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S 
hort  cryptograms, in which an encoded sentence 
or quotation is to be decoded,  are common pas- 
times of many recreational puzzle enthusiasts. 
Here  is a simple example of the type that can be 
found in many collections of  word games, and 
daily in some newspapers: 

Given (cipher text): YPNR,PTMPYYPNR:YJSYODYJRWlRDYOPM. 
Solution (plain text): TOBE,OR NOTTOBE:THAT I STHEQUESTI ON. 

A permutat ion of  the 26-character alphabet  is used to en- 
code a sentence with spacing and punctuation intact. 
Given only the encoded sentence (the "cipher text"), the 
correct permutat ion is to be found so that the original 
sentence (the "plain text") can be understood.  By framing 
the problem as a multiple-hypothesis detection problem, 
applying a maximum-likel ihood criterion, using English 
language word frequency data, approximat ing liberally, 
and constructing a well-organized search tree, a ra ther  
simple algori thm results, which quickly deciphers even 
difficult cryptograms. 

Cryptograms of this fo rm- - s imple  permutat ion substi- 
tutions with word divis ions--have been employed for 
message concealment,  at least, since Roman times. The  
solution of  simple permutat ion ciphers has not been of 
much practical importance,  since their use for military 
communication was superseded in the nineteenth cen- 
tury, but  they remain a formidable puzzle for those who 
enjoy word games. Experienced solvers can manually 
solve a typical one-sentence cryptogram in a few minutes, 
but  carefully constructed short puzzles, with unusual let- 
ter frequencies or atypical letter combinations, can stymie 
even expert  solvers. Many strategies are published for 
manual  decipherment ,  e.g., [1-3, 5, 8-10,  12], but  these 
all require human pat tern recognition skills "in the loop," 
and are not explicit enough to be called algorithms. This 
author  is aware of only one previously published method 
for automatic so lu t ion- -a  relaxation method [7], also see 
[4 ] - -bu t  it is not suitable for short cryptograms. 

The  solution of  a cryptogram can either be given as an 
explicit sentence of  plain text, or it can be characterized by 
describing the permutat ion that was used to code the 
plain text. This permutat ion can be inverted then to re- 
construct the plain text from the given cipher  text. The  
permutat ion used for this example codes each letter as the 
letter to its right on the s tandard typewriter  keyboard 
(convenient for touch-typists), with the three letters on the 
extreme right, (P, L, and M) "wrapping a round"  to the left: 

Plain: ABCDE FGH I JKLMNOPQRSTUVWXYZ 
Cipher: SNVFRGH JOKLAZMPQWTDY I B E CUX 
Partial Permutation: SN**R* *JO . . . .  MP*WTDYI . . . . .  

An algorithm that decodes cryptograms must effec- 
tively choose one of  the 26! (~ 4 - 1026) different permuta-  
tions according to some criterion. Actually, there are usu- 
ally somewhat fewer possibilities, because only a "partial  
permutat ion"  is required.  Only 12 distinct letters appear  
in the preceding quote, so cipher entries for the plain let- 
ters that do not appear  may be left undefined,  indicated 
here with an (asterisk) * 

Cri ter ia  
The first tool one might think of when constructing a se- 
lection criterion is a probability distribution for the 26 let- 
ters. By tabulating the occurrences of each alphabetic 
character in large samples of text, one determines that the 
most frequent letter is ~,, occurring about 13% of  the time, 
while the least common is 7., with a frequency about 0.1%. 
Complete rank orderings vary somewhat depending  on 
the body of  the text selected for tabulation. Four pub- 
lished examples for modern  English [2, 3, 9, 12] are: 

ETAON I SRHLDCUP FMWY BGVKQX J Z 
ETNR I OASDHLCF PUM Y GWVBXKQ J Z 
ETAO I NSRH LDCUM FWG Y P BVKX J QZ 
ETOAN I RSHDLUCMP F YWG BVKJ XZQ 

A natural  solution criterion which can make use of  a 
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given order ing  is to select a permutat ion that results in a 
hypothesized plain text with as close an order ing as possi- 
ble to a s tandard published ordering.  Variations on this 
idea appear  in all discussions of  cryptography. The  exis- 
tence of conflicting nominal orderings,  such as the pre- 
ceding four is only a minor  flaw with this approach;  there 
is a much more serious problem. While it is straightfor- 
ward to construct a permutat ion that results in the desired 
letter ordering,  the result of such an algori thm (the "out- 
put  text") will, almost certainly, be gibberish for a short 
length of  text. Figure 1 illustrates such an algorithm, and 
why it fails. The  fundamental  problem is that short text 
fragments have sample statistics that differ considerably 
from one another  and larger samples. Even large samples 
vary, as the four orderings above attest, so the use of letter 
frequencies alone may fail even with texts as large as 
10,000 letters. 

Similar arguments  and examples can be constructed to 
show that simple modifications of this character-based 
probability distribution criterion also do not work in short 
cryptograms. Putative methods might include the fre- 
quencies of  word-initial letters or word-final letters, or the 
joint  statistics of  pairs or triples of letters, using Markov 
models such as in [5, 8, 10]. However these considerations 
only exacerbate the problems, since only a very small frac- 
tion of the possible n-tuples appears.  The fundamental  
problem remains that there is a large variance to the sam- 
ple statistics of short segments of  text. These measures can 
only be expected to converge when large samples of ci- 
pher  text are available. The  method of  [7] uses letter tri- 
ples, but  based on the examples presented,  it apparent ly  
requires approximately 1,000 characters of  text. 

To solve typical cryptograms containing only 5 to 25 
words, a different tack is employed here, analogous to the 
method of Figure 1, but using complete words ra ther  than 
letters. A word-based approach appears  formidable at first 
because there are many more words in English than let- 
t e r s - o v e r  100,000. However, it turns out that the use of a 
word table on the order  of  100 to 1,000 entries allows for a 
very effective method of  solution. 

As an appropr ia te  criterion, a maximum-likel ihood 
(ML) estimator is used, justified by the fact that it gives a 
minimum probability of  e r ror  under  the assumption that 
all permutat ions are equally likely [11]. L e t f  represent  an 
encoding permutat ion of the alphabet,  appl ied to the 
plain-text string on a character-by-character basis. Let Z 
be the given cipher text. The  corresponding plain text is 

then f - l ( Z ) .  A probabilistic model  for natural  language 
text assigns a probability P(S) to any string S. The ML 
criterion is then to chose the permutat ion 

f = a rgmaxP(f  - l(Z)). (1) 

f 
There  are two sizable problems: determining an appro-  
priate probability distribution P for English sentences and 
choosing among the 26! values for the a rgumen t f .  

L a n g u a g e  Model  
It is not clear that the notion of a probability distribution 
for English sentences makes any mathematical,  linguistic, 
or philosophical sense. People do not decide what to say 
or write by any procedure  analogous to flipping coins. It is 
more correct to describe the following as a text model 
based on word frequencies. 

Many tabulations of  word frequencies have been un- 
dertaken. Here is one listing of  the 135 top-ranked words 
of  modern  American English, starting with the most 
common [6]: 

THE OF AND TO A IN THAT IS WAS HE FOR IT WITH AS HIS ON BE AT 
BY I THIS HAD NOT ARE BUT FROM OR HAVE AN THEY WHICH ONE 
YOU WERE HER ALL SHE THERE WOULD THEIR WE HIM BEEN HAS 
WHEN WHO WILL MORE NO IF OUT SO SAID WHAT UP ITS ABOUT 
INTO THAN THEM CAN ONLY OTHER NEW SOME COULD TIME THESE 
TWO MAY THEN DO FIRST ANY MY NOW SUCH LIKE OUR OVER MAN 
ME EVEN MOST MADE AFTER ALSO DID MANY BEFORE MUST 
THROUGH BACK YEARS WHERE MUCH YOUR WAY WELL DOWN 
SHOULD BECAUSE EACH JUST THOSE PEOPLE MR HOW TOO LIT- 

Figure  1. A possible "message"  w h i c h  matches the  
known  le t te r  f requenc ies  of  English can always be 
f o u n d  by c o u n t i n g  the  occur rences of  each c ipher  
t e x t  le t te r  and ranking t hem f r om  most  to  least 
f r e q u e n t  (1st t w o  columns),  t hen  match ing  w i t h  a 
known  o rde r ing  (ETAONISRHLDC... in 3rd co lumn).  
The o u t p u t  o f  th is  a lgo r i t hm comes as close as pos- 
sible t o  the  co r rec t  le t te r  f requenc ies  of  English, 
bu t  is g ibber ish.  The p rob lem is t ha t  typical  sen- 
tences of  English do no t  display the  actual statistics 
of  English because they  are t oo  shor t .  In the  
quo ted  l ine of  Shakespeare, f o r  example, "T" is the  
mos t  c o m m o n  le t te r  (co lumn 4), no t  "E." 

Given Cipher Text: YP NR, PT MPY YP NR: YJSY OD YJR WIRDYOPM. 

Cipher Number of 

chars, occurences 

Y 

P 

R 

N,M,J,O,D 

T,S,W,I 

E 

T 

A 

O,N,I,S,R 

H,L,D,C 

T 

O 

E 

B,N,H, I, S 

R,A,Q,U 

Resulting Output Text ET OA, TH NTE ET OA: EILE SR EIA DCARESTN. 
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TLE STATE GOOD VERY MAKE WORLD STILL OWN SEE MEN WORK 
LONG GET HERE BETWEEN BOTH LIFE BEING UNDER NEVER DAY 
SAME ANOTHER KNOW WHILE LAST (2) 

Surprisingly, although there are over 100,000 English 
words, a randomly selected word of an English sentence 
has a greater than 50% chance of being found in, this list. 
In tabulations of this sort, homographs (e.g., the word that 
that introduces relative clauses and the identically spelled 
p ronoun  that) are counted together, so the data is ideal for 
this text-based purpose (and arguably of little other use). 

An interesting property of this data is that when the 
frequency of each word is plotted vs. its rank on logarith- 
mic axes, a nearly linear relationship results [6]. The slope 
is very close to - 1, and a good approximation to this data 
is the line 

p(w) --~ O.07/R(w), (3) 

where R(w) is the rank and p(w) the probability (or fre- 
quency) of the word w. For example, the most common 
word, THE, has rank 1 and appears as 7% of all words writ- 
ten. The second ranked word, OF, has half this frequency; 
it occurs as 3.6% of all written words. Frequency continues 
to decrease with rank in a nearly reciprocal manner.  (Of 
course it stops obeying (3) at some point, since a harmonic 
series diverges yet the total must be unity.) 

Therefore, a very short list of words constitutes a sizable 
fraction of any typical body of text. The first two already 
total to over 10% of all written words. By summing (3), 
one determines that the top 135 words form half of all 
printed text, leaving the remaining 100,000 English 
words to make up the second half. Thus, almost all En- 
glish words have a probability less than 10 -6 and so can 
be ignored as extremely unlikely to appear in any given 
sentence. 

The trick to an effective deciphering algorithm is to 
find a rough approximation, simplifying (3), which will 
allow a rapid construction of the most likely permutation, 
rather than a search through the 26! possible permuta- 
tions. The approximation used here is this: 

I f a  word is in (2), it has a probability on the order of 
10 -2, and if it is not in (2), it has a probability on the 
order of 10 -6. (4) 

Although this is a rather coarse approximation, its justifi- 
cation is that the resulting algorithm works. 

The final modeling step is to construct a probability 
measure for the sentences of English, as a function of the 
words in the sentence. Again, a very simple approxima- 
tion is found to be sufficient. The simplest model one 
might construct is that the words in a sentence are gener- 
ated completely independently of one another, so the 
probability of the entire sentence is simply the product of 
the probabilities of the individual words. More formally, 
for an N-word sentence, 

N 
P(S) = Pi p(wi), (5) 

i = 1  

where the sentence S consists of words Wl • . • WN. This is 
totally nonlinguistic of course, since it is independent  of 

the most fundamental  syntactic principles such as word 
order. But again the justification is in the results. 

We can interpret (5) in two ways, according to how we 
count repeated words. When a given word appears k 
times in a single sentence, we could include the corre- 
sponding probability k times in the product (if we are 
counting word "occurrences") or include it only once 
(counting word "types"). The decision is immaterial for 
most sentences, but counting types is preterable, in order 
to avoid being misled in those sentences where an uncom- 
mon word type has several occurrences (e.g., Romeo, 
Romeo, wherefore art thou Romeo?) So our model depends 
only on the set of words found in the sentence, ignoring 
order and repetitions. 

Because the probabilities (4) combine multiplicatively 
in (5), the criterion (1) is equivalent to: 

Choose the permutation which makes as many word 
(types) as possible of the resulting output  text be in 
the dictionary (2). (6) 

In hindsight this is a natural criterion without any re- 
course to ML estimation and particular probabilistic mod- 
els, but it is insightful to unders tand it in terms quitexioof 
more general principles, especially when considering vari- 
ations on the method. 

O p t i m i z a t i o n  
Rather than search through the very large space of up to 
26! partial permutations, the algorithm searches through 
a much more manageable tree of word assignments. First, 
for each cipher-text word, consider the relatively small set 
of plain-text words from (2) which could result from a 
deciphering permutation. Call this the pattern set, s(w), for 
the word w. Such words must be of the same length and 
have the same pattern of repeated letters if any repeat. 
Thus, THAT, with its first and fourth letters equal, would 
not match WITH, but it does match HIGH, DEAD, and SAYS. 
Figure 2 lists the pattern sets for the coded words in the 
example. Note that there are generally fewer such sets 
than word types in the cipher, because several cipher 
words will share the same pattern. In this example, the 
eight cipher word types result in four pattern sets. The 
last is the empty set because there are no eight-letter 
words in (2). QUESTION is ranked 358th in [6], and so is not 
in the top 135. 

For each cipher-text word w, s(w) can be constructed by 
reading the dictionary a word at a time and comparing 
the plain-text words to the cipher words for length and 
repetition positions. 1 This can be accomplished with the 
following function of the two words: 

FUNCTION MATCH?(W1, 14,'2) { 
IF Length(W1) # Length(W2) THEN RETURN FALSE; 
FOR/= 2 TO Length(W1) DO 

FOR J= 1 TO I -  1 DO 
IF (Wl[/] = WI[J]) # (14"2[/] = W2[JJ) THEN RETURN FALSE; 

RETURN TRUE } 

The test in the inner  loop causes the function to report 

t T h e  d ic t ionary  can be o rgan i zed  into pa t t e rns  a h e a d  o f  t ime to save some 
execution time, but this is not a dominant factor in the overall time com- 
plexity of the algorithm. 
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that the two words do not match when character positions 
i a n d j  can be found: suchtha t  in one word the ith a n d j t h  
positions contain the same character, but in the other  
word they contain different characters. I f  no such i a n d j  
can be found, the function reports TRUE in the last line. 
Then,  s(w) is the set of words x from the dictionary such 
that MATCH? (w, x) returns TRUE. 

The  full search tree is indicated in Figure 3. Each node 
is associated with a partial permutat ion,  a set of  cipher- 
word-to-plain-word assignments, and a score. The 
branching at level i represents all the plain-text words of  
which cipher word wi could be an encoding i.e., s(wi), plus 
one further possibility (the rightmost in each set of sib- 
lings) that the cipher-text word might be an encoding of a 
word not in the dictionary. Thus, each node corresponds 
to a combined assignment of plain text to cipher text at 
each of  the nodes in the path from the given node to the 
root. A score associated with each node is its depth  minus 
the number  of times a r ight-hand branch was taken in its 
path from the root. For leaves, the score corresponds to 
the number  of  words to be maximized in the criterion (6). 
Although the number  of  nodes in the tree can be quite 
large, and grows exponentially with the number  of words 
in the cryptogram, generally only a very small port ion of 
this tree needs to be explored. 

We apply a left-to-right, depth-first  search starting from 
the root which corresponds to a totally blank partial per- 
mutation. As we move down the tree, we construct a par- 
tial permutat ion at each node, noting which character 
mappings are required by the word assignments in its 
path from the root. At each branch corresponding to a 
word of  a pat tern set, blank entries in the permutat ion are 
further specified compared  to the parent  node. Pruning 
occurs whenever a new entry would be incompatible with 
the partial permutation.  At the rightmost branch in each 
set, corresponding to a word not in the dictionary, the 
parent 's  partial permutat ion is simply copied to the child. 

To check consistency, the algorithm builds up the per- 
mutation incrementally as each assignment is made, keep- 
ing track of a 26-component vector and its inverse. As ci- 
pher  words are given plain-word assignments in the 
various branches, the blanks are filled in. Whenever  a 
word assignment is considered, the algori thm checks in 
the partial permutat ion constructed so far that the cipher 
letters of the cipher word have not already been assigned 
to other  plain letters. It also checks that the plain charac- 
ters have not already been assigned to other cipher char- 

acters. I f  no inconsistencies are found, the resulting (less 
partial) permutat ion is assigned to the child node. 

Because of the exponential  growth of  the tree, it is im- 
portant  to prune  as high as possible. So, the o rder  in 
which the cipher words are assigned to levels is very im- 
portant.  Three  somewhat conflicting heuristics that seem 
natural  for this order ing are: 

a. Cipher words with short pat tern sets should go first, 
so that the longer sets are left for deeper  levels, where 
they are more likely to remain unvisited due to prunings 
above them. This heuristic corresponds to what many 
experienced puzzle solvers do. They begin by seeking out 
cipher  words and repeated letters, such as YJSY and 
NSMSMS which suggest the plain-text words THAT and BA- 
NANA (or ROCOCO). 

b. Cipher words which have letters in common with 
cipher words at higher levels should go above cipher 
words with no letters in common with higher levels, since 
they are likely to have most words in their pat tern set con- 
flict with the parent  permutat ion and hence be pruned.  

e. Longer  words (or words with more distinct charac- 
ters) should go first, so they force more entries in the par- 
tial permutat ion,  thereby setting up a greater likelihood 
of pruning  in the next level down. 

A combination of  these heuristics has been implemented 
and found to work satisfactorily. For the top-level word, 
we choose the cipher word for which the number  of dis- 
tinct letters divided by the size of its pat tern set is maxi- 
mum, i.e., heuristics (a) and (c). For each lower level, we 
then choose the cipher word having the largest number  of  
distinct letters in common with all the cipher  words above 
it. The  order  is computed once, befbre the search begins. 

The algori thm consists of the following steps: 

1. Input  the cipher text and parse it into words. ̀ ) 

Figure 2. Pat tern sets o f  words  f r om  the  135-word 
d ic t ionary  wh i ch  may be dec ipher ings  of  the  g iven 
c ipher  words.  While dozens of  wo rds  match the  
general  2- le t ter  and 3- le t ter  pat terns,  f ew  possibi l i -  
t ies ex is t  f o r  f u m o s t  l onger  wo rds  or words  w i t h  
repeated let ters.  The on ly  4 - le t te r  w o r d  f r om  th is  
d i c t ionary  in w h i c h  the  4th le t te r  repeats the  1st is 
"THAT," and there  are no 8- le t te r  words.  

fq 
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2. Group the cipher words by pattern, d ropping  
repetitions. 
3. Scan the dictionary and construct the pattern sets of 
plain words for each cipher  word. Ignore any for 
which the pat tern set is empty. 
4. Order  the cipher words using one or more of the 
heuristics (a,b,c) given earlier. 
5. Call SOLVE (1,f_null,O), described later. 
6. END. 

The  first three steps are already completed in Figure 2. 
The  MATCH? function preceding is used for steps 2 and 
3. Step 5 invokes a recursive procedure,  SOLVE, which 
explores the tree. Its three arguments  are the depth  in the 
search tree, the partial permutat ion inheri ted from the 
parent  node, and the number  of plain words used so far 
f iom the dictionary, i.e., the score of  Figure 3. 

PROCEDURE SOLVE (Depth, f, Score) { 
IF Depth > Dmax THEN COMPARE_SCORE ELSE { 

FOR x e s(wj) DO 
IF CONSISTENT?( f, w~, x) THEN SOLVE(Depth + 1, f_new, 

Score + 1); 
SOLVE(Depth + 1, f, Score) }; 

RETURN 

The first line of this procedure  just  stops the procedure  
at the leaves of the tree, where a procedure  COMPARE_S- 
CORE is called. Dmax is the depth of the leaves, deter- 
mined in Step 3. COMPARE_SCORE should compare the 
score to the best found so far and o u t p u t f  I(Z) if the 
score is at least as good as the best found yet. The  remain- 
der  of SOLVE simply checks if the permutat ion,  f ,  can 
consistently be extended by having the cipher  word for 
this depth be a coding of  any plain word, x. For those 
plain words, the deeper  levels are explored by recursive 
calls to SOLVE. As a side-effect of checking for consis- 

:~The threshold is more or less than 30 if we take into account the facts that 
cryptogram sentences are often purposely chosen to be "difficult" and so 
would have a higher source entropy than random English samples, and 
also that we are dealing with a partial permutation having less than 26! 
possibilities. Shannon [8] also argues that cryptograms of about this length 
are the most difficult to solve, since they maximize his "work characteris- 
tic," which is an intuitive notion of computational time complexity. 

F i g u r e  3. Word  search t ree,  s h o w i n g  t h e  score  at  
each node .  Branches  c o r r e s p o n d  t o  ass ign ing  p la in  
w o r d s  t o  c i p h e r  wo rds .  Mos t  o f  t h e  t r ee  is n o t  vis- 
i ted,  s ince sub t r ees  c o r r e s p o n d i n g  t o  i n c o n s i s t e n t  
l e t t e r  a s s i g n m e n t s  are p r u n e d .  

tency, the variable/_new (local to SOLVE) is set up with 
the extended permutation.  The  last line explores the 
rightmost brancla under  the assumption that the word fbr 
this depth is not in the dictionary. So in that case, the 
score of the parent  is not incremented.  

The  subroutine to extend and test the partial permuta-  
tion is as follows. Here,  the permutat ion f is stored as a 
structure containing two 26-component  vectors: an en- 
ciphering permutat ion,  f.c, and its inverse, the decoding 
permutat ionf .d .  The symbol '*' marks unspecified entries. 

FUNCTION CONSISTENT? (f, W, X) { 
f_new = f; 
FOR I = 1 TO Length(W) DO { 

IF f_new.c(X[I]) # '*' AND f_new.c(X[I]) # ~1] THEN RETURN 
FALSE; 

IF f_new.d(W[I]) # '*' AND f_new.d(W[I]) # X[i] THEN RETURN 
FALSE; 

f_new.c( X[ I]) = 14/[I]; 
f_new.d(W[I]) = X[/] }; 

RETURN TRUE } 

The output  of  the algori thm is a listing of  successively 
higher scored output  texts. The  first time a leaf is reached, 
generally only a few words are matched. Later solutions 
are only pr inted if they contain at least as many matched 
words as the best solution yet printed.  The  final line(s) of 
output  contain(s) the maximum-likel ihood estimate(s) of  
the plain text. 

The  size of  the dictionary is one of the parameters  of  
the algorithm. There  is nothing special about the 50% 
point  used to determine the number  135 for (2). In gen- 
eral, larger dictionaries are preferred.  It is, then, more 
likely that the algorithm will zero in on the exact solution, 
although it may run slower. 

An optional modification is to block those permutat ions 
in which a letter is mapped  into itself. It  is an unwritten 
rule of recreational cryptograms that each letter is 
mapped  into a different letter, never itself. This is easily 
implemented as an addit ional test in the subroutine CON- 
SISTENT?. We prefer  not to do this, however, for two 
reasons. First, it would eliminate a simple way of  exercis- 
ing the algorithm. Because our  algori thm is "permuta t ion  
invariant," we can test it with plain text used as c ipher  
text. We get the same output  as if the input  were coded, 
because it is as difficult for the algori thm to find the iden- 
tity permutat ion as any other permutat ion.  Second, it al- 
lows us to apply the algori thm to ciphers using numbers,  
pictures, or other  symbols as cipher  text, by applying first 
an arbitrary one-to-one mapping from the symbols to the 
alphabet. 

Given Cipher Text: 
Cipher words : YP, NR, PT, OD 

OF, TO, IN, IS, HE, 
Pattern- IT, AS,ON,BE,AT, 
sets of BY,OR,AN,WE,NO, 
plain IF, SO,UP, DO, MY, 
words : ME,MR 

YP MR, PT MPY YP MR: YJSY OD YJR WIRDYOPM. 
MPY, YJR YJSY 

THE, AND, WAS, FOR, H~S, I THAT 
HAD, NOT, ARE, BUT, ONE, I 
YOU, HER, SHE, HIM, HAS, I (none) 
WHO, OUT, ITS, CAN, NEW, I 
TWO, MAY, ANY, NOW, OUR, I 
MAN, WAY, HOW, OWN,MEN, 
GET, DAY 

WIRDYOPM 
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We also employ a bounding technique to prune the 
search uee  under  conditions where the algorithm cannot 
possibly beat tim best score yet tound, even if all lower 
levels were to resuh in a match. The first line of SOLVE 
becomes "IF (Depth > Dmax) O R  (Score + Dmax - Deplh + 
1 < HighScore) THEN . . ." 

Results 
The algorithm bas been implemented in C on an IBM PC 
compatible, tried on over a hundred  published crypto- 
grams, and generally provides a readable answer in a frac- 
tion of a second. Occasionally--on perhaps 5% of the ex- 
amples t r ied-- i t  requires a minute or two. This is 
understandable for a method based on depth-first search. 
Improved word-ordering heuristics might reduce the 
fi'action of such cases. 

Very short cryptograms, of less than 30 characters, are 
often ambiguous, and so the algorithm gives several tied 
solutions. Most of these can be eliminated by the user as 
not making grammatical sense. The following six solu- 
tions result for the first example using a 1,000-word dic- 
tionary (which then includes the word QUESTION). 

TO BE, OF NOT TO BE: THAT IS THE QUESTION. 
TO WE, OF NOT TO WE: THAT IS THE QUESTION. 
TO ME, OF NOT TO ME: THAT IS THE QUESTION. 
TO BE, OR NOT TO BE: THAT IS THE QUESTION. 
TO WE, OR NOT TO WE: THAT IS THE QUESTION. 
TO ME, OR NOT TO ME: THAT IS THE QUESTION. 

The algorithm does not have enough information to de- 
termine that only the fourth of these choices is of interest, 
because it relies on word counts, and uses no grammatical 
intbrmation. If it were required that the ties be broken 
automatically instead of by eye, grammatical information 
or other principles for refining the probability measure 
P(S) could be incorporated into tim method. (Using the 
heuristic ordering principles described earlier, these six 
solutions are directly constructed, with no backtracking 
from suboptimal branches, and no exploring of the right- 
most branches, which are pruned by the bonnding  
technique.) 

It is conceivable tbr a given cryptogram and dictionary 
that a pseudosolution could be tound in which an incor- 
rect permutation gives a higher word count than the cor- 
rect pernmtation. In much experimenting with the algo- 
rithm, this has not yet occurred with any sentence longer 
than two words. This is consistent with Shannon's notion 
of"unicity distance" [8, 10]. It can be shown that roughly 
30 characters of English are enough to expect a unique 
solution, while shorter cryptograms are inherently ambig- 
uous. The length of tim example is close to the threshold 
for uniqueness. :~ 

When the cipher text contains letters not t~ound in any 
matched word, the partial permutation does not specify 
the output text completely, and the algorithm prints a 
nonalphabetic character ('*') to indicate that a letter can- 
not be determined. For example, with the 135-word dic- 

'-'Words with internal  apos t rophes  are  not handled  here ,  but  it is easy to 
treat  t hem properly:  apos t rophes  are  considered leuers  which the p e r m u -  
tation may  not change.  

tionary, not containing QUESTION, there is no way for the 
algorithm to determine the missing letters QU, so the 
reader must fill it in by eye: 

TO BE, OF NOT TO BE: THAT IS THE **ESTION. 

The ESTION portion of the word is determined because 
these letters appear in other words of the sentence. A sin> 
pie extension with a "spelling checker" algorithm could 
be employed to fill these gaps if a full dictionary is avail- 
able. However, experience shows that the user can, trivi- 
ally, fill these in by inspection, so this is counted as a com- 
plete solution. 

A typical result tor a published cryptogram [12] is: 

I SHOOT THE HI**O*OTAMOUS WITH BU**ETS MADE OF **ATINUM 
BECAUSE IF I USE *EADEN ONES HIS HIDE IS SURE TO F*AFIEN 'EM 

One test of special interest is a sentence with a very 
tmusual letter distribution, which confuses cryptographic 
approaches based on letter n-tuple samples. An example 
near the limits of the method is [12]: 

*OCO HOBO ONCE HAD **AU WHO PUT HOI PO**OI INTOCOMA WITH 
AN A*IA MADE *AMOU* BY BOY *OP*ANO 

The missing letters are L, F, 1R, and 8. Although the per- 
formance is marginal--several  minutes are required, and 
many blanks remain-- th is  example would be impossible 
for a statistical method to solve, which would be thrown 
off by the large number  of word-final vowels used pur- 
posely. An even more extreme example comes fiom Ern- 
est Wright's GADSBY, [13] a 267-page novel with no oc- 
currences of the letter Iqi,. The output  (using the 
1,000-word dictionary), is quite readable, despite the 
highly unusual letter distribution: 

UPON THIS BASIS I AM GOING TO SHOW YOU HOW A BUN*H OF 
BRIGHT YOUNG FOL*S DID FIND A *HAMPION; A MAN WITH BOYS 
AND GIRLS OF HIS OWN; 

The method would fail completely if no words of the 
plain text were in the dictionary. But, tor an n-word sen- 
tence this happens with probability 2-" using the 135- 
word dictionary, and with even lower probability using 
larger dictionaries. 

Conclusion 
A simple method has been presented for solving crypto- 
grams and found to work well--even in difficult cases 
where only a short sample of text is available with letter 
probability distributions far from what would be expected. 
Of course, it also works on longer and easier cryptograms. 
It executes faster and requires much less text than a relax- 
ation method based on a letter-triple distr ibutions--the 
only other published algorithm for solving cryptograms 
known to this author. Although exponential time is re- 
quired in the worst case, in practice it is quite fast. Only a 
modest amount  of storage is required. [] 
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A c k n o w l e d g e m e n t  

I w o u l d  like to a c k n o w l e d g e  t h e  p r o g r a m m i n g  a s s i s t ance  

o f  J i a n  W a n g .  
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