
On Compact Directed Acyclic Word Graphs

Maxime Crochemore and Renaud V�erin

Institut Gaspard Monge

Universit�e de Marne-La-Vall�ee,

2, rue de la Butte Verte, F-93160 Noisy-Le-Grand.

http://www-igm.univ-mlv.fr

Abstract. The Directed Acyclic Word Graph (DAWG) is a space-e�cient

data structure to treat and analyze repetitions in a text, especially

in DNA genomic sequences. Here, we consider the Compact Directed

Acyclic Word Graph of a word. We give the �rst direct algorithm to

construct it. It runs in time linear in the length of the string on a �xed

alphabet. Our implementation requires half the memory space used by

DAWGs.

1 Introduction

One of the most surprising facts related to pattern matching and discovered

by Ehrenfeucht et al. [2] is that the size of the minimal automaton accepting

the su�xes of a word is linear. The surprise is due to the maximal number of

subwords that may occur in a word: it is quadratic according to the length of

the word. This is obviously true if the alphabet is unbounded, but still holds

if the alphabet contains at least two letters. In addition to the previous result,

Ehrenfeucht et al. proved that the automaton can be built in linear time, which

is indeed a consequence of the previous fact but does not come readily from it.

In the present article, we consider the compact implementation of the au-

tomaton and show that it has a direct construction that runs in linear time.

Fast and space-economical methods for this construction are important because

the automaton serves as an index on the underlying word, and, as such, is in-

volved in several combinatorial algorithms on words.

Historically, the �rst linear-size graph to represent the subwords of a word,

called the Directed Acyclic Word Graph (DAWG), was described in [2] together

with a linear-time construction. When terminal states are added to the DAWG,

as shown in [8], the structure becomes the minimal automaton accepting the

su�xes of the word. Regarded as an automaton accepting the subwords of the

word, i.e. setting all states as terminal states, the DAWG is not always a minimal

automaton. Indeed, this latter automaton can be slightly smaller, but its con-

struction satis�es the same properties ([8, 3, 9]) though the algorithms become

a bit more tricky.

Basically, DAWGs provide an implementation of indexes on texts [4]. The

index on a text T helps searching it for various patterns. For instance, it leads

to an e�cient solution to the string-matching problem, searching text T for a

word w. The typical running time of a query is O(jwj) on a �xed alphabet, and

is O(jwj log j�j) if the alphabet � of the text is unbounded.

Many other e�cient solutions to problems on words are applications of DAWGs.

They include (see [12]): computing the number of subwords of a word, comput-

ing the longest repeated subword of a word, backward DAWG-matching, �nding

repetitions in words [6], searching for a square [7, 9], computing the longest

common subword of a �nite set of words and on-line subword matching [10],

approximate string-matching [21].

The su�x tree is an alternative representation of the subwords of a word

that shares with the DAWG essentially the same applications. McCreight [18]

introduced the notion and gave an e�cient construction after the seminal work

of Weiner [22] on a similar structure.

Su�x trees have been more extensively studied than DAWGs, probably be-

cause they display positions of the word in a simpler way although the branching

from nodes is not uniform as it is from states of DAWGs. Apostolico [1] lists over

forty references on su�x trees, and Manber and Myers [17] mention several oth-

ers (see also [19]). Several variants or implementations of su�x trees have been

developed, like su�x arrays [17], PESTry [16], su�x cactus [15], or su�x binary

search trees [14]. Ukkonen [20] designs an on-line construction of su�x trees, and

Farach [13] proposes a novel approach leading to a linear-time construction on

integer alphabets.

In computational biology, DNA sequences are often only viewed as words

over the alphabet fa; c; g; tg of nucleotides. In this form, they are objects for

linguistic and statistic analysis. For this purpose, su�x automata (or su�x trees)

are extremely useful data structures, but the bottleneck to using them is their

size. The indexes has to be kept in main memory and their sizes limit their use.

The size of available sequences is steadily growing, and therefore saving memory

space is wanted both for the construction of the index and for its use.

The Compact Directed Acyclic Word Graph (CDAWG) keeps the direct ac-

cess to information while requiring less memory space. The structure has been

introduced by Blumer et al. [4, 5]. The implementation is obtained by deleting all

states of outdegree one and their corresponding transitions (excepting terminal

states).

We present an algorithm that builds directly compact DAWGs. This con-

struction avoids constructing the DAWG �rst, which makes it suitable for the

presently available DNA sequences (about 1:5 million nucleotides long for the

longest sequences). Experiments show that our implementation saves half of

the memory space required for ordinary DAWGs and su�x trees. At the same

time, the reduction of the number of states (2=3 less) and of transitions (about

half less) makes the applications run faster. Time and space are saved simul-

taneously. The memory space used by our implementation of compact DAWGs

requires about 6n integers for a word of length n. This is to be compared with

7n for DAWGs, 8n for su�x trees. It is just 2n for su�x arrays, but this is paid

by a slower access to subwords.

This article is organized as follows. In Section 2 we recall the basic notions

on DAWGs. Section 3 introduces the compact DAWG, also called compact su�x

automaton, and contains the bounds on its size. We show in Section 3.4 how to

build the compact DAWG from the DAWG in linear time with respect to the size

of this latter structure. Direct construction algorithm for the compact DAWG is

given in Section 4.

2 De�nitions

Let � be a nonempty alphabet and �� the set of words over �, with " as the

empty word. If w is a word in ��, jwj denotes its length, wi its i
th letter, and

wi::j its factor (subword) wiwi+1 : : : wj . If w = xyz with x; y; z 2 ��, then x, y,

and z are factors or subwords of w, x is a pre�x of w, and z is a su�x of w. S(x)

denotes the set of all su�xes of x and F (x) the set of its factors.

For an automaton, the tuple (p; a; q) denotes a transition of label a starting

at p and ending at q. A roman letter is used for mono-letter transitions, a greek

letter for multi-letter transitions. Moreover, (p; �] denotes a transition from p

for which � is a pre�x of its label. In this notation the target state is not given.

Here, we recall the de�nition of the DAWG, and a theorem about its imple-

mentation and size both proved in [3] and [9].

De�nition 1. The Su�x Automaton of a word x, denoted DAWG(x), is the

minimal deterministic automaton (not necessarily complete) that accepts S(x),

the (�nite) set of su�xes of x.

I 1 2 3 4 5 6 7 9 F

8 10

g t a g t a a a c

g

a

a

c

c

a

c

t a

Fig. 1. DAWG(gtagtaaac).

For example, Figure 1 shows the DAWG of the word gtagtaaac. States that

are double circled are terminal states.

Theorem2. The size of the DAWG of a word x is O(jxj) and the automaton can

be computed in time O(jxj). The maximum number of states of the automaton

is 2jxj � 1, and the maximum number of edges is 3jxj � 4.

Recall that the right context (according to S(x)) of a factor u of x is u�1S(x).

The syntactic congruence associated with S(x) is denoted by�S(x)and is de�ned,

for x; u; v 2 ��, by:

u �S(x) v () u�1S(x) = v�1S(x).

We call classes of factors the congruence classes of the relation �S(x). The

longest word of a class of factors is called the representative of the class. States of

DAWG(x) are exactly the classes of the relation �S(x). Since this automaton is

not required to be complete, the class of words not occurring in x, corresponding

to the empty right context, is not a state of DAWG(x).

Among the congruence classes we make a selection of classes that are called

strict classes of factors of �S(x) and that are de�ned as follows.

De�nition 3. Let u be a word of C, a class of factors of �S(x). If at least two

letters a and b of � exist such that ua and ub are factors of x, then C is called

a strict class of factors of �S(x).

We also introduce the function endposx: F (x) ! N, de�ned, for a word u,

by:

endposx(u) = minfjwj j w pre�x of x and u su�x of wg

and the function lengthx de�ned on states of DAWG(x) by:

lengthx(p) = juj; with u representative of p:

The word u also corresponds to the concatenated labels of transitions of the

longest path from the initial state to p in DAWG(x). Transitions that be-

long to the spanning tree of longest paths from the initial state are called

solid transitions. Equivalently, for each transition (p; a; q) we have the property:

(p; a; q) is solid () lengthx(q) = lengthx(p) + 1:

The function lengthx works as well for multi-letter transitions (transitions labeled

by non-empty words), just replacing 1 in the above equivalence by the length of

the label of the transition from p to q. This extends the notion of solid transitions

to multi-letter transitions:

(p; �; q) is solid () lengthx(q) = lengthx(p) + j�j:

In addition, we de�ne the su�x link function on states of DAWG(x) by the

next statement.

De�nition 4. Let p be a state of DAWG(x), di�erent from the initial state, and

let u be a word of the equivalence class p. The su�x link of p, denoted by

sx(p), is the state q which representative v is the longest su�x z of u such that

u 6�S(x) z.

Note that, consequently to this de�nition, we have lengthx(q) < lengthx(p).

Then, by iteration, su�x links induce su�x paths in DAWG(x), which is an

important notion used by the construction algorithm. Indeed, as a consequence

of the above inequality, the sequence (p; sx(p); s
2
x(p); :::) is �nite and ends at the

initial state of DAWG(x). This sequence is called the su�x path of p.

3 Compact Directed Acyclic Word Graphs

3.1 De�nition

Compaction of DAWGs is based on the deletion of some states and their outgoing

transitions. This is possible by using multi-letter transitions and selecting strict

classes of factors de�ned in the previous section (De�nition 3).

minimization

Su�x Trie

compaction
Compact

DAWG

Su�x Tree DAWG

minimization

compaction

Fig. 2. Consider a word that has an end-marker. Its su�x tree is the compact version

of the digital trie of its su�xes. Its DAWG is the minimized (in the sense of automata

theory) version of the trie. The compact DAWG can be obtained either by minimizing

the su�x tree of the word or by compacting its DAWG.

The de�nition of CDAWGs parallels the de�nition of su�x trees obtained

from ordinary digital tries of all su�xes of a word. Indeed, disregarding how the

end-marker required by su�x trees is managed, the CDAWG may be viewed

as well as a compact version of the DAWG or as a minimized (in the sense of

automata theory) version of the su�x tree (see Figure 2).

The compact DAWG is de�ned as follows.

De�nition 5. The Compact Directed Acyclic Word Graph of a word x,

denoted by CDAWG(x), is the compaction of DAWG(x) obtained by keeping

only states that are either terminal states or strict classes of factors according

to �S(x), and by labeling transitions accordingly.

Consequently to De�nition 3, strict classes of factors correspond to states that

have an outdegree greater than one. So, we can delete every state having out-

degree one exactly, except terminal states. Note that initial and �nal states are

terminal states, so they are not deleted. An example of CDAWG is displayed in

Figure 3.

The construction of the DAWG of a word containing repetitions shows that

many states have outdegree one only. For example, in Figure 1, the DAWG of

the word gtagtaaac has 12 states, 7 of which have outdegree one; it has 18

I

2

3 4

F

c

a

gta

ta

gtaaac

aac

a

gtaaac

c

ac

c

Fig. 3. CDAWG(gtagtaaac).

transitions. Figure 3 displays the compacted version, obtained after deletion of

the 7 states, using multi-letter transitions. The resulting automaton has only 5

states and 11 edges.

According to experiments made on biological DNA sequences, considering

them as words over the alphabet � = fa; c; g; tg, we got that more than 60% of

states have outdegree one. So, the deletion of these states is worth, it provides

an important saving. The average analysis of the number of states and edges in

done in [5] in a Bernouilly model of probability.

When a state p is deleted, the deletion of its outgoing edges is realized by

concatenating their label to the labels of incoming edges. For example, let r and

p be states linked by a transition (r; b; p). The edges (r; b; p) and (p; a; q) are

replaced by the edge (r; ba; q) if p is deleted. By recursion, this extends to every

multi-letter transition (r; �; p).

In the example of Figure 3, one can note that, inside the word gtagtaaac,

occurrences of g are followed by ta, and those of t and gt by a. The word gta is

the representative of state 2, and there is no state corresponding to subwords g,

gt, nor t. State I is directly connected to state 2 by edges (I,gta,2) and (I,ta,2).

States 1 and 2 of Figure 1 no longer exist.

The su�x links de�ned on states of DAWGs remain valid when we reduce

them to CDAWGs due to the next lemma, which proof is straightforward.

Lemma6. If p is a state of CDAWG(x), then sx(p) is a state of CDAWG(x).

3.2 Size bounds

By Theorem 2 DAWG(x) is linear in jxj. As we shall see below (Section 3.3),

labels of multi-letter transitions are implemented in constant space. So, the size

of CDAWG(x) is also O(jxj). Meanwhile, as we delete many states and edges,

we review the exact bounds on the number of states and edges of CDAWG(x).

They are respectively denoted by States(x) and Edges(x).

Lemma7. Given x 2 ��
, if jxj = 0, then States(x) = 1; if jxj = 1, then

States(x) = 2; otherwise jxj � 2 and 2 � States(x) � jxj+ 1.

The upper bound on the number of states is reached when x is in the form

ajxj, for a 2 �.

Proof. For jxj � 1, this is a mere veri�cation. Assume now jxj � 2.

I F

abcde

bcde

cde

de

e

Fig. 4. A CDAWG with the minimum number of states, CDAWG(abcde).

The lower bound is obvious and obtained when x is composed of pairwise

di�erent letters.

Consider the su�x tree of x$, where $ is a marker. It has exactly jxj+1 leaves

and at most jxj internal nodes. Its minimization into CDAWG(x) compacts all

leaves into the �nal state F, and possibly put together other nodes. Removing

the marker does not change the number of states. So, we have States(x) � jxj+1.

The word ajxj satis�es this property since each su�x aj0j, aj1j, . . . , ajxj rep-

resents exactly one class. So, we have jxj+1 classes and the same number of

states.

I 2 3 4 5 F
a a a a a

Fig. 5. A CDAWG with the maximum number of states, CDAWG(aaaaa).

Figures 4 and 5 display CDAWGs whose numbers of states are minimum and

maximum, respectively, for words of length 5.

Lemma8. Given x 2 ��
, if jxj = 0, Edges(x) = 0; if jxj = 1, Edges(x) = 1;

otherwise jxj � 2 and Edges(x) � 2jxj � 2.

The upper bound on the number of edges is reached when x is in the form

ajxj�1c, for a and c two di�erent letters of �.

Proof. For jxj � 1, this is a mere veri�cation. Assume now jxj � 2.

If x is in the form ajxj, the number of edges is exactly jxj. So, we have to

prove the upper bound for a word x containing at least two di�erent letters.

Consider the su�x tree of x$. It has exactly jxj+1 leaves. It has at most jxj � 1

internal nodes in this situation (because the root has outdegree 3). The number

of edges in the tree is at most 2jxj � 1. After minimization into CDAWG(x) and

removing the marker, all edges may remain except the edge labeled by $. This

give the upper bound of 2jxj � 2.

The automaton CDAWG(ajxj�1c), for a and c two di�erent letters of �, has

jxj states and exactly 2jxj�2 edges, distributed as jxj�1 solid edges and jxj�1

non-solid edges.

I 2 3 4 5 F
a a a a ac

c

c

c

c

c

Fig. 6. A CDAWG with the maximum number of edges, CDAWG(aaaaac).

Figure 6 displays a CDAWG having the maximum number of edges for a

word of length 6.

3.3 Implementation and experiments

Transition matrices and adjacency lists are two classical implementations of au-

tomata. The �rst one gives a direct access to transitions, but the memory space

required is O(States(x)� card(�)). The second implementation stores only the

exact number of transitions in memory, but needs O(log card(�)) time to ac-

cess them with standard searching techniques. When the size of the alphabet is

great and the transition matrix is sparse, adjacency lists are obviously preferable.

Otherwise, like for genomic sequences, transition matrix is a better choice, as

shown by the experiments below. So, we only consider here transition matrices

to implement CDAWGs.

We now describe the exact implementation of states and edges. We do this

on a four-letter alphabet, so characters take 0:25 byte. We use integers encoded

with 4 bytes. For each state, to encode the target state of outgoing edges, tran-

sitions matrices need a vector of 4 integers. Adjacency lists need, for each edge,

2 integers, one for the target state and another one for the pointer to the next

edge.

The basic information required to construct the DAWG is composed of a

table to implement the function sx and one boolean value (0:125 byte) for each

edge to know if it is solid or not. For the CDAWG, in order to implement multi-

letter transitions, we need one integer for the endposx value of each state, and

another integer for the label length of each edge. And that is all.

Indeed, we can �nd the label of a transition by cutting o� the length of

this transition from the endposx value of its target state. Then, we get both the

p -

xixi+1 : : : xj
q

�etat p

a `; q

�etat q

end-pos j

a = xi

` = j � i+ 1

Fig. 7. Implementation of states and arcs in CDAWGs.

position of the label in the source and its length. Figure 7 illustrates this imple-

mentation. Keeping the source in memory is negligible considering the global size

of the automaton (0:25 byte by character). This is quite a convenient solution

also used for su�x trees.

Then, respectively for transitions matrices and adjacency lists, each state

requires 20:5 and 17:13 bytes for the DAWG, and 40:5 and 41:21 bytes for the

CDAWG. As a reference, su�x trees, as implemented by McCreight [18], need

28:25 and 20:25 bytes per state. Moreover, for CDAWG and su�x trees the

source has to be stored in main memory. Theoretical average numbers of states,

calculated by Blumer et al. ([5]), are 0:54n for CDAWG, 1:62n for DAWG, and

1; 62n for su�x trees, when n is the length of x. This gives respective sizes in

bytes per character of the source: 45:68 and 32:70 for su�x trees, 33:26 and 27:80

for DAWGs, and 22:40 and 22:78 for CDAWGs.

Considering the complete data structures required for applications, the func-

tion endposx has to be added for the DAWG and the Su�x Tree. In addition,

the occurrence number of each factor has to be stored in each state for all the

structures. Therefore, the respective sizes in bytes per character of the source

become : 58:66 and 45:68 for su�x trees, 46:24 and 40:78 for DAWGs, and 24:26

and 24:72 for CDAWGs.

Table 1 compares the sizes of implementations of DAWGs and CDAWGs

meant for applications to DNA sequences. Sizes for random words of di�erent

lengths on a four-letter alphabet are also given. DNA sequences are Saccha-

romyces cerevisiae yeast chromosome II (chro II), a contig of Escherichia Coli

DNA sequence (coli), and contigs 1 and 115 of Bacillus Subtilis DNA sequence

(bs). Number of states and edges according to the length of the source and the

memory space gain are displayed. Theoretical average ratios are given, computed

from [5]. First, we observe there are 2=3 less states in the CDAWG, and near

of half edges. Second, the memory space saving is about 50%. Third, the num-

Source

x
jxj

Nb states
jxj

Nb transitions
jxj

Nb transitions
Nb states

memory

gaindawg cdawg dawg cdawg dawg cdawg

chro II 807188 1,64 0,54 2,54 1,44 1,55 2,66 50,36%

coli 499951 1,64 0,54 2,54 1,44 1,53 2,66 51,95%

bs 1 183313 1,66 0,50 2,50 1,34 1,50 2,66 54,78%

bs 115 49951 1,64 0,54 2,54 1,44 1,55 2,66 50,16%

random 500000 1,62 0,55 2,54 1,47 1,57 2,68 49,53%

random 100000 1,62 0,55 2,55 1,47 1,57 2,68 49,35%

random 50000 1,62 0,54 2,54 1,46 1,56 2,68 49,68%

random 10000 1,62 0,54 2,54 1,46 1,56 2,68 49,47%

theor. aver. ratios 1,63 0,54 2,54 1,46 1,56 2,67 50,55%

Table 1. Statistics on the sizes of real DAWGs and CDAWGs.

ber of edges per state is going up to 2:66 when considering CDAWGs. With a

four-letter alphabet, this is interesting to note because the implementation by

transition matrix requires less space than an implementation by adjacency lists.

At the same time, this keeps a direct access to transitions.

3.4 Constructing CDAWGs from DAWGs

The DAWG construction is fully exposed and demonstrated in [3], [9] and [11].

As we show in this section, the CDAWG is easily derived from the DAWG.

Indeed, we just need to apply the de�nition of the CDAWG. The computation

is done by the function Reduction below. Observe that, in this function, state(p; a]

denotes the target state of the transition (p; a]. The computation is done during

a depth-�rst traversal of the automaton, and runs in time linear in the number

of transitions of DAWG(x). Then, by theorem 2, the computation runs in time

linear in the length of the text.

The main drawback of this construction of CDAWGs is that it requires the

previous construction of DAWGs. Therefore, the overall construction takes time

and memory space proportional to DAWG(x), though CDAWG(x) is signi�-

cantly smaller. So, it is better to construct the CDAWG directly.

Reduction (state E) returns (ending state, length of redirected edge)

1. If (E not marked) Then

2. For all existing edge (E; a] Do

3. (state(E;a] , jlabel((E; a])j) Reduction(�tastate(E; a]);

4. mark(E) TRUE;

5. If (E is of outdegree one) Then

6. Let (E; a] this edge ;

7. Return (state(E; a] , 1 + jlabel((E;a])j);
8. Else

9. Return (E,1);

4 Direct Construction of CDAWG

In this section, we give the direct construction of CDAWGs. The running time

of the algorithm is linear in the size of the input word x on a �xed alphabet. The

memory space is proportional to the size of the automaton, and consequently is

also linear by Lemmas 7 and 8.

4.1 Algorithm

Since the CDAWG of x is a minimization of its su�x tree, it is rather natural to

base the direct construction on McCreight's algorithm [18]. Meanwhile, proper-

ties of the DAWG construction are also used, especially the su�x link function

(notion that is di�erent from the su�x links of McCreight's algorithm), lengths

of longest paths, and positions, as explained in the previous section.

First, we introduce the notions used by the algorithm, some of them are

taken from [18]. The algorithm constructs the CDAWG of the word x of length

n, noted x0::n�1. The automaton is de�ned by a set of states and transitions,

where I and F denotes the initial and the �nal states respectively. A partial path

represents a connected sequence of edges between two states of the automaton.

A path is a partial path that begins at I. The label of a path is the concatenation

of the labels of corresponding edges.

The locus, or exact locus, of a string is the end of the path labeled by the

string. The contracted locus of a string � is the locus of the longest pre�x of �

whose locus is de�ned. -

Preliminary Algorithm Basically, the algorithm that builds CDAWG(x) in-

serts into the current automaton the paths corresponding to all the su�xes of

x, from the longest to the shortest su�x. We de�ne sufi as the su�x xi::n�1 of

x. We denote by Ai the automaton constructed after the insertion of all the sufj
for 0 � j � i.

Figure 8 displays six steps during the construction of CDAWG(aabbabbc).

In this �gure (and the following), the dashed edges represent su�x links, links

that are de�ned on states and that are used in the next section.

At the beginning of the algorithm the automaton is initialized with the two

states I and F only. At step i (i > 0), the algorithm inserts a path corresponding

to sufi into Ai�1 and produces Ai. The main loop of the algorithm satis�es the

following invariant properties:

P1: at the beginning of step i, all su�xes sufj , 0 � j < i, are paths in Ai�1.

P2: at the beginning of step i, the states ofAi�1 are in one-to-one correspondence

with the longest common pre�xes of pairs of su�xes longer than sufj .

We de�ne headi as the longest pre�x of sufi which is also a pre�x of sufj for

some j < i. Equivalently, headi is the longest pre�x of sufi that is also label of

a path in Ai�1. We de�ne taili as head
�1
i sufi.

i ii

iii iv

v vi

I F I 1 F

I

1

2

F I

1

2

3 F

I

1

2

3 F I

1

2

3 F

aabbabbc a
abbabbc

bbabbc

bbabbc

a

b

abbabbc
bbabbc

bab
bc

abbc

a

b

bb

abbc
c

abbabbc

babbc

abbc

a

b

bb

b

abbc
c

abbabbc

abbc

a

b

bb

b

abbc
c

abbabbc

abbc

c
c

Fig. 8. Six steps during the construction of CDAWG(aabbabbc). The pictures display

the situation after the insertion of suf
0
=aabbabbc (i), suf

2
=bbabbc (ii), suf

3
=babbc

(iii), suf
4
=abbc (iv), and suf

5
=bbc (v). vi shows the �nal automaton.

taili
I F

headi

Fig. 9. Scheme of the insertion of suf
i
in Ai�1: there already is a path labeled by the

pre�x headi of sufi.

i ii

I

3

2 1

F I

3

2 1

4

F

a

b

b

bcab
bbcb

cabb
bcb

bbbcabbbcb

abbbcabbbcb

cabbbcb

cabbbcb

a

b

b

bca
bbb

cb

cab
bbc

b

cabbbcb

cabbbcb

bbbc

abbbcabbbcb

abbbcb
b

Fig. 10. Example of the execution of SlowFind during the construction of

CDAWG(aabbbcabbbcb). For the insertion of suf
6
=abbbcb, we have head6=abbbc.

Since the path labeled by abbbc ends in the middle of the edge (3,bbbcabbbcb,F),

state 4 is created, splitting the edge into (3,bbbc,4) and (4,abbbcb,F). A new edge is

created, (4,b,F).

At step i, the preliminary algorithm has to insert taili from the locus of headi
into Ai�1 (see Figure 9). To do so, the contracted locus of headi in Ai�1 is found

with the help of function SlowFind that compares letter-to-letter the right path

of Ai�1 to sufi. An example of execution of this function is shown in Figure 10.

This part is similar to the corresponding McCreight's procedure, except on a

point discussed below (redirection of edges). If there is a state at the end of the

path, it is the locus of headi. Otherwise it is created at the middle of the last

encountered edge by splitting it. In any case, an edge labeled by taili is created

from the locus of headi to F. The preliminary algorithm is given below.

Preliminary Algorithm

1. For all suf
i
(i 2[0..n-1]) Do

2. (q;) SlowFind(I);

3. If (= ") Then

4. insert (q,taili,F);

5. Else

6. create v locus of headi splitting (q;]

and insert (v,taili,F);

or redirect (q;] onto v,

the last created state;

7. End For all;

8. mark terminal states;

The function SlowFind returns a pair (q;) such that q is the last encountered

state on the path headi, state that is the representative of headi
�1. This keeps

accessible the transition that may be split if the state q is not the exact locus of

headi, i.e. if 6= ".

i ii

I

3

2

1

4 F I

3

2 1

4

5

F

a

b

c

b

c

bbbc

b
c
c

abbbcabbbcbbc

abbbcbbc

bbc

a

b

c

b

c

b
c

c

bbbc

abbbcabbbcbbc

abbbcbbcbbc

abb
bcb

bc

bbc

Fig. 11. Example of a duplication in SlowFind during the construction of

CDAWG(aabbbcabbbcbbc). The insertion of suf
11
=bbc leads to state 4. As the last

edge (1,c,4) is non-solid (i), state 4 is cloned into state 5 (ii), and the edge (1,c,4)

becomes (1,c,5).

If a non-solid edge is encountered during the execution of SlowFind, its target

state has to be duplicated in a clone and the non-solid edge is redirected to this

clone. The redirected transition becomes solid. An example of duplication is

given in Figure 11.

In some situation, an edge can be redirected. This happens when a state has

just been created at the previous step. The edge is redirected to this state and

its label is updated accordingly. Such a situation appears in Figure 8 (case v)

for the construction of CDAWG(aabbabbc) : the insertion of suf5=bbc induces

the redirection of the edge (2,babbc,F), which becomes (2,b,3). In the above

situation, the su�x link of the last created state is unknown during the insertion

of the current su�x. And the redirections go on until the su�x link is found.

Finally, when taili = " at the end of the construction, terminal states are

marked along the su�x path of F.

From the above discussion, a proof of the invariance of properties P1 and P2

can be derived. Thus, at the end of the algorithm all subwords of x and only

these words are labels of paths in the automaton (property P1). By property P2,

states correspond to strict classes of factors (when the longest common pre�x of

a pair of su�xes is not equal to any of them) or to terminal states (when the

contrary holds). This gives a sketch of the correctness of the algorithm.

The running time of the preliminary algorithm is O(jxj2) (with an imple-

mentation by transition matrix), like is the sum of lengths of all su�xes of the

word x.

Linear Algorithm To get a linear-time algorithm, we use together properties

of DAWGs construction and of su�x trees construction. The main feature is the

notion of su�x links. They are de�ned as for DAWGs in Section 2, de�nition

that remains valid by Lemma 6. They are the clue for the linear running time

of the algorithm.

Three elements have to be pointed out about su�x links in the CDAWG.

First, we do not need to initialize su�x links. Indeed, when suf0 is inserted, x0
is obviously a new letter because no letter of x has been scanned so far, which

directly induces sx(F)=I. Note that sx(I) is never used, and so never de�ned.

Second, traveling along the su�x path of a state p does not necessarily end at

state I. Indeed, with multi-letter transitions, if sx(p)=I we have to treat the

su�x a�1� (a 2 �) where � is the representative of p. And third, su�x links

induce the following invariant property satis�ed at step i:

P3: at the beginning of step i, the su�x links are de�ned for each state of Ai�1

according to De�nition 4, except maybe for the lastly-created state.

The next remark allows redirections without having to search with SlowFind

for existing states belonging to a same class of factors.

Remark. Let �� have locus p and assume that q = sx(p) is the locus of �. Then,

p is the locus of su�xes of �� whose lengths are greater than j�j.

The algorithm has to deal with su�x links each time a state is created. This

happens when a state is duplicated, as illustrated by Figure 11, and when a state

is created after the execution of SlowFind.

During a duplication, su�x links are updated as follows. Let w be the clone

of q. In regard to strict classes of factors and De�nition 4, the class of w is

inserted \between" the ones of q and sx(q). So, we update su�x links by setting

sx(w) = sx(q) and then sx(q) = w.

I

q v

s r

��

�

�

s x

Fig. 12. Searching for sx(v) using a su�x link.

After the execution of SlowFind, if state v is created, we have to compute its

su�x link, sx(v). Let be the label of the transition starting at q and ending at

v. To compute the su�x link of v, the algorithm goes through the path having

label from the su�x link of q, s = sx(q). The operation is repeated if necessary.

Figure 12 displays a scheme of this search. The thick dashed edges represent

paths in the automaton, and the thin dashed edge represents the su�x link from

q to s. The search, as for the duplication, realizes the insertion of a series of

su�xes. To travel along the path, we use the function FastFind, similar to the

one used in McCreight's algorithm [18], that goes through transitions comparing

just the �rst letters of their labels. This function returns the last encountered

state and edge.

i ii iii

I F I 1 F I 12 F
bbbc bb bc

c

b b bc

c
c

Fig. 13. Example of execution of FastFind ending with a solid edge during the con-

struction of CDAWG(bbbc). The insertion of suf
1
=bbc leads to create state 1. Then

FastFind works from I with path b. This leads to the middle of the edge (I,bb,1) (ii)

that is solid. Since we cannot redirect this edge, state 2 is created, splitting (I,bb,1)

into (I,b,2) and (2,b,1) (iii). The edge (2,c,F) is added, sx(1) is set to 2, and sx(2) is

set to I.

Let r and (r;] be the state and transition returned by FastFind. If r is the

exact locus of , it is the wanted state, and we set then sx(v) = r. Else, if (r;]

is a solid edge, then a new node w is created. The edge (r;] is split, its initial

part becomes (r; ; w), and the transition (w,taili,F) is added. Such an example

is displayed in Figure 13.

The last situation to consider is when (r;] is non-solid. Then, the edge is

replaced by (r; ; v). Such an example is displayed in Figure 14.

In the two last cases, since sx(v) is not found, we run FastFind again with

sx(r) and , and this goes on until sx(v) is eventually found, that is, when = ".

FastFind is used in the same manner when a state is created by duplication

during the execution of SlowFind.

The discussion shows how su�x links are updated to insure that property

P3 is satis�ed. The operations do not inuence the correctness of the algorithm,

sketched in the last section, but yield the following linear-time algorithm. Its

time complexity is discussed in the next section.

i ii

I

3

2 1

4

F I

3

2 1

4

F

a

b

b

bcab
bbcb

cabb
bcb

bbbc
abbbcb
b

abbbcabbbcb

cabbbcb

cabbbcb

a

b

b

b
c

cab
bbc

b

cabbbcb

cabbbcb

bbbc

abbbcabbbcb

abbbcb
b

Fig. 14. Example of execution of FastFind ending with a non-solid edge during the

construction of CDAWG(aabbbcabbbcb). When suf
6
=abbbcb is inserted and state 4

created, we have to look for sx(4). As sx(3)=I, we travel along edges from I to �nd the

end of the path labeled by bbbc with FastFind. As this path ends in the middle of the

non-solid edge (1,bcabbbcb,F), this one is replaced by (1,bc,4). Then, FastFind runs

again from state 2 with the word bc, in order to eventually �nd sx(4).

Linear Algorithm

1. p I; i 0;

2. While not end of x Do

3. (q;) SlowFind(p);

4. If (= ") Then

5. insert (q,taili,F);

6. sx(F) q;

7. If (q 6= I) Then p sx(q) Else p I;

8. Else

9. create v locus of headi splitting (q;];

10. insert (v,taili,F);

11. sx(F) v;

12. �nd r = sx(v) with FastFind;

13. p r;

14. update i;

15. End While;

16. mark terminal states;

4.2 Complexity

Theorem9. The algorithm that builds the CDAWG of a word x of ��
can be

implemented in time O(jxj) and space O(jxj�card(�)) with a transition matrix,

or in time O(jxj � log card(�)) and space O(jxj) with adjacency lists.

Proof. As recalled in section 3.1, the size of CDAWG(x) is linear in the length

of x, both in term of number of states and number of edges. Tables endposx,

lengthx and sx take O(States(x)) space. So, an implementation by transition

matrix takes O(jxj � card(�)) space. By adjacency lists, it takes O(jxj) space.

I

I

v

x

�� � taili

sufi

headi

i j k

q

s r

Fig. 15. Positions of labels when suf
i
is inserted. States I,q,v represent the scheme of

SlowFind and states I,s,r represent the scheme of searching for sx(q), as in Figure 12.

The complexity of the algorithm essentially depends on the number of branch-

ings made on states of the automaton. We prove that this number is linear, which

implies the running times of the statement: O(jxj) with a transition matrix and

O(jxj � log card(�)) with adjacency lists.

Branchings during the execution of the algorithm are done during calls to

SlowFind and FastFind. The generic situation is displayed in Figure 15. When

SlowFind operates, the current letter of x, pointed by k, is compared with a

letter of the label of an edge. Doing so, k is strictly incremented, and never after

decremented. During calls to FastFind, each letter comparison increases strictly

the value of j, value that never decreases hereafter. This shows that the number

of branchings is linear.

This ends the sketch of the proof.

5 Conclusion

We have considered the Compact Direct Acyclic Word Graph, which is an ef-

�cient compact data structure to represent all subwords, or factors, of a word.

There are several data structures used to store this set. The present structure

provides an interesting space gain compared to the standard DAWG, and also

when compared with su�x trees. From the theoretical point of view, the upper

bounds are of jxj + 1 states and 2jxj � 2 transitions. This saves jxj states and
jxj transitions of the DAWG and at the same time leads to a faster use. From

the practical point of view, experiments on genomic DNA sequences and on ran-

dom strings display a memory space gain of 50% with respect to the DAWG.

Moreover, when the size of the alphabet is small, transition matrices do not take

more space than adjacency lists, keeping direct access to transitions. Thus, we

can construct the data structure of twice larger strings, keeping them in main

memory, which is actually important to get e�cient treatments.
This work shows that the CDAWG can be constructed directly. The algorithm

is linear in the length of the text (on a �xed alphabet). Of course, it is simpler to
compute, by reduction, the CDAWG from the DAWG. But the present algorithm
saves time and space simultaneously.

References

1. A. Apostolico. The myriad virtues of subword trees. In A. Apostolico & Z. Galil,

editor, Combinatorial Algorithms on Words., pages 85{95. Springer-Verlag, 1985.

2. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnel. Linear size

�nite automata for the set of all subwords of a word: an outline of results. Bull.

European Assoc. Theoret. Comput. Sci., 21:12{20, 1983.

3. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas.

The smallest automaton recognizing the subwords of a text. Theoret. Comput.

Sci., 40:31{55, 1985.

4. A. Blumer, J. Blumer, D. Haussler, and R. McConnell. Complete inverted �les

for e�cient text retrieval and analysis. Journal of the Association for Computing

Machinery, 34(3):578{595, July 1987.

5. A. Blumer, D. Haussler, and A. Ehrenfeucht. Average sizes of su�x trees and

dawgs. Discrete Applied Mathematics, 24:37{45, 1989.

6. B. Clift, D. Haussler, R. McDonnell, T.D. Schneider, and G.D. Stormo. Sequence

landscapes. Nucleic Acids Research, 4(1):141{158, 1986.

7. M. Crochemore. Recherche lin�eaire d'un carr�e dans un mot. C. R. Acad. Sci.

Paris S�er. I Math., 296:781{784, 1983.

8. M. Crochemore. Optimal factor tranducers. In A. Apostolico and Z. Galil, edi-

tors, Combinatorial Algorithms on Words, volume 12 of NATO Advanced Science

Institutes, Series F, pages 31{44. Springer-Verlag, Berlin, 1985.

9. M. Crochemore. Transducers and repetitions. Theoret. Comput. Sci., 45(1):63{86,

1986.

10. M. Crochemore. Longest common factor of two words. In H. Ehrig, R. Kowalski,

G. Levi, and U. Montanari, editors, TAPSOFT, number 249 in Lecture Notes in

Computer Science, pages 26{36. Springer-Verlag, Berlin, 1987.

11. M. Crochemore and C. Hancart. Automata for matching patterns. In

G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages. Springer-

Verlag, 1997. to appear.

12. M. Crochemore and W. Rytter. Text Algorithms, chapter 5-6, pages 73{130. Ox-

ford University Press, New York, 1994.

13. M. Farach. Optimal su�x tree construction with large alphabets. manuscript,

October 1996.

14. R. W. Irving. Su�x binary search trees. Technical report TR-1995-7, Computing

Science Department, University of Glasgow, April 1995.

15. J. Karkkainen. Su�x cactus : a cross between su�x tree and su�x array. Combi-

natorial Pattern Matching, 937:191{204, July 1995.

16. C. Lefevre and J-E. Ikeda. The position end-set tree: A small automaton for word

recognition in biological sequences. CABIOS, 9(3):343{348, 1993.

17. U. Manber and G. Myers. Su�x arrays: A new method for on-line string searches.

SIAM J. Comput., 22(5):935{948, Oct. 1993.

18. E. McCreight. A space-economical su�x tree construction algorithm. Journal of

the ACM, 23(2):262{272, Apr. 1976.

19. G. A. Stephen. String searching algorithms. World Scienti�c Press, 1994.

20. E. Ukkonen. On-line construction of su�x trees. Algorithmica, 14:249{260, 1995.

21. E. Ukkonen and D. Wood. Approximate string matching with su�x automata.

Algorithmica, 10(5):353{364, 1993.

22. P. Weiner. Linear pattern matching algorithm. In 14th Annual IEEE Symposium

on Switching and Automata Theory, pages 1{11, Washington, DC, 1973.

This article was processed using the LATEX macro package with LLNCS style

