PREFACE

This manual is a reference manual which describes the Atlas
Autocode Compiler currently available (1/3/65) at Manchester
University. It is not a teaching manual though we have tried to
make it fairly readable, Further compilers may in the future
become available both on Atlas and other machines and it is
expected that they will be described with reference to this manual,

We would like to thank Mr, G, Riding for his many valuable
comments and suggestions and Miss Christina O'Brien who has typed
and re-typed the manuscript,

R.A, Brooker
J.S. Rohl,
1st March 1965
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1 INTRODUCTION

An ATLAS AUTCCODE PROGRAM consists of a series of STATEMENTS
which describke in algebraic notation the calculation to ke executed,
The statements are of two kinds, declarative statements giving the
nature of the quantities involved, and imperative statements which
describe the actual operations to be performed on them, and the sequence
in which they are to ke carried out, The statements are not immediately
recognisable by the computer and must first be converted into an
equivalent sequence of basic MACHINE INSTRUCTIONS. This is done by
a special translation program called a COMPILER which is held
permanently availakle in the machine, Not until the program has been
'compiled’' can it be executed.

The following example gives a general idea of the principles
involved in writing a program, We wish to fit a straight line
y = ax + b to sets of data of the form X1,Y1l; X2,Y2; ----; Xn, ¥Yn
which are to bBe punched and presented on a data tape in this order,
Each such set is to e terminated by the number 999Q9QQ and the final

set by two such numbers, For each set the quantities

a = nbXivi - Pxidvi
ngxi? - (&xi)?2

B = bvyi - abXi

n
c = $Yi? - 2(abXivi + bEYi) + a2 #Xi? + 2abdXi + nb?

are calculated, the last heing the sum of the squares of the deviations
B(Yi -~ axi - b)2,

The following is the formal program for this calculation, The
statements are to ke interpreted in the written order unless a statement
is encountered which transfers control to another specifically labelled
statement, In general each statement is written as a new line, otherwise

it must be separated from the previous statement by a semi-colon,



begin

real a, b, ¢, Sx, Sy, Sxx, SXy, Syy, nextx, nexty
integer n

read {nextx)

SX = U; Sy = 0; SXx%X = 0; SXy = 0; Syy = O

n =29

read (nexty) ; n=n + 1

Sx = SX 4+ nextx ; Sy = Sy + mexty

Sxx + mextx? ; Syy = Syy + nexty?

Sxx

1}

Sxy SXy + mextx+ nexty

read (nextx) ; ->1 unless nextx = 999 Qg9

(nxSxy - Sx*Sy)/{(n*Sxx - Sx?)

b = (Sy - a*Sx)/n
¢ = Syy - 2(a*Sxy + b*Sy) + a?xSxx - 2axb*Sx + m*b?
newline

print f£1(a,3) ; space ; print f1(b,3) ; space ; print fl(c,3)
read (mextx) ; ->2 unless nextx = 999 999

stop
end of program

BLOCKS AND ROUTINES

Complete programs are generally split up into a number of
self-contained units called ROUTINES, and each routine may be further
split into a number of BLOCKS, A detailed description of their
construction and use is deferred until later, but in the earlier sections
it is sufficient to note that the Autocode statements between begin
and end comstitute a block, However when a block defines a complete

program as in the above example, end is replaced by end of program,

PHRASE STRUCTURE NOTATION
Atlas Autocode is a PHRASE STRUCTURE LANGUAGE and to assist in its

description we sometimes have resort to phrase structure notation, 1In
general, whenever a name appears in square brackets in the description of
an Autocode statement, we mean that in an actual statement it would be replaced
by a particular element of the class defined by the name, For example, in the
next section we define [NAME] and [EXPR] to denote a general name and a
general expression respectively, and with these definitiomns we could go om to
define a functiomn of a single variable by

(NaME] (LEXPR])
and in an actual program this might be replaced by

g(x +y -2)
since g is a name, and X + y -2 is an expression, Further notes on phrase

structure notation will be found in Appendix 1,



2. THE BASIC LANGUAGE
SYMBOLS OF THE LANGUAGE

A program is presented to the computer as a length of perforated
paper tape, prepared on a Flexowriter keyboard machine, the keys of which

are engraved with the following symbols: -

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghi jklmnopgqrstuvwxyz
afBw

0123456789

=>< | *x:, "&2%2/,, 4+ _3$C)[12

A back-spacing facility allows underlining and also the formation of

compound characters, For example : -

cycle # > < ; ¥

The last of these consists of an asterisk superimposed on a vertical bar .,
It is usually referred to as a vertical arrow (and would be written
as such in a manuscript) and is used to denote exponentiation,
thus af(n-1) means 'a raised to the power (n-1)', Such a notation is
necessary because we have no means of effecting superscripts and subscripts
with a Flexowriter; the format is essentially one dimensional, There is
one exception, the superscript 2 for which there is a special symbol:
it is equivalent to {2,

Since the handbook itself is prepared on a Flexowriter the same
conventions for exponents will also be used in the text,
NOTE All SPACES and UNDERLINED SPACES in a program are ignored when the
program is read into the machine, Thus they may be used freely to assist

legibility in the written form of the program,

NAMES

These are used to identify the various operands, functions and
routines which appear in the program., A name consists of one or
more Roman letters, possibly followed by one or more decimal digits,

and possibly terminated by one or more primes('), For example: -

X I Alpha alo TEMP1 y'' b3’



Underlined names and mixed names such as RK2ST are NOT allowed, §§
There are certain names, e,g, log, sin, exp, print, read, etc,

which have a standard meaning (the PERMANENT routines) but all other

names must ke declared before any reference is made to them (see below),

In future a general name will be denoted by [NAME].

CONSTANTS
Numerical (positive) comstants are written in a straight forward

notation, For example: -
2.538 1 .25 17.28a-1 lof

The last two examples mean 1,728 and 10000000,

The numerical part can be written in any number of ways, For example: -
15 015 15. 15.000

are all equivalent, The exponent, where present, consists of ¢

followed by an optional sign and decimal digits,
The symbol } is equivalent to the two symbols .5, Thus 2,5

may be pumched as 23, O
There is a further specialised type of constant consisting

of a symbol (either basic or composite) enclosed in quotes, Its value

is that of the internal equivalent of the symbol, a list of which is

given in Appendix 5. Thus

'at

"D'

33
2003

[

Though this form of constant may be used whenever a constant is relevant

it is most often used when reading symbols off a data tape (see Sectiom j3).

DELIMITERS

These are a preassigned set of symbols and underlined words, For example: -

+ =%/ (,)>> >,

cycle repeat integer real if then caption comment

Note that -> consists of two symbols, - followed by >
Unlike names whose meaning can be defined by the user, delimiters

have fixed absolute meanings in the language, §§



2.3

TYPES
Calculations are performed on two principal types of operand,

real and integer (later om we shall introduce complex), Both are

represented By floating point numbers (in the form a*84b where a

is held to a precision of 40 binary digits and B is an 8-kit integer);
but those of integer type are kept in an umstandardised form

(so that the least significant 24 ®its can be used directly for
B-modification; the precise method of storage is described in the
section on machine instructiomns).

The locations in the computer store holding numbers are
distinguished by assigning names to them (see later), and referemce to
the number is made by giving the appropriate name, Both real and integer
numkers referred to in this way are called variakles and denoted by
[VARIABLE].

Programs will consist mainly of operations on real operands,
the use of integer operands being generally confined to counting and subscript
arithmetic,

DECLARATION OF VARIABLES

The names of variables used in a block are declared at the head of

the block, For example: -

integer I, max, min

real t, Temp, VOL 1, VOL 2

The effect of these declaratiomns is to allocate storage positions (ADDRESSES)
to the named variables, and any subsequent reference to one of the declared
names will then be taken as referring to the number stored in the appropriate

address, The format of these declarations is formally

(TYPE][NAME LIST]
where [TYPE] = integer, real
[NAME LIsT] = [NAME][REST OF NAME LIST]
[REST OF NAME LIST] = [,]1(NAME]I[REST OF NAME LIST],NIL

N.B. This means of defining a list consisting of phrases separated
by commas is used throughout: See Appendix 1,



One dimensional arrays of elements may be declared by statements such as

D
array a,b(0:99), c(10:1ig)
which reserves space for three arrays of real variables a(i), B(i), c(i),
In the first two the subscript runs from O to 99, and in the third from
10 to 1g,
To refer to a particular element of an array one might write
a(50) B(j) Bb(2n+2j-1) c(lo+i)
It is the computed value of the argument, which may be a general integer
expression (see later), which determines the particular element,
Two dimensional arrays are daclaréd in a similar way, For example: -
array A(1:20,1:20), B(0:9,0:49)
This defines and allocates storage for a 20 X 20 array A and a 10 X 50
array B, To refer to a particular element, one writes, for example:-
A(1,1)  A(i-1,3+1) B(9,2K+1)

Should an array of integer elements be required, the declaration is

qualified by integer, For example: -

integer array Ka (1:50).

Arrays of more than 2 dimensions may also be declared, For example: -
array CUBE 1, CUBE 2 (1:10,1:10,1:10)

reserves 1000 locations for each of the two arrays CUBE 1, CUBE 2,

Storage allocated by all the above declarations has dynamic significance, i.e,
they are implemented at run time and not at compiler time, Consequently,

the arguments in array declaratioms need not be constants but may be general
integer expressions, The significance of this will be explained in the sections
on block structure and dynamic storage allocation (see later),

The format of an array declaration is

[TYPE'] array [ARRAY LIST]
where [TYPE'] = integer , real , NIL
(ARRAY LIST] = [NAME LIST] ((BOUND PAIR LIST])[REST OF ARRAY L1sT1 )
[BOUND PAIR] = [EXPR]:[EXPR]
Here the [EXPR]'S must be integer [EXPR]'S (see P2.6)




2.5

FUNCTIONAL DEPENDENCE

Functional dependence is indicated by writing the name of the
function followed by the list of arguments in parentheses (in a similar

fashion to array elements), For example: -
sin(2w7x/a) arctan(x,y) TEMP(i) a(10,10)

Each argument can be an arithmetical expfession (see below),
Within a block all names must be distinct, and it is not

possible to have a function with the same name as a scalar, Thus

a and a(i) or f and f(x) would NOT be allowed to appear in the

same block,

STANDARD FUNCTIONS

Certain standard functions are available and may be used
directly in arithmetic expressions (see next section) without formal
declaration:

sin(x) cos(x) tan(x) 1log(x) exp(x) sqrt(x)

arcsin(x) (/2 < result < 7/2)

arccos(x) (0 < result < w)

arctan(x,y) (= arctan (y/x), -7 < result < 7)
radius(x,y) (= sqrt (x%4+y2) )

mod(x) (= Ix)

fracpt(x) (= fractional part of x)

intpt(x) (= integral part of x)

int(x) (= nearest integer to x, i.,e, intpt(x+.5))
parity(n) (= (~1)¥n)

The last three functions are of type integer (see later), the rest of type real,
The arguments of all these functions may be generalvexpressions, except

that the argument of the last must be of type integer,

A complete list of standard functions is given in Appendix 2,

ARITHMETIC EXPRESS IONS

A general arithmetical expression is demoted by [EXPR]_and consists
of an altermating sequence of operands and operators possibly preceded by a

sign symbol, thus *

[+'] [oPERAND]LOPERATOR][OPERAND][OPERATOR] .... [OPERAND]

An [OPERAND] is a [VARIABLE], [coNsTANT], ([EXPR]), I[EXPR]|, or [FUNCTIONI,
and an [OPERATOR] is one of + -~ / F (the asterisk denoting multiplicationm),

*¥0r, more strictly, (See Appendix 1)
[ExPr] = [+'1[EXPR']
(ExPR'] = [OPERAND]LOPILEXPR'], [OPERAND]
[oPERAND] = [NAME]l[APP], [CcONST], (LEXPR]), | [EXPR]|
(+'] = +, -, NIL




AB explicit multiplication sign is not required when ambiguity could not

arise from its omission, For example: - L |

2.5alb means 2,5%alx*b

NOTE: When the compiler looks for a name, it finds the longest possible
name, Thus ak is taken as a name rather than axb even if only a and b and not

ab were declared, 1In this case a fault (NAME ab NOT SET) would be indicated,

Examples of expressions are: -

ACL-1,3) + A(i+1,3) + A(i,J-1) + A(i,j+1) - 4A(i,))
Z + log(l + cos(2m(x/a + y/b + z/C)))

LENGTH * BREADTH * HEIGHT

1 + sqri(x(i)? + y(i)? + 2z(i)?)

a * b/c * d/e

(x+y +2z)/(a+ b+ cC)

2.5x1b * (c + d)e

e = Ix-y| + .00001

(1+x) K(n=-3) * (1 =x)#3

NOTES

1. Multiplication and division take precedence over addition and Sﬁ
subtraction and division takes precedence over multiplication, Thus
the fifth example means a * (b/c) * (d/e),

2. ILEXPR]| is interpreted as the positive magnitude of the

[EXPR], Thus it is equivalent to mod([EXPR]).

3. An exponent is denoted by | [OPERAND] and exponentiation takes
precedence over the other operations, Thus the last example means
((1 + x) to the (n - 3))*((1 - x) to the 3). Im the formation of

2 | n, n must be an integer or integer [EXPR] (see next sectiom);
then if

v

H

(i) n
(ii) =n
(iii) n

0, result R*¥A¥R, ,..... "2 (n times)

1

0, result

A

0, result = 1/(a*a*a,,,....*R)

4. To form a k b, where b is real we must write it in the form

exp(b+*log(a)),where a must be positive,

INTEGER EXPRESS IONS
An L[EXPR] is en integer [EXPR] if all the [OPERAND]'s are

scalars, array elements etc, declared to be of type integer, or are QE

integer constants or integer functions (e.,g., imt, intpt, or parity).
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‘Thus if we assume that x is a real [VARIABLE] and i,n,Jj,k(1),k(2) are
integer [VARIABLE]'s the following are integer [EXPR]'s,

n*(n-1)/2

1+ 3 + k(2) + imt(x)
J Fk
intpt(n*(n-1)/3)

The definition given above does not guarantee that an integer [EXPR]

will always give an integral result, e.,g., 10/3 and jk(-1) are not
integral, There is no guarantee either that expressioms like
n*¥(n-1)/2{which is integral) will always yield the exact answer {(in this
particulaf case it does), When the result of such an operation is in doubt
it is preferable to use 'in%' e,g,, int{(m*(n-1)/2) to give an exact integer
result,

Except in certain special cases integer [EXPR]'s are evaluated by floating
point arithmetic in exactly the same way as general (real) expressions, but
are destandardised on assignment (explicit or implicit) to their integer
destination, The definition of an integer [EXPR] is a basis for checking
that such assigoments are sensible, The special cases mentioned above refer to
the subscript expressions in array elements, Such expressions, which should
always be integer [EXPR]'s are usually simple linear forms which are dealt
with more appropriately by B-modificatiom, It is mainly to facilitate
such operations (and the associated operation of counting) that integer's
are used, Being destandardised quantities they can be transferred directly

to B-registers without using the floating point accumulator,

ARITHMETIC ASS IGNMENTS
The general arithmetic imstruction is

[var1ABLE] = [EXPR]

Examples are: -

X(p,q) = 1+2cos(27{x+y))
2 = (btc)/{(d+e)+F
i= 141

The action of the general arithmetic assignment is to place
the computed value of the [EXPR] in the location allocated to the 1l.,h,s,
LVARIABLE], 1If the 1,h,s., is a real [VARIABLE], the r.h,s. [EXPR]
may be of type real or integer, but if the 1l.,h.s, is integer then
the r h,s, must be an integer [EXPR]., For example, if y had been declared
real and i integer then we could write y = 1 lbut mot 1 = y even if we kunew

that y had an integral value,



LABELS, JUMPS AND CONDITIONAL OPERATCRS

Normally instructions are obeyed sequentially, but frequently it
is required to transfer control to some instruction other than the next
in the sequence, or to obey an instruction only if certain conditions are

satisfied, The following facilities are provided:

SIMPLE LABELS Any instruction can be labelled ->10
by writing an integer [N] before it, separated R
by a colon, More than one label is permitted, 10: -=-
Unconditional jump instructions are written as 4:5% =--
-> [N] =>4
-5

VECTOR LABELS

These are used to provide for a switch A(1 : 3)
multi-way switch, With reference to the ——
accompanying diagram the instructiomn —
= A(i) will jump to A(1), A(2) or A(3) -
according as i = 1, 2 or 3. -—

A fault is signalled if the value of i A(l): ——e=
corresponds in any way to a label not set, —
The general form of the label is [NAME]([N]): A(3): ---
The range must be declared at the head of ——
the routine by a statement of the form -
switch [NAMEI([+'JIN]:[+'1IN]) where -—
the [+'] indicates that the integers >A(i)
may be preceded by a sign if necessary, ——
For example: - v _—
switch SEGMENT (—4:+4) A(2): ---
A list of switches can be given, For example: - ———

switch A,B,C(1:3),D(0:2)

The [NAME]'s must not comflict with those

of other operands in the same block,
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CONDITIONAL LABELS

Another kind of multi.way switch is test 4, 5, 0
illustrated by the accompanying diagram, -
Here the conditions at the places indicated ———
are tested in turn and control passes to the 4 case X<1; =-w
instruction following the first to be successful, ——
If none is satisfied a fault is signalled, 5 case O0<x<1: ---
The general form of the label is [N] case [coNDl: -
where [OOND] denotes the general 6 case x>1:-—-
condition defined in the next sectiom, A —
simple label [N]: may Be used in place of ——

the last alternative(i,e., 6:) in which case control

passes directly to the following instructions

if it reaches that point,

NOTE All lakels are local toc the Block containing them and jump imstructionms
may only refer to labels within the Block {see later),

CONDITIONAL OPERATORS
A CONDITIONAL OPERATOR of the form

if [coNp] then or unless [COND] then

may be written kefore any unconditional imstruction, These form the
FORMAT CLASS [U1] (see Appendix 1) and include arithmetic, jump and
test instructions,

The [COND] phrase takes one of the forms**

[sc] and {sc] and [SC] --- and [sc]
or [scl or [scl or [sc] ---or [scl
or just [sc]

Here [SC] denotes one of the following 'simple' conditions
[ExPrR](@]1[EXPR] or [EXPrR]llp]l[EXPRI[@]1[EXPR] or ([coOND])

where [p] denotes one of the comparison symbkols = # > > < <

If (or unless) the condition is satisfied the imstructiom is obeyed,
otherwise it is skipped and control passes directly to the next
instruction,

Examples of conditional imstructions and conditional labkels are

if x < 0 then x = mod(y)
ifo<x <1and 0 <y <1 then > 1

case (y >1 or y € - 1) and x > O:

** or, more strictly, (see Appendix 1)
[conp] [scl and [awp-c], [sc] or [or-cl, [scl
[aND-C] [scl and [aND-C],[sC]

M —= | ge—— ] Fmen =B [

"



Alternatively, conditional operators may appear AFTER unconditional

instructions, in which case they are written §§
if [coND] or unless [COND]
for example x =0 if Ix| < ,0000001

—> 1 unless z > Ror z =0

CYCLING INSTRUCTIONS

These are pairs of statements which allow a group of

instructions to ®e obeyed a fixed number of times, For example: -

cycle i =0, 1, n-1

re geat

In the above example the instructions between cycle and repeat are

traversed n times, with i successively taking the values 0,1, ,..,n-1,

After the final cycle, control goes to the statement following repeat,

The 1,h,s. must Be an integer name, but the r,h,s, quantities may be f?
general integer [EXPR]'s which are initially evaluated and stored, ‘Thus
within the inmermost cycle of the example kelow, the values of p,q and r
may be altered without affecting the number of times the cycle is traversed,
The initial value, increment, and final value must ke such that
final value - initial value
increment

must be a positive integer or zero otherwise a fault is indicated,
For example: -

cycle i = 1,1,p

cycle k = 1,i,r

c(i,k) = 0

repeat

cycle § = 1,1,q

cycle k = 1,1,r

c{i,k) = c(i, k) + a(i,j)*w(j, k)

repeat

repeat

repeat
NOTE Statements such as cycle x = ,2,,1,1 are NOT allowed, and f}

should Be replaced By an equivalent permissible form, For example: -
cycle i = 2,1,10
x = ,1i

where i has been declared integer and x real,
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MISCELLANEOUS NOTES

1, end of program is the formal end of the program and appears after the

last written instruction; its action is to terminate the reading of the
program and to start obeying it from the first imstruction,

2. The imstruction stop can appear anywhere in the program and signifies
the dynamic end of the program; its action is to terminate the calculation,
3. The delimiter comment 2llows written comments tc be inserted in a
program to assist other users in understanding it, The information
following comment (which may imclude composite characters) up to the

next newline or semi-colom is ignored by the computer, The delimiters page
and | are synonyms for comment, though the first has an obvious special use
in the pagination of programs,

4. It has been noted earlier that all spaces and underlined spaces in a
program are ignored and that Autocode statements are terminated by 2 semi-
colon or a newline, If a line is terminated by the delimiter c then the
following newline character is ignored by the computer, Thus a single
statement may extend over several lines of the printed page, It is not
anticipated that this facility will be frequently used, except when
writing comments and possibly loang algebraic expressions,

5. If a programmer is prepared to exclude upper case letters from names
and captions, then he can effect a saving both in the size of the tape

and the speed of compilation, by using the special instruction

upper case delimiters

and then writing all following delimiters in upper case without the
underlining, Thus the example of P2,10 could then be written: -

CCLE 1 = 1,1,p

CYCLE k = 1,1,r

c{i,k) = 0

REPEAT

CYCLE j = 1,1,q

CYCLE k = 1,1,r

c{i,k) = c(i,k) + a(i,J)*b(j,k)
REPEAT

REPEAT

REPEAT

The delimiter causes the compiler to replace each upper case letter by
the equivalent underlined lower case letter, so that & mixture of
normal and upper case delimiters cam be used, If this is required omly for

certain parts of a program them the imstruction

normal delimiters

can be used to return the compiler to its zormal operatiun,







3.1
3 STORAGE ALLOCATION AND THE BLOCK STRUCTURE OF PROGRAMS

THE STACK
In order to illustrate the primnciples of storage allocatiomn, we
assume the following simplified picture of the data store (the stack),

a fuller description being given in the section on the use of machine instructioms.

CELLS IN |st AVAILABLE CELLS
USE |

[FNA\L\AA G N T I I

Each cell or location represents a 48 kit word in the computer store
and can be used to hold either a real or am imnteger variable, At any
time during the running of a program, the stack pointer, St, points to the
next available locationm i.e, it contains the address of the next free word,
in the examples that follow, shaded areas represent locations
which hold information essential to the program, such as array dimensions
and origins, and are not of importance in the context of this section., Each
area may in fact comsist of several locatioms, Cells which are allocated

to variables are indicated by the presence of the name given to the variabkle,

STORAGE ALLOCATION DECLARATIONS

The d=clarations which allocate storage space are

real integer array integer array

and to illustrate the stack mechanism we comsider the following example:
begin
real a, B, c; integer i, max
array A(1:2,1:2), x(1:3)

After the above declarations the stack picture would be as below
sti St2
i ' |

OO & @ ® | c | 1 imax\WWWIACL,1)1AC1,2)1A€2,1)1A(2,2) BWWWWIx(1) [x(2) 1x(3) |

Stl is the position of St before begin and St2 its positiom after the
declarations, Any further declaratiom advances St by an appropriate amount,
likewise any activity imitiated by the imstructioms in the body of the block
causes St to be advanced{either explicity or implicity) still further,

Finally when end or end of program is reached, then St reverts to sti1,

Variables declared By real and lnteger are called FIXED VARIABLES,

because the amount of storage space required can be determined at compiler time,
Array declarations, however, may have gemeral integer expressions as the parameters
and hence have dynamic significance, For example one might have a declaration
such as
array A,B(1:m, 1:n),x(1:n)

In this case the space allocated will depend om the computed values
of m and n and canmot be determined at compiler time, The stack pointer
St is thus advanced in several stages following the initial step which

reserves space for all the fixed variakles,
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BLOCK STRUCTURE OF PROGRAMS

This 1s illustrated by the following example: -

begin

real a,b,cC

i; B =2

a

c = @b
begin
real a,b,d

a=2; d=1

The stack picture associated with the above block is given below:
st1 stz st3
| | !
I I 2 T e | c IWWW albidl ||
i 2 3 4 5 ©

Before the first begin St is at Stl, and moves to StZ on entering the
outer Block, After the second begin St is at St3 and reverts to St2
when end is reached, At the second end, corresponding to the first
begin, St assumes its original position, Sti,

in the diagram, positions 1, 2, 3 correspond to the declarations
of the outer block, and 4, 5, 6 to those of the inner block, After the
instruction ¢ = a+b, the value 3 is left in position 3; while the instructions
of the inmer block leave the values 2, 1, 3, 4 in the positioms 4, 6, 5, 3
respectively, The last instruction of the outer Bblock leaves the value

7 in position 1,

ST,

E
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Thus the variables a, ¥ of the immer block do mot comflict with
a, b of the outer block, while a referemce to c im the inmer block is
taken to refer to the variable of that name declared in the outer Bblock,
We say that a,b are LOCAL mames to the immer block and c is a NON-LOCAL
name, We alsc note that the information stored inm the variables of the
inner block is lost whemn the block is left, and that we could not refer
in the outer block to a variable declared in the inmer block,

Futher detalls of the structure of programs will be given in the
section on routines, and for the present the following notes on blocks
will be sufficient,

1, Blocks may contain any number of sub-blocks and blocks may ke nested to
any depth,

2, Names declared in a block take on their declared meaning in the Block
and in any sub-Blocks unless redeclared in the sub-block,

3. Labels are local to & Block and transfers of control are only possible
between statements of the same block,

4. The outermost block of a program is terminated by end of program,
which causes the process of compiling to be terminated and transfers

control to the first instruction of the program,

A simple and common use of block structure arises when reading arrays
from tape, each array being preceded by its dimensionms.

For example: -

begin
integer m,n
i: read(m,n)
begin
array A(i:m,1:n)

P

end
->1

end

If the begin and end defining the sub-block were not included, then
the stack pointer would be advanced further each time a new array was read, without
ever being reset, and this could be very wasteful of storage space,

particularly for very large values of m and n,







4 ROUTINES

BASIC CONCEPTS

A large program is usually made up of several routines
each of which represents some characteristic part of the calculation,
Such routines may be called in at several different points in the program,
and their design and use is a fundamental feature of the language,
The introductory example consisted of a main block only (delimited by
begin and end of program) although it makes referemnce to the routines ‘read’,
'print’, 'newline’, which are permanently available in the machine, In
exactly the same way however, the user may call in routines which he has
written himself in Autocode language, Consider for example a routine

to evaluate

y=a(m) + a(M+1)X+, . 00000eee.+ a(men)xin (n > 0)

where the coefficients are selected from some vector a,

routine poly(real name y, array name a, real x, integer m,n)

integer i
y = a{m+n) ; return if n= o0
cycle i = min-1,-1,m
y = x*y+a(i)
repeat
return
end
Given the values of x,m,n and the addresses of y and the array
elements a(i), it evaluates the polynomial and sets y to this value,
The °statement end is the formal or written end of the
routine while return is the dynamic end, i,e, it is the instruction
which returns control to the main routine, Where the formal end is also a
dynamic end as in the present example the return instruction preceding end
can be omitted; in this case end serves for both purposes,
NOTES
1: There can be any number of alternative exit points in a routine - i,e,
return can occur more than once,
2: return is a member of the FORMAT CLASSLUI] - i.e, it can be made conditionmal,

as above,




This routine can be EMBEDDED and used in a main routine as illustrated
below,

begin

real U, V, z, x ; integer m

array b(0:15), c(0:50)

routine spec poly (realname y, array name a, real x, integer m,n)

¥

poely(U,b,z,0,m)

A

1
poly{V,c,x%,20,10)

®

stop

routine poly(realmame y, array name a, real x, integer m,n)

integer 1

y = a{msn); return if n = 0O

cycle i = mym-1, -1,m
y = xxy+all)

repeat

return

end

end of program

The routine is called in by the main routine whenever the
name 'poly' appears, The first reference to 'poly' would cause the poly

routine to evaluate
U= b(0) +b(1)z + ... + bB(m)zjm
and the second would cause it to evaluate
v = c(20) + c(21)x® + ... + c(30)x}20
The parameters in the routime specification and routine
heading are the FORMAL PARAMETERS and the parameters in the call statements
are the ACTUAL PARAMETERS (see next section),

The body of the routine may be considered as a block

delimited by routine and end, and the concepts of storage allocatiom, local

and non-local names etc, apply to routines in exactly the same manner as

for blocks, In fact a block may be considered as being an open routine

without parameters,

i
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‘ Any number of routines may be embedded in a main routine
in the above fashion and they are referred to as SUBROUTINES of the main
routine, If the body of a subroutine occurs before any reference to it
in the main routine, the routine specification may be omitted, but by
convention it is usual to place all the subroutine specifications among

the declarations at the head of the main routine and the bodies at the end,
FORMAL PARAMETERS AND ACTUAL PARAMETERS

The parameters of the routine are the items of information which
specify the action of the routine whenever it is used, The formal parameters
are the names by which this information is referred to inside the routine itself,
and the actual parameters are the names or expressions which are substituted
for the formal parameters whenever the routine is used in the main program,

For each type of formal parameter there is a permissible form

for the actual parametar, as shown in the following table: -

Formal parameter type | Corresponding actual parameter
integer name i name of an integer variable
real name | name of a real variable

!
integer | an integer [EXPR]

i (similar to an integer assignment)

real | a general(i,e, real or integer)[EXPR]

| (similar to a real assignment)

integer array name { name of an integer array
array name | name of a (real) array

|
integer array | name of an integer array
arra i name of a (real) array

| {the difference between these and the
{ previous pair of parameters is

| explained below)

routine type i,e, i Sometimes it is required to pass on the
routine name of a routine as a parameter,

real fn In this case the actual parameter is the

integer fn name of a routine which must correspond in
type and specification with the formal
parameter, the specification of which will b

found in the routine body




In the example of a routine to evaluate a polynomial described earlier,
the formal parameter y is the name of the variabkle to which the result is assigned,
and the corresponding actual parameter must be a name, in this case the name of o
a real variable, The formal parameter then is of type real name,
A reference to y inside the routine is essentially a reference to the non-local
variable named by the actual parameter, The same applies to the array name
parameter &, a reference to a inside the routine being a reference to the
non-local array whose name is substituted for a in the calling statement,
The formal parameter real x on the other hand can be replaced by 2
general arithmetic expression, which is evaluated and assigned to the local
variable x which is specially created in addition to any local real
variables declared in the routine, The same applies to the formal parameters
integer m,n, These are essentially local quantities, and expressions are substituted
in place of them are evaluated and the resultant values assigned to the local
integer variables m anmd n, which are lost on exit from the routine, Coasequently
the routine should place the information it produces imn variables which are
called by NAME {such as x and a),
The formal parameters %, m, n are said to be called By VALUE in so far
as it is only the values of the corresponding actual parameters which are of
interest, This is the essential difference between the formal parameter types

array and array name (or integer array and integer array name), In the former

case the array named by the actual parameter is copied into a specially created
local array, and a reference to the name in the routine is taken as referring to
this local array, As the copying process can be time-consuming and space~consuming, .
arrays should be called by NAME if at all possible, especially if they are large,

Another example of a routine is the following

routine matmult(arrayname A,B,C integer p,q,r)
integer 1,j,k ; real c

cycle i = 1,1,p

cycle j = 1,1,r

c =0 '

cycle k= 1,1,q

c = c+Aldi, k) *B(K,j)

repeat

c{i,j) = c

repeat

repeat
end

This forms the product of a p x q matrix A and a q x r matrix B, The

result, a p x r matrix, is aceumulated in C, The routine assumes that the first
element of each matrix has the suffix (1,1)., A typical call sequence might be ﬁ§
mat mult(d, x, ¥, 20, 20, 1) -
where H, %, v had been declared by

array H(1:20,1:20), x,y(1:20,1:1)



FUNCTION ROUTINES

When a routine has a single output value it may be written as a
function routine and then used in an arithmetic expression in the same way as
the permanent functions (cos, sin etc,), For example, the polynomial routine

described earlier may be recast as a function routine as follows: -

real fn poly{arrayname a, real x, integer m,n)

integer i ; real y

y = a(m+n) ; if n = 0 then result =y

cycle i = m¢n-1,-1,m
y = y*x+a{i)

repeat

result = y

end

NOTES

1: In general, the exit from a routine is of the form : result = [EXPR]

and this causes the EXPRESSION on the right hand side to b2 evaluated as

the value of the function,

2 result = [EXPR] acts as the dynamic end of a function (i.e., it corresponds
to return in a routine), and may appear any number of times within the function,
3: result = [EXPR] is a number of the FORMAT CLASS[UI] - i.e. it may

be made conditional,

The specification of the above routine would be written

real fn spec poly(arrayname a, real x, integer m,n)

and the routine can be called in an arithmetic statement, for example
y = a=b + 2h*poly(c,1/x,0,16)
An example of an integer function is given next, It selects the index of the

maximum elemen* x(k) in a set of array elements x(m), x(m+1),....,x{(n) (n> m)

integer fn max{arrayname x, integer m,n)

integer i,k
k=m
21l ifn=m
cycle i = m+i,1,n
k=1 1f x(1) > x(k)
repeat

1: result =k

end

A call sequence for this function routine might be
y = 1 + x(max(x,1,100))



SCOPE OF NAMES

In general all names are declared at the head of a routine
either in the routine heading or by the declarations integer, real, array, etc.,
and the various routine specifications,

Therefore they are local to that routine and independent
of any names occurring in other routines, However, if a name appears
in a routine which has not been declared in one of the above ways, then
it is looked for outside i,e, in the routine or block in which it
is embedded., If it is not declared there it is looked for in
the routine or block outside that and so on until the main block is reached,

Now the main block is itself embedded in a permanent block at
'zero level' which contains the PERMANENT material, so that if a
name is not found in the main block it is looked for among these,
The permanent names may in fact be redeclared locally at any level, but
clearly it would be unwise to assign new meanings to such routines as
'log’', ‘'print', etc, This outer block also contains supervisory
material for controlling the entry to and exit from the main block,
Very often, the only non-local names used in a routine will be the
permanent names, The level at which a name is declared is sometimes

referred to as its ‘textual’ level,

PERMANENT ROUTINES

The permanent names include the standard functions, sin, log, int,
etc, and the basic input/output routines read, print etc,
These routines are used in a program without declaration and without
the necessity of inserting the routine bodies, since these are
permanently available at level zero, A full list of the permanent routines
is given in Appendix 2, v
[NOTE : the standard functions (and the same applies to 'read')
are not strictly routines : THEIR NAMES CANNOT BE SUBSTITUTED AS
ACTUAL PARAMETERS IN PLACE OF FORMAL PARAMETERS OF ROUTINE TYPE.

they would first have to be redefined and renamed as formal

routines, ]

o
%@3

)
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FUNCTIONS AND ROUTINES AS PARAMETYERS
This is illustrated by the following example involving an

integration routine

routine spec integrate(real name y, real a,b,integer n, real fn f)

which integrates a function f(x) over the range (a, b) by evaluating

y = (£(0) + 4£(1) + 2£(2) + ... + 4f(2n-1) + £(2n))(b-a)/(6n)
where f£(i) = f(a + 4i*(b-a)/n)

An auxiliary routine is required to evaluate f(x) and details of it
must be passed on to the integration routine, This is done by means of the
formal parameter type [RT] as defined earlier, and the body of the routine
might then be: -

routine integrate (real name y, real a, b, integer n, real fn f)

real fn spec f(real x)

real h; integer i

h = 4(b-a)/n

y=0

cycle i = 0,2,2n-2

y = y+2f(a+i*h)+4£(a+(i+1)h)
repeat

y = (y-£(a)+£(b))h/3

end

To enable instructions such as
y = y+2f(a+i*h)+4£(a+(i+1)h)
to be translated, a specification of the formal parameter f is required,
In this case the delimiter real fn spec can be replaced by spec since the type
of the function is given explicitly by the formal parameter itself,

Now consider a programme to evaluate

z = exp(-y)cos(bxy)dy

for various values of b read from a data tape, the last value being

followed by 1000, using for n the integer nearest to 10b,




begin
routine spec integrate (real name y,real a,b,integer n,real fn f)

real fn spec aux (real y)
real z, b

comment Simpson rule integration
1:read (b)
if b = 1000 then stop
integrate (z, 0, 1, int(10b), aux)
newline
print (b, 1, 2);spaces(2);print (z, 1, 4)
> 1
real fn aux(real y)
result = exp(-y) cos(bxy)

end

| routine integrate |

end of program

NOTES

1: That the names given to the auxiliary routine and its
parameters need not be the same in the integration routine as in the
main program, but they must correspond in type,

2: Since the result of the intergration is a single quantity, the routine f\

could be recast as a real fn :-

real fn spec integrate(real a,b, integer n, real fn f)
and called by, for example: -

print(integrate(0,1,int(10b),aux),1,6)

RECURSIVE USE OF ROUTINES

The name of a routine is local to the routine or block in which
its specification appears, and so the body of the routine is within the
scope of its own name, Hence it may call itself. It may also call itself
indirectly by invoking other routines which make use of it, On each activation
of the routine a fresh copy of the local working space is set up im the stack,
so that there will be no confusion between variables on successive calls,
(This does not apply however to own variables, See next section.) Some criterion
within the body of the routine must eventually inhibit the calling statement

and allow the process to unwind, Functions defined recursively, for example: -

n! = n(n-1), , n>1

y ""’"@g
L 4

= 1 9 n=1
can be implemented in this way, but it is always more efficient to use

recurrence rather than recursive techmiques,
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OWN VARIABLES

When a routine is left any information stored in variables corresponding

to local declarations in that routine is lgst, and no furthur reference may
be made to it, In some cases it may be dééiiable to retain some of this
information and be able to refer to it on a subsequent entry to the routine,
This may be accomplished by prefixing the relevant declaration by own,

For example
own real a, b; own array A (1:10)

The effect of own is to allocate storage space for the named variables
in a part of the store which is not overwritten when other routines are
called in and to set them to zeroc. This is done cduring the compiling of the
program and hence does not have dynamic significance; as a consequence an

own array declaration must have parameters which are integer constants,
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5. INPUT AND OUTPUT OF DATA

The input and output of data will generally be accomplished by
means of permanent routines, In this section these permanent routines are

described and the precise form of data is given,

SELECTION OF DATA CHANNELS

The selection of an input channel is performed by the routine: -

routine spec select input (integer i)

This selects the input channel corresponding to the value of i, and
this channel, together with the particular input device assigned to it
in the Job Description (see Section 7), remains selected until
another 'select input' instruction is encounted,

putput channels are selected in a similar way, by means of the

routine:

routine spec select output (integer i)
In both cases chanmel O is initially selected, and in the absence of
a channel selection instruction, remains selected during the execution of a

program,

BASIC INPUT ROUTINES

Decimal numbers may be read from a data tape by means of the routine

routine spec read((VARIABLE])

This reads a decimal number from the currently selected data channel and
places it in the location specified by the [VARIABLE], which may be of
type integer or real, The routine reads numbers in either fixed or floating

point form, for example: -

-0.3101 18 7.13Re-y 3.1872al4

A pumber is terminated by any character other than a decimal digit,
the first decimal point, or an exponent, An exponent consists of « followed
by an optional number of spaces, an optional sign, and the decimal digits.
Spaces and newlines preceeding a number are ignored, but all other symbols
cause the routine to signal a fault (but see NOTE on P5.4). A fault is also
indicated if a number assigned to an integer variable is not integral,



It should be noted that a single space is sufficient to terminate a
number, and that no spaces are allowed within the mantissa or within the numerical
part of the exponent (unlike constants appearing in a program where all spaces Oy
are irrelevant and the number is terminated by the following name or delimiter), 0
Further since ‘'tabs' are converted to a number of spaces, numbers may

be separated by 'tabs', Several numbers in a sequence may be read by the routine: -
routine spec read([VARIABLE LIST])

For example, read(a,i,X(i))

This is treated as if it were a series of instructions
read {(a) ; read(i) ; read(X(i))

hence the subscript of X{(i) takes the value just assigned to i.
The read routine is an exception to the general form of a routine, as
it may have an indefinite number of real name and integer name parameters,
Successive numbers on a data tape may be read so as to £ill

an array by means of the routine

routine spec read array(arrazname A)

For example:- array A(1:20, 1:20) b

ke

read array (A)

would cause the next 400 numbers on the data tape to be read so as to fill

the array A, row by row, It is thus equivalent teo

array A(1:20, 1:20)
integer 1i,J

cycle 1
cycle j=1,1,20
read (A(i,3))

1,1,20

repeat

repeat

Three permanent routines are provided for manipulating alpha-numeric

data, The first: -

routine spec read symbol {(integername i)

reads the next symbol (simple or compound) from the selected channel,
converts it into a numerical equivalent and places the result in the {\
specified integer location,
For example, if the next character on the data tape were an
asterisk (numerical equivalent 14) the instruction 'read symbol (p)’'

would set the value of the integer variable p to 14 and move to the next

character on tape,
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‘The second allows the next symbol on the data tape to be inspected without

moving on to the following one, It is

integer fn spec next symbol

The third: -
routine spec skip symbol

passes over the next symbol without reading it,

A table of numerical equivalents and a description of the formation
of compound symbols is given in Appendix 5.

It is in testing symbols that the alternative form of a comstant
is useful, For example, we could test if the next symbol on a tape were an

asterisk by

->1 if next symbol

i

14

or ->1 if next symbol tx!

Since spaces and underlined spaces are ignored in a program, and newline
and semicolon are used as terminaters, special symbols are provided to
represent them, Thus a space can be tested for by

->1 if next symbol = 'g'
The symbols are: -

2 $ representing a space

g 3 " an underlined space
A & " a newline

i vt a semi-colon

If the data itself contains these special symbols, then they can be tested only
by using the internal equivalent.

Finally there is a permanent input routine vhich permits the reading
of an irdefinite number of decimal numbers into successive storage locationms,

stopping when a particular symbol on the data tape is reached, This routine is

routine spec read sequence (addr s, integer p, integer name n)

The formal parameter type addr is explained in Section g; for the
present purpose it is sufficient to say that the actual parameter will be the
name of a variable, representing the first location into which the numbers are
to go. p is the numerical equivalent oX the terminating character, and on

exit from the routine, n contains the number of numbers that have been read,
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As an example of the use of the above routine, suppose a data tape
contains an unknown number of numbers, but less than 1000, and that the

last number is followed by an asterisk, Then the instructions

array X (1:1000)

integer n
read sequence (X(1), 14, n) lor : read sequence{X{(1),"*',n)]

would cause the successive numbers to be read into X(1), X(2), etc,
1f there were 800 numbers in the sequence, then n would be set to 800
when the routine was left,
NOTE

On input, each line of data is reconstructed to give an image of the
print -out produced by the Flexowriter, Thus 'backspace’,'tab’, 'upper case’
and 'lower case' do not appear as characters in the reconstructed line,
since they do not appear on the print-out, 'Tab' produces an equivalent
number of spaces, 'backspace' helps form a composite character, and
non-significant cases are ignored, Those positions containing an erase
are then deleted from this line, The line image is normally 160 characters,
but where the tab and backspace facilities are avoided, lines can be of any

length, sections of 160 characters being taken serially,

BASIC QUTPUT ROUTINES

The routines for the output of a single decimal number are

routine spec print f1l (real x, integer m)
routine spec print (real x, integer m,n)

The first of these prints the value of x (which méy of course be a
general [EXPR]) in floating point form, standardised in the range 1<x<10,
with m decimal digits after the decimal point, The number is preceded by
a minus sign if negative, and a space if positive, The exponent is preceded
by o and consists of a space or a minus sign and two decimal digits, the first of
which is replaced by a space if it is not significant.

The second routine prints the value of x in fixed point form with m

digits before the decimal point and n after, Non-significant zeros, other than one

immediately before the decimal point, are suppressed, and a minus sign or space
precedes the first digit printed, If |x| >1lo¥m then extra digits are included
before the decimal point, the effect being to spoil any vertical alignment of
the printed page.

s‘"”‘§



It should be noted that no terminating characters are included
by the above routines, They may be included by the user by means

of the routines: -

routine spec newline

routine spec space

routine spec newlines(integer n)
routine spec spaces (integer n)

routine spec tab
routine spec print symbol (integer i)

The first of these resets the carriage of the appropriate printer
(or punches the newline character), and the second causes the printer to
skip a character position, If a number of consecutive spaces or newlines

are required, the third and fourth routines may be used, for example: -

spaces (5)
newlines (3)

The fifth routine punches the tab character or causes the printer to move to the
next tab setting. These settings are at positions 8, 16, 24, 32, 48, 64, 8o,
96, 112, 128, 144, and 159, The sixth prints the symbol corresponding to the
value i,

The routine: -

routine spec newpage

causes the lineprinter to commence a new page, if the ocutput
device is a line printer, or punches 30 newline characters if it is a punch,

The routine: -

routine spec runout (integer n)
punches n runout characters (used to seperate sets of results, for example)
on the punch, It has no effect if the output is on a line printer,

Arrays of numbers may be output by means of the routines

routine spec print array fl (array name A, integer m)

routine spec print array (array name A, integer m,n)

For a one-dimensional array, the elements of the array are printed
across the page, each number being terminated by two spaces, or a newline
if the right hand edge of the page has been reached, The successive rows of
a two dimensional array are printed as above, successive planes of a three
dimensional array are printed as two dimensional arrays, and so on, Each
array is started on a newline and the printing style for the individual

numbers is the same as that of the 'primt f1' and ’print' routines,
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CAPTIONS
There is a special facility for printing captioms, For example
caption gggg TABLE g OF g TEMP g AGAINST g VOL
This prints the information after caption up to, but not including, the ™
terminating symbol 'mewline’ or 'semi-colon’', Since spaces and underlined spaces
are ignored and 'newline’' and 'semi-colon’' are used as terminators, we also use

the special characters: -

g or §

g ' 8

p"t

A |
Thus

newline

1]

caption A g
caption B g

88 ; print (y,1,3); mewline

g2 3 print (z,1,3); newline

would be printed as

= 1,712
B= -2.38
o
In general c can be used (in its usual sense) in a caption if the information
is too long to fit on one line across the page, In view of this if an
underlined word ending in c is used at the end of a captiom, it must be
terminated by 'semi-colon’ not ‘newline’,
BINARY INPUT AND OQUTPUT
Binary tape may be read and punched by means of the routines
routine spec read binary (integername i)
routine spec punch binary (integer i)
The first reads the next row of holes on the tape as a binary number
(in the range 0-127, with the tape so oriented that the sprocket hole comes
between the digits of value 4 and 8), and places it in the named variable,
Binary data tapes must be preceded by ***B or, if they containm characters of
of even parity, by
ko kP
* % %P
The second punches the seven least significant binary digits of the
integral part of the integer expression as a row of holes on the output §§

tape,
NOTE: Cards or 5-hole tape may be used in which case the operations are om

5 or 12 digits rather than 7.



6 MONIT R PRINTING AND FAULT DIAGNOSIS

FAULT MONITORING

There are two tynes of fault which can be detected by the compiler,
those which can be found during compiling and those which become evident during
the running of the compiled program, To aid the programmer in correcting

these faults information is automatically printed out where a fault occurs,

COMPILER TIME MONITORING

puring compiling an outline of the program is produced as an aid to the
finding of faulty instructions, It also associates each block and routine with
its serial number, for use in tracing faults found at run time (see later),
All faults Juring compiling are monitored, Those to which a line
number can be attached, such as NAME NOT SET, are preceded by it, while
those which can only be found at the end of a routine such as TOO FEW
REPEATS are monitored after the END, In calculating the line number, blank
lines are igncred, and lines joined by the continuation symbol c count as one,
Finally at the end of each routine all the non-local variables except the
permanent routines and functiens are printed out, Although these do rot

necessarily indicate a fault, they may indicate a name which should have been

=

declared locally, A typical prorram monitor might be

0 BEGIN BLOCK : SERIAL MO = 89, M/C ADDRESS = 2721

20% NAME TEMP NOT SET
55%* LABEL 7 SET TWICE
70 BEGIN ROUTINE POLY:SERIAL NO = QO, M/C ADDRESS = 3210
115 * NAME TEMP NOT SET
115% REAL NAME X IN EXPRESS ION
120 END ROUTINE POLY : OCCUPIES 250 M/C INSTRUCTIONS

* LABEL 18 NOT SET

NON-LOCAL VARIABLES A TEMP1 S1

182 END OF PROGRAM® OCCUPIES 800 M/C INSTRUCTIONS

The above should be self-explanatory. It indicates that the program

started at line 0 and finished on line 182, These are physical lines

and exclude all blank lines on the print-out. The outer block is given

the serial number 89. The routine POLY started on line 70 and was given

the serial number Q0. There were mistakes in lines 26 and 55 and two in line

115, Finally label 18 was not set in the routine POLY,




6.2

Since there may be more than one statement on a line, it is not possible

to tell specifically which statement is involved but the faults are printed
in the order in which they are discovered., A full list of faults is given
in Appendix 4 together with a brief description of their nature,

RUN TIME MONITORING

During the running of a program certain faults may be detected
both by the compiler and by the machine and its supervisor program,
For example, the supervisor program detects the case where the square
root of a negative argument is being requested and the compiler detects

faults connected with switch and test instructions,

The standard procedure is to print out 2 lines of information
specifying the fault and the line on which it occurs followed by a list

of useful information found in the FIXED part of the stack, For example: -

LINE 117 ROUTINE 9O
EXP OVERFLOW

ROUTINE QO

ARRAY(1:10,1:3)
ARRAY(1:10,1:5)
10 5
0.3333333341la O -1.1249999997a -1 0,0000000000a-99
6 4
CYCLE(CURRENT VALUE
CYCLE(CURRENT VALUE

6, FINAL VALUE
4, FINAL VALUE

10, INCREMENT = 1)
5, INCREMENT = 1)

]
1]

BLOCK 89

0,00000000000-99 3.7152403802¢ 3
10 5 3 6

ARRAY(1:10,1:5)

ARRAY(1:10,1:5)
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indicates that an instruction in line 117 routine gu (the line number
refers to the entire program, not just the routine), resulted in exponent
overflow, Then follows a list of the scalars, array dimensions and cycles
of the routine in the order in which they were originally declared,
followed by the list for the routine or block which called this routine,
then that of the routine which called it and so on until the main block

is reached, Thus the above might correspond to: -

begin

real a,b

integer i,j,k,1
array X,Y(l:10,1:5)

A
A
matrix fn (X,Y,i,J)
*
v

A

routine matrix fn(arrayname A,B integer m,n)

real a,b,c ; integer i,]J

L
*

Al

i,1,m

cycle i
cycle j

1]

1,1,n

repeat
repeat

end

end of program




NOTES ﬁ D
1z This fault print out must be interpreted with care, When the fault occurs,
the fault print out routine looks in the STACK to find the fixed variables and
interpret them (see Section 10), Now every locationm in the store initially looks
as if it contains a real quantity, Thus: -
(i) until an integer is assigred a value, it will appear as (and be printed

as) a floating point quantity {probably zero),

(ii) until an array declaration is obeyed, it will appear as 2 floating-
point quantities,

(iii) until a cycle has been entered, it will appear as 3 floating-point
quantities,
Conversely, since all sub-routines of a program share the same space,
then on entry to the second and subsequent routines, the stack will contain
the values left by the previous routine and these will be interpreted accordingly,
if the current routine does not alter them,
2: The 'CURRENT VALUE' attributed to a cycle is the value of the integer
name used on the left hand side of the instruction at the time of the fault,
Thus if a program consisted of a number of cycles one after other, controlled
by i, and the fault were inside the last cycle, then all cycles would have the
same 'CURRENT VALUE' - the current value of i,
3: Only cycles, arrays, integers and reals are distinguished, gW

(1) for integer name's and real name's the address of the actual paramter

is printed (as an integer) .

. (ii) for array fn's (see Section Q) its parameters are printed (as integers),

(1ii) for routines and function's used as parameters, six real quantities

are printed,
(iv) for complex quantities, the real and imaginery parts are printed in
floating point style,
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FAULT TRAPPING

The above standard monitoring procedure inveolving the termination of
the program, is not always convenient, For example if a program is dealing
with a series of data sets, it may be preferable to restart on the next
'case' in the event of (say) EXP OVERFLOW rather than terminate the entire job,

An instruction is provided which enables the user to trap certain
faults and transfer control to some preassigned point in the program, It

takes the form: -~

fault [FAULT LIST]
where LFAULT LiIsT]) = LN-LIST]->[N]LREST OF FAULT LIST]

For example: -

fault 1,2,5 ->18, 3,4 ->10

means 'if a fault of type 1,2 or 5 subsequently occurs then jump to label 18 ; anc
if a fault of type 3 or 4 occurs then jump to label 10,
The effect is to preserve all the necessary control data to enable control
to revert to this point in the program (and then jump to label 18 or 10) should
one of the specified types of faults occur at some lower (or the same) level,
The label must be in the same block as the trapping statement, which will
usually be in the 'main' block at (say) level 1 or 2,

The fault instruction has dynamic significance, and a following fault
instruction can change this trapping action, All faults not referred to
by a fault instruction are dealt with in the usual way (i.e, they cause
the program to be terminated).

The first two lines of the standard fault monitoring are printed for
faults trapped in this way. Appendix 4 contains the list of faults which

can be trapped and the corresponding fault numbers,

FAULT DIAGNOSIS

Provision is made to compile certain checking facilities in
selected parts of the program, Having been compiled they can then be
switched on or off at run time by means of instructions in the program,

The formats are: -

compilelcheck]

stoplcheck]
[checklon

[check]off
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The first pair of statements are DECLARATIVES which delimit the areas of <§§
the program in which provision is to be made for the particular checking facility,
The second pair are INSTRUCTIONS which turn the facility on or off (imitially they
are gg). They do this by setting a certain switch which is examined whenever
the facility is about to be executed, If the relevamt switch is on then the
facility is executed, if off it is skipped, If the facility has not been
compiled in the first place then the instructions have no effect, This switch
setting is extremely fast so that there is nothing to be gaimed from recording
the current state of the switch (in some integer, say), and testing this before
each setting order, For example, the following sequence causes queries to be

printed every tenth time round the cycle,

cycle 1 = 1,1,m
queries off
if fracpt(i/10) = O then queries on

v

*
v

A

repeat

The switch sensing on the other hand is a time consuming operation and it

is for this reason that the declaratives are provided to delimit the areas of the
program in which this takes place, In most cases, however, the check is compiled
over the entire program,

The checking facilities in question are described by the phrase: -

[check] = queries, routine trace, jump trace, array bounrd check

They will be described in turn,

QUERY PRINTING
Any arithmetic imstruction (including complex) can ke followed by a ?,

for example: -
a = b{i) + c?
When the facility is operative the new value on the 1l . h.s, is printed every

time the instruction is obeyed, The style of printing will be fixed, floating,

or complex floating according as the 1l,h,s, is of integer, real, or complex

type.
[Unlike the other facilities, ?'s are normally compiled so that a

compile queries at the head of a program is redundant, Also ignore queries

is equivalent to stop queries.]
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ROUTINE TRACING

When the routine trace is operative it causes the routine number to

be printed each time a routine or block is entered and left, The correspondence
between the routine number and the name can be found from the program ocutline
produced during compilation, The printout of & routine trace might appear

R95 kg7 RFg6 ENDQ6 ENDQ7 RQQ.......
Here R, RF denote routine and real fn respectively, The full list of

abbreviations is: -

B begin R routine
IF integer fn RF real fn CF complex fn

IM integer map RM real map CM complex map

JUMP TRACING

The jump trace facility allows the flow of the program to be followed
in greater detail, For every jump imstruction obeyed the label number
is printed; for every test the value of the label at which the [COND]
is satisfied is printed; for every switch the value of the switching
index is printed, Thus a label trace might appear

>3 T1 >4 ->6 83 =7 >8 =9

Here T and S refer to test and switch respectively, If the label and

routine trace are both operative the print out might appear: -
R95 =>3 T1 =>4 ->5 RO7 S3....ccs..

ARRAY BOUND CHECK

If this facility is operative the values of the subscript
expressions in all array elements are checked to see if they lie imn the
range s ,ecified by the bound pairs in the array declaratioms, If not, the

program is terminated with the appropriate monitoring.

OTHER CHECKING FACILITIES

Certain checks are built into the object program e,g,, whether
a cycle instruction calls for an integral number of cycles ard whether a
switch index is out of range or corresponds to a label rot set, All
are time and space consuming operations, They can be removed from an
object program which is otherwise ready for production by means of the

declaration

production run
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7 PRESENTATION UF COMPLETE PRGGRAMS

JUOB DESCRIPTI(ONS

The running of programs on the computer is controlled by a
supervisor program held permanently in the machine, The supervisor
accepts complete programs as a series of tapes (program and data) and
a JOB DESCRIPTION whicnh may be on a separate tape or included with the
program or data, A full description of the system is given elsewhere
(1], and in this section we give examples to illustrate the general

principles of job descriptions,

PROGRAM AND DATA N SAME TAPE

The simplest form of job consists of job decription, program and

data on the one tape, For example: -

J{)B

UMA, JONES 5/2

OUTPUT

O LINEPRINTER 10U LINES
STORE 32 BLOCKS

CUMPUTING 10000 INSTRUCTIONS
COMPILER AA

begin

|
| PROGRAM
|
|

|————

end of program

DATA

i, The title (2nd line) identifies the job, The first few characters
will be a code to iduenti{y ihe¢ particular organisation and the rest wiil
be inlormation of an arbitrary form to identify the programmer and the

program within the organisation,

Reference

{1] "Documents and Job Description’ I,C,T. Ltd,, October 1g03.
This gives a full description of the possible arrangements of program
and data tapes and the utilisation of the multi-channel input/output

facilities on Atlas,



2. The QUTPUT information says that reference to channel 0O in the

program means the lineprinter (1f no ocutput channel is selected in the
program channel 0 is used), The number of LINES gives an upper limit
to the amount of ocutput that is to be permitted,

2. STORE gives an upper limit on the number of 5§12 word main store
blocks used by the program and data,

3. COMPUTING gives a limit on the running time of the program, An
"INSTRUCTION' is equivalent to 2048 machine instructions,

The OUTPUT, STORE, and COMPUTING sections are optional, both
individually and collectively, If they are omitted the allowances given
in the above example are assumed, i,e,, 100 LINES, 32 BLOCKS, 10000
INSTRUCTIONS, These should in fact be adequate for most small problems,
except possibly the 100 LINES. The foregoing example could therefore be

shortened to: -
JOB
UMA, JONES 5/2

COMPILER AA

begin

PROGRAM

—— - — ——

end of program

DATA

o~ - — —

EEE VA

A program tape is always assumed to be on input channel O so that in the above
case, the data for the problem is also on channel 0, which is the channel

used in the absence of a contrary 'select input' instruction in the

program, *+%7 is an end of tape marker and indicates that all the
information on that tape has been read, This must be on a line of

its own, and must be followed by at least one ‘newline’,
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PROGRAM AND DATA TAPES SEPARATE

Often when a program is being used for production rumns, it is
convenient to keep the program on a separate tape which is never changed,

For each run the job description and data form a separate tape, For example: -

COMPILER AA
{(title 1)
begin

PROGRAM

end of program

* Ok K7,

The data tape including the job description, would be

JOB
(title 2)

INPUT

0 (title 1)
SELF = 1

DATA

| |
| DATA |
| ]
] |
* %7,

The input section gives the relevant program as being channel O (the program
channel) and SELF = 1 indicates that the data tape is to be read as channel 1,
Thus an instruction 'select input (1)' is required in the program, This
tape could, if necessary, include any QUTPUT, STORE, and COMPUTING information
since this is the part of the job description,

Possible titles for the above example might be

(title 1) UMA, Plo

(title 2) UMA, P10/RUN 26
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PR(:GRAM ON SEVERAL TAPES

It is often convenient to have the program itseli on two or more distinct
tapes, where, for example, the program may be so long that it would be physically
unmanageable to keep it on one tape,

Alternatively the program may contain a large section (declarations and
routines perhaps) which is common to many programs and which can conveniently
be kept on a separate tape,

The instruction

now compile from inputiN]

is used to switch the compiler from one input stream to another, For example: -

JOB

(title 1)
INPUT

1 (titlie 2)
2 (title 3)
COMPILER AA

begin

|  FIRST PART |
) OF |
|  PROGRAM |
| |

now compile from input 1

K,

COMPILER AA

(title 2)

| SECOND PART |
| OF |
| PROGRAM |
] |

end of program

DATA
(title 3)

DATA

* % %7,



8 COMPLEX ARITHMETIC

As indicated previously, facilities exist for the mamipulation
of complex as well as real and integer quantities, complex quantities
are stored as a pair of real numbers in consecutive locations (the real and
imaginary parts respectively), The address of the complex quantity is
that of the real part,

DECLARATIONS
All quantities must be declared before they are referred to,
For example: -~
real R1, R2, R3

complex z
complex array P(1:10), Q(1:10,1:10)

causes 3 locations to be reserved for R1, R2, R3, 2 for z, 20 for P and

200 for Q.

STANDARD FUNCTIONS

The following standard functions are added to those previously

given: -

re(z) (real part of z)

im(z) (imaginary part of z)
mag(z) (modulus of z)

arg(z) (argument of z - in radians)
conj(z) (complex conjugate of z)

The argument z may be any [EXPR] (in the complex sense as described below)

The functions
csin, ccos, ctam, cexp, clog, csqrt

have complex [EXPR]'s as arguments and yield results of complex type.
For example if z = x + iy, cexp(z) = exp(x)(cos(y) + i sin(y))
In the case of clog and csqrt it is the principal value which is computed,

i.e,, the value for which the argument @ lies in the range -¥ fe<r



ARITHMETIC EXPRESSIONS

»,/? o

The arithmetic expression [EXPR] is still of the form

[+'1L0PERAND] LOPERATUR]LOPERAND] [OPERATCR] ........ LOPERAND]
but LOPERAND] is now expanded to be

(VARIABLE], [cCNSTANT], (LEXPR]), | LEXPR] |, LFUNCTION] or i

Here i is a delimiter denoting the i (or j) of complex algebra notation,

Examples of this more general expression are: -

(viconj(I) - I*conj(v))/(2i)
(z1Z2 + 7273 + 23Z1)/Z3
v(1,2) + csin(conj(Y(2,1)))
RO*(1 + 2igod)

i

When a complex number is written out explicitly (say x + iy), O
then it is regarded as 3 operands (x,i and y) connected by the two )
operators + and (implied) =, Thus if the brackets were omitted
from the denominator in the first example it would mean

((v#conj(Il) - Ixconj(V))/i)2

ARITHMETIC INSTRUCTIONS

The form of an assignment instruction remains

[VARIABLE] = LEXPR]

but [VARIABLE] now includes complex scalars and complex array elements, For

example: -

2172/(Z21 + Z2)
G + iawfx*c

Z
Y
A(p,q) = 2csin(27z)

R = Rl + re(Z)

P = jre(vxconj(1) + I*conj(V))
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NOTES

1. Just as real quantities may not appear on the r.,h,s, of an integer
assignment (except as arguments oi integer functions), so complex
quantities may not appear in real or integer expressions,

However, the functions

re(z), im(z), mag(z), arg(z)

convert from complex to real quantities and may therefore appear on

the r.h.s. of a reai assignment, In fact any function whose

value is real regardless of its arguments may be used in a real
expression (just as any integer function, regardless of its argument,
may appear in an integer expression), Thus if X and B are real and Y

complex then: -

X = B + im(Y)

is valid,
2. re(z) and im(z) are actual locations in the store and can therefore
be used on the 1,h,s, of an instruction (whose mode is then real),

For example: -

sqrti{2)

re(z)

im(y)

5 + im(zl)

However, mag(z) and arg(z), even though they do define z, are not locations
in the store and cannot be used on the 1l,h,s, If a complex quantity
is being evaluated by means of the evaluation of its magnitude (m) and

argument (a), the assignment is done by

N
i

mx{cos(a) + i sin(a))

or

N
4

= m*cexp(ia)



CONDITIONS
- In conditional operators, [EXPR]'s must be real (in the sense

of note 1 of the previous section ), Hence the following are legitimate: -

if arg (z) > w/2 then -> 3
3 case mag(z) > 1 :
ROUTINES AND FUNCTIONS
Since routines and functions are allowed to operate on complex
quantities, the parameter types have been expanded to include
Formal parameter type | Corresponding actual parameter
complex name | name of a complex variable
|
complex | any expression (which will be
| evaluated as if for a complex
| assignment)
|
complex array name | name of a complex array
|
complex array | name of a complex array
|
The routine types [RT] have also been expanded to include complex fn, §§

As an example we will rewrite the function routine for the polynomial
a(m) + a(m+1)X+,.000000.. + a(men)xin

assuming x and the coefficients a(i) to be complex,

complex fn poly (complex arrayname a, complex x, integer m,n)

integer i ; complex y

y = a(mtn) ; result =y if n=0
cycle 1 = mn-1, -1, m

y = y*x + a(i)

repeat

result = y

end
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INPUT -QUTPUT OF COMPLEX NUMBERS
Data is punched in the form

[REAL PART] + i [IMAGINARY PART]

but the individual parts can be punched in any acceptable 'real’ form, Both

parts must be punched however, For example: -

3+i4 0411 0.5+ 0 1,17a3 -12.1304

They may be read by the instruction

read(z1,72,23,24)

The permanent routines

print complex(complex z, integer m,n)

print complex fl(complex z, integer n)

print the value of z in the form

‘ [REAL PART] + i [IMAGINARY PART]
the individual parts being printed with the aid of the corresponding real
routines, 'print' and ‘print f1', using the same digit layout parameters,
For 7-hole tape this form of output is compatible with the format for

punching complex data,

NOTES
1, Spaces are permitted except in the two number parts themselves, In these
they may only appear after an o (see description of basic input routines),
2. The other input and output routines described in Section 5
have not been generalised to deal with complex numbers,
3. Oone may of course read a pair of real numbers on a data tape as a
complex number by the ‘'real’' read instruction

read{re(z),im(z))




¢




9 STORE MAPPING

THE ADDRESS RECOVERY FUNCTION

The absolute address of any variable is not generally known in
an Autocode programme, but it may be obtained by means of a standard
functicn, For example: -

s = addr(A{0,0))

This places the address of A(0,0) into the variable s, The argument
may be any variable, real, integer, or complex and the result is ar integer
giving the absolute address of the storage locatiom allocated to that
variable,

Absolute addresses are used in conmjumctionmn with array fumctioms

(see below) and with the 'storage' fumctions

integer (imteger n)
real (integer n)

complex (integer n)

These give the contents of the address im questiom as an integer,

real, or complex number, Im the last case the real amd imagimary parts
of the number are assumed to be in n and B+1, The actual parameter
may.of course be an integer expression e,g., s+k-1, These fumctionms
may be employed on the left hand side of an assignment statement as

well as in an expressiom, Thus the pair of imstructioms

s = addr(a)
real(s) = b

are equivalent to

ARRAY FUNCTIONS

Tke declarations of Sectionm 2 define variables and allocate
storage space for them, In this section we introduce a declaratiomr
which defines variables as the numbers cormtained in storage locations
that have already been allocated, This is of importazce im communricating
between routines with the addr type of formal parameter and in renaming
variables (see below),

An example is

array fa X(s,p)

which defimes X(i) as the real number in the storage location whose

address is given by s+i*p, Thus it defines a vector X(i) in

terms of an origin s and a dimension parameter p,



Array functioms may define rectamgular arrays with any number P

of subscripts, For example: -

array fn Y(s,p,q)
defines Y(i,J) = real (s+i*p+j*q)

integer or complex array functioms may be defined by prefixing the declaratiom
by integer or complex, (i,e, imteger array fam X(s,p))

Array fumctioms may also describe scalars, For example :-

array fa A(s)

defines A to be real (s). Im this way, elements of a vector, say, cam be
given individual mames,

The parameters im array fumctions may be gemeral inmteger expressioas,

As an example, assume that 100 storage locatioms have beem allocated

in some way, and that the starting address is given by the imteger
variable si, Then to define the comtemnts of these locatioms as a

vector x{(i), ome could write

array fm x(si,1) o

x(0) would them correspord to the number im address sl, x(1) to that
im s1+1 etc, If it is desired that the first location should

correspond to x(1), the declaratiom would be writter

array fm x(sl-1,1)

1f we had wanted to defime a2 10 x 10 matrix, stored row By row

rather than a vector, we could have writtenm

array fm A(si,10,1)
and A(0,0) would correspomd to address si,

array fm A(s1-11,10,1)

would defime a matrix im the avallable space whose first element
was A(1,1),

1, 1f the suffices of arrays are to start from (1,1, ---i) rather than
(0,0, ---0), am appropriate adjustment must be made to the expressiom givinmg
the origin im the array fumctiom declaration,

2 Space redefimed by array fm's may still be referred to by its origimal



THE RENAMING OF VARIABLES WITHIN A BLOCK

We illustrate tkis witk an example, Suppose we want to define amd
allocate storage for pairs of real variables x(i), y(i) so that they
are im succesive locatioms, The array declaratiom will only definme
a vector or matrix array stored in the comvemtiomal manmer, so we

adopt the following device

begin

integer s

array a(1:2000)

s = addr(a(l))

array fm x(s-2,2), y(s-1,2)

The first pair of mumbers could them be referred to either as
x(1), y(1) or a(1), a(2), the second by x(2), y(2) or a(3), a(4) etc,
Simce the array declaratiom is for 2000 variakles, up to 1000 pairs
x(i), y(i) canmn be accommodated,

As amother example, suppose we have defimed a matrix A amd allocated

storage for it by the declaratiom
array A(1:10,1:10)

and we wish to defime the first columm of A as a vector, them we could

write

array fa y(addr(A(1,1)) - 10,10)

which defines y(i) = real (addr(A(1,1)) - 10 + 10%*i)
i.e., as the first columm of A. Thus y(1) is equivalemt to A(1,1), y(2)
to A(2,1), - - - -,y(10) to A(10,1).
In the case of complex array fumctioms the user must take imto account
that a complex mumber occupies 2 comsecutive locatioms. Thus if s1 is

the address of Q(i,1) of a complex array Q(1:10,1:10), then

complex array R(sl1-20,20)

defines a vector R(i) whose elements are the first columm of Q, i.e.,
R(1) = Q(1,1)




9.4

STORE MAPPING ROUTINES

Storage fumctioms of arbitrary complexity cam b

obtained by means of store
mapping routimes, These are essentially fumctiom routimes which

compute am address, For example: -

real map X (integer i,3j)
result = s+dix(i-1)+j-1

end

computes the address of the (i,])th element of a reasl lower triamgular matrix

stored by rows startimg with X(1,1) at location s, Here s is & mom-local
quantity, but would probably be local to the routime im which such a
statement appeared, Suck a fumctiom may 2lsc be employed om the 1 k. s,

of an assigmment statememnt, For example: -

X{i-1,3+1) = [EXPR]

In the same way we cam also define imteger map and complex map routines,

If the map is placed at the emd of a progr

a specification must

be givem before the routime cam be referred to, for example

real map spec X(imteger i,J)

We camn mow complete the list of formal parameter types

Formal parameter type Corresponding actual parameter

addr i the mame of amy integer,real or complex

] variable (i&clu@iagvaﬁ array element), The

address of the variable is handed om as the
parameter proper, It is equivalent to am
imteger parameter in the body of the

routire, In fact am addr parameter

replaced by x is equivalent to

am imteger perameter replaced

i

! by addr {(xz)

]
real map § the actusl paremeter is the name
integer map { of a mapping routime of the
complex map i specified type

. i
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10:THE USE OF MACHINE INSTRUCTIONS

STACK STRUCTURE

Machine instructions can be used in routines either to make an
inner loop more efficient or to effect some operation which cannot
easily be done otherwise, It is assumed that the reader is reasonably
familiar with the logical structure of the machine, that is with the
basic order code, It also essential to know how data is stored in the

stack, We illustrate this with reference to the following routine,

routine matrix fn (array name A,B integer m,n real fn F)
real a,b,c ; integer 1i,]J
array C(1:m,1:n),E(1:m)

real fn spec F (real x)

)
A

cycle i = 1,1,m
cycle j = 1,1,n

T
°
A

.

repeat

repeat

.
.

end

NOTES

1, The first word of the local stack section contains the control number

for returning to the calling routine (the first half word) and the previous
contents oi Bd, the current level B-line (the second half word), The 1st

half word of the second word contains the test link (which records the position
within the label list of a test instruction), and the 2nd half word contains
information ( the number and type of the routine and the number of fixed
variables) required by the run-time fault monitor routine, Here Bd refers

to the B-line associated with the routine, and corresponds to the textual

depth of the routine in the program in which it is embedded, 1f (say)

this is 2 then Bd = B2, The relative locations of the fixed variables A,

B, m, n etc,, are assigned at compile time, Immediately on entry to the routine
the current value of BQu, which always points to the next available location

in the stack, is recorded in Bd and the previous contents of Bd recorded in

the stack (as already noted), BQU is then advanced to the end of the fixed
storage allocation, When the declarations for C and D are ‘obeyved' it is

advanced again to the final value shown,



LAYOUT OF THE STACK FOR THE DECLARATIONS OF ‘matrix fn'

Everything except resl a, b, ¢ and the Aummwv arrays themselves are destandardised and held in *longword! units.
In some cases the 1st (or m.8.) half word of the destgndardised quantity is 'flagged' to identify its function
for the purpose of 'stackprintt Ammm the shaded Sasmmav The blank sections indicate an indefinite number of words.

. - fixed varigble gllocation =4 M % dynamic allocation
B,(initisl value of B) | st
Rm 2 i (final value
” of wmov
= destandardised !
gimilar to numbers i
C, D but 1}
refer back standardised w int
to non-local fl.pt } points MOHs s
numbers cycle cycld to ,OHmebn
i=1,0ym g=1,14 location I, i.e.D(0)
VK | K E
similar  dope WIliffe® arrgy C dope axrray D
\/ to i vector vector vector
18t howe cycle for ¢ for for D
mwwdeSm inal array C There is no Iliffe vector for one
5 dimensional arrays. The 2nd word of the
words. value : £ ints to the address
The information stored +increment wwuwwmw relerence poin &
here includes the entry rm. . ° :
. . . inal value The array is packed by rows: 1st element
point and the original . L.of each row following last element of
B-line 'display’ fmb@ﬂomm of i AAmw . €
Mdmﬁ h.w. contains the test link h.w. is zero) ™ & wumdwmco Mms. £ C stands in locati
2nd h.w. contains monitor information I ¢ @% HW@.OH wWM w HMHMM.O £ ﬁMmmbowﬁww o%”awmswu
LInk( 15t hew. contains the c.n. link e 01T, 20 Deing origin’ © veetor, Ly

(2nd h.w. contains the previous value of B itself is the address (possibly implicit) of C(r,0)

(how. = half word) n in the rth row.
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2. Destandardised quantities are formed by adding 0*8k(-12) to the standardised
form, This constant will be found in location *1000001. This octal form
of the address can be used im machine imstruction formats(see later),

There are nc integer name or real name parameters in this example; if

present they would be represented (at the appropriate place among the fixed
variables) by single words, namely their addresses, in a destandardised form,
They are at present in distinguishable from integer's, Similarly for

complex name parameters., A comglex quantity requires two comnsecutive

words, representing the real and imaginary parts,

3. ARRAYS. The primary reference to an array comnsists of a pair of words., The
second half of the 1st word points to the (ist word of the) 'dope vector’',
that of the second word to the ‘'Iliffe vector', The dope vector contains

the values of the bound-pair list together with the number of pairs, i.e,

the dimensionality of the array, If there is more than one array associated
with same bound-pair list they share the same dope vector, The Iliffe vector
gives the origin of each row of the matrix (which is stored by rows), The
purpose of this is to simplify computation involved in accessing an element
of the array, Thus for example to add C(i+5,j-0) into the accumulator

the instructions are: -

101, g6, d, i + 3 put i in 896

104, 96, 0, C + 1% 896 = Bgb6 + IO

101, 97, d, j + 3 put j in B9y

104, 97, 96, 58 897 = BQy + entry for rovw (i+5)

acc + real (g7 - 6)

30, 0, 97, 6

Similarly to add the element D(i+5) of the one-dimensional array D

(which has no Iliffe vector) one may write

101, 97, d, 1 + % put i in BQy
104, 97, O, D + 1} BQ7 = Bg7 + addr (D{0))

320, 0, 97, 5 acc

fl

acc + real (Bg7 + 5)

In these imstructioms i, C, j, D refer to the addresses of these quantitins

(see later)

Arrays of k dimensions (>2) are stored in hierar hical fashion,
The primary Iliffe vector poimnts to a set of arrays of k ~ 1 dimensions
stored end to end., Each such array consist of an Iliffe vector referring

to a set of k - 2 dimensional arrays, and so on,
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4. THE PARAMETRIC FUNCTION F. Six words of information are kept here,

In addition to the control number for entering the routine it is
necessary to keep a record of the display of the relevant B-lines
when the routine is first substituted as an actual parameter, For

further details see the Compiler,

5. THE CYCLES, As explained in the text the initial and final values and
increment in & cycle are evaluated and checked for compatibility before
the cycle is commenced, The increment and final values, together with
the address of the comtrolled integer variable are recorded for use in

the executionm of the cycle, The diagram illustrates how they are stored,

STACK INSTRUCTIONS

The following autocode formats invelving the stack pointer (BGO)

are available

st = st + [EXPR']
[ExPR]
[NAME] = st

st

st represents the contents of Bgo. In the last imstruction the [NAME]
must be local to the routine contalning the instruction, otherwise a

fault is indicated,

MACHINE CODE FORMATS

Some ‘machine code' formats are now described,

1, Where there is no symbelic address involved an imstruction is written in

the form

(Fpl, [N], [N], [ADDRESS PART]

(and terminated as usual by ; or newline), Here [FD] refers to the
function digits, [N] to the Ba and Bm digits, and [ADDRESS PART] to the
address part, which may take a number of forms., It may be written as a
constant in the usual way (preceded possibly by a2 sign) bearing in mind
that the binary point is located 3 places from the right hand end, Thus

oiz1, 8o, 0, 2.5 is equivalent to
05064000 00000024
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It may also comsist of an octal number which consists of an * followed

by up to 8 octal digits, including any significant zeros, Thus

ot1o1, g1, 0, *1001 is equivalent to
04066600 10010000

in octal notation,
Finally it may consist of a label or a (possibly signed) constant plus
a label, The label is replaced by the control number corresponding to it, We

may refer to labelled constants (see mext section) in this way. For example

0334, 0, 0, 14:
o101, 99, 0, 3 + 14:

%
A

?

14: *03, *0000012
puts an unstandardised 10 in the accumulator, and a halfword 10 in g9
NOTE : The formal definition of [ADDRESS PART] is
[ADDRESS PART] = [+'1LconsTl+[N]:,[N]:,[+']LcoNST], [OW]

2, The format
[+"1({consT]
is used to plant a standardised 48-bit floating point number in the current
location of the program,
3. Pairs of 24-bit words may be planted in the object program by means of the formaf

[ADDRESS PARTI[,]L[ADDRESS PART]

Thus we may plant tables of integers or labels, for example:-

3:4
7:,8:

4. We now have an instruction format which uses a symbolic address.

(Fp], (N1, -, [NAME] [ +CONST"*]
where  [+CONST'l=[+]LCONST], NIL

Here the [NAME] can refer to anything which is represented in the fixed storage

sections of the stack, The resulting instruction is

{rpl,[N], d, p [+ cONST']




where (Bd, p) is the 'address' of the name, Bd being the B-line pointing
to the appropriate section of the stack, and p being the address relative

to the origin of that section. Thus an instruction
0324, 0, =, a

appearing in the routine under discussion would be translated ;s
0324, 0, 2, 14

assuming Bd = B2, and that F occupies 6 words,

The effect would be to put a in the accumulator,

If the [NAME] refers to am umstandardised floating point integer then we

may wish to select the integral half for use in a B-line, For example

oioi, 80, -, m+}

is equivalent to
oloi, 80, 2, 6.5

If 2 and m had been real and integer name's then 2 instructioms would

be necessary in each case, thus

0101, g9, -, a + 3
0324, 0, 99, O

and
0101, 99, =, m + 3}
o101, 80, 99, 3
If a is complex then
0324, 0, =, &
would put the real part into the accumulator, and
0324, 0, =, a+l
would load the imagimary part,
In the case of arrays we can select by similar means the two primary

reference words, and with thelr aid obtain access to the dope vector and/or

the array itself,
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EXAMPLE ON THE USE OF MACHINE ORDERS
The following example forms tke sum of three routines A, B, C of

similar dimensions, (It is in fact the permanent routine ‘matrix add')

routine matrix add (array name A, B, C)
comment The routine forms A =B + C

real dump
oiol, 61, -, A + } ; comment dope vector of A
o101, 62, -, B + 3 ;comment dope vector of B
oioi, 63, -, C + 3} ;comment dope vector of C
4

o121, 65, o,
o101, 64, 61, %
0172, 64, 0, 2
0225, 127, o,
2: o101, 64, 61,
0152, 64, 62,
0225, 127, o,
0152, 64, 63,
0225, 127, O,
0124, 01, 0, 1
0124, 62, 0, 1
0124, 63, 0, 1
0203, 127, 65, 2:

;comment check dimensions

-
s

O S O 0

o
o

o101, 65, -, A + } ;comment 65 = dope vector of A
0324, O, 65, 1 ; comment 364 = no of elements in matrix

0322, 0, 65, 2

0320, 0, 0, *10000040

0356, 0, =, dump

0324, 0, 05, 3

0322, 0, 65, 4

0320, 0, 0, *10000040

0362, 0, -, dump

0330, 0, 0, *10000010

0356, 0, -, dump

0101, 64, =, dump + 3

olo1, 66, 65, 1% ;comment set g61
0104, 66, -, A + 1%

oio1, 61, 65, 33

olo4, 61, 66, 3

olo1l, 66, -, A + 13 ;comment set 862
o120, 66, 61, o0

oio1, 62, -, B + 1}

0124, 62, 66, O

]

address of 1st element of A

address of ist element of B

[}

o101, 63, -, C + 13 ;comuent set 863 = address of 1st element of C
0124, 63, 66, 0
0122, 94, 0, 1 ;comment perform addition

5: 0324, o4, 62, 0

0320, 04, 63, O

0356, 64, 61, 0

0203, 127, 04, 5:

-4
1: 0121, 91, 0, 34

fault monitor ; comment DIMENSION FAULT
4 end




i,
&
;

L 4
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1, THE PERMANENT ROUTINES

In Section 5, we decribed the input and output routines,
The permanent material also includes routines for the solution of linear
equations, the solution of systems of ordinary differential equaiions and
operations on matrices, Further routines may be added from time to
time,

LINEAR BEQUATIONS

routine spec eqn solve(arrayname A,b, realname detl)

This routine solves the equations

A1, 1)x(1) + A(1,2)%x(2) +....+ A(1,n)x(n) = b{1)
A(2,1)x(1) + A(2,2)x(2) +....+ A(2,n)x(n) = b(2)
A(n, 1)x(1) + A(n,2)x(2) +....+ A(n,m)x(n) = bi{n)

(i,e. Ax = b), where the coefficients A(i,j) are stored in the

matrix A, and hb(i) in the vector b, A is destroyed and the solution
is placed in b, 1If during the elimination process, the equations are
found to be linearly dependant, then 'det' is set to zero and the
routine is left, with both A and b upset, Otherwise 'det' is set to
the determinant of A, Consequently 'det' should be tested after each

call of the routine,

MATRIX ROUTINES

The matrix routines operate on two dimensional arrays(i,e, matrices
not vectors), The dimensions of the arrays are not required as parameters
as the routines automatically find these from the declarations, and check
them for compatibility, The programmer may insert Similar tests

in his own routines by means of the functions

integer fn spec dim (arrayname A)

integer fn spec bound (arrayname A, integei n)

The -first gives the dimensionality of the array(l for a vector, 2 for a
matrix etc,), and the second the nth bound (upper or lower) of the array
counting from left to right, For example, if A were declared by: -~

array A(-5:+5, 1:p) where p = 1¢ then

dim(A) would have the value 2

bound(A,1) ' ' ' '
bound(A,2) ' ! ! ' 45
bound(A, 3) ! ! ! HE |

bound(A,4) ' ' ' ' 10
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The routines

routine spec unit {(arrayname A) am
routine spe. null {arrayname A)

set A to be a unit matrix (checking that it is sguare) and a null matrix

respectively, The routines
routine spec matrix add (arrayname A,B,C)
routine spec matrix sub (arrayname A,B,C)
routine spec matrix copy (arrayname A,B)
set A to B+C, B-C and B respectively, Although the parameters are of
type arrayname, the operation of the routines is sucu taal Lhe same array
can be substituted for more than one of the parametcrs, For example; -
matrix add(A,A,A)

doubles A, The same is not true of the following routines: -

routine spec matrix mult(g;rayname A,B,C)

routine spec matrix mult'(arrayname A,B,C)
routine spec matrix trans (arrayname A,B) T

Al

These set A to B+C, B:C' and B' respectively where the denotes Lranspositiion,

If it is required to, say, set a matrix to the product of itself and anothe:
then the call

matrix mulc{A,A,;B)

will fail, IL is necessary to declare another array, 'dummy' say, and

then use 'matrix copy' and’matrix mult’: -

matrix copy (dummy,A)

malrix mult{A,dummy,B)

Alternatively, a rouiine with parameters of type array may be defined which

calls the permanent iroutines : -~

routine MATRIX MULT(arrayname A, array B,C)

matrix mult(A,B,C)

end

In this case a call of the form

MATRIX MULT(A,A,B) or even MATRIX MULT(A,A,A)

is possible,
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The routines

routine spec matrix div{arrayname A,B, realname det)

routine spec invert(arrayname A,B, realname det)

set A to inv(B) ‘A and inv(B) respectively, In the process B is destroyed
and the value of its determinant placad in det, Should the matrix be
found to be singular, 'det’' is set to zero, Consequently 'det’ should be
tested after every call for these routines, If B is required at the end
ol the routine, then the techniques described above should be used, The

function

real fn det (urrayname B)

sets 'det' to (he determinant of B and destroys B.

SOLULTION OF DIFFERENTIAL EQUATIONS

There are Lwo routines available for advancing the solution of

a system of first order ordinary differential equations

dy(i)/dx = £{(i)(x,y(1),y(2),....,y(n)) i=1,2,.,.,n
from X Lc x+h, using the Kutta-Merson fourth-order integration methodlL2].
The system is defined by means of an auxiliary routine, which must be

supplied by the user, of the form : -~

routine spec aux(arrayname f, real x)

which must evaluate the derivatives £(i) in terms of y(1),y(2),...y(n)
and X and then place them in £(1),£(2), .,...., f(n),

The first routine

routine spec int step(arrayname y,real x,L, integer n c

realname e, routine aux)

advances the solution by a single step of length h of the Kutta-Merson

process,

L2] Reference L,FOX (Ed,) Numcrical Solution of Ordinary and Partial

Differcniial Equations, Pergamon 1goz, P,24.
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The parameters are : -

y

aux

name of a (real)array., On input y(1),y(2)...y{(n) should
contain the solution at x, On output they will

contain the solution at x+h,

the initial value of the independent variable

the increment of the independent variable,

the number of equations in the system,

the name of a real variable, which on output will contain

an estimate of the maximum truncation error over the step,
the name of the routine which evaluates the derivatives at a

general point (see above),

The second routine

roucine spec kutta merson{arrayname y,real x0O,x1, realname e C

integer n,k, routine aux)

advances the solution, by means of a series of calls for 'intstep’, from

X0 to x1, keeping, if possible the estimate of the maximum truncation

error less than e, An initial step length of (x1-x0)/2km where 2}|(m+1)

>k > 2fm, is taken, If over a step the local truncation error (given

by 'int step’') is greater than e, then the step length is halved; if

the error is less than ,vle then the step length is doubled,

I1f three successive reductions in step length give no improvement in the

estimated truncation error, then e is replaced by twice the smallest error

achiceved, and the integration process continued. The parameters are @ -

X0

x1

[¢7

aux

the name of a (real)array, On input y(1),y(2),....y(n)
should contain the solution at xu, ©n output they will
contain the solution at x1,

the inital value of the independent variable,

the final value of the independent variable,

tihe name of a gggl variable, ©On input this should contain
the accuracy criterion, ©n output it will be unchanged if this
accuracy has been achieved ; if not, it will be replaced by a
more realistic value(see above),

the number of equations in the system

an estimate of the number of steps required to cover the
range(see above)

the name of the routine which evaluales the derivatives

at a general point(see above),

©

&
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APPENDIX 1, PHRASE STRUCTURE NOTATION

In describing Atlas Autocode we use square brackets round an
entity to denote that it represents a class of entities and may be replaced
by any member of the class, We call an entity in square brackets a PHRASE,

For example we could define a decimal digit by

PHRASELDIGIT] = 0,1,2,3,4,5,6,7,8,9

where the commas are interpreted as meaning 'or', Thus there are ten
different things which can be called LDIGIT], and when we refer to [DIGIT]
elsewhere we mean that any of the ten will be legitimate,

We can then build up from this basis and describe, for example,

a signed digit as

PHRASELSIGNED DIGIT) = +[DI1GIT], -LDIGIT]

There are also places where a phrase may or may not appear and to

signify this a special phrase 'NIL' may be written as the last alternative
in a phrase definition, For example the switch limits in a switch
declaration can be preceeded by a + or - sign if desired, (Absence of

a sign corresponds to +,) The relevant definition is

[NaME LISTI([+'1INI:[+"]IND)
where PHRASEiL+'] = +, -, NIL

Thus 4 +4
-4: 4
1: 3
are examples of switch limits,

Alternatively we can use the special ? qualifier as follows,

PHRASE[+] = +, -
PHRASEL+?] = [+],NIL

The last is implicit and we can use [+?] (e.,g., in place of L+']) without
explicity giving the latter definition,

In the interest of efficiency however, it is preferable to
keep the depth of analysis as small as possible and for this reason we
use the former scheme,

The phrase structure notation can be used recursively, i,e,, phrase
definitions may,directly or indirectly, use themselves, For example we

may define a 'list of names separated by commas’ by

PHRASE(NAME LIST] = [NAME]LREST OF NAME LIST]
PHRASELREST OoF NAME LIST] = [,]1(NAME]LREST OF NAME LIST],NIL
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[since a ',' is used to separate the altermatives of a phrase definition
it cannot stand for itself like the other basic symbols, Instead we e
must write [,]. similarly [EOL] and [SP] are used to denote 'end of line’
and 'space' in the source language, ]
The qualifier * also indicates recursiveness and a [NAME LIST]
could be defined as

PHRASELNAME LIST] = [NAME][, NAME+?]
PHRASEL,NaME] = [, J[NAME]

the definitions

[ ,NAME ], NIL
[,NaME]L, NAME=*], [ ,NAME]

PHRASEL , NAME #? ]
PHRASEL , NAME *]

being implicit, Again, however, for reasons of efficiency we use the former definition,
Given the phrases of the language it is theh possible to describe all the formats

allowed in a program, For example, if we introduce the phrase(TYPE] as

PHRASELTYPE] = integer, real, complex

we can define the format for the scalar declarations as
FORMATLSs] = [TYPE][NAME LISTILS]

The [Ss] indicates that it is a source statement, which means it appears on
its own in an Autocode program,
In Atlas Autocode there is a further type or CLASS of format,
the unconditional instructions [UI], which have the special proﬁerty that
they may be preceded by the conditional operators if Lcowp] then and
unless [COND] then,
A list of the phrases and formats of Atlas Autocode follows,
Note that some phrases ([s],LcoNsT]l,[NAME] and [TEXT]) are not formally defined.
These are defined by special built-in routines which we will not consider here,

but those interested may refer to the references given below,
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Finally we should moint cut that some of the definitions are not
completely rigid, For example, the arithmetic assignment statement is

defined as

FoOrRMATIUZ] = [NaME][APP] = [EXPR]

In the routine which deals with this format, tests are made to ensure that
the [NAME]LAPP] does in fact describe a variable, and is not, for example,

a function,

References

(3]. Brooker,R.A,, Morris,D, and Rohl,J.S, '*'Trees and Routines'’,
Computer Journal, Vol, 5. No. 1,

(4]. Brooker,R.A., MacCallum,I R,, Morris,D, and Rohl,J.S.
''The Compiler Compiler'®' 3rd Annual Review oi Automatic Programming

(ed. Goodmar), Pergamon Press,
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PHRASE

+ PHRASE

PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE

PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE

PHRASE
PHRASE
PHRASE
PHRASE
PHRASE

PHRASE
PHRASE
PHRASE
PHRASE

PHRASE

(EXPR] = L+"1[EXPR']
L+] = 4+, -
[+ = +, -, NIL
LEXPR'] = LOPERAND]LOP]LEXPR'], LOPERAND] \
{OPERAND] = LnaMelLAPP], LcoNST], ([EXPR]), ILEXPR]|, i, BUT NOT if ®
[apP] = (LEXPR-LIST]), NIL
[EXPR-LIST] = LEXPR]LREST OF EXPR-LIST]
{REST OF EXPR-LIST]=[,]1{EXPR]I[REST OF EXPR-LIST], NIL
Lopr] =4, = * /, ¥, ., NIL
(cr) Laccl = dsa, acc, ca, sac
Laol = acc +, acc-, acc*, acc/, acch, addr, -, NIL
[QUERY'] = ?, NIL
(CR) Lprogram] = programme, program
£, = (,], NIL
[iul = if, unless
tacc'] = acc, ca, sac
LTYPE] = integer, real, complex
LTYPE'] = integer, real, complex, NIL
{NAME LIST] = LNAME]LREST OF NAME LIST]
LREST OF NAME LISTl=L,]1LNAME]LREST OF NAME LIST], NIL
LARRAY LIST] = [NAME LISTI1(LBOUND PAIR LIST])LREST OF ARRAY LIST]
(REST OF ARRAY LIST]=i,]INAME LIST]((BOUND PAIR LIST])LREST OF ARRAY LISTI, NIL
{BGUND PAIR LIST] = LBOUND PAIR]ILREST OF BOUND PAIR LIST] -
[REST OF BOUND PAIR LIST]=[,][BOUND PAIRILREST OF BOUND PAIR LIST], NIL -
(BOUND PAIR] = [EXPR] : LEXPR]
LARRAY FN LISTI] = INAME]([EXPR-LIST])[REST OF ARRAY FN LIST]
[REST OF ARRAY FN LISTl=l,]1[NAME](LEXPR-LIST])[REST OF ARRAY FN LIST], NIL
LSWITCH LIST] = [NAME L1sT1(l+'][N):([+"JIN])[REST OF SWITCH LIST]
[REST OF SWITCH LISTl=Ll,]1(NAME LISTI([+'1[N]:(+'JiN])LREST OF SWITCH LIST], NIL
{(rT] = integer map, real map, complex map, integer fn,
real fn, complex fn, routine
LFPP] = ([FP-LIST]), NIL
LFP-LISTI] = [FPILREST OF FP-LISTI]
LFP] = [FP-DELIMITER]LNAME]
(REST OF FP-LIST] = [FP](REST OF FP-LIST], NIL
[FP-DELIMITER] = [,'1lRrT],L,'] integer array name, [,'] integer array,
[,'] integer name, [,'] integer,
[,'lireal'] array name, L,'llreal’'l array,
[,'] real name, [,'] real,
[,'] complex array name, [,'] complex array,
[,'] complex name, [,'] complex, [,'] addr, L,]
Lconp] = [sc] and LAND~C],[sc] or LoR-C],LlscC]
LAND ] = [sc] and [AND-C],[scC] o
LOR-C] = [sc] or [or-cl,[sc] o
scl = [Expr]lLcomp]l[EXPR]LCOMP]LEXPR],

[ExPr][comMP]lLEXPR], ([COND])
LcompP] ==, F, >, < < 2




PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

IN-LIST]

[REST OF N-LIST]
LALPHA']

{+ coNsT']
[real']

[ADDRESS PART]
{check]

[FAULT LIST]

1}

1]

[NJLREST OF N-LIST]

L,]JINJLREST OF N-LIST], NIL

o, NIL

(+]LcoNsT], NIL

real, NIL

[+'1LcoNsT] + [NJ:,[N]:,[+'JicONST], Low]

routine trace, jump trace, cueries, array bound check

LN-LIST] -> [NI[REST OF FAULT LIST]

[REST OF FAULT LIST)=L[,][N-LisT] = [N]LREST OF FAULT LIST], NIL

[SIMPLE LABEL]
irRT']

CLAsSLUI]
luril
Luil
lu1l
lurl
LuIl
lu1l
lurl
Lurl
lurl
lurl
L1l

1]

]

1}

1}

[N1:, BuT Notr [N]:[,]
(rT1,NIL

LNAME][APP] = [EXPR]LQUERY']
[NAME]LAPP]

~>[N]

->_NAME](LEXPR])

caption LTEXT]

result = [EXPR]

return

stop

test LN-LISTI]

Lcheck]on

Lcheck]off

Al,5



Al,0

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FCRMAT
FORMAT
FORMAT
FGRMAT
~ FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

iss]

tss1

[ss]
iss]
Lssl
[ss]
Lssl
(ss]
Lss]
[ssl
iss]
[ss]
Lss]
Lss]
ss]
[ss]
Lssl
Lss]
[ss]
{ss]
[ss]
[ss]
[ssl
iss]
Lss]
lss]
ss]
[ss]
iss]
{ss]
[ssl
[ss]
Lss]
[ss]
[ss]
[ss]

Iss]

(ss]
Lssl
Lss]
Lss]
[ss]
[ss]
Lss]

{ss]-

Lurlls]

[urliiuliconplis]

LiullcoND] then LUI]LS]

cycle [NAME]iAPP] = LEXPRIL,]LEXPRIL, J[EXPRILS]
repeat [s]

LSIMPLE LABEL]

LN] case LconD]:

(NAMEI(L+"JLND):

LTYPEJLNAME LIST]LS]

LTYPE'] array LARRAY LISTI[sS]
LTYPE'] array fn LARRAY FN LISTILS]
LRT'] spec LNAMEILFPPliS]
(RT]LNAME]LFPP]LS]

begin (s}

comment LTEXT]iS)

end [s]

end of Lprogramlls]

ignore queries Ls]
production run [S]

page LTEXTI]is]
switch [swITCH LisTl(s]
compile [check]lls]

stop lchecklis]

own LTYPEILNAME LISTI1Lls]

own LTYPE'] array LARRAY LIST]LS]
fault [FAULT LIST]iS]

LFDIL, JUNIL, JiNIL, JLADDRESS PART]L(S]
(FplL,]LNIL, -0, ]1ALPHA" JINAME] L +CONST ' ]LS]
[+']JLeoNsTILS]

[ADDRESS PARTIL,]JLADDRESS PART]iS]
LNAME] = st [s]

[ExPRILS]

st [+]LEXPR'1(s]

1

st

st

prepare to read perm [S]

define compiler

define master compiler

define special compiler

advance g8 Ls]
pl LNAMEICINIL, JINIL, JLNT)[s]
real expomentiation [S]

i [TEXT](S]

now compile from input [N][s]

upper case delimiters [S]

normal delimiters [S]
LTexTils]

@



APPENDIX 2 INDEX OF STANDARD FUNCTIONS AND PERMANENT ROQUTINES

All the functions and routines listed below are declared at, level

O and hence are permanently available unless the names are redeclared locally
by the user, The number in the right hand margin indicates the page on which

they are described more fully,

STANDARD MATHEMATICAL FUNCTIONS

integer fn spec intpt(real x) 2.5
integer fn spec int(real x) 2.5
integer fn spec parity(integer n) 2.5
real fn spec sin(real x) 2.5
real fn spec cos(real x) 2.5
real fn spec tan(real x) 2.5
real fn spec log(real x) 2.5
real fn spec exp(real x) 2.5
real fn spec sqrt(real x) 2.5
real fn spec arctan(real x,y) 2.5
real fn spec radius(gggi X,¥) 2.5
real fn spec arcsin(real x) 2.5
real fn spec ar cos(real x) 2.5
real fn spec fracpt(real x) 2.5
real fn spec mod(real x) 2.5
real fn spec re(complex z) 3.1
real fn spec im(complex z) 3.1
real fn spec mag(complex z) 8.1
real fn spec arg(complex z) 3.1
complex fn spec¢ csin(complex z) 8.1
complex fn spec ccos{complex z) 8.1
complex fn spec ctan(complex z) 8.1
complex fn spec clog(complex z) | 8.1
complex fn spec cexp(complex z) 8.1
complex fn spec csqrt(complex z) 8.1
complex fn spec conj(complex z) 8.1

STORAGE FUNCTIONS
integer fn spec addr(addr s) 9.1
integer fn spec integer(integer s) 9.1
real fn spec real(integer s) 9.1
complex fn spec complex(integer s) 9.1

MISCELLANECUS FUNCTIONS
integer fn spec control no([ROUTINE NAME])

This gives the address of the first word of the routine in question,
integer fn spec dim(arrayname A) 11,1
integer fn spec bound(arrayname A,integer i) 11,1

NOTE : The above classes of function cannot be substituted as an actual




INPUT ROUTINES

routine spec select input(integer n) 3.1
routine spec read(addr s) 3.1
routine spec read array(arraxname A) 5.2
routine spec read symbol(integername i) 5.2
integer fn spec next symbol 5.3
routine spec skip symbol 5.3
routine spec read sequence(addr s,integer p,integername n) 3.3
routine spec read binary(integername i) 5.0
QUTPUT ROUTINES
routine spec select output(integer n) 3.1
routine spec print(real x, integer m,n) 5.4
routine spec print fl(real x, integer n) 5.4
routine spec space 5.3
routine spec spaces(integer n) 3.3
routine spec newline 53
routine spec newlines(integer n) 5.5
routine spec tab 5.5
routine spec newpage 5.5
routine spec runout(integer n) 5.5
routine spec print array(arrayname A, integer m,n) 3¢5
routine spec print array fl(arrayname A, integer m) .5
routine spec print symbol(integer i) 3.5
routine spec print complex{complex z,integer m,n) )
routine spec print complex fl(complex z,integer m) 8.5
routine spec punch binary(integer n) 5.6
MATRIX ROUTINES
routine spec null(arrayname A) - A=0 11,2
routine spec unit(arrazname A) =1 11,2
routine spec matrix add(arrayname A,B,C) A=B+C 11,2
routine spec matrix sub(arrayname A,B,C) A=B~C 11,2
routine spec matrix copy(arrayname A,B) A=B 11,2
routine spec matrix mult(arrayname A,B,C) A=B*C 11,2
routine spec matrix mult'(arrayname A,B,C) A=B+C' 11,2
routine spec matrix trans(arrayname A,B) A=B' 11,2
routine spec matrix div(arraynameA,B,realname det) A=inv(B)*A 11.3
routine spec invert(arrayname A,B,realname det) A=inv(B) 11,3
real fn spec det(arrayname B) result=|B| 11,3

MISCELLANEQUS ROUTINES

routine spec eqn solve(arrayname A,b realname det) 11,1

routine spec kutta merson(arrayname y,real x0,xl,realname e

integer n,k routine aux) 11.4

routine spec intstep {(arrayname y, real x,h, integer n

real name e, routine aux) 11.3




APPENDIX 3 INDEX GOF DELIMITERS

addr

and

array
array fn
array bound check off

array bound check on

begin

<

caption

case

comment

compile array bound check 6,3

9.1
2.9
2.4
9.1
6.5
6.5

3.1

2.11
5.6

2.9
2.11

compile jump trace

compile queries

compile routine trace

complex

complex array

complex array in

complex array name

complex fn

complex fn spec
complex map

complex map spec

complex name
cycle

end

end of program(me)

fault

=

if.....then
lQQIO‘E
integer

integer array

integer array fn

integer array name

integer fn
integer fn spec

integer map

integer map spec

integer name

6.5
6.5
6.5
8.1
8.1
9.2
8.4
3.4
8.4
9.4
9-4
8.4
2.10

3.2
2,11

6.5

8.2
2.9
2.9
2.3
2.4
9.2
4.1
4.5
4.5
9.4

4.1

Jump trace off

jump trace on

now compile from input

normal delimiters

queries off

queries on

bage

production run

real

(real)array

(real)array in

(real)arrayname

real fn

real fn spec

real map
real map spec

real name
repeat
return
result
routine

routine spec
routine trace off

routine trace on

spec

st
stop

stop array bound check

stop jump trace

stop queries

stop routine trace

switch

test

unless......then
voeosounless

upper case delimiters

A3.1

6.5
6.5

7.4
2,11

4.9
2.9

6.5
6.5

2,11
6.7

2.3
2.4
9.1
4.1
4.5
4.5
9.4
9.4
4.1
2,10

4.5
4.1
4.2
6.5
6.5

4.7
10.4
2.11
6.5
6.5
6.5
6.5
2.8

2.9

2.9

2.9
2.11
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APPENDIX 4 LIST OF MONITORED FAULTS

Fault monitoring is very dependent on the form of the compiler used,
We describe below the monitoring now given (1/3/65). It will probably change

with time but all changes will be designed to give the maximum information

COMPILING TIME FAULTS
1, Faults due to [NAME]'s not having heen declared,

NAME{NAMEINOT SET
SWITCHLNAMEINOT SET

2. Faults, found in arithmetical instructions, which give special
indications but which are most often caused by LNAME]'s not being declared
at the current level, Thesz special indications arise when the LNAME]'s appear
in the level above,
NAME . NAME]CANNOT APPEAR ON L.H.S.
SWITCHLNAME] IN EXPR
ROUTINELNAME] IN EXPR
CALL FOR ADDR OF NON-VARIABLE
CALL FOR CONTROL NO OF NON-ROUTINELNAMZ]

3. Arithmetic faults,
COMPLEXLNAME] IN EXPR
i IN EXPR
REALLNAME] IN EXPR
REAL CONST IN INTEGER EXPR
CALL FOR DIM OF NON-ARRAY NAME
CALL FOR BOUNDS OF NON-ARRAY NAME
NAME L NAME1HAS WRONG NUMBER OF PARAMETERS

(This may be due either to the wrong number of parameters appearing

or to the omission of a multiplication sign before a ieft bracket)

4. Faults found at the end of each block or routine,
LABEL [N] NOT SET There is a reference to labellN] or
CASE [N] NOT SET a case LN] which has not been set
NO LABELS SET
TOO FEW REPEATS cycle's do not match repeat's

5. Other faults,

" AP FAULT An actual parameter fault:the call
sequence is not consistent with the
routine spec

FP FAULT A formal parameter fault: the routin
heading is not consistent with the
routine spec,
LABELLNISET TWICE Two or more instructioms
CASELN] SET TWICE have beer. given the same
SWITCHI[NAMEISET TWICE label




NAME LNAME]SET TWICE The name has been used for more than

one purpose at a given textual level

SWITCHLNAME]OUT OF RANGE A label(NAME](LN]) appears where LN]
lies outside the declared range of

the switchl[NAME]

SWITCHLNAME]OUT OF RANGE A labeliNAME](LN]) appears where [N]
lies outside the declared range of

the switchLNAME]

TOO MANY REPEATS Too many repeat’s in a block or routine
[NAME] =ST NOT VALID The LNAME] is non-local
RESULT OUT OF CONTEXT A result = LEXPR] statement appears in a

routine other than a function or map

routine

NON=-INTEGER CYCLE VARIABLE The controlled variable is not an integer

RUN TIME FAULTS

1, The following faults are monitored at run time, Normally they cause
the program to be terminated but it may be restarted by a fault instruction,
The relevant fault numbers appear in the tables below, For those numbers not

appearing, reference should be made to the ABL Manual,

DIV QVERFLOW Division by ¢ or a non-standard number fault 1
EXP QVERFLOW Exponent overflow fault 2
SQRT ~VE Sqi1't of a negaiive argument fault 5
LOG -VE Log of a negative argument fault o
INV TRIG FN UOUT OF RANGE In inverse trig function e.g., fault 8
arcsin when the argument is not
within range(-1,+1)
INPUT ENDED Insufficient data so that a read fault 9
instruction effectively reads over
the end of the data tape
SPURIOUS CHARACTER IN DATA Spurious character (i.e. NOT fault 14
a decimal digit, point, sign,
or a) appears in data.
MORE THAN 3 SYMBOLS IN POSITION fault 15
A compound character formed from
more than 3 superimposed characters
has been encounted in textual data,
REAL QUANTITY INSTEAD OF INTEGER IN DATA fault 16
FAULT IN COMPLEX DATA the complex data is not punched fault 17

according to the conventions of P8.5




2. Faults which indicate programming errors but which always cause the

program to terminate

INPUT NOT DEFINED An input or output channmel has been selecte

OUTPUT NOT DEFINED which is not mentioned in the Job Descripti

ALL TESTS FAIL All conditions in a test imstructiom fail

SWITCH VARIABLE NOT SET Refers to a multiway switch imstruction
->[NAME1(LEXPR])

where the value of [EXPR] is out of range
or corresponds tc a missing label,

ARRAY DIMENSIONS NOT +VE Refers to a bound pair (L:U) where U-L+1<0,

NON ~-INTEGRAL CYCLE Refers to the check carried out immediately
prior to the execution of a cycle

CALLS FOR NON-EXISTENT ROUTINE Occurs when the routine and a specification
are not at the same level, or the former
is missing,

DIMENSION FAULT Occurs when a matrix routine is called
using parameters which are not matrices onr
are incompatible,

ARRAY SUBSCRIPT QUT OF BOUNDS Occurs when compile array bound check is

used and the subscripts are not within

the right bounds,

3. Faults which can arise because of accessing array elements outside
the bounds given in the declaration e.g. A(10,3) when A had been declared

A(1:3,1:10), If the immediate cause is not obvious the compile array bound check

should be used, There are a number of indications such as
SV QPERAND
ILLEGAL BLOCK
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A5.1

APPENDTX 5 NUMERICAL EQUIVALENTS OF BASIC AND COMPOUND SYMBOLS

The numerical equivalents for use in conjunction with the 'read symbol’'
and 'print symbol' routines are given in the table overleaf, The table gives
the numerical equivalents of the basic symbols i,e, symbols comprising of a
single (upper or lower case) character,

Up to three basic symbols may be superimposed (by means of the
backspace facility) to form a compound symbol, For example: -

# is formed from = _ /
The numericalyequivalent of a compound symbol is
a*x2fl4 + b+2§7 + ¢
where a,b,c are the numerical equivalents of the individual symbols, ordered
so that a>b>c, Thus the numerical equivalent is independent of the
order of punching the individual characters,
If only two symbols are used, the formula is

b«2§7 + c, b > ¢

Thus # is equivalent to 86*2kl4 + 28~217 + 15
and > is equivalent to 806+247 + 27
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* TABLE OF NUMERICAL EQUIVALENTS

33
H
35
36
37
38
39
40
41

43

45
46
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60
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63

A
B
C
D
E
F
G
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64
05
66
67
68
69
70
71
72
73
74
75
76
77
78

space

79 ¢

8o
81
82
83
84
85
86
87
88
89
90
91
02
93
%
95

96
97

100
101
102
103
104
105
106
107
108
109
110
111
112
13
114
115
116
117
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