TO THE FOLLOWING “SECON LEVEL PROCEDURES ' -
22 ON RECEIVIHG THE ELEMENTS ABOVE '
- 23 ELEMENT PROCEDURE CALLCED
24 - es mw e LA L LY T T 1T T TP Y sy
25 USE INTRODUCTION PG -~
- 26 AN OPEN ROUND BRACKET INFIX PG
27 FUNCTION - FUNCTION DEF PG -
28 -> : DESTACK PG
e 29 (@) FUNCTION CALL PG
30 al STACK PG
31 CONSTANT VALUE . STACK PG
- 32 OBJECT NAME - K STACK PG
33 END END FUNCTION DEF PG .
34 OTHER ERROR HANDLER PGs BUY IGNORES COLON DOT AND RIGHT BRACKET
(™ 35 GLORAL VARLABLES

36 ELEMENT 1G (R)
37 ELEMENT TYPE IG (R)
C 34 FUNC HEST DEPTH IG
39 LOCAL VARIAHBLES
40 SELECT SL (SELECTION SWITCH)

. 41 REMAIN IN LEXIS KL (A COUNTER WHICH XF NON=2ERO CAUSES a:m PROCEDURE
42 TO LOOP UNTIL A MATCHING FUNCTION END IS RECEIVED)
43 MACROS

o XA ELE LITERAL M

45 ELE CHAR LIT M

L6 ELE OPERAND H
/ L? TA PROC ™

Y] EXIT M

49 RAT ST ADD ™

50 RAT ST VAL ™

51 RAT ST 11T ™

2 52 ®

B

-

r~

et

FUNCT L
NESTAC
FUNCT]
STACK
STACK
STACK
ERROR
FETCH
MESSAGES
1 Svd
METHOD
THE PR
TYPE T

we

SREGINM!
TINTE
'SWIT
EXIT
USE L
OPEN
FUNCT
RIGHT
LEFT
AT LL
END L
EXIT
PTRAC
REMAT

START LL

VIFY
*THEN
PROGRAM
FETCH
YELEM

-Hﬂ-

YTHEN
VYELSE
‘BEGI

SCOMMENT

'I
'T
‘e

'€
‘E

"1
T
)

yN OEF PG

K PG

Ut CALL PG

AVDRESS PG

LITERAL PG

VALUE PG

HANDLER PG

ELEMENT PG

PRODUCED

TAX ERROR, UNKNOWN ELEMENT .,

OCEDURE SWITCHES 0N THE ELEMENT RECEIVED USING THE ELEMENY
O TELL IF THE ELEMENT READ WAS A LITERAL OR NOT,

GER® HEMAIN IN LEXIS kL;
CHY SELECT SL:=COLON LL,
Ly,

L,

BRACKET LL~»

ION LL,

ARROW LLs

RIGHT BRACKET,

I'd

L,

LLs

E M(TA PROC M,"LEXIS")J

N IN LEXIS BL :» FALSE M2 .-

FUNC NEST DEPTH IG = =1 'AND' PROGRAM DGLCSTART HERE 16] <>0

¢ INTERPRET PGJCIF WE ARE NOT IN A FUNCTION DEFINITION AND THERES SOMETHING IN

MEMORY WE MUST WANT TO INTERPRET IT) ----
ELEMENT PG ;(CAUSES AN ELEMENT TO BE FETCHED & GLOBAL VARIABLES
ENT TYPE IG' TO BE WRITTEN TO AS RETURNED VALUES)

ELEMENT 16 <m 18 YAHND'_ELEMENT TYPE IGmELE.OPERAND M

' 1GOTO' SELECT SLLELEMENT IG/2+1)

L

N

' .
THIS IS THE CASE WHERE THE ELEMENT IS EITHER A LITERAL OR AN
QOPERAND, IF
IT IS NEITHER OF THESE THEN THE PROGRAM IS IN ERROR & AN ERR
OR MESSAGE
WILL BWE GENERATED,

F' ELEMENT TYPE IG = ELE LITERAL M
HEN?®
EGIN!
PTRACE M(TA PROC M," STACK LITERAL PG")3
STACK PG(RAT ST LIT M)}
HD ¢
LSE!

F' ELEMENT TYPE IGwELE CHAR LIT M
HEN? .

EGIN!

PTUAFRE MITA DOAFr M_MCTACCHI TT"Y?

VELEMENT IG*

121 'IF' ELEMENT TYPE IG ® ELE OPERAND ™

122 CTHEN?
123 YHEGIN'

124 PTRACE M(TA PROC M," STACK VALUE PG")3

125 STACK PG(RAT ST VAL M)}

126 CENUL®

127 YELSE' ERROR HANDLER PG(1,"SYNTAXXERRORX=XUNKNOWNIELEMENT")}

124 YEND';

129 EXIT M3

130

131 'COMMENT' SIMILATED CASE STATEMENT DEALING WITH ALL OTHER POSSIBLE

132 ELEMENTS S

133

134

135 USE LL:

136 PTRACE W(TA PROC H,"INTRODUCTION PG"):

137 INTRODUCTIUN PG})

134 EXIT H; ’

139

140 OPEN BRACKET LL:

1641 PTHACE M(TA PROC M,"INFIX PG");

142 INFIX PGs

143 EXIT M3

144

145 FUNCTION LL:

146 PTYRACE M(TA PROC M,"FUNCTION DEF PG"):

147 INC WM(REMAIN IN LEXIS KL,1)2 (CAUSES CONTROL TO REMAIN IN LEXISPG)

148 FUNCTION DEF PG}

149 EXIT m;

150 T

151 RIGHT ARROW LL:

152 PTRACE N(TA PROC M,"DESTACK PG"); h

153 DESTACK PGS -
154 EXIT M3 T .
155 .
156 LEFT RIGHT BRACKET LL: Tt

157 PTRACE M(TA PROC M,"FUNCTION CALL PG");

158 FUNCTIUN CALL PGJ -

159 EXIT n:

160 - .

161 AT LL:

162 PTRACE M(TA PRUC fM,"STACK ADDRESS PG");

163 FETCH ELEMENT PG

164 STACK PG(RAT ST ADD M);

165 EXIT M3 -

166

147 COLON LL:®

168 PTRACE M(TA PROC W,"COLON")}

169 EXIT 13

170

171 END LL:

172 PTRACE M({TA PROC M,"ENDFUNC");

1723 REMAIN IN LEXIS KL := REMAIN IN LEXIS KL =17 (CAUSES RELINQUISH OF CONTROL FROM LEXISPG WHEN ZERO)
174 END FUNCTIOM DEF PG}

1?5 EXIT M:

176

177 EXIT LL:

178

179 Y1F' REMAIN IN LEXIS HL <> FALSE M !
1840 "THEN® KEPEAT M(START LL);

181 'END'LEXIS PG
A ATIAHTIART ST IRAT 3R TIXAT AT IAAT AN T3 TIAAT IR T 3BT I#BT 3BT 3ABTIABTInB T INATINBTIABTI*BTSABTINRTIABTI#BTI*OTIxNnA

ZxBT3xBT34BT34BT3ABTInBTIABTIABTInBTInBTIABT IABTIXBTSABTIABTINBTIABTIBTI*BTIABTSABTSRBTSNBTI*BTINBTIRBT 3BT

TING OF :2ZZITILILIINLEND(22/)

PUT

8Y LISTFILE IN ':TLFAK=1U,RPSMITH'

PRODUCED ON 31MARBZ AT 17.32,44

ON 16AUG82 AT 10.53.23 USING 1381

MENT END(R22/)

YENTRY'(28):

NEWLINE;

CODE"

TBEGIN'
SUSWT('LITERAL'(CL))

*END?;

YENTRY' (203

C XNV WN =D

YFOR' KG = U 'STEP' 1 'UNTIL' OBJ STR SIZE ™
40 'p0O* OBJECT STRING OGLKG) = EMPTY M
11 CURRENT LINE IG := 0;

412 FUNC NEST DEPTH IG = «1;

13 OSEL M(0);

14 START O LL: N

15 LEXIS P62

16 REPEAT M(START -0 LL);

17 MEM MARK IG := 0;

18 'CODE’

19 'BEGIN'

20 SUSWT('LITERAL'(LE))

21 YEND'S

22 YENTRY'(21);

24 '"COMMENT' TO REFRESH VARIABLES AFTER INITIALISATION OF THE LANGUAGE SYMBOLS 3
25 0BJ TAB 0G[21) = «1;
26 PROGMARK IG = 1;

27 STACK MARK IG 3m =1;
28 START HERE 16 3= 1; :
29 FUNC NEST DEPTH IG :® =17 :
30 MEM MARK IG 3® 0, ¢

32 YENTRY'(22);
33 RESTART LC:
34 CURRENT LINE IG = 0 ;
35 RUN TIME PROG MARK IG :® START HERE IGJ
36 PROGRAM DGLRUN TIME PROG MARK IG) := 0’
37 ISEL M(0)3 :
38 FUNC STC MARK IG = 0}
39 START 1 LL:
40 LEXIS PGJ
41 REPEAT A(START 1 LL):
42 ‘CODE'
43 '"GEGIN'
A SUSWT('LITERAL®(OK))
45 YENDY
46 VENTRY'(27);
47 MAP PG,
48 ONL M;
49 'CODE'
SO YBEGIN'
51 SUSWT('LITERAL'(MA))
52 'YEND';
53 YEND!
5S4 YFINISH!
T S5 'sTOP!Y
56

RBT3%BT3XBT 3BT 3xBTI*BT3ABTI*BT3ABTIABTI*BTI*BT34BTSABTIABTIABTIxBTIABTIxBTI*BTIxBT34BTIXBTInBTI#xBTInETI#BT3

Nthwicqulzquamqu:cqv:cqut:—u::qux:qw:cqutc«usmqusmquthutmqutmqulWAUlwdu»wdunmdutwdw:&qu&mqutmqu:mqunmautmquscqu:mqu:ts
ELISTING OF 32222Z222ZZZINLLANGSYMB(I10/INLIT) PROODUCED ON 17FEHB2 AT 19,37.30
£0UTPUT BY LISTFILE 1 '":TLFAK=TU,RPSMITH® ON 16AUGB2 AT 11.00,53 USING I381

DOCUMENT LANGSYMB (1O/IdIT)

USE

(

FUNCTiOW

->

(@

o

END

)
1U [BUILT I ROUTINES FOLLOWY
11 MAKEBUILTIN “
12 INCHAR :
13 QUTCHAR
14
15
106
17
14
19
20
21
22
23
24 < .
25 AND
20 OR ..
27 UNALLOCATED
248 I1F
29 GOTv
3 PUP
31 STACKNAME
32 OUTLNT
53 CumMPILE
3546 SUBSTR
35 VALUE
“o .
37

A kBT SABTSAUTSABTSns TSnuT3AT SHBT SAUTINBTInBTI¥B T S%BT3ABT3xB I 3xBTINBTIABTIxBTINBTIABTINBTIABTINBTInBTIABTIABTIRB IInBRAA

CXNC VS W=D

BVAVADI»PS® I 4
|2
i
§
'

».mqu.:q“ucqu»aqu.cdu:mqu;cqu‘zdu::~u:=du.cqugcqunmquucau.mqu:mqu;mqu:aqu-mqu:wquscquszquxmqu:mqu:mqu-mqu:mqu;cqusmqu.;»
£LISTING UF SLLL2LLTLL2Z UL HUELTINS(B/MULE) PRODUCED ON 17FEB82 AT 19,38.09
£OUTPUT BY LISTFILE IN 'ITLFAK=1UKRPSMITH? ON T6AUGB2 AT 10,5835 USING I381

pocumMeENnT BUILTINS(8/MULE)

U LINCHAR,2 WAKEBUILTINC)
1 OUTCHAR,3 MAKEBUILTINC()
2 +,4 MAKEBUILTIN()
3 *,5 MAKEBUILTING)
4 w6 MAKEBULLTINC)
5 /,7 MAKEUWUILTINCQ)
0 4,8 MAKEBULILTINC)
7 <,9 MAKEHULLTINC)
8 2,10 MAKEBUILTINC)
9 <m,11 MAKEBUILTINC)
1) >m,12 MAKEBUILTINC()
11 8,13 MAKEBUILTINCG) "
12 <>,14 MAKEYUILTINC)
13 ANDL,1YS MAKEBUILTING)
T4 VR,106 MAKEBUILTING)
15 UNALLOCATED,17 MAKEBUILTINC) .
16 1F,138 WAKEBUILTINC) . .
17 GOTUL19 MAKEBUILTINC)
18 POPL,20 WMAKEBUILTINC(Q) -
19 STACKNAME,21 MAKEBUILTINC)
200 OUTINT,22 MAKEBUILTING) . v ,
21 COMPILE,23 MAKEBUILTINCG))
22 SUHSTR,24 :»xmmzurq_zmw .
23 VALUE,25 WAKEBUILTIN(),
24 3
25

AxwABTIxBTIAHT 3ATSKBT 3w [540 FSwBT ST ST 3BT SNBT3aBT3nUT AU T3ABY S4BT IABT3xBT SHATINBTSnBTINBTInETIABTSABT S4BT 3%0T SxBknA

P g dmayn s

»sm«u»:-u::_“-:qu-:-unﬁ-una~u»zqu:=q¢:cqu»=_u»:.u.:qu»xqu:uau:u«un:«u:c-u-cqu:mqu:aquncqu-cqunzauszuu:m«uswqu;zqu;cqu:»»
 ELISTING OF 3222282820 L2ZNLTESTACO/MULL) PRUDUCED ON 28MAYS1 AT 19.,2%.04
EQUTPUT BY LISTFILE IN $3TLFAK=TU.RPSMITHY ON 16AUGB2 AT 10.57.39 USING I381

DOCUHENT TESTACo/MULE)

[

PURPOSE
TO TeST IHE OUBJECT INTKUDUCTION FACILITY TO CHECK THAT IT OPERATES
AS DEFINED,

RELLES UPUN
NO OTHEK TEST

TEST COLE

3l

USE AAAA

USE AAAAR,ARAAB

USE AAAHBA,AAAABHBLCAAAA

USE BBBo:S o

USE BBBun 3 7,BCLE7?7:12 .

USE ALPHAHETICAND12345672890:2

USE ££££

15 USE £13€) & S,XYZzihot!/ 2 1 .

10 (

17 EXPECTED uUTPUT

18 STAKTING AT OuJTAHVG(62) FOR A RANGE OF 28 ELEMENTS

-
CCTNOCWVMPrLN=

-
-

- e -
S an

19 11573 up3e . +190827 £00600333 STOC 0O 219

24 11574 JUle +93 £000U0135 LDX 0 93 .

21 11575 uPrP3c +dcoxuw. £00600343 S§TOC O 227

22 11570 V01a +96 ° £00000140 LDX 0 96 .

23 1187¢? upsL +196844 7T £00600354 §TOC 0 236

24 11578 uo1C +99 ° £00000143 LoXx 0 99 R
- 25 11579 uP3uy +190853 t006003065 STOC O 245

26 11580 VUTF +102 £00000140 Lox 0 102 .

27 11541 up3a +1968062 £00600370 ST10C 0O 254

28 115482 VIV § +105 £00000151 LOX 0 105

29 115845 UPLY +1906872 £00600410 STOC 0O 264

34 11584 JuiL +108 £00000154 LOX 0 108

31 11585 1 4} +327953 £01200421 LDCH 0 273

32 115060 [VIVA XV] +111 £00000157 LOX 0 111

55 11587 1P4) +659033 £01600431 DCH 0 281

34 1153848 1T +116 £00000164 Lox 0 116

35 11589 3048 +786722 £U3000642 BUX 0 290

36 11590 (VIVRN +123 £00000173 LDX 0 123

37 11591 Uok i +131373 £0U400455 $TO 0 3unm

34 11592 ou2? +135 touluo2u? LOX 0 135

59 11593 uPsy +196936 £00600510 STOC 0 328

&0 11594 Uu29 +137 £00000211 LoX 0 137

41 11595 urs +1909%44 £00600520 STOC 0O 336

42 11590 0u2< +140 £00000214 Lox 0 140

43 11597 1u5) 42624489 £01000531 ANDX 0 345

“b 115948 ulR? +143 £00000217 LDX 0 143

“5 115v9 U 5a +658488 £0020(10540 LoxXc 0 352

46 11600 vuE +147 £0u0Un223 LoX Q0 147

47 3 N

Lo

w»::mqunmqwthu:cqu»c-u:uqunuqunc_uucqusaquumqutmqw:cqu:adu»mqu;mqu‘mqwiaqutzqutmqu&mqwtmqu:w_u:mqu‘aqutmqutwqw:wqw»c::>

[I P R A PR hp S TN e s e m b s mmie v o e o e e e s m v e e

L
ARBTInBTIanTInATIAHTSABT SR T SaBT SwHTInBT 340 T SxAT BT IxBT SnBTI#BT 34T IABTSARTINBT SABTIABTIABTIRATIAATI®ATIABTIABTINBTINAA

O ELISTING OF 32Z22222Z22ZH TESTB(11/MULE) PRODUCED ON 20JANB2 AT 18,33.20
£0UTPUT BY LISTFILE IN ";TLFAK=10,RPSMITH' ON 16AUGB2 AT 10,58,16 USING I381
c
DOCUMENT TESTH(11/AULE)
e
0 7»‘1»‘ttatxl»nnt.tt»tninl}»t*tt»tit1ttt#t:titt‘ti‘1}:1#1&:!‘*!#:1*1}1 .
1 TESTA
- 2 tlttlit»tt»J..!lttlt&&i.»n:):nt&&ttit!it.}1ttlit‘ttttitttbtttt!tttl‘lltt&tltittttu
3T
4 PURPOSE
. 5 TO TEST THE OHJECT INTRONPUCTION FACILITY TO CHECK THAT IT OPERATES
6 AS DEFINED,
7 RELIES UPOU
8 HO OTHER TEST
9 TEST COBE
10)
11 USE AAAA .
12 USE AAAAA,AAAAB .
13 USE AAABA,AAAABH,CAAAA .
14 USE BHHR:S .
15 USE BBHHR ¢ 7,BCOE??7:12 .
16 USE ALPHARETICAND123456749022 .
- 17 USE ££££ . ..
18 USE £1%¢C) 2 3,xY234,/17 ¢ 1
19 € .
- 20 EXPECTED OUTPYT . :
21 STARTING AT UBJTABDG(62) FOR A RANGE OF 28 ELEMENTS -
22 11573 UP3+ +196827 £00600333 STOC 0 219 :
. 23 11574 001= +93 £00000135 ...LbX 0 93
24 11575 0P3c +196835 £00600343 sTOC 0 227
25 11576 0019 +96 £00000140 Lox ... 0 96
- 26 11577 uP3L +196844 £00600354 STOC 0 236
27 11578 vo1¢c +99 £00000143 LoX. 0 99
. 24 11579 0P3u +196853 £00600365 STOC 0 245
- 29 11580 Ou1E +102 £00000146 Lox 0 102
30 11581 0P34 +196862 £00600376 STOC 0 254
31 11582 u01I . +105 £00000151 Lox 0 105
o 32 11583 uP48 +196872 £00600410 STOC 0 264
33 11584 0N1L +108 £00000154 Lox 0 108
34 11545 1 4) +327953 £01200421 LDCH 0 273
a 35 11586 0010 +111 £0000N157 LoX 0o 1M1
36 11587 1P4) +459033 £01600431 DCH 0 281
37 11588 0u1Y +116 £00000164 LDX 0 116
. 38 11589 3048 +786722 £03000442 aux 0 290
39 11590 091t +123 £00000173 LoX 0 123
40 11591 ETA] +131373 £00400455 ST0 0 3
41 11592 0027 +135 £00000207 LoX 0 4135
42 11593 0P58 +196936 £00600510 STOC 0 328
43 11594 nu29 +137 £00000211 Lox 0 137
s 44 11595 oPs +196944 £00600520 STOC 0 336
45 11596 0u2< +140 £00000214 LoX 0 140 '
46 11597 105) +262489 £01000531 ANDX 0 345
o 47 11598 002? +143 £00000217 Lox 0 143
48 11599 0 S5a +65884 £00200540 LOXC 0 352
49 11600 002£ +147 £00000223 LoX 0 147
~ 50 1

51 @

56 PURPUSE

57 TO TEST THE INFIX STACKING SYNTAX NOTATION
S8 NELIES UPON

59 TESTA RUNWNNING SUCCESFULLY

60 TEST COUE

61 1

69 [1HOW TJITIALISE THE VARIABLES SO THAT WE CHAN CHECK THE RESULT)

70 1 w> dAAAA .

71 2 => adudo

72 FUNCTION 3 END »> JAAAAA

735 FURCTION & END => dCAAAA

74 5 => & £15()

?5 6 => JALPHABETICANUI2345067890

76 7 => Ja8COE??7

77 8 => @AARALY "
78 C(AAAA+BBUBGB); UUTINTC); ’
79 (aAAAAY QHCDE??7)2 OUTINT();

80 (12 +1270); OUTINT();

81 C(AAAAAC) + CAAAAC))3 OUTINT(), >

82 (FUNCTIUNCAAAA+BBUBIEND() +FUNCTIONC £13() + ALPHABETICAND1234567890)ENDY))3
83 OUTINTC):

846 C (AAAAXBBBB) = (UCDEP77XAAAABHB)); OUTINT();
45 €

8o EXPECTED OQUTPUT

87 3 :

88 7 *

89 1282
90 ¢ .
91 14
92 =54
95 1
94 3

ARANBTSapT AwBT 5ABT SWUTIRBTInu T IaBTIABTINETSABTSnATINBTIxBTINBT SABTIABTIXBT 3BT InaT3nBTIXBTIABTInBTI#BTIADTIABTIAGTIABNAA

~

ANBTIAHTANBT SAUTSaBT SABTSAB T SaBTINUTSnBTInBT SnUT 3BT IABTInBTIxBTInBTINBTInBTInBTIABTInBTINBTIABTIABTIAETIRBTIAOTInETInnA

ELISTING UF 322222222L2LNLTFELSECT/MULE) PRODUCED ON 24MARBZ AT 18,01.12

£OUTPUT BY LISTFILE IN $sTLFAK=10.RPSMITH' ON 106AUGB2 AT 10.,59.,27 USING I381

DOCUMENT IFELSECT/HULE)

0 FUNCTIOW

1¢C

2 IFELSE

3 PURPUSE

4 TO PRUVIVE THE "IFeeeTHENLeaELSE!" OF CONVENTIONAL PROGRAMMING LANGUAGES.
5 PARAHETERS

I3 1. THE HESULT OF A "BOOLEAN" EXPRESSION

I4 2. A FUNCTION TO HE APPLIED IF THE FIRST PARAMETER

8 EVALUATES TO NON ZERU.

v 4. A FUNCTIUN TO BE APPLIEDL OTHERWISE,
10 STACK :
1M THE STACK IS LEFT AS IT wAS EXCEPT FOR THE REMOVAL OF THE 3 PARAMEYERS
12 SPECLIFIEY ABUVE,.

13 1)

14 USE TRUE,FALSE.
15 => JFALSE 7 => WTRUE

1o .
1?7 FUNCTIUN
14 TRUEC); PUP(); R
19 Enp 3 IFQ)
2V CTHE CONLITION IS ON THE STACK ALREADY & IF IT EVALUATES TO NON ZERO.....
21 THE FUNCTION “THUE()" WILL BE CALLED FOLLOWED BY "ROP()", THIS
2e WwILL CAUSE oOTH THE_ IF=FUNCTION AND THE IF=ELSE~FUNCTIONS TO BE ..

23 RETURNED] .

24 "

25 FALSE() ; L1F WE GET HERE THE ANSWER MUST HAVE BEEN FALSE J

26 .

27 END => QIFELSE

28

A ANDTSABT SxBTSABTSABT SaBT 3BT IxBTINBT 3BT IxBT3ABTIABTSnBTInBTINBTIABTIABTIxBTIABTInBTInBTINETInBTInBTIRGTI*BTIRETInONRA

~/

e

ARBTIAUTIRU ISR T3aHTSRUTIAS T SABTINET B I SART A8 T 3BT InBT BT InBTInBT 3BT IRETSRBTInOTInBTY BT IABTInETInOTIRBTIABTINETIAA
ELIBTING OF 2228222202000 WHILECA/MULE) PROVUCED ON 25MARE2 AT 0B,12.13

£OUTPUT BY LISTFILE In ";TLFAK=10,RPSMITH® ON 10AUGH2 AT 10,59,04 USING X381

DOCUMENT WHILE(4/MULE)

0 FUNCTLOW

1 C

2 WHILE ’

5 PURPUSE

4 TO PROVIDE THE WHILE FACILITY WwHEREBY A LOOP IS EXECUTED FOR AS LONG AS

5 A CUNLITIUN EVALUATES TO NUN ZERQa

6 PAKAMETERS

7 Te A FUNCTIUN WAICH REPRESENTS THE WHILE CONDITION, THE FUNCTION WILL HE

8 EXECUTED FOR EACH LUOP EXECUTION AND XIS EXPECTED TO OELIVER A VALUE

9 TO THE LUOP, .
1l 2e A FUNCTION WHICH REPRESENTS THE LOOP BOLY,.
11 STACK "
12 THE STACK IS LLEFT UNCHANGED EXCEPT FOR THE REMOVAL OF THE 2 PARAMETERS. ’
15 1

14 USE BODY,COWDITION,LOOP,
15 -> FBuUDY «> JCONOITION 3

10 Funcrion . -
17 CONDITIONC) 3

14 BOLYZ FUNCTION POPC()3 POPC) END 3 IFELSEC(); -

19 Pur ()

2u LOUPC) - e

21 END => al0op;

22 LooP) -
25 END=> awWHILE .
24 3 .o

ARRRBT SABT SaB T SauTIABT 3T SBT3t I SabT SaBT 3ABTIABT 3aUTInBTINBT SAOTIRBT 3AETINBTIxBTINOBTINBTAXBTINBTSABTInBTIROTIABTINEBNRA

AeBT3*BTIxBT34BT3ABT3ABT 3BT IABTINBTIABTIXBTIABTI#BTINATINBTIAATIABTIABT 3B TINBTInBTInBTINBTINBTIABTINBTINBTIABTI*BTINnA
anrumquzm OF $22Z2Z2ZLZZIN.ACCEPTANCE(31/MULE) PRODUCED ON 16AUGB2 AT 08,25.14

£0UTPUT BY LISTFILE IN "sTLFAK=T10.RPSMITH' ON 16AUG82 AT 11.01.39 USING I381

(-
DOCUMENT ACCEPTANCE(31/MULE)
c
0 CUTILITY FUNCTIONS USED WITHIN THE TESTS 1]
1 USE OUTTEXT,NL,
« 2 FUNCTION
3 USE LOCALBUFFERt62.
4 " "w> YLOCALBUFFER}
- 5 «> ALUCALBUFFER 3 CREAD PARAMETER FROM THE STACK]
6 ALOCALBUFFER OUTCHARC) 3
7 END => FOUTTEXTS
[8
9 FUuNCTION
10 USE LOCALNLZ1.
- 11 63=> JLOCALNL 3
12 ALOCALNL OUTCHAR();
13 END=> anlL;
[14 . .
15 "MULE ACCEPTANCE TESTS
16 " OUTTEXT() 3 .
C 17 € , ‘e
18 MULE ACCEPTANCE TEST TO TEST THE FOLLOWING
19 1 .
C 24 [BUILT IN ROUTINES) ;
21 LINPUT OUTPUTI .- -
22 INPUT OUTPUT TESTS t
- 23 " OUTTEXT() c e
24
25 USE BUFFER:10 o -
C 26 JBUFFER INCHARC) 3$ABCDEFGHY
27 LINCHAR READS "ABCOEFGHIKEOL>' FRUM THE INPUT. STREAM &
28 PUTS IT INTO THE HBUFFER J '
C 29 BBUFFER OQUTCHAR()S NLC(); [#%E0 ABCODEFGHI]
30 1275 OUTINT() ; Cx%xE0 1275)
31)
C 32 [DIADIC OPERATURS] -

33 "“DIADIC TESTS

34 " OUTTEXT() 2
C 35 USE LM,RH

36 150=> ALH 2 SU=> aRH 7 [INITIALISE VARIABLES]

37 (LH+RH) OUTINTC) ; [x%E0 2001
(o 38 (LH=RH) OUTINT() ; C[#x»xEO0 100]
39 (LHXRH) OUTINT() ; [x%xE0 7500)
40 (LH/RA) OUTINT() 7 [#xEO0 3) .
C 41 (LHCRH) OUTINT() 3 [#%x€EO0 0] .

42 CLH>RH) OUTINT() 2 L[x»xE0 1)

48 (LH<mRH) QUTINT() 3 [x»xg0 0]
- TN (LH>mRH) OUTINT() 3 [axE0 1)

45 (LHERH) OUTINT() ; [awt0 01

46 CLHCORH) OUTINTC) 3 L[wx2E0 1]

. 4“7 (LH AND RH) OUTINT() ; L[#xE0 181
4R (LH OR RH) OUTINTC) ; [xxE0 182)
49

- 50 CCONDITIONALS]

A HANLANTTTINUMAL rceye

rdll

”

FUNCTION
:CK
> JUUFFER }
ABUFFER OUTCHARQ)S
END => 30K3:

FUNCTION
"FAIL
=> JBUFFER 7
ABUFFER OUTCHAR() 2
END => AFAIL:

1,0K IF() 2 [*%EO0 0K]

0,FAIL IF() 3 [NO OUTPUT]

LH,0K 1F() 7 [%%EO0 0K)

RH,0K IFC) 5 [%xxE0 0Kl]

ALH,O0K 1F() ; [w*xe0 0KJ]

(LH>RH) 0K IF() ; Lx%kEO0 OK]

(LH>=RH) ,0K IFC() ; [awEO0 0K]

(LHSKRH) L FAIL IF() ; [NO OUTPUT)

((LM AND RH) = (LH AND RH)),0K TF() 3 Cx#EQ0 OK]

CGOTO IS NOT TESTED]

trPopP)

“pOP TESTS

OUTTEXT()

USE INNERFUNCTION,OUTERFUNCTION .

FUNCTION

POPC) ¢ .

END => QINNERFUNCTIUN 3

FUNCTION
INNERFUNCTION(C) IR
FAILO)?

END => HOQUTERFUNCTIUN -

OUTERFUNCTION() .
0K() ; L[AwE0 0K)J

[STACK HAME]

“STACK NAME TESTS)
QUTTEXT (), "
USE NEWLINE:1,PRINTNAME
63 => QUEwWLINE 3

FUNCTLON

" " «> ARUFFER;
STACKNAME() => ABUFFER ;
JBUFFER OUTCHARCQ) ¢
BNEWLINE OQUTCHAR() 7

END => APRINTHAME ;

BUFFER PRINTNAME() ; [*%xEO0 BUFFER]

LH PRINTHAME() 7 [%x*E0Q LHI]

RH PRINTNAME() [xxE0 RH)

0K PRINTHAME() 3 [*%EQ OK1]

FAIL PRINTHNAME() ;7 (»%xEO FAILJ]

INNERFUNCTION PRINTNAME() 3 [w%EOQ0 INNERFUNCTION]
OUTERFUNCTION PRINTHAME() 2 [w%EO QUVERFUNCTION]
NEWLINE PRINTNAME() ; [+«%xEQ NEWLINE]

PRINTNAME PRINTMAME() ; [»x%xEO PRINTNAME]

. % N

[N

121
c 122
123
124

120
127

129

130

[131
132
153
e 154
135
134
~ 137
138
139
C 144
1461
142

144
145

147
148

150
151
C 152
153
154
~ 155
156
157
o 158
159
160

162
163

165
166

168
c 169
170
171
[172
123
1?4
- 175
176
177
i 178
179
180

182

GUFTEXTE) §= 7= T e
“ABC123VEF4" => IBUFFER 3
USE STHING1:1,STRING3:3,STRING535

ABUFFER,3,4 SUHSTR() 5 OUTINT() 3 (+«xE0 10485761]

ABUFFER,3,1 SUBSTR() VALUE() OUTTEXT() 3 NLCQ)S
Cx%EO0 1]

SRUFFER,6,3 SUHBSTR() VALUE() OUTTEXT() 3 NL()J
CxxEO0 DEFI .

ARUFFER,5,2 SUBSTR() VALUE() QUTYTEXT() 3 NLCQO)3
C*xE0 30

"XXX" WBUFFER,3,3 => (SUBSTR()) 3

PABUFFER OUTCHARC) 5 NL(); [A%EOD ABCXXXDEF&L]D

[COMPILE
- THIS ADDS THE WHILE AND ELSE FACILITY T0O0]
"COMPILE TESTS
* OUTTEXT() 7
USE IFELSE,WHILE.
“IFELSEC(/MULE)" COMPILE() 3
“WHILE(/MULE)" COMPILE()
CIFELSE) :
“IF ELSE TESTS
" OQUTTEXT();
" “e> WBUFFER;

1,0K,FAIL IFELSE() 3 [w%xEO 0K
0,FAIL,OK IFELSE() 7 [*%EO0 OKJ
LH,OK,FAIL IFELSE() 3 [x%xE0 OK) .
RH,OK,FAIL IFELSEC) 7 [#xEO0 OK]

OLH,O0K,FAIL IFELSEC) ; [wxwnEQ OK] .

(LHDRH) ,OK,FAIL IFELSE() 3 [**EO0 0K]

CLH>®RH) »OK,FAIL IFELSEC() 3 [w»EQ 0K] .

(LHCRH) ,FALIL,0K IFELSE() 5 [%*E0 0K}

¢ (LH AND RH) = (RH AND LH)),0K,FAIL IFELSES) 3 [*%E0 0K]

CWHILE]D -
"WHILE TESTS
“QUTTEXT()) .
USE LOOPCOUNTER,CHARACTER:1
(0=1) => ALOOPCOUNTER ; "ABCXXXDEF4"=> QRUFFER}
FUNCTION

(LOOPCOUNTER+1) => ILOOPCOUNTER }
(LOOPCOUNTER < 10)

END,

FUNCTION

SBUFFER,1,LOOPCOUNTER SUBSTR() VALUE() => QCHARACTER 3
BCHARACTER OUTCHAR()
END WHILE() ;
ANEWLINE OUTCHARC) 3 [*%xEO0 ABCXXXDEF4]

CINFIX STACKING OPERATION]
“INFIX STACKING OPERATION TESTS
" QUTTEXT() 7

USE $,1,£,31,11,£) o

USE FNLH,FNRH ,

25 => ALH 7 30 => 3RH 3
FUNCTION 172 END => QFNLH 3
FUNCTION 3 END => @FNRH 3

1 «> 3 3%,

vam.n

-

186
187
148
189
1940
191
192
193
194
195

6 => @ £ 3

Cs ¢+ |

) 5 OUTINT() 3 L#w€0 3)

(LH#RH) OUTEINT() 3 L[wxE0 551

(G ¢
¢ ¢
[N ¢
« ¢
[aw
« ¢

E

[) +

SAmn~Aw

NA~Awn e

Ve
+ -
- N

361]
C C (s +

FUNCTION 1,

(LH+RH)) OUTINT() ; [#%EO0 58]

+ (LH#RH)) + £) OUTINT() 3 C[wwE0 61)

) 4 (LH4RH)) + £) ¢ FNLH()) OUTINT() 3 LwwEOQ 233)
) + (LH4RH)) + £) ¢ (FNLH() ¢ FNRH())) OUTINT() 3

I) % (LH4RH)) + £) + (FNLH() ¢+ FNRH(O))) ¢+
FUNCTION 3 END, FAJL IFELSE() END()) OUTINT() 3 [#%E0 239]

196 (
197
198 (
199

(€ 143) »2) «B) ; OUTINT() 3(»wg0 0]

(2% (1¢3)) =8) ; OUTINT(); L*wEO0 03]
8= (2% (1+43))); OUTINY() ; [wxwg0 0]

200 CFUNCTJIONS)
201 “FUNCTION TESTS

202 " OUTTEXT() 7

203 FUNCTION

204 USE F1,F2,F3,F4,
205 FUNCTION

206 F2 PRINTNAME() 3
207 F3() »

208 END => aF2;

209 FUNCTION

2149 F3 PRIMINAME() 2
211 F4Q);

212 END => &F3;

213 FUNCTION

214 0K() 7

215 END => aFé4;

216 F20Q);

217 END(); L[x%xe0 F2)

218 [x%xE0 F3)

219 («*E0 OK]

220

221 USE RECURSE. . .
222 0=> BLOUPCOUNTER;
223 FUNCTION

224
225
226
227
228

USE ENTER:T1,EXITEY,
ENTER PRINTNAME()
(LOOPCOUNTER+1) => ALOOPCOUNTER?
CLOOPCOUNTERKC=4L)

FUNCTLION RECURSE() END IF()J

229 EXIT PRINTNAME() .
230 END => ARECURSES

231

RECURSEQ) 3

232 [»%xEQ0 ENTER)
233 [x%€EQ0 ENTER]
234 [a%EOQ ENTER]
235 [(«*EO0 ENTER]
236 [%%EO0 ENTER]
237 [»x%xE0 EXIT)
238 [x*€0 EXIT)
239 [#*E0 EXIT]
240 [*x%EQ0 EXIT]
241 (»%EO0 EXITJ

242

243 CEND OF TEST]
244 "TEST ENOED

245 "

246 3
247

- .

OUTTEXT() 3

