
To Decode Short C r y p t o g r a m s

George W. Hart

S
hort cryptograms, in which an encoded sentence
or quotation is to be decoded, are common pas-
times of many recreational puzzle enthusiasts.
Here is a simple example of the type that can be
found in many collections of word games, and
daily in some newspapers:

Given (cipher text): YPNR,PTMPYYPNR:YJSYODYJRWlRDYOPM.
Solution (plain text): TOBE,OR NOTTOBE:THAT I STHEQUESTI ON.

A permutat ion of the 26-character alphabet is used to en-
code a sentence with spacing and punctuation intact.
Given only the encoded sentence (the "cipher text"), the
correct permutat ion is to be found so that the original
sentence (the "plain text") can be understood. By framing
the problem as a multiple-hypothesis detection problem,
applying a maximum-likel ihood criterion, using English
language word frequency data, approximat ing liberally,
and constructing a well-organized search tree, a ra ther
simple algori thm results, which quickly deciphers even
difficult cryptograms.

Cryptograms of this fo rm- - s imple permutat ion substi-
tutions with word divis ions--have been employed for
message concealment, at least, since Roman times. The
solution of simple permutat ion ciphers has not been of
much practical importance, since their use for military
communication was superseded in the nineteenth cen-
tury, but they remain a formidable puzzle for those who
enjoy word games. Experienced solvers can manually
solve a typical one-sentence cryptogram in a few minutes,
but carefully constructed short puzzles, with unusual let-
ter frequencies or atypical letter combinations, can stymie
even expert solvers. Many strategies are published for
manual decipherment , e.g., [1-3, 5, 8-10, 12], but these
all require human pat tern recognition skills "in the loop,"
and are not explicit enough to be called algorithms. This
author is aware of only one previously published method
for automatic so lu t ion- -a relaxation method [7], also see
[4] - -bu t it is not suitable for short cryptograms.

The solution of a cryptogram can either be given as an
explicit sentence of plain text, or it can be characterized by
describing the permutat ion that was used to code the
plain text. This permutat ion can be inverted then to re-
construct the plain text from the given cipher text. The
permutat ion used for this example codes each letter as the
letter to its right on the s tandard typewriter keyboard
(convenient for touch-typists), with the three letters on the
extreme right, (P, L, and M) "wrapping a round" to the left:

Plain: ABCDE FGH I JKLMNOPQRSTUVWXYZ
Cipher: SNVFRGH JOKLAZMPQWTDY I B E CUX
Partial Permutation: SN**R* *JO MP*WTDYI

An algorithm that decodes cryptograms must effec-
tively choose one of the 26! (~ 4 - 1026) different permuta-
tions according to some criterion. Actually, there are usu-
ally somewhat fewer possibilities, because only a "partial
permutat ion" is required. Only 12 distinct letters appear
in the preceding quote, so cipher entries for the plain let-
ters that do not appear may be left undefined, indicated
here with an (asterisk) *

Cri ter ia
The first tool one might think of when constructing a se-
lection criterion is a probability distribution for the 26 let-
ters. By tabulating the occurrences of each alphabetic
character in large samples of text, one determines that the
most frequent letter is ~,, occurring about 13% of the time,
while the least common is 7., with a frequency about 0.1%.
Complete rank orderings vary somewhat depending on
the body of the text selected for tabulation. Four pub-
lished examples for modern English [2, 3, 9, 12] are:

ETAON I SRHLDCUP FMWY BGVKQX J Z
ETNR I OASDHLCF PUM Y GWVBXKQ J Z
ETAO I NSRH LDCUM FWG Y P BVKX J QZ
ETOAN I RSHDLUCMP F YWG BVKJ XZQ

A natural solution criterion which can make use of a

~ O 2 September 1994/%1.37, No.9 ¢@IU lWUNICAT IONS OP THN AC lm

given order ing is to select a permutat ion that results in a
hypothesized plain text with as close an order ing as possi-
ble to a s tandard published ordering. Variations on this
idea appear in all discussions of cryptography. The exis-
tence of conflicting nominal orderings, such as the pre-
ceding four is only a minor flaw with this approach; there
is a much more serious problem. While it is straightfor-
ward to construct a permutat ion that results in the desired
letter ordering, the result of such an algori thm (the "out-
put text") will, almost certainly, be gibberish for a short
length of text. Figure 1 illustrates such an algorithm, and
why it fails. The fundamental problem is that short text
fragments have sample statistics that differ considerably
from one another and larger samples. Even large samples
vary, as the four orderings above attest, so the use of letter
frequencies alone may fail even with texts as large as
10,000 letters.

Similar arguments and examples can be constructed to
show that simple modifications of this character-based
probability distribution criterion also do not work in short
cryptograms. Putative methods might include the fre-
quencies of word-initial letters or word-final letters, or the
joint statistics of pairs or triples of letters, using Markov
models such as in [5, 8, 10]. However these considerations
only exacerbate the problems, since only a very small frac-
tion of the possible n-tuples appears. The fundamental
problem remains that there is a large variance to the sam-
ple statistics of short segments of text. These measures can
only be expected to converge when large samples of ci-
pher text are available. The method of [7] uses letter tri-
ples, but based on the examples presented, it apparent ly
requires approximately 1,000 characters of text.

To solve typical cryptograms containing only 5 to 25
words, a different tack is employed here, analogous to the
method of Figure 1, but using complete words ra ther than
letters. A word-based approach appears formidable at first
because there are many more words in English than let-
t e r s - o v e r 100,000. However, it turns out that the use of a
word table on the order of 100 to 1,000 entries allows for a
very effective method of solution.

As an appropr ia te criterion, a maximum-likel ihood
(ML) estimator is used, justified by the fact that it gives a
minimum probability of e r ror under the assumption that
all permutat ions are equally likely [11]. L e t f represent an
encoding permutat ion of the alphabet, appl ied to the
plain-text string on a character-by-character basis. Let Z
be the given cipher text. The corresponding plain text is

then f - l (Z) . A probabilistic model for natural language
text assigns a probability P(S) to any string S. The ML
criterion is then to chose the permutat ion

f = a rgmaxP(f - l(Z)). (1)

f
There are two sizable problems: determining an appro-
priate probability distribution P for English sentences and
choosing among the 26! values for the a rgumen t f .

L a n g u a g e Model
It is not clear that the notion of a probability distribution
for English sentences makes any mathematical, linguistic,
or philosophical sense. People do not decide what to say
or write by any procedure analogous to flipping coins. It is
more correct to describe the following as a text model
based on word frequencies.

Many tabulations of word frequencies have been un-
dertaken. Here is one listing of the 135 top-ranked words
of modern American English, starting with the most
common [6]:

THE OF AND TO A IN THAT IS WAS HE FOR IT WITH AS HIS ON BE AT
BY I THIS HAD NOT ARE BUT FROM OR HAVE AN THEY WHICH ONE
YOU WERE HER ALL SHE THERE WOULD THEIR WE HIM BEEN HAS
WHEN WHO WILL MORE NO IF OUT SO SAID WHAT UP ITS ABOUT
INTO THAN THEM CAN ONLY OTHER NEW SOME COULD TIME THESE
TWO MAY THEN DO FIRST ANY MY NOW SUCH LIKE OUR OVER MAN
ME EVEN MOST MADE AFTER ALSO DID MANY BEFORE MUST
THROUGH BACK YEARS WHERE MUCH YOUR WAY WELL DOWN
SHOULD BECAUSE EACH JUST THOSE PEOPLE MR HOW TOO LIT-

Figure 1. A possible "message" w h i c h matches the
known le t te r f requenc ies of English can always be
f o u n d by c o u n t i n g the occur rences of each c ipher
t e x t le t te r and ranking t hem f r om most to least
f r e q u e n t (1st t w o columns), t hen match ing w i t h a
known o rde r ing (ETAONISRHLDC... in 3rd co lumn).
The o u t p u t o f th is a lgo r i t hm comes as close as pos-
sible t o the co r rec t le t te r f requenc ies of English,
bu t is g ibber ish. The p rob lem is t ha t typical sen-
tences of English do no t display the actual statistics
of English because they are t oo shor t . In the
quo ted l ine of Shakespeare, f o r example, "T" is the
mos t c o m m o n le t te r (co lumn 4), no t "E."

Given Cipher Text: YP NR, PT MPY YP NR: YJSY OD YJR WIRDYOPM.

Cipher Number of

chars, occurences

Y

P

R

N,M,J,O,D

T,S,W,I

E

T

A

O,N,I,S,R

H,L,D,C

T

O

E

B,N,H, I, S

R,A,Q,U

Resulting Output Text ET OA, TH NTE ET OA: EILE SR EIA DCARESTN.

C O M M U N I ¢ A T I O N S O l e T H I I A C M September 1994/Vol.37, No.9 103

TLE STATE GOOD VERY MAKE WORLD STILL OWN SEE MEN WORK
LONG GET HERE BETWEEN BOTH LIFE BEING UNDER NEVER DAY
SAME ANOTHER KNOW WHILE LAST (2)

Surprisingly, although there are over 100,000 English
words, a randomly selected word of an English sentence
has a greater than 50% chance of being found in, this list.
In tabulations of this sort, homographs (e.g., the word that
that introduces relative clauses and the identically spelled
p ronoun that) are counted together, so the data is ideal for
this text-based purpose (and arguably of little other use).

An interesting property of this data is that when the
frequency of each word is plotted vs. its rank on logarith-
mic axes, a nearly linear relationship results [6]. The slope
is very close to - 1, and a good approximation to this data
is the line

p(w) --~ O.07/R(w), (3)

where R(w) is the rank and p(w) the probability (or fre-
quency) of the word w. For example, the most common
word, THE, has rank 1 and appears as 7% of all words writ-
ten. The second ranked word, OF, has half this frequency;
it occurs as 3.6% of all written words. Frequency continues
to decrease with rank in a nearly reciprocal manner. (Of
course it stops obeying (3) at some point, since a harmonic
series diverges yet the total must be unity.)

Therefore, a very short list of words constitutes a sizable
fraction of any typical body of text. The first two already
total to over 10% of all written words. By summing (3),
one determines that the top 135 words form half of all
printed text, leaving the remaining 100,000 English
words to make up the second half. Thus, almost all En-
glish words have a probability less than 10 -6 and so can
be ignored as extremely unlikely to appear in any given
sentence.

The trick to an effective deciphering algorithm is to
find a rough approximation, simplifying (3), which will
allow a rapid construction of the most likely permutation,
rather than a search through the 26! possible permuta-
tions. The approximation used here is this:

I f a word is in (2), it has a probability on the order of
10 -2, and if it is not in (2), it has a probability on the
order of 10 -6. (4)

Although this is a rather coarse approximation, its justifi-
cation is that the resulting algorithm works.

The final modeling step is to construct a probability
measure for the sentences of English, as a function of the
words in the sentence. Again, a very simple approxima-
tion is found to be sufficient. The simplest model one
might construct is that the words in a sentence are gener-
ated completely independently of one another, so the
probability of the entire sentence is simply the product of
the probabilities of the individual words. More formally,
for an N-word sentence,

N
P(S) = Pi p(wi), (5)

i = 1

where the sentence S consists of words Wl • . • WN. This is
totally nonlinguistic of course, since it is independent of

the most fundamental syntactic principles such as word
order. But again the justification is in the results.

We can interpret (5) in two ways, according to how we
count repeated words. When a given word appears k
times in a single sentence, we could include the corre-
sponding probability k times in the product (if we are
counting word "occurrences") or include it only once
(counting word "types"). The decision is immaterial for
most sentences, but counting types is preterable, in order
to avoid being misled in those sentences where an uncom-
mon word type has several occurrences (e.g., Romeo,
Romeo, wherefore art thou Romeo?) So our model depends
only on the set of words found in the sentence, ignoring
order and repetitions.

Because the probabilities (4) combine multiplicatively
in (5), the criterion (1) is equivalent to:

Choose the permutation which makes as many word
(types) as possible of the resulting output text be in
the dictionary (2). (6)

In hindsight this is a natural criterion without any re-
course to ML estimation and particular probabilistic mod-
els, but it is insightful to unders tand it in terms quitexioof
more general principles, especially when considering vari-
ations on the method.

O p t i m i z a t i o n
Rather than search through the very large space of up to
26! partial permutations, the algorithm searches through
a much more manageable tree of word assignments. First,
for each cipher-text word, consider the relatively small set
of plain-text words from (2) which could result from a
deciphering permutation. Call this the pattern set, s(w), for
the word w. Such words must be of the same length and
have the same pattern of repeated letters if any repeat.
Thus, THAT, with its first and fourth letters equal, would
not match WITH, but it does match HIGH, DEAD, and SAYS.
Figure 2 lists the pattern sets for the coded words in the
example. Note that there are generally fewer such sets
than word types in the cipher, because several cipher
words will share the same pattern. In this example, the
eight cipher word types result in four pattern sets. The
last is the empty set because there are no eight-letter
words in (2). QUESTION is ranked 358th in [6], and so is not
in the top 135.

For each cipher-text word w, s(w) can be constructed by
reading the dictionary a word at a time and comparing
the plain-text words to the cipher words for length and
repetition positions. 1 This can be accomplished with the
following function of the two words:

FUNCTION MATCH?(W1, 14,'2) {
IF Length(W1) # Length(W2) THEN RETURN FALSE;
FOR/= 2 TO Length(W1) DO

FOR J= 1 TO I - 1 DO
IF (Wl[/] = WI[J]) # (14"2[/] = W2[JJ) THEN RETURN FALSE;

RETURN TRUE }

The test in the inner loop causes the function to report

t T h e d ic t ionary can be o rgan i zed into pa t t e rns a h e a d o f t ime to save some
execution time, but this is not a dominant factor in the overall time com-
plexity of the algorithm.

104 September 1994/Vol.37, No.9 C O M M U N I C A T I O N S OF ?HE A C M

that the two words do not match when character positions
i a n d j can be found: suchtha t in one word the ith a n d j t h
positions contain the same character, but in the other
word they contain different characters. I f no such i a n d j
can be found, the function reports TRUE in the last line.
Then, s(w) is the set of words x from the dictionary such
that MATCH? (w, x) returns TRUE.

The full search tree is indicated in Figure 3. Each node
is associated with a partial permutat ion, a set of cipher-
word-to-plain-word assignments, and a score. The
branching at level i represents all the plain-text words of
which cipher word wi could be an encoding i.e., s(wi), plus
one further possibility (the rightmost in each set of sib-
lings) that the cipher-text word might be an encoding of a
word not in the dictionary. Thus, each node corresponds
to a combined assignment of plain text to cipher text at
each of the nodes in the path from the given node to the
root. A score associated with each node is its depth minus
the number of times a r ight-hand branch was taken in its
path from the root. For leaves, the score corresponds to
the number of words to be maximized in the criterion (6).
Although the number of nodes in the tree can be quite
large, and grows exponentially with the number of words
in the cryptogram, generally only a very small port ion of
this tree needs to be explored.

We apply a left-to-right, depth-first search starting from
the root which corresponds to a totally blank partial per-
mutation. As we move down the tree, we construct a par-
tial permutat ion at each node, noting which character
mappings are required by the word assignments in its
path from the root. At each branch corresponding to a
word of a pat tern set, blank entries in the permutat ion are
further specified compared to the parent node. Pruning
occurs whenever a new entry would be incompatible with
the partial permutation. At the rightmost branch in each
set, corresponding to a word not in the dictionary, the
parent 's partial permutat ion is simply copied to the child.

To check consistency, the algorithm builds up the per-
mutation incrementally as each assignment is made, keep-
ing track of a 26-component vector and its inverse. As ci-
pher words are given plain-word assignments in the
various branches, the blanks are filled in. Whenever a
word assignment is considered, the algori thm checks in
the partial permutat ion constructed so far that the cipher
letters of the cipher word have not already been assigned
to other plain letters. It also checks that the plain charac-
ters have not already been assigned to other cipher char-

acters. I f no inconsistencies are found, the resulting (less
partial) permutat ion is assigned to the child node.

Because of the exponential growth of the tree, it is im-
portant to prune as high as possible. So, the o rder in
which the cipher words are assigned to levels is very im-
portant. Three somewhat conflicting heuristics that seem
natural for this order ing are:

a. Cipher words with short pat tern sets should go first,
so that the longer sets are left for deeper levels, where
they are more likely to remain unvisited due to prunings
above them. This heuristic corresponds to what many
experienced puzzle solvers do. They begin by seeking out
cipher words and repeated letters, such as YJSY and
NSMSMS which suggest the plain-text words THAT and BA-
NANA (or ROCOCO).

b. Cipher words which have letters in common with
cipher words at higher levels should go above cipher
words with no letters in common with higher levels, since
they are likely to have most words in their pat tern set con-
flict with the parent permutat ion and hence be pruned.

e. Longer words (or words with more distinct charac-
ters) should go first, so they force more entries in the par-
tial permutat ion, thereby setting up a greater likelihood
of pruning in the next level down.

A combination of these heuristics has been implemented
and found to work satisfactorily. For the top-level word,
we choose the cipher word for which the number of dis-
tinct letters divided by the size of its pat tern set is maxi-
mum, i.e., heuristics (a) and (c). For each lower level, we
then choose the cipher word having the largest number of
distinct letters in common with all the cipher words above
it. The order is computed once, befbre the search begins.

The algori thm consists of the following steps:

1. Input the cipher text and parse it into words. ̀)

Figure 2. Pat tern sets o f words f r om the 135-word
d ic t ionary wh i ch may be dec ipher ings of the g iven
c ipher words. While dozens of wo rds match the
general 2- le t ter and 3- le t ter pat terns, f ew possibi l i -
t ies ex is t f o r f u m o s t l onger wo rds or words w i t h
repeated let ters. The on ly 4 - le t te r w o r d f r om th is
d i c t ionary in w h i c h the 4th le t te r repeats the 1st is
"THAT," and there are no 8- le t te r words.

fq
COHHUNICATiON|OIIVNIACH September 1994/Vol.37, No.9 I 0 i~

2. Group the cipher words by pattern, d ropping
repetitions.
3. Scan the dictionary and construct the pattern sets of
plain words for each cipher word. Ignore any for
which the pat tern set is empty.
4. Order the cipher words using one or more of the
heuristics (a,b,c) given earlier.
5. Call SOLVE (1,f_null,O), described later.
6. END.

The first three steps are already completed in Figure 2.
The MATCH? function preceding is used for steps 2 and
3. Step 5 invokes a recursive procedure, SOLVE, which
explores the tree. Its three arguments are the depth in the
search tree, the partial permutat ion inheri ted from the
parent node, and the number of plain words used so far
f iom the dictionary, i.e., the score of Figure 3.

PROCEDURE SOLVE (Depth, f, Score) {
IF Depth > Dmax THEN COMPARE_SCORE ELSE {

FOR x e s(wj) DO
IF CONSISTENT?(f, w~, x) THEN SOLVE(Depth + 1, f_new,

Score + 1);
SOLVE(Depth + 1, f, Score) };

RETURN

The first line of this procedure just stops the procedure
at the leaves of the tree, where a procedure COMPARE_S-
CORE is called. Dmax is the depth of the leaves, deter-
mined in Step 3. COMPARE_SCORE should compare the
score to the best found so far and o u t p u t f I(Z) if the
score is at least as good as the best found yet. The remain-
der of SOLVE simply checks if the permutat ion, f , can
consistently be extended by having the cipher word for
this depth be a coding of any plain word, x. For those
plain words, the deeper levels are explored by recursive
calls to SOLVE. As a side-effect of checking for consis-

:~The threshold is more or less than 30 if we take into account the facts that
cryptogram sentences are often purposely chosen to be "difficult" and so
would have a higher source entropy than random English samples, and
also that we are dealing with a partial permutation having less than 26!
possibilities. Shannon [8] also argues that cryptograms of about this length
are the most difficult to solve, since they maximize his "work characteris-
tic," which is an intuitive notion of computational time complexity.

F i g u r e 3. Word search t ree, s h o w i n g t h e score at
each node . Branches c o r r e s p o n d t o ass ign ing p la in
w o r d s t o c i p h e r wo rds . Mos t o f t h e t r ee is n o t vis-
i ted, s ince sub t r ees c o r r e s p o n d i n g t o i n c o n s i s t e n t
l e t t e r a s s i g n m e n t s are p r u n e d .

tency, the variable/_new (local to SOLVE) is set up with
the extended permutation. The last line explores the
rightmost brancla under the assumption that the word fbr
this depth is not in the dictionary. So in that case, the
score of the parent is not incremented.

The subroutine to extend and test the partial permuta-
tion is as follows. Here, the permutat ion f is stored as a
structure containing two 26-component vectors: an en-
ciphering permutat ion, f.c, and its inverse, the decoding
permutat ionf .d . The symbol '*' marks unspecified entries.

FUNCTION CONSISTENT? (f, W, X) {
f_new = f;
FOR I = 1 TO Length(W) DO {

IF f_new.c(X[I]) # '*' AND f_new.c(X[I]) # ~1] THEN RETURN
FALSE;

IF f_new.d(W[I]) # '*' AND f_new.d(W[I]) # X[i] THEN RETURN
FALSE;

f_new.c(X[I]) = 14/[I];
f_new.d(W[I]) = X[/] };

RETURN TRUE }

The output of the algori thm is a listing of successively
higher scored output texts. The first time a leaf is reached,
generally only a few words are matched. Later solutions
are only pr inted if they contain at least as many matched
words as the best solution yet printed. The final line(s) of
output contain(s) the maximum-likel ihood estimate(s) of
the plain text.

The size of the dictionary is one of the parameters of
the algorithm. There is nothing special about the 50%
point used to determine the number 135 for (2). In gen-
eral, larger dictionaries are preferred. It is, then, more
likely that the algorithm will zero in on the exact solution,
although it may run slower.

An optional modification is to block those permutat ions
in which a letter is mapped into itself. It is an unwritten
rule of recreational cryptograms that each letter is
mapped into a different letter, never itself. This is easily
implemented as an addit ional test in the subroutine CON-
SISTENT?. We prefer not to do this, however, for two
reasons. First, it would eliminate a simple way of exercis-
ing the algorithm. Because our algori thm is "permuta t ion
invariant," we can test it with plain text used as c ipher
text. We get the same output as if the input were coded,
because it is as difficult for the algori thm to find the iden-
tity permutat ion as any other permutat ion. Second, it al-
lows us to apply the algori thm to ciphers using numbers,
pictures, or other symbols as cipher text, by applying first
an arbitrary one-to-one mapping from the symbols to the
alphabet.

Given Cipher Text:
Cipher words : YP, NR, PT, OD

OF, TO, IN, IS, HE,
Pattern- IT, AS,ON,BE,AT,
sets of BY,OR,AN,WE,NO,
plain IF, SO,UP, DO, MY,
words : ME,MR

YP MR, PT MPY YP MR: YJSY OD YJR WIRDYOPM.
MPY, YJR YJSY

THE, AND, WAS, FOR, H~S, I THAT
HAD, NOT, ARE, BUT, ONE, I
YOU, HER, SHE, HIM, HAS, I (none)
WHO, OUT, ITS, CAN, NEW, I
TWO, MAY, ANY, NOW, OUR, I
MAN, WAY, HOW, OWN,MEN,
GET, DAY

WIRDYOPM

106 September 1994/Vol.37, No.9 ¢ O I m M U N I C A T I O H l l O i l THE A¢M

We also employ a bounding technique to prune the
search uee under conditions where the algorithm cannot
possibly beat tim best score yet tound, even if all lower
levels were to resuh in a match. The first line of SOLVE
becomes "IF (Depth > Dmax) O R (Score + Dmax - Deplh +
1 < HighScore) THEN . . ."

Results
The algorithm bas been implemented in C on an IBM PC
compatible, tried on over a hundred published crypto-
grams, and generally provides a readable answer in a frac-
tion of a second. Occasionally--on perhaps 5% of the ex-
amples t r ied-- i t requires a minute or two. This is
understandable for a method based on depth-first search.
Improved word-ordering heuristics might reduce the
fi'action of such cases.

Very short cryptograms, of less than 30 characters, are
often ambiguous, and so the algorithm gives several tied
solutions. Most of these can be eliminated by the user as
not making grammatical sense. The following six solu-
tions result for the first example using a 1,000-word dic-
tionary (which then includes the word QUESTION).

TO BE, OF NOT TO BE: THAT IS THE QUESTION.
TO WE, OF NOT TO WE: THAT IS THE QUESTION.
TO ME, OF NOT TO ME: THAT IS THE QUESTION.
TO BE, OR NOT TO BE: THAT IS THE QUESTION.
TO WE, OR NOT TO WE: THAT IS THE QUESTION.
TO ME, OR NOT TO ME: THAT IS THE QUESTION.

The algorithm does not have enough information to de-
termine that only the fourth of these choices is of interest,
because it relies on word counts, and uses no grammatical
intbrmation. If it were required that the ties be broken
automatically instead of by eye, grammatical information
or other principles for refining the probability measure
P(S) could be incorporated into tim method. (Using the
heuristic ordering principles described earlier, these six
solutions are directly constructed, with no backtracking
from suboptimal branches, and no exploring of the right-
most branches, which are pruned by the bonnding
technique.)

It is conceivable tbr a given cryptogram and dictionary
that a pseudosolution could be tound in which an incor-
rect permutation gives a higher word count than the cor-
rect pernmtation. In much experimenting with the algo-
rithm, this has not yet occurred with any sentence longer
than two words. This is consistent with Shannon's notion
of"unicity distance" [8, 10]. It can be shown that roughly
30 characters of English are enough to expect a unique
solution, while shorter cryptograms are inherently ambig-
uous. The length of tim example is close to the threshold
for uniqueness. :~

When the cipher text contains letters not t~ound in any
matched word, the partial permutation does not specify
the output text completely, and the algorithm prints a
nonalphabetic character ('*') to indicate that a letter can-
not be determined. For example, with the 135-word dic-

'-'Words with internal apos t rophes are not handled here , but it is easy to
treat t hem properly: apos t rophes are considered leuers which the p e r m u -
tation may not change.

tionary, not containing QUESTION, there is no way for the
algorithm to determine the missing letters QU, so the
reader must fill it in by eye:

TO BE, OF NOT TO BE: THAT IS THE **ESTION.

The ESTION portion of the word is determined because
these letters appear in other words of the sentence. A sin>
pie extension with a "spelling checker" algorithm could
be employed to fill these gaps if a full dictionary is avail-
able. However, experience shows that the user can, trivi-
ally, fill these in by inspection, so this is counted as a com-
plete solution.

A typical result tor a published cryptogram [12] is:

I SHOOT THE HI**O*OTAMOUS WITH BU**ETS MADE OF **ATINUM
BECAUSE IF I USE *EADEN ONES HIS HIDE IS SURE TO F*AFIEN 'EM

One test of special interest is a sentence with a very
tmusual letter distribution, which confuses cryptographic
approaches based on letter n-tuple samples. An example
near the limits of the method is [12]:

*OCO HOBO ONCE HAD **AU WHO PUT HOI PO**OI INTOCOMA WITH
AN A*IA MADE *AMOU* BY BOY *OP*ANO

The missing letters are L, F, 1R, and 8. Although the per-
formance is marginal--several minutes are required, and
many blanks remain-- th is example would be impossible
for a statistical method to solve, which would be thrown
off by the large number of word-final vowels used pur-
posely. An even more extreme example comes fiom Ern-
est Wright's GADSBY, [13] a 267-page novel with no oc-
currences of the letter Iqi,. The output (using the
1,000-word dictionary), is quite readable, despite the
highly unusual letter distribution:

UPON THIS BASIS I AM GOING TO SHOW YOU HOW A BUN*H OF
BRIGHT YOUNG FOL*S DID FIND A *HAMPION; A MAN WITH BOYS
AND GIRLS OF HIS OWN;

The method would fail completely if no words of the
plain text were in the dictionary. But, tor an n-word sen-
tence this happens with probability 2-" using the 135-
word dictionary, and with even lower probability using
larger dictionaries.

Conclusion
A simple method has been presented for solving crypto-
grams and found to work well--even in difficult cases
where only a short sample of text is available with letter
probability distributions far from what would be expected.
Of course, it also works on longer and easier cryptograms.
It executes faster and requires much less text than a relax-
ation method based on a letter-triple distr ibutions--the
only other published algorithm for solving cryptograms
known to this author. Although exponential time is re-
quired in the worst case, in practice it is quite fast. Only a
modest amount of storage is required. []

C O M M U N I C A T | O l i S l I I I I T H I E A C M September 1994/Vol.37, No.9 107

_ ~ G ~S j ~

A c k n o w l e d g e m e n t

I w o u l d like to a c k n o w l e d g e t h e p r o g r a m m i n g a s s i s t ance

o f J i a n W a n g .

References
1. Ball, R. Mathematical Recreations and Essays. Macmillan, New

York, 1960.

2. Friedman, W.F. Elements O¢ 1 o~yptanalysis. Aegean Park Press,
Laguna Hills, Calif., 1976.

3,

4.

Gaines, H.F. (hyptanalysis. Dover, New York, 1956.

Hunter , D.G.N. and McKcnzie, A.R. Experiments with relax-
ation algorithms fbr breaking simple substitution ciphers.
Comput. J. 26 (1983), 68-71.

5. Konheim, A. C~),ptography: A Primer, Wiley, New York, 1981.

6.

7.

Kucera, H. and Francis, W.N. Computational Analysis of
Present-Day American English. Brown University Press, Provi-
dence, R.I., 1967.

Peleg, S. and Rosenfeld, A. Breaking substitution ciphers
using a relaxation algorithm. Commun. ACM 22 (1979), 598-
605.

8,

9.

10.

Shannon, C.E. Communicat ion theory of secrecy systems.
Bell Syst. Tech. J. 28 (1949), 656-715.

Sinkov, A. Elementary CJ~yptanalysis: A Mathematical Approach.
Singer, 1968.

van Tilborg, H.C.A. An Introduction to Cryptology. Kluwer,
New York, 1988.

11.

12.

Van Trees, H.L. Detection, Estimation, and Modulation Theory.
Wiley, New York, 1968.

Williams, E.A. An Invitation to Oyptograms. Simon and Schu-
ster, New York, 1959.

13. Wright, E. GADSBE Wetzel Publ. Co., Los Angeles, Calif.,
1939.

About the Author:
GEORGE W. HART is currently an associate profbssor at Colum-
bia University in the depa r tmen t of electrical engineer ing and a
member of the Center for Telecommunicat ions Research, work-
ing in the areas of systems and communications. Author's Pres-
ent Address: Depar tment of Electrical Engineering, Columbia
University, New York, NY 10027-6699; email: hart@ctr.
columbia.edu.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM cupyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association fbr Computing Machinery. To copy otherwise, or to republish,
requires a [be aiad/ur specific perufission.

©ACM 0002-0782/94/0900 $3.50

~ 0 8 September 1994/Vo1,37, No.9 COMMUNICATIONS OF T H E A C M

