
August 1983 Report No. STAN-CS-83-977

Word Hy-phen-a-tion by Com-put«er

Franklin Mark Liang

Deparlment of Computer Science

Stanford University
Stanford, CA 94305

WORD HY-PHEN-A-TION BY COM-PUT-ER

Franklin Mark Liang
Department of Computer Science

Stanford University
Stanford, California 94305

• Abstract
* • .

This thesis describes research leading to an improved word hyphenation algo-

rithm for the TjrjX82 typesetting system. Hyphenation is viewed primarily as a data

compression problem, where we are given a dictionary of words with allowable divi-

sion points, and try to devise methods that take advantage of the large amount of

redundancy present.

The new hyphenation algorithm is based on the idea of hyphenating and in-

hibiting patterns. These are simply strings of letters that, when they match hi a

word, give us information about hyphenation at some point in the pattern. For

example, ' - t ion' and *c-c' are good hyphenating patterns. An important feature of

this method is that a suitable set of patterns can be extracted automatical!/ from

the dictionary.

In order to represent the set of patterns in a compart form that is also reasonably

efficient for searching, the author has developed a new data structure called a packed

trie. This data structure allows the very fast search times characteristic of indexed

tries, but in many cases it entirely eliminates the wasted space for null links usually

present in such tries. We demonstrate the versatility and practical advantages of

this data structure by using a variant of it as the critical component of the program

that generates the patterns from the dictionary.

The resulting hyphenation algorithm uses about 4500 patterns that compile

into a packed trie occupying 25K bytes of storage. These patterns find 89% of the

hyphens in a pocket dictionary word list, with essentially no error. By comparison,

the uncompressed dictionary occupies over 500K bytes.

This research was supported in part by the National Science Foundation under grants IST-8B-
01926 and MSC-8S-00984, and by the System Development Foundation. 'TgK' is a trademark
of the American Mathematical Society.

WORD HY-PHEN-A-TION
BY COM-PUT-ER

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
f

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

W PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

by

Franklin Mark Liang

June 1983

ii

© Copyright 1983

by

Franklin Mark Liang

iii

Acknowledgments

I am greatly indebted to my adviser, Donald Knuth, for creating the research
environment that made this work possible. When I began work on the Î jX project
as a summer job, I would not have predicted that computer typesetting would
become such an active area of computer science research. Prof. Knuth's foresight
was to recognize that there were a number of fascinating problems in the field
waiting to be explored, and his pioneering efforts have stimulated many others to
think about these problems.

I am also grateful to the Stanford Computer Science Department for providing
the facilities and the community that have formed the major part of my life for the
past several yean.

I thank my readers, Luis Trabb Pardo and John Gill, as well as Leo Guibas
who served on my orals committee on short notice.

In addition, thanks to David Fuchs and Tom Pressburger for helpful advice
and encouragement.

Finally, this thesis is dedicated to my parents, for whom the experience of
pursuing a graduate degree has bee.i perhaps even more traumatic than it was for
myself.

IV

Table of contents

Introduction 1

Examples . 2

T^X and hyphenation 3

Time magazine algorithm 4

Patterns 5

Overview of thesis 7

The dictionary problem 8

Data structures 0

Superimposed coding . 10

Tries 11

Packed tries 15

Suffix compression 16

Derived forms 18

Spelling checkers 10

Related work 21

Hyphenation 23

Finite-state machines with output . 23

Minimization with don't cares . 24

Pattern matching 26

Pattern generation 29

Heuristics 30

Collecting pattern statistics 31

Dynamic packed tries . 32

Experimental results 34

Examples . 3 7

History and Conclusion 39

Appendix 45

The PATGEW program . , . 4 5

List of patterns • 74

References 83

Chapter 1

Introduction

* The work described in this thesis was inspired by the need for a word hyphen-
ation routine as part «f Don Knuth's T̂ jX typesetting system [1]. This system was
initially designed in order to typeset Prof. Knuth's seven-volume series of books,
The Art of Computer Programming, when he became dissatisfied with the qual-
ity of computer typesetting done by his publisher. Since Prof. Knuth's books were
to be a definitive treatise on computer science, he could not bear to see his schol-
arly work presented in an inferior manner, when the degradation was entirely due
to the fact that the material had been typeset by a computer!

Since then, TjrjX (also known as Tau Epsilon Chi, a system for technical text)
has gained wide popularity, and it is being adopted by the American Mathematical
Society, the world's largest publisher of mathematical literature, for use in its jour-
nals. TjjjX is distinctive among other systems for word processing/document prepa-
ration in its emphasis on the highest quality output, especially for technical mate-
rial.

One necessary component of the system is a computer-based algorithm for hy-
phenating English words. This is part of the paragraph justification routine, and it
is intended to eliminate the need for the user to specify word division points explic-
itly when they are necessary for good paragraph layout. Hyphenation occurs rela-
tively infrequently in most book-format printing, but it becomes rather critical in
narrow-column formats such as newspaper printing. Insufficient attention paid to
this aspect of layout results in large expanses of unsightly white space, or (even
worse) in words split at inappropriate points, e.g. new-spaper.

Hyphenation algorithms for existing typesetting systems are usually either rule-
based or dictionary-based. Rule-based algorithms rely on a set of division rules such
as given for English in the preface of Webster's Un;ibridged Dictionary [2]. These in-
clude recognition of common prefixes and suffixes, splitting between double conso-
nants, and other more specialized rules. Some of the "rules" are not particularly

2 INTRODUCTION
•

amenable to computer implementation; e.g. "split between the elements of a com-
pound word". Rule-based schemes are inevitably subject to error, and they rarely
cover all possible cases. In addition, the task of finding a suitable set of rules in the
first place can be a difficult and lengthy project.

Dictionary-based routines sim'ply store an entire word list along with the allow-
able division points. The obvious disadvantage of this method is the excessive stor-
age required, as well as the slowing down of the justification process when the hy-
phenation routine needs to access a part of the dictionary on secondary store.

Examples

To demonstrate the importance of hyphenation, consider Figure 1, which shows
a paragraph set in three different ways by T£p(. The first example uses TjjjX's nor-
mal paragraph justification parameters, but with the hyphenation routine turned
off. Because the line width in this example is rather narrow, TjjX is unable to find
an acceptable way of justifying the paragraph, resulting in the phenomenon known
as an "overfull box*.

One way to fix this problem is to increase the "stretchability" of the spaces be-
tween words, as shown in the second example. (TjjX users: This was done by in-
creasing the stretch component of spaceship to . 5em.) The right margin is now
straight, as desired, but the overall spacing is somewhat loose.

In the third example, the hyphenation routine is turned on, and everything is
beautiful.

In olden time* when wishing
till helped one, there lived a king

whose daughters were all beautifi I,
jut the youngest WM «O beautiful
hat the sun itself, which has seer

10 much, was astonished wheneve r
I ihone in her face. Close by
he king's custlc lay a great dark
orcat, and under nn old lime-trcr
n tlir Forest « » a well, and when
the Hay wns very warm, the king*:
child went out into the forest and
sat down by the side of the tool
'nuntain, and when shr was borcc
ihe took a golden ball, and threw
I up on high and caught it, and
this hall was her favorite plaything.

In olden limes when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was
astonished whenever it shone in
her face. Close by the king's
castle lay a great dark forest,
and under t \ old lime tree in
the forest was a well, and when
the day was very warm, the
king's child went out into the
forest and sat down by the side
of the cool fountain, and when
she was bored she took a golden
ball, and threw it up on high
and caught it, and this ball was
her favorite plaything.

In olden times'when wish-
ing still helped one, there lived
a king whose daughters were all
beautiful, but the youngest waa
so beautiful that the tun itself,
which has seen so much, was as-
tonished whenever it shone in her
face. Close by the king's castle
lay a great dark forest, and un-
der an old lime-tree in the forest
was a well, and when the day waa
very warm, the king's child went
out into the forest and sat down
by the side of the cool fountain,
and when she was bored she look
*. golden ball, and threw it up on
high and cnuplit it, and this ball
was her favorite plaything.

Figure 1. A typical paragraph with and without hyphenation.

INTRODUCTION . S

sel-fadjotnt as-so-ciate as-so-cl-ate

Pit-tsburgh prog-ress pro-gresa

clcarin-ghouee rec-ord re-cord

fun-draising a-rith me-tic ar-ith-met-ic

ho-meowners eve-ning even-ing

playw-right pe-ri-od-ic per-i-o-dic

algori-thm

walkth-rough in-de-pen-dent in-de-jend-ent

Re-agan tri-bune trib-une

Figure 2. Difficult hyphenations.

However, life is not always so simple. Figure 2 shows that hyphenation can be
difficult. The first column shows erroneous hyphenations made by various typeset-
ting systems (which shall remain nameless). The next group of examples are words
that hyphenate differently depending on how they are used. This happens most
commonly with words that can serve as both nouns and verbs. The last two ex-
amples show that different dictionaries do not always agree on hyphenation (in this
case Webster's vs. American Heritage).

TjrjX and hyphenation
The original TgX hyphenation algorithm was designed by Prof. Knuth and

the author in the summer of 1977. It is essentially a rule-based algorithm, with
three main types of rules: (1) suffix removal, (2) prefix removal, and (3) vowel-
consonant-consonant-vowel (veev) breaking. The latter rule states that when the
pattern 'vowel-consonant-consonant-vowcl' appears in a word, we can in most cases
split between the consonants. There are also many special case rules; for example,
"break vowel-q" or "break after ck". Finally a small exception dictionary (about
300 words) is used to handle particularly objectionable errors made by the above
rules, and to hyphenate certain common words (e.g. pro-gram) that are not split by
the rules. The complete algorithm is described in Appendix H of the old TjjX man-
ual.

In practice, the above algorithm has served quite well. Although it does not
find all possible division points in a word, it very rarely makes an error. Tests on a
pocket dictionary word list indicate that about 40% of the allowable hyphen points
are found, with 1% error (relative to the total number of hyphen points). The al-
gorithm requires 4K 36-bit words of code, including the exception dictionary.

4 INTRODUCTION

The goal of the present research was to develop a better hyphenation algo-
rithm. By "better" we mean finding more hyphens, with little or no error, and us-
ing as little additional space as possible. Recall that one way to perform hyphen-
ation is to simply store the entire dictionary. Thus we can view our task as a data
compression problem. Since there is a good deal of redundancy in English, we can
hope for substantial improvement over the straightforward representation.

Another goal was to automate the design of the algorithm as much as pos-
sible. The original T|rjX algorithm was developed mostly by hand, with a good
deal of trial and etror. Extending such a rule-based scheme to find the remain-
ing hyphens seems very difficult. Furthermore such an effort must be repeated for
each new language. The former approach can be a problem even for English, be-
cause pronunciation (and thus hyphenation) tends to change over time, and be-
cause different types of publication may call for different sets of admissible hy-
phens. ,

Time magazine algorithm
A number of approaches were considered, including methods that have been dis-

cussed in the literature or implemented in existing typesetting systems. One of the
methods studied was the so-called Time magazine algorithm, which is table-based
rather than rule-based.

The idea is to look at four letters surrounding each possible ' Breakpoint, namely
two letters preceding and two letters following the given point. However we do not
want to store a table of 264 = 456,976 entries representing all possible four-letter
combinations. (In practice only about 15% of these four-letter combinations actu-
ally occur in English words, but it is not immediately obvious how to take advan-
tage of this.)

Instead, the method uses three tables of size 262, corresponding to the two let-
ters preceding, surrounding, and following a potential hyphen point. That is, if
the letter pattern wx-yz occurs in a word, we look up three values correspond-
ing to the letter pairs wx, xy, and yz, and use these values to determine if we can
split the pattern.

What should the three tables contain? In the T:\ne algorithm the table values
were the probabilities that a hyphen could occur after, between, or before two given
letters, respectively. The probability that the pattern wx-yz can be split is then es-
timated as the product of these three values (as if the probabilities were indepen-
dent, which they aren't). Finally the estimated value is compared against a thresh-
old to determine hyphenation. Figure 3 shows an example of hyphenation proba-
bilities computed by this method.

INTRODUCTION

1,1 I

S U P E R C A L I F R A G I I I S T I C E I P I A L I D O C I O U S

Figure S. Hyphenation probabilities.

The advantage of this table-based approach is that the tables can be gen-
erated automatically from the dictionary. However, some experiments with the
method yielded discouraging results. One estimate is 40% of the hyphens found,
with 8% error. Thus a large exception dictionary would be required for good per-
formance.

The reason for the limited performance of the above scheme is that just four let-
ters of context surrounding the potential break point are not enough in many cases.
In an extreme example, we might have to look as many as 10 letters ahead in or-
der to determine hyphenation, e.g. dem-on-stra-tion vs. de-mpn-stra-tive.

So a more powerful method is needed. •

Patterns
A good deal of experimentation led the author to a more powerful method

based on the idea of hyphenation patterns. These ore simply strings of letters that,
when they match in a word, will tell us how to hyphenate at some point in the pat-
tern. For example, the pattern ' t ion' might tell us that we can hyphenate be-
fore the V . Or when the pattern 'cc' appears in a word, we can usually hy-
phenate between the c's. Here arc some more examples of good hyphenating pat-
terns:

.in-d . in-s . i n - t .un-d b-s -cia con-s con-t e-ly er-1 er-ra
ex- -ful i t - t i-ty -lees 1-ly -ment n-co -ness n-f n-1 n-ei
n-v om-m -sion 8-ly s-nos t i - ca x-p

(The character ' . ' matches the beginning or end of a word.)

6 INTRODUCTION

Patterns have many advantages. They arc a general form of "hyphenation rule"
that can include prefix, suffix, and other rules as special cases. Patterns can even de-
scribe an exception dictionary, namely by using entire words as patterns. (Actu-
ally, patterns are often more concise than an exception dictionary because a sin-
gle pattern can handle several variant forms of a word; e.g. pro-gram, pro-grams,
and pro-grammed.)

More importantly, the pattern matching approach has proven very effective. An
ft

appropriate set of patterns captures very concisely the information needed to per-
form hyphenation. Yet the pattern rules are of simple enough form that they can
be generated automatically from the dictionary.

When looking for good hyphenating patterns, we soon discover that almost all
of them have some exceptions. Although - t ion is a very "safe" pattern, it fails on
the word cat-ion. Most other cases are less clear-cut; for example, the common pat-
tern n- t can be hyphenated about SO percent of the time. It definitely seems worth-
while to use such patterns, provided that we can deal with the exceptions in some
manner.

After chooskg a set of hyphenating patterns, we may end up with thousands
of exceptions. Theie could be listed in an exception dictionary, but we soon no-
tice there are many similarities among the exceptions. For example, in the orig-
inal T]jjX algorithm we found that the vowcl-consonant-consonant-vowel rule re-
sulted in hundreds <>f errors of the form X-Yer or X-Yers, for certain consonant
pairs XY, so we put in a new rule to prevent those errors.

Thus, there may be "rules" that can handle large classes of exceptions. To take
advantage of this, patterns come to the rescue again; but this time they are inhibit-*
ivg patterns, because they show where hyphens should not be placed. Some good ex-
imples of inhibiting patterns are: b=ly (don't break between b and ly), bs=, =cing,
io=n, i« t in , «l8, nn», ns s t , n=ted, =pt, t i=a l , =tly, «ts, and t t « .

As it turns out, this approach is worth pursuing further. That is, after ap-
plying hyphenating and inhibiting patterns as discussed above, we might have an-
other »e(of hyphenating patterns, then another set of inhibiting patterns, and
BO on. We can think of each level of patterns as being "exceptions to the ex-
ceptions" of the previous level. The current Tj}X82 algorithm uses five alternat-
ing levels of hyphenating and inhibiting patterns. The reasons for this will be ex-
plained in Chapter 4.

The idea of patterns is the basis of the new TJJX hyphenation algorithm, and
it was the inspiration for much of the intermediate investigation, that will be de-
scribed.

INTRODUCTION 7

Overview of thesis

In developing the pattern scheme, two main questions arose: (1) How can we
represent the set of hyphenation patterns in a compact form that is also reason-
ably efficient for searching? (2) Given a hyphenated word list, how can we gener-
ate a suitable set of patterns?

To solve these problems, the author has developed a new data structure called
a parked trie. This data structure allows the very fast search times characteris-
tic of indexed tries, but in many cases it entirely eliminates the wasted space for
null links usually present in such tries.

We will demonstrate the versatility and practical advantages of this data struc-
ture *y using it not only to represent the hyphenation patterns in the final algo-
rithm, but also d'j the critical component of the program that generates the pat-
terns from the dictionary. Packed tries have many other potential applications, in-
cluding identifier lookup, spelling checking, and lexicographic sorting.

Chapter 2 considers the simpler problem of recognizing, rather than hyphenat-
ing, a set of words such as a dictionary, and uses this problem to motivate and ex-
plain the advantages of the packed trie data, structure. We also point out the close re-
lationship between tries and finite-state machines.

Chapter 3 discusses ways of applying these ideas to hyphenation. After con-
sidering various approaches, including minimization with don't cares, we return to
the idea of patterns.

Chapter 4 discusses the heuristic method used to select patterns, introduces dy-
namic packed tries, and describes some experiments with the pattern generation pro-*
gram.

Chapter 5 gives a brief history, and mentions ideas for future research.
Finally, the appendix contains the WEB [3] listing of the portable pattern gen-

eration program PATGEN, as well as the set of patterns currently used by Tj£X82.

Note: The present chapter has been typeset by giving unusual instructions to
TgX so that it hyphenates words much more often than usual; therefore the reader
can see numerous examples of word breaks that were discovered by the new algo-
rithm.

Chapter 2

The dictionary problem

In this chapter we consider the problem of recognizing a set of words over a.u
alphabet. To be more precise, an alphabet is a set of characters or symbols, for
example the Liters A through Z, or the ASCII character set. A word is a sequence
of characters from the alphabet. Given a set of words, our problem is to design a
data structure that will allow us to determine efficiently whether or not some word
is in the set.

In particular, we will use spelling checking as an example throughout this
chapter. This is a topic of interest in its own right, but we discuss it here because
the pattern matching techniques we propose will turn out to be very useful in our
hyphenation algorithm.

Our problem is a special case of the general set recognition problem, because the
elements of our set have the additional structure of being variable-length sequences
of symbols from a finite alphabet. This naturally suggests methods based on a
character-by-character examination of the key, rather than methods that operate
on the entire key at once. Also, the redundancy present in natural languages such as
English suggests additional opportunities for compression of the set representation.

We will be especially interested in space minimization. Most data structures for
set representation, including the one we propose, are reasonably fast for searching.
That is, a search for a key doesn't take much more time than is needed to examine
the key itself. However, most of these algorithms assume that everything is "in
core", that is, in the primary memory of the computer. In many situations, such
as our spelling checking example, this is not feasible. Since secondary memory
access times are typically much longer, it is worthwhile to try compressing the data
structure as much as possible.

In addition to determining whether a given word is in the set, there arc other
operations we might wish to perform on the set representation. The most basic are
insertion and deletion of words from the set. More complicated operations include
performing the union of two sets, partitioning a set according to some criterion,

:. THE DICTIONARY PROBLEM 9

determining which of several sets an element is a member of, or operations based
on an ordering or other auxiliary information associated with the keys in the set.
For the data structures we consider, we will pay some attention to methods for
insertion and deletion, but we shall not discuss the more complicated operations.

We first survey some known methods for set representation, and then propose
a new data structure called a "packed trie".

Data structures
Methods for set representation include the following: sequential lists, sorted

lists, binary search trees, balanced trees, hashing, superimposed coding, bit vec-
tors, and digital search trees (also known as tries). Good discussions of these data
structures can be found in a number of texts, including Knuth [4], Standish [5], and
AHU [6]. Below we make a few remsirks about each of these representations.

A sequential list is the most straightforward representation. It requires both
space and search time proportional to the number of characters in the dictionary.

A sorted list assumes an ordering on the keys, such as alphabetical order.
Binary search allows the search time to be reduced to the logarithm of the size of
the dictionary, but space is not reduced.

A binary search tree also allows search in logarithmic time. This can be thought
of as a more flexible version of a sorted list that can be optimized in various ways.
For example if the probabilities of searching for different keys in the tree are known,
then the tree can be adapted to improve the expected search time. Search trees
can also handle insertions and deletions easily, although an unfavorable sequence of
such operations may degrade the performance of the tree.

Balanced tree schemes (including AVL trees, 2-3 trees, and B-trees) correct
the above-mentioned problem, so that insertions, deletions, and searches can all
be performed in logarithmic time in the worst case. Variants of trees have other
nice properties, too; they allow merging and splitting of sets, and priority queue
operations. B-trees are well-suited to large applications, because they are designed
to minimize the number of secondary memory accesses required to perform a search.
However, space utilization is not improved by any of these tree schemes, and in fact
it is usually increased because of the need for extra pointers.

Hashing is an essentially different approach to the problem. Here a suitable
randomizing function is used to compute the location at which a key is stored.
Hashing methods arc very fast on the average, although the worst case is linear;
fortunately this worst case almost never happens.

An interesting variant of hashing, called superimposed coding, was proposed
by Bloom [7] (see also [4, §6.5], [8]), and at last provides for reduction in space,

10 THE DICTIONARY PROBLEM

although at the expense of allowing some error. Since this method is perhaps less
well known we give a description of it here.

Superimposed coding
The idea is as follows. We use a single large bit array, initialized to leros, plus

a suitable set of d different hash functions. To represent a word, we use the hash
functions to compute d bit positions in the large array of bits, and set these bits to
ones. We do this for each word in the set. Note that some bits may be set by more
than one word.

To test if a word is in the set, we compute the d bit positions associated with
the word as above, and check to see if they are all ones In the array. If any of
them are zero, the word cannot be in the set, so we reject it. Otherwise if all of
the bits are ones, we accept the word. However, some words not in the set might
be erroneously accepted, if they happen to hash into bits that are all "covered" by
words in the set.

It can be shown [7] that the above scheme makes the best use of space when the
density of bits in the array, after all the words have been inserted, is approximately
one-half. In this case the probability that a word not in the set is erroneously
accepted is 2~d. For example if each word is hashed into 4 bit positions, the error
probability is 1/16. The required size of the bit array is approximately ndlge,
where n is the number of items in the set, and lge « 1.44.

In fact Bloom specifically discusses automatic hyphenation as an application
for his scheme! The scenario is as follows. Suppose we have a relatively compact
routine for hyphenation that works correctly for.OO percent of the words in a large
dictionary, but it is in error or fails to hyphenate the other 10 percent. We would
then like some way to test if a word belongs to the 10 percent, but we do not have
room to store all of these words in main memory. If we instead use the superimposed
coding scheme to test for these words, the space required can be much reduced. For
example with d = 4 we only need aboxit 6 bits per wcrd. The penalty is that some
words will be erroneously identified as being in the 10 percent. However, this is
acceptable because usually the test word will be rejected and we can then be sure
that it is not one of the exceptions. (Either it is in the other 90 percent or it is not
in the dictionary at all.) In the comparatively rare case that the word is accepted,
we can go to secondary store, to check explicitly if the word is one of the exceptions.

The above technique is actually used in some commercial hyphenation routines.
For now, however, T£JX will not have an external dictionary. Instead we will require
that our hyphenation routine be essentially free of error (although it may not achieve
complete hyphenation).

THE DICTIONARY PROBLEM 11

An extreme case of superimposed coding should also be mentioned, namely the
bit-vector representation of a set. (Imagine that each word is associated with a single
bit position, and one bit is allocated for each possible word.) This representation is
often very convenient, because it allows set intersection and union to be performed
by simple logical operations. But it also requires space proportional to the size of
the universe of the set, which is impractical for words longer than three or four
characters.

Tries

The final class of data structures we will consider are the digital search trees,
first described by de la Briandais [9] and Frcdkin [10]. Fredkin also introduced the
term "trie" for this class of trees. (The term was derived from the word retrieval,
although it is now pronounced "try".)

Tries are distinct from the other data structures discussed so far because they
explicitly assume that the keys are a sequence of values over some (finite) alphabet,
rather than a single indivisible entity. Thus tries are particularly well-suited for
handling variable-length keys. Also, when appropriately implemented, tries can
provide compression of the set represented, because common prefixes of words are
combined together; words with the same prefix follow the same search path in the
trie.

A trie can be thought of as an m-ary tree, where m is the number of characters
in the alphabet. A search is performed by examining the key one character at a
time and using an m-way branch to follow the appropriate path in the trie, starting
at the root.

We will use the set of 31 most common English words, shown below, to illustrate
different ways of implementing a trie.

A
AND
ARE
AS
AT
BE
BUT

FOR
FROM
HAD
HAVE
HE
HER
HIS

IS
IS
IT
NOT
OF
ON
OR

THE
THIS
TO
WAS
WHICH
WITH
YOU

BY I THAT

Figure 4- The SI most common English words.

12 THE DICTIONARY PROBLEM

Figure 5. Linked trie for the SI most eommon English words.

THE DICTIONARY PROBLEM 13

Figure 5 shows a linked trie representing this set of words. In a linked trie,
the m-way branch is performed using a sequential scries of comparisons. Thus in
Figure 5 each node represents a yes-no test against a particular character. There
are two link fields indicating the next node to take depending on the outcome of
the test. On a 'yes ' answer, we also move to the next character of the key. The
underlined characters are terminal nodes, indicated by an extra bit in the node. If
the word ends when we are at a terminal node, then the word is in the set.

Note that we do not have to actually store the keys in the trie, because each
node^ implicitly represents a prefix of a word, namely the sequence of characters
leading to that node.

A linked trie is somewhat slow because of the sequential testing required for
each character of the key. The number of comparisons per character can be as large
as m, the size of the alphabet. In addition, the two link fields per node are somewhat
wasteful of space. (Under certain circumstances, it is possible to eliminate ono of
these two links. We will explain this later.)

In an indexed trie, the m-way branch is performed using an array of size m.
The elements of the array are pointers indicating the next family of the trie to
go to when the given character is scanned, where a "family" corresponds to the
group of nodes in a linked trie for testing a particular character of the key. When
performing a search in an indexed trie, the appropriate pointer can be accessed by
simply indexing from the base of the array. Thus search will be quite fast.

But indexed tries typically waste a lot of space, because most of the arrays have
only a few "valid" pointers (for words in the trie), with the rest of the links being
null. This is especially common near the bottom of the trie. Figure 6 shows an
indexed trie for the set of 31 common words. This representation requires 26 X 32 =
832 array locations, compared to 59 nodes for the linked trie.

Various methods have been proposed to remedy the disadvantages of linked
and indexed tries. Trabb Pardo [11] describes and analyzes the space requirements
of some simple variants of binary tries. Knuth [4, ex. 6.3-20] analyzes a composite
method where an indexed trie is used for the first few levels of the trie, switching to
sequential search when only a few keys remain in a subtric. Mchlhorn [12] suggests
using a I inary search tree to represent each family of a trie. This requires storage
proportional to the number of "valid" links, as in a linked trie, but allows each
character of the key to be processed in at most logm comparisons. Maly [13] has
proposed a "compressed trie" that uses an implicit representation to eliminate links
entirely. Each level of the trie is represented by a bit array, where the bits indicate
whether or not some word in the set passes through the node corresponding to

14 THE DICTIONARY PROBLEM

i

2
3

4
5
6
7
8
0
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24

25
26
27
28
29
30
31
32

A
2

12

22

25

B
5
C

28

D

g

g

E

0
0

14

g

g

F
7

g

G JI

n

21

26

g

g

i

16

15

23

29

27

J K L M

g

N
17
3

g

0

0
19

8

10

18

g

1

32

P Q R

4

9

g

o

g

s

g

o
g

g

g

T
20

g

g

g

g

g

30

U

6

g

V

13

W
24
X Y
31

g

z

Figure 6. Indexed trie for the SI most eommon English words.

THE DICTIONARY PRODLEM 15

that bit. In addition each family contains a field indicating the number of nonzero
bits in the array for all nodes to the left of the current family, so that we can find
the desired family on the next level. The storage required for each family is thus
reduced to m+logn bits, where n is the total number of keys. However, compressed
tries cannot handle insertions and deletions easily, nor do they retain the speed of
indexed tries.

Packed tries
Our idea is to use an indexed trie, but to save the space for null links by

packing the different families of the trie into a single large array, so that links from
one family may occupy space normally reserved for links for other families that
happen to be null. An example of this is illustrated below.

A] G I C 1 1 j E |

(In the following, we will sometimes refer to families of the indexed trie as
states, and pointers as transitions. This is by analogy with the terminology for
finite-state machines.)

When performing a search in the trie, we need a way to check if an indexed
pointer actually corresponds to the current family, or if it belongs to some other
family that just happens to be packed in the same location. This is done by ad-
ditionally storing the character indexing a transition along with that transition.
Thus a transition belongs to a state only if its character matches the character we
are indexing on. This test always works if one additional requirement is satisfied,
namely that different states may not be packed at the same base location.

The trie can be packed using a first-fit method. That is, we pack the states
one at a time, putting each state into the lowest-indexed location in which it will
fit (not overlapping any previously packed transitions, nor at an already occupied
base location). On numerous examples based on typical word lists, this heuristic
works extremely well. In fact, nearly all of the holes in the trie are often filled by
transitions from c ther states.

Figure 7 shows the result when the indexed trie of Figure 6 is packed into
a single array using the first-fit method. (Actually we have used an additional
compression technique called suffix compression before packing the trie; this will be
explained in the next section.) The resulting trie fits into just 60 locations. Note

16 THE DICTIONARY PROBLEM

00

10

20

30

40

50

0 1
A_8

2

Bll
3 4 5

D_0
6

F 3
7
EjQ

8

H30
9
123

C 5 H 0 N25 032 E 0 012 M 0

T33

R 0

R14

A29

N 1

U 4

W46

D 0

T 0

S 0

Y37

E12

R 2

Y 0

s_o

N 0

T 0

F_Q

0 6

115

0 4

R 0

H44

V 2

S 0

038

T 0

115

I 7

H35

A 4

136

N 0

T 5

A15 0 0 E 0

U_Q

Figure 7. Packed trie for the SI most common English word*.

that the packed trie is a single large array; the rows in the figure should be viewed
as one long row.

As an example, here's what happens when we search for tho word HAVE in the
parked trie. We associate the values 1 through 26 with the letters A through Z.
The root of the trie is packed at location 0, so we begin by looking at location 8
corresponding to the letter H. Since 'H30' is stored there, this is a valid transition
and we then go to location 30. Indexing by the letter A, we look in location 31,
which tells us to go to 29. Now indexing by V gets location 51, which points to 2.
Finally indexing by E gets location 7, which is underlined, indicating that the word
HAVE is indeed in the set.

Suffix compression
A big advantage of the trie data structure is that common prefixes of words

are combined automatically into common paths in the trie. This provides a good
deal of compression. To save more space, we can try to take advantage of common
suffixes.

THE DICTIONARY PROBLEM 17

One way of doing this is to construct a trie in the usual manner, and then merge
common subtries together, starting from the leaves (lieves) and working upward.
We call this process suffix compression.

For example, in the linked trie of Figure 5 the terminal nodes for the words
HIS and THIS, both of which test for the letter S and have no successors, can be
combined into a single node. That is, we can let their parent nodes both point
to the same node; this does not change the set of words accepted by the trie. It
turns out that we can then combine the parent nodes, since both of them test for I
and-go to the S node if successful, otherwise stop (no left successor). However, the
grandparent nodes (which are actually siblings of the I nodes) cannot be combined
even though they both test for E, because one of them goes to a terminal R node
upon success, while the other has no right successor.

With a larger set of words, a great deal of merging can be possible. Clearly all
leaf nodes (nodes with no successors) that test the same character can be combined
together. This alone saves a number of nodes equal to the number of words in the
dictionary, minus the number of words that are prefixes of other words, plus at most
26. In addition, as we might expect, longer suffixes such as -ly, -ing, or - t ion can
frequently be combined.

The suffix compression process may sound complicated, but actually it can
be described by a simple recursive algorithm. For each node of the trie, we first
compress each of its subtries, then determine if the node can be merged with some
other node. In effect, we traverse the trie in depth-first order, checking each node
to see if it is equivalent to any previously seen node. A hash table can be used to
identify equivalent nodes, based on their (merged) transitions.

The identification of nodes is somewhat easier using a binary tree representation
of the trie, rather than an m-ary representation, because each node will then have
just two link fields in addition to the character and output bit. Thus it will be
convenient to use a linked trie when performing suffix compression. The linked
representation is also more convenient for constructing the trie in the first place,
because of the ease of performing insertions.

After applying suffix compression, the trie can be converted to an indexed
trie and packed as described previously. (We should remark that performing suffix
compression on a linked trie can yield some addition?1 '.ompression, because trie
families can be partially merged. However such compression is lost when the trie is
converted to indexed form.)

The author has performed numerous experiments with the above ideas. The re-
sults for some representative word lists are shown in Table 1 below. The last three

104
4272

38,619

120
4285

38,638

18 . THE DICTIONARY PROBLEM

columns show the number of nodes in the linked, suffix-compressed, and packed
tries, respectively. Each transition of the packed trie consists of a pointer, a char-
acter, and a bit indicating if this is an accepting transition.

word list words characters linked compressed packed

pascal 35 145 125
murray 2720 19,144 8039
pocket 31,036 247,612 92,339
unabrd 235,545 2,250,805 759,045

Table 1. Suffix-eompreised packed triei.

The algorithms for building a linked trie, suffix compression, and first-fit pack-
ing are used in Tj$X82 to preprocess the set of hyphenation patterns into a packed
trie used by the hyphenation routine. A WEB description of these algorithms can be
found in [14].

Derived forms
Most dictionaries do not list the most common derived forms of words, namely

regular plurals of nouns and verbs (-s forms), participles and gerunds of verbs (-ed
and -ing forms), and comparatives and superlatives of adjectives (-er and -est) .
This makes sense, because a user of the dictionary can easily determine when a word
possesses one of these regular forms. However, if we use the word list from a typical
dictionary for spelling checking, we will be faced with the problem of determining
when a word is one of these derived forms.

Some spelling checkers deal with this problem by attempting to recognize af-
fixes. This is done not only for the derived forms mentioned above but other com-
mon variant forms as well, with the purpose of reducing the number of word3 that
have to be stored in the dictionary. A set of logical rules is used to determine when
certain prefixes and suffixes can be stripped from the word under consideration.

However such rules can be quite complicated, and they inevitably make errors.
The situation is not unlike that of finding rules for hyphenation, which should
not be surprising, since affix recognition is an important part of any rule-based
hyphenation algorithm. This problem has been studied iu some detail in a series of
papers by Resnikoff and Dolby [15].

Since affix recognition is difficult, it is preferable to base a spelling checker on
a complete word list, including all derived forms. However, a lot of additional space
will be required to store all of these forms, even though much of the added data is

THE DICTIONARY PROBLEM 19

redundant. We might hope that some appropriate method could provide substan-
tial compression of the expanded word list. It turns out that suffix-compressed tries
handle this quite well. When derived forms were added to our pocket dictionary
word list, it increased in size to 49,858 words and 404,046 characters, but the result-
ing packed trie only increased to 46,553 transitions (compare the pocket dictionary
statistics in Table 1).

"Hyphenation programs also need to deal with the problem of derived forms.
In our pattern-matching approach, we intend to extract the hyphenation rules au-
tomatically from the dictionary. Thus it is again preferable for our word list to
include all derived forms.

The creation of such an expanded word list required a good deal of work.
The author had access to a computer-readable copy of Webster's Pocket Dictionary
[16], including parts of speech and definitions. This made it feasible to identify
nouns, verbs, etc., and to generate the appropriate derived forms mechanically.
Unfortunately the resulting word lists required extensive editing to eliminate muny
never-used or somewhat nonsensical derived forms, e.g. ' informations' .

Spelling checkers
Computer-based word processing systems Lave recently come into widespread

use. As a result there has been a surge of interest in programs for automatic spelling
checking and correction. Here we will consider the dictionary representations used
by some existing spelling checkers.

One of the earliest programs, designed for a large timesharing computer, was
the DEC-10 SPELL program written by Ralph Gorin [17). It uses a 12,000 word
dictionary stored in main memory. A simple hash function assigns a unique 'bucket*
to each word depending on its length and the first two characters. Words in the
same bucket are listed sequentially. The number of words in each bucket is relatively
small (typically 5 to 50 words), so this representation is fairly efficient for searching.
In addition, the buckets provide convenient access to groups of similar words; this
is useful when the program tries to correct spelling errors.

The dictionary used by SPELL does not contain derived forms. Instead some
simple affix stripping rules arc normally used; the author of the program notes that
these are "error-prone".

Another spelling checker is described by James L. Peterson [18]. His program
uses three separate dictionaries: (1) a small list of 258 common English words, (2)
a dynamic 'cache' of about 1000 document-specific words, and (3) a large, compre-
hensive dictionary, stored on disk. The list of common words (which is static) is
represented using a suffix-compressed linked trie. The dynamic cache is maintained

20 THE DICTIONARY PROBLEM

using a hash table. Both of these dictionaries arc kept in main memory for speed.
The disk dictionary uses an in-core index, so that at most one disk access is required
per search.

Robert Nix [19] describes a spelling checker based on the superimposed coding
method. He reports that this method allows the dictionary from the SPELL pro-
gram to be compressed to just 20 percent of its original size, while allowing 0.1%
chance of error.

A considerably different approach to spelling checking was taken by the TYPO
program developed at Bell Labs [20]. This program uses digram and trigram fre-
quencies to identify "improbable" words. After processing a document, the words
are listed in order of decreasing improbability for the user to peruse. (Words ap-
pearing in a list of 2726 common technical words are not shown.) The authors
report that this format is "psychologically rewarding", because many errors are
found at the beginning, inducing the user to continue scanning the list until errors
become rare.

In addition to the above, there have recently been a number of spelling checkers
developed for the "personal computer" market. Because these programs run on
small microprocessor-based systems, it is especially important to reduce the size of
the dictionary. Standard techniques include hash coding (allowing some error), in-
core caches of common words, and special codes for common prefixes and suffixes.
One program first constructs a sorted list of all words in the document, and then
compares this list with the dictionary in a single sequential pass. The dictionary
can then be stored in a compact form suited for sequential scanning, where each
word is represented by its difference from the previous word.

Besides simply detecting when words are not in a dictionary, the design of a
practical spelling checker involves a number of other issues. For example many
spelling checkers also try to perform spelling correction. This is usually done by
searching the dictionary for words similar to the misspelled word. Errors and sug-
gested replacements can be presented in an interactive fashion, allowing the user to
see the context from the document and make the necessary changes. The contents
of the dictionary arc of course very important, and each user may want to modify
the word list to match his or her own vocabulary. Finally, a plain spelling checker
cannot detect problems such as incorrect word usage or mistakes in grammar; a
more sophisticated program performing syntactic and perhaps semantic analysis of
the text would be necessary.

THE DICTIONARY PROBLEM 21

Conclusion and related ideas
The dictionary problem is a fundamental problem of computer science, and

it has many applications besides spelling checking. Most data structures for this
problem consider the elements of the set as atomic entities, fitting into a single com-
puter word. However in many applications, particularly word processing, the keys
are actually variable-length strings of characters. Most of the standard techniques
are somewhat awkward when dealing with variable length keys. Only the trie data
structure is well-suited for this situation.

We have proposed a variant of tries that we call a packed trie. Search in a
packed trie is performed by indexing, and it is therefore very fast. The first-fit
packing technique usually produces a fairly compact representation as well.

We have not discussed how to perform dynamic insertions and deletions with a
packed trie. In Chapter 4 we discuss a way to handle this problem, when no suffix
compression is used, by repacking states when necessary.

The idea of suffix compression is not new. As mentioned, Peterson's spelling
checker uses this idea also. But in fact, if we view our trie as a finite-state machine,
suffix compression is equivalent to the well-known idea of state minimization. In
our case the machine is acyclic, that is, it has no loops.

Suffix compression is also closely related to the common subexpression problem
from compiler theory. In particular, it can be considered a special case of a problem
called acyclic congruence closure, which has been studied by Downey, Sethi, and
Tarjan [21]. They give a linear-time algorithm for suffix compression that does not
use hashing, but it is somewhat complicated to implement and requires additional
data structures.

The idea for the first-fit packing method was inspired by the paper "Storing a
sparse table" by Tarjan and Yao [22]. The technique has been used for compressing
parsing tables, as discussed by Zeiglcr [23] (see also [24]). However, our packed
trie implementation differs somewhat from the applications discussed in the above
references, because of our emphasis on space minimization. In particular, the idea
of storing the character that indexes a transition, along with that transition, seems
to be new. This has an advantage over other techniques for distinguishing states,
such as the use of back pointers, because the character requires fewer bits.

The paper by Tarjan and Yao also contains on interesting theorem character-
izing the performance of the first-fit packing method. They consider a modification
suggested by Zcigler, where the states arc first sorted into decreasing order based
on the number of non-null transitions in each state. The idea is that small states,
which can be packed more easily, will be saved to the end. They prove that if the

22 THIS DICTIONARY PROBLEM

distribution of transitions among states satisfies a "harmonic decay" condition, then
essentially all of the holes in the first-fit packing will be filled.

More precisely, let n(/) be the total number of non-null transitions in states with
more than / transitions, for / > 0. If the harmonic decay property n(l) < n/(l -f 1)
is satisfied, then the first-fit-decrcasing packing satisfies 0 < b(i) < n for all •', where
n = n(0) is the total number of transitions and b(i) is the base location at which
the tth state is packed.

The above theorem does not take into account our additional restriction that
no two states may be packed at the same base location. When the proof is modified
to include this restriction, the bound goes up by a factor of two. However in practice
we seem to be able to do much better.

The main reason for the good performance of the first-fit packing scheme is
the fact that there are usually enough single-transition states to fill in the holes
created by larger states. It is not really necessary to sort the states by number of
transitions; any packing order that distributes large and small states fairly evenly
will work well. We have found it convenient simply to use the order obtained by
traversing the linked trie.

Improvements on the algorithms discussed in this chapter are possible in certain
cases. If we store a linked trie in a specific traversal order, we can eliminate one
of the link fields. For example, if we list the nodes of the trie in preordcr, the left
successor of a node will always appear immediately after that node. An extra bit is
used to indicate that a node has no left successor. Of course this technique works
for other types of trees as well. . .

If the word list is already sorted, linked trie insertion can be performed with
only a small portion of the trie in memory at any time, namely the portion along
the current insertion path. This can be a great advantage if we are are processing
a large dictionary and cannot store the entire linked trie in memory.

Chapter 3

Hyphenation

Let us now try to apply the ideas of the previous chapter to the problem of
hyphenation. T£JX82 will use the pattern matching method described in Chapter 1,
but we shall first discuss some related approaches that were considered.

Finite-state machines with output
We can modify our trie-based dictionary representation to perform hyphenation

by changing the output of the trie (or finite-state machine) to a multiple-valued
output indicating how the word can be hyphenated, instead of just a binary yes-no
output indicating whether or not the word is in the dictionary. That is, instead of
associating a single bit with each trie transition, we would have a larger "output"
field indicating the hyphenation "action" to be taken on this transition. Thus on
recognizing the word hy-phen-a-tion, the output would say "you can hyphenate
this word after the second, sixth, or seventh letters".

To represent the hyphenation output, we could simply list the hyphen positions,
or we could use a bit vector indicating the allowable hyphen points. Since there
arc only a few hundred different outputs and most of them occur many times, we
can save some space by assigning each output a unique code and storing the actual
hyphen positions in a separate table.

To conveniently handle the variable number of hyphen positions in outputs,
we will use a linked representation that allows different outputs to share common
portions of their output lists. This is implemented using a hash table containing
pairs of the form (output, next), where output is a hyphenation position and next
is a (possibly null) pointer to another entry in the table. To add a new output list
to the table, we hash each of its outputs in turn, making each output point to the
previous one. Interestingly, this process is quite similar to suffix compression.

The trie with hyphenation output can be suffix-compressed and packed in the
same manner as discussed in Chapter 2. Because of the greater variety of out-
puts more of the subtrics will be distinct, and there is somewhat less compression.

23

24 HYPHENATION

From our pocket dictionary (with hyphens), for example, we obtained a packed trie
occupying 51,699 locations.

We can improve things slightly by "pushing outputs forward". That is, we can
output partial hyphenations as soon as possible instead of waiting until the end of
the word. This allows some additional suffix compression.

For example, upon scanning the letters hyph at the beginning of a word, we
can already say "hyphenate after the second letter" because this is allowed for all
words beginning with those letters. Note we could not say this after scanning j . jt
hyp, because of words like hyp-not-ic. Upon further scanning ena, we can say
"hyphenate after the sixth letter".

When implementing this idea, we run into a small problem. There are quite
a few words that are prefixes of other words, but hyphenate differently on the
letters they have in common, e.g. ca-ret and care-tak-er, or aa-pi-r in and aa-
pir-ing. To avoid losing hyphenation output, we could have a separate output
whenever an end-of-word bit appears, but a simpler method is to append an end-of-
word character to each word before inserting it into the trie. This increases the size
of the linked trie considerably, but suffix compression merges most of these nodes
together.

With the above modifications, the packed trie for the pocket dictionary was
reduced to 44,128 transitions.

Although we have obtained substantial compression of the dictionary, the result
is still too large for our purposes. The problem is that as long as we insist that
only words in the dictionary be hyphenated, we cannot hope to reduce the space
required to below that needed for spelling checking alone. So we must give up this
restriction.

For example, we could eliminate the end-of-word bit. Then after pushing out-
puts forward, we can prune branches of the trie for which there is no further output.
This would reduce the pocket dictionary trie to 35,429 transitions.

Minimization with don't cares /

In this section we describe a more drastic approach to compression that takes
advantage of situations where we "don't care" what the algorithm dors.

As previously noted, most of the states in an indexed trie are quite sparse;
that is, only a few of the characters have explicit transitions. Since the missing
transitions are never accessed by words in our dictionary, we can allow them to be
filled by arbitrary transitions.

HYPHENATION 25

This should not be confused with the overlapping of states that may occur in
the trie-packing process. Instead, we mean that the added transitions will actually
become part of the state.

There are two ways in which this might allow us to save more space in the min-
imization process. First, states no longer have to be identical in order to be merged;
they only have to agree on those characters where both (or all) have explicit transi-
tions. Second, the merging of non-equivalent states may allow further merging that
was not previously possible, because some transitions have now become equivalent.

For example, consider again the trie of Figure 5. When discussing suffix com-
pression, we noted that the terminal S nodes for the words HIS and THIS could be
merged together, but that the parent chains, each containing transitions for A, E,
and I, could not be completely merged. However, in minimization with don't cares
these two states can be merged. Note that such a merge will require that the DV
state below the first A be merged with the T below the second A; this can be done
because those states have no overlapping transitions.

As another example, notice that if the word AN were added to our vocabulary,
then the NRST chain succeeding the root A node could be merged with the NST chain
below the initial I node. (Actually, it doesn't make much sense to do minimization
with don't cares on a trie used to recognize words in a dictionary, but we will ignore
that objection for the purposes of this example.)

Unfortunately, trie minimization with don't cares seems more complicated than
the suffix-compression process of Chapter 2. The problem is that states can be
merged in more than one way. That is, the collection of mcrgcable states no longer
forms an equivalence relation, as in regular finite-state minimization. In fact, we
can sometimes obtain additional compression by allowing the same state to appear
more than once. Another complication is that don't care merges can introduce
loops into our trie.

Thus it seems that finding the minimum size trie will be difficult. Pfleeger
[25] has shown this problem to be NP-complete, by transformation from graph
coloring; however, his construction requires the number of transitions per state to
be unbounded. It may be possible to remove this requirement, but we have not
proved this.

So in order to experiment with trie minimization with don't cares, we have
made some simplifications. We start by performing suffix compression in the usual
manner. We then go through the states in a bottom-up order, checking each to
see if it can be merged with any previous state by taking advantage of don't cares.
Note that such merges may require further merges among states already seen.

28 HYPHENATION

We only try merges that actually save space, that is, where explicit transitions
are merged. Otherwise, states with only a few transitions are very likely to be
mergeable, but such merges may constrain us unnecessarily at a later stage of the
minimization. In addition, we will not consider having multiple copies of states.

Even this simplified algorithm can be quite time consuming, so we did not try it
on our pocket dictionary. On a list of 2726 technical words, don't care minimization
reduced the number of states in the suffix-compressed, output-pruned trie from
1685 to just 283, while the number of transitions was reduced from 3627 to 2427.
However, because the resulting states were larger, the first-fit packing performed
rather poorly, producing a packed trie with 3408 transitions. So in this case don't
care minimization yielded an additional compression of less than 10 percent.

Also, the behavior of the resulting hyphenation algorithm on words not in the
dictionary became rather unpredictable. Once a word leaves the "known" paths of
the packed "trie, strange things might happen!

We can get even wilder effects by carrying the don't care assumption one step
further, and eliminating the character field from the packed trie altogether (leaving
just the output and trie link). Words in the dictionary will always index the correct
transitions, but on other words we now have no way of telling when we have reached
an invalid trie transition.

It turns out that the problem of state minimization with don't cares was studied
in the 1960s by electrical engineers, who called it "minimization of incompletely
specified sequential machines" (see e.g. [26]). However, typical instances of the
problem involved machines with only a few states, rather than thousands as in
our case, so it was often possible to find a minimized machine by hand. Also, the
emphasis was on minimizing the number of states of the machine, rather than the
number of state transitions.

In ordinary finite-state minimization, these are equivalent, but don't care min-
imization can actually introduce extra transitions, for example when states are
duplicated. In the old days, finite-state machines were implemented using combina-
tional logic, so the most important consideration WJXS to reduce the number of states.
In our trie representation, however, the space used is proportional to the number
of transitions. Furthermore, finite-state machines are now often implemented using
PLA's (programmed logic arrays), for which the number of transitions is also the
best measure of space.

Pattern matching
Since trie minimization with don't cares still doesn't provide sufficient compres-

sion, and since it lead • to unpredictable behavior on words not in the dictionary,

HYPHENATION 27

we need a different approach. It seems expensive to insist on complete hyphenation
of the dictionary, so we will give up this requirement. We could allow some errors;
or to be safer, we could allow some hyphens to be missed.

We now return to the pattern matching approach described in Chapter 1. Some
further arguments as to why this method seems advantageous are given below. We
should first reassure the reader that all the discussion so far has not been in vain,
because a packed trie will be an ideal data structure for representing the patterns
in the final hyphenation algorithm. Here the outputs will include the hyphenation
level as well as the intercharacter position.

Hyphenating and inhibiting patterns allow considerable flexibility in the per-
formance of the resulting algorithm. For example, we could allow a certain amount
of error by using patterns that aren't always safe (but that presumably do find
many correct hyphens).

We can also restrict ourselves to partial hyphenation in a natural way. That
is, it turns out that a relatively small number of patterns will get a large fraction of
the hyphens in the dictionary. The remaining hyphens become harder and harder
to find, as we are left with mostly exceptional cases. Thus we can choose the most
effective patterns first, taking more and more specialized patterns until we run out
of space.

In addition, patterns perform quite well on words not in the dictionary, if those
words follow "normal" pronunciation rules.

Patterns are "context-free"; that is, they can apply anywhere in a word. This
seems to be an important advantage. In the trie-based approach discussed earlier
in this chapter, a word is always scanned from beginning to end and each state of
the trie 'remembers' the entire prefix of the word scanned so far, even if the letters
scanned near the beginning no longer affect the hyphenation of the word. Suffix
compression eliminates some of this unnecessary state information, by combining
states that are identical with respect to future hyphenation. Minimization with
don't cares takes this further, allowing 'similar' states to be combined as long as
they behave identically on all characters that they have in common.

However, we have seen that it is difficult to guide the minimization with don't
cares to achieve these reductions. Patterns embody such don't care situations nat-
urally (if we can find a good way of selecting the patterns).

The context-free nature of patterns helps in another way, as explained below.
Recall that we will use a packed trie to represent the patterns. To find all patterns
that match in a given word, we perform a search starting at each letter of the word.
Thus after completing a search starting from some letter position, we may have to

28 HYPHENATION

back up in the word to start the next search. By contrast, our original trio-based
approach works with no backup.

Suppose we wanted to convert the pattern trie into a finite-state recognizer
that works with no backup. This can be done in two stages. We first add "failure
links" to each state that tell which state to go to if there is no explicit transition
for the current character of the word. The failure state is the state in the trie that
we would have reached, if we had started the search one letter later in the word.

Next, we can convert the failure-link machine into a true finite-state machine
by-filling in the missing transitions of each state with those of its failure state. (For
more details of this process, see [27], [28].)

However, the above state merging will introduce a lot of additional transitions.
Even using failure links requires one additional pointer per state. Thus by perform-
ing pattern matching with backup, we seem to save a good deal of space. And in
practice,'long backups rarely occur.

Finally, the idea of inhibiting patterns seems to be very useful. Such patterns
extend the power of a finite-state machine, somewhat like adding the "not" operator
to regular expressions.

Chapter 4

Pattern generation

We now discuss how to cboose a suitable set of patterns for hyphenation. In or-
der to decide which patterns are "good", we must first specify the desired properties
of the resulting hyphenation Jgorithm.

We obviously want to maximize the number of hyphens found, minimize the
error, and minimize the space required by our algorithm. For example, we could try
to maximize some (say linear) function of the above three quantities, or we could
hold one or two of the quantities constant and optimize the others.

For 1^X82, we wanted a hyphenation algorithm meeting the following require-
ments. The algorithm should use only a moderate amount of space (20-30K bytes),
including any exception dictionary; and it should find as many hyphens as possible,
while making little or no error. This is similar to the specifications for the original
TjjX algorithm, except that we now hope to find substantially more hyphens.

Of course, the results will depend on the word list used. We decided to base
the algorithm on our copy of Webster's Pocket Dictionary, mainly because this was
the only word list we had that included all derived forms.

We also thought that a larger dictionary would contain many rare or specialized
words that we might not want to worry about. In p ' ticular, we did not want such
infrequent words to affect the choice of patterns, because we hoped to obtain a set
of patterns embodying many of the "usual" rules for hyphenation.

In developing the Tj<jX82 algorithm, however, the word list was tuned up con-
siderably. A few thousand common words were weighted more heavily so that they
would be more likely to be hyphenated. In fact, the current algorithm guarantees
complete hyphenation of the 676 most common English words (according to [29]),
as well as a short list of common technical words (e.g. al-go-rithm).

In addition, over 1000 "exception" words have been added to the dictionary,
to ensure that they would not be incorrectly hyphenated. Most of these were found
by testing the algorithm (based on the initial word list) against a larger dictionary
obtained from a publisher, containing about 115,000 entries. This produced about

29

30 PATTERN GENERATION

10,000 errors on words not in the pocket dictionary. Most of these were specialised
technical terms that we decided not to worry about, but a few hundred were em-
barrassing enough that we decided to add them to the word list. These included
compound words (camp-fire), proper names (Af-ghan-i-stan), and new words
(bio-rhythm) that probably did not exist in 1966, when our pocket dictionary was
originally put online.

After the word list was augmented, a new set of patterns was generated, and
a new list of exceptions was found and added to the list. Fortunately this process
seemed to converge after a few iterations.

Heuristics
The selection of patterns in an 'optimal' way seems very difficult. The problem

is that f cvera! patterns may apply to a particular hyphen point, including both
hyphenating and inhibiting patterns. Thus complicated interactions can arise if
we try to determine, say, the minimum set of patterns finding a given number of
hyphens. (The situation is somewhat analogous to a set cover problem.)

Instead, we will select patterns in a series of "passes" through the word list.
In each pass we take into account only the effects of patterns chosen in previous
passes. Thus we sidestep the problem of interactions mentioned above.

In addition, we will define a measure of pattern "efficiency" so that we can use
a greedy approach in each pass, selecting the most efficient patterns.

Patterns will be selected one level at a time, starting with a level of hyphenating
patterns. Patterns at each level will be selected in order of increasing pattern length.

Furthermore patterns of a given length applying to different intercharacter
positions (for example - t i o and t - io) will be selected in separate passes through
the dictionary. Thus the patterns of length n at a given level will be chosen in n -f 1
passes through the dictionary.

At first we did not do this, but selected all patterns of a given length (at a
given level) in a single pass, to save time. However, we founJ that this resulted in
considerable duplication of effort, as many hyphens were covered by two or more
patterns. By considering different intercharacter positions in separate passes, there
is never any overlap among the patterns selected in a single pass.

In each pass, we collect statistics on all patterns appearing in the dictionary,
counting the number of times we could hyphenate at a particular point in the
pattern, and the number of times we could not.

For example, the pattern t io appears 1793 times in the pocket dictionary, and
in 1773 cases we can hyphenate the word before the t, while in 20 cases we can

PATTERN GENERATION 31

not. (We only count instances where the hyphen position occurs at least two letters
from either edge of the word.)

These counts arc used to determine the efficiency rating of patterns. For exam*
pie if we arc considering only "safe" patterns, that is, patterns that can always be
hyphenated at a particular position, then a reasonable rating is simply the number
of hyphens found. We could then decide to take, say, all patterns finding at least a
given number of hyphens.

However, most of the patterns we use will make some error. How should these
patterns be evaluated? In the worst case, errors can be handled by simply listing
them in an exception dictionary. Assuming that one unit of space is required to
represent each pattern as well as each exception, the "efficiency" of a pattern could
be defined as eff= good / (I -f bad) where good is the number of hyphens correctly
found and bad is the number of errors made.

(The space used by the final algorithm really depends on how much compression
is produced by the packed trie used to represent the patterns, but since it is hard to
predict the exact number of transitions required, we just use the number of patterns
as an approximate measure of size.)

By using inhibiting patterns, however, we can often do better than listing the
exceptions individually. The quantity bad in the above formula should then be
devalued a bit depending on how effective patterns at the next level are. So a
better formula might be

e i r = W*
•" 1 + bad/bad-eff'

where bad.ejj is the estimated efficiency of patterns at the next level (inhibiting
errors at the current level).

Note that it may be difficult to determine the efficiency at the next level, when
we are still deciding what patterns to take at the current level! We will use a pattern
selection criterion of the form eff> thresh, but we cannot predict exactly how many
patterns will be chosen and what their overall performance will be. The best we
can do is use reasonable estimates based on previous runs of the pattern generation
program. Some statistics from trial runs of this program are presented later in this
chapter.

Collecting pattern statistics
So the main task of the pattern generation process is to collect count statistics

about patterns in the dictionary. Because of time and space limitations this becomes
an interesting data structure exercise.

32 PATTERN GENERATION
•

For short (length 2 and 3) patterns, we can simply use a table of size 26a or 263,
respectively, to hold the counts during a pass through the dictionary. For longer
patterns, this is impractical.

Here's the first approach we used for longer patterns. In a pass through the
dictionary, every occurrence of a pattern is written out to a file, along with an indi-
cation of whether or not a hyphen was allowed at the position under consideration.
The file of patterns is sorted to bring identical patterns together, and then a pass
is made through the sorted list to compile the count statistics for each pattern.

This approach makes it feasible to collect statistics for longer length patterns,
and was used to conduct our initial experiments with pattern generation. However
it is still quite time and space consuming, especially when sorting the large lists of
patterns. Note that an external sorting algorithm is usually necessary.

Since only a fraction of the possible patterns of a particular length actually
occur in the dictionary, we could instead store them in a hash tabls or one of the
other data structures discussed in Chapter 2. It turns out that a modification of
our packed trie data structure is well-suited to this task. The advantages of the
packed trie are very fast lookup, compactness, and graceful handling of variable
length patterns.

Combined with some judicious "pruning" of the patterns that are considered,
the memory requirements are much reduced, allowing the entire pattern selection
process to be carried out "in core" on our PDP-10 computer.

By "pruning" patterns we mean the following. If a pattern contains a shorter
pattern at the same level that has already been chosen, the longer pattern obviously
need not be considered, so we do not have to count its occurrences. Similarly, if
a pattern appears so few times in the dictionary thtt under the current selection
criterion it can never be chosen, then we can mark the pattern as "hopeless" so
that any longer patterns at this level containing it need not be considered.

Pruning greatly reduces the number of patterns that must be considered, es-
pecially at longer lengths.

Dynamic packed tries

Unlike the static dictionary problem considered in Chapter 2, the set of patterns
to be represented is not known in advance. In order to use a packed trie for storing
the patterns being considered in a pass through the dictionary, we need some way
to dynamically insert new patterns into the trie.

For any pattern, we start by performing a search in the packed trie as usual,
following existing links until reaching a state where a new trie transition must be

PATTERN GENERATION 33

added. If we are lucky, the location needed by the new transition will still be empty
in the packed trie, otherwise we will have to do some repacking.

Note that we will not be using suffix compression, because this complicates
things considerably. We would need back pointers or reference counts to determine
what nodes need to be unmerged, and we would need a hash table or other auxiliary
information in order to remerge the newly added nodes. Furthermore, suffix merging
does not produce a great deal of compression on the relatively short patterns we
will be dealing with.

The simplest way of resolving the packing conflict caused by the addition of a
new transition is to just repack the changed state (and update the link of its parent
state). To maintain good space utilization, we should try to fit the modified Btate
among the holes in the trie. This can be done by maintaining a dynamic list of
unoccupied cells in the trie, and using a first-fit search.

However, repacking turns out to be rather expensive for large states that are
unlikely to fit into the holes in the trie, unless the array is very sparse. We can
avoid this by packing such states into the free space immediately to the right of
the occupied locations. The size threshold for attempting a first-fit packing can be
adjusted depending on the density of the array, how much time we are willing to
spend on insertions, or how close we are to running out of room.

After adding the critical transition as discussed above, we may need to add
some more trie nodes for the remaining characters of the new pattern. These new
states contain just a single transition, so they should be easy to fit into the trie.

The pattern generation program uses a second packed trie to store the set of
patterns selected so far. Recall that, before collecting statistics about the patterns
in each word, we must first hyphenate the word according to the patterns chosen in
previous passes. This is done not only to determine the current partial hyphenation,
but also to identify pruned patterns that need not be considered. Once again, the
advantages of the packed trie are compactness and very fast "hyphenation".

At the end of a pass, we need to add new patterns, including "hopeless" pat-
terns, to the trie. Thus it will be convenient to use a dynamic packed trie here as
well. At the end of a level, we probably want to delete hopeless patterns from the
trie in order to recover their space, if we are going to generate more levels. This
turns out to be relatively easy; we just remove the appropriate output and return
any freed nodes to the available list.

Below we give some statistics that will give an idea of how well a dynamic
packed trie performs. We took the current set of 4447 hyphenation patterns, ran-
domized them, and then inserted them one-by-one into a dynamic packed trie.

34 PATTERN GENERATION

(Note that in the situations described above, there will actually be many searches
per insertion, so we can afford some extra effort when performing insertions.) The
patterns occupy 7214 trie nodes, but the packed trie will use more locations, de-
pending on the setting of the first-fit packing threshold. The columns of the table
show, respectively, the maximum state size for which a first-fit packing is attempted,
the number of states packed, the number of locations tried by the first-fit procedure
(this dominates the running time), the number of states repacked, and the number
of locations used in the final packed trie.

thresh pack first-fit unpack trie_max

oo 6113 877,301 2781 9671
13 6060 761,228 2728 9458
9 6074 559,835 2742 9606
7 6027 359,537 2695 9006
5 5863 147,468 2531 10,366
4 5746 03,181 2414 11,209
3 5563 33.82G 2231 13,296
2 5242 10,885 1910 15,009
1 4847 895C 1515 16,536
0 4577 6073 1245 18,628

Table 2. Dynamic packed trie statistic*.

Experimental results
We now give some results from trial runs of the pattern generation program,'

and explain how the current 1^X82 patterns were generated. As mentioned earlier,
the development of these patterns involved some augmentation of the word list.
The results described here arc based on the latest version of the dictionary.

At each level, the selection of patterns is controlled by three parameters called
good-wt, bad.wt, and thresh. If a pattern can be hyphenated good times at a partic-
ular position, but makes bad errors, then it will be selected if

good* good.wt — bad* bad.wt > thresh.

Note that the efficiency formula given earlier in this chapter can be converted into
the above form.

We can first try using only safe patterns, that is, patterns that can always be
hyphenated at a particular position. The table below shows the results when all
safe patterns finding at least a given number of hyphens are chosen. Note that

gf P A T T E R N GENERATION 35

parameters patterns hyphens percent

1
1
1
1
1
1
1

oo
CO

CO

oo
oo
oo
CO

40
20
10
5
3
2
1

401
1024

2272

4603

7052

10,456

16,336

31,083

45,310.

58,580

70,014

76,236

83,450

87,271

35.2%

51.3%

66.3%

79.2%

86.2%

94.4%

98.7%

Table S. Safe hyphenating patterns.

an infinite bad.wt ensures that only safe patterns are chosen. The table shows the
number of patterns obtained, and the number and percentage of hyphens found.

We see that, roughly speaking, halving the threshold doubles the number of
patterns, but only increases the percentage of hyphens by a constant amount. The
last 20 percent or so of hyphens become quite expensive to find.

(In order to save computer time, we have only considered patterns of length
6 or less in obtaining the above statistics, so the figures do not quite represent all
patterns above a given threshold. In particular, the patterns at threshold 1 do not
find 100% of the hyphens, although even with indefinitely long patterns there would
still be a few hyphens that would not be found, such as re-cord.)

The space required to represent patterns in the final algorithm is slightly more
than one trie transition per pattern. Each transition occupies 4 bytes (1 byte each
for character and output, plus 2 bytes for trie link). The output table requires
an additional 3 bytes per entry (hyphenation position, value, and next output),
but there are only a few hundred outputs. Thus to stay within the desired space
limitations for TjrjX82, we can use at most about 5000 patterns.

We next try using two levels of patterns, to see if the idea of inhibiting patterns
actually pays off. The results are shown below, where in each case the initial level
of hyphenating patterns is followed by a level of inhibiting patterns that remove
nearly all of the error.

The last set of patterns achieves 86.7% hyphenation using 4696 patterns. By
contrast, the 1 oo 3 patterns from the previous table achieves 86.2% with 7052
patterns. So inhibiting patterns do help. In addition, notice that we have only used
"8<afc" inhibiting patterns above; this means that none of the good hyphens are lost.
We can do better by using patterns that also inhibit some correct hyphens.

After a good deal of further experimentation, we decided to use Rve levels
of patterns in the current T]rjX82 algorithm. The reason for this is as follows. In

Table 4- Two levels of patterns.

36 PATTERN GENERATION

parameters patterns hyphens percent

51,359 505 58.1% 0.6%
0 463 58.1% 0.1%

64,893 1694 73.5% 1.9%
0 1531 73.5% 0.2%

76,632 5254 86.7% 5.9%
0 4826 86.7% 0.5%

addition to finding a high percentage of hyphens, we also wanted a certain amount of
guaranteed behavior. That is, we wanted to make essentially no errors on words in
the dictionary, and also to ensure complete hyphenation of certain common words.

To accomplish this, we use a final level of safe hyphenating patterns, with
the threshold set as low as feasible (in our case 4). If we then weight the list of
important words by a factor of at least 4, the patterns obtained will hyphenate
them completely (except when a word can be hyphenated in two different ways).

To guarantee no error, the level of inhibiting patterns immediately preceding
the final level should have a threshold of 1 so that even patterns applying to a single
word will be chosen. Note these do not need to be "safe" inhibiting patterns, since
the final level will pick up all hyphens that should be found.

The problem is, if there are too many errors remaining before the last inhibiting
level, we will need too many patterns to handle them. If we use three levels in all,
then the initial level of hyphenating patterns can allow just a small amount of error.

However, we would like to take advantage of the high efficiency of hyphenating
patterns that allow a greater percentage of error. So instead, we will use an initial
level of hyphenating patterns with relatively high threshold and allowing consider-
able error, followed by a 'coarse' level of inhibiting patterns removing most of the
initial error. The third level will consist of relatively safe hyphenating patterns with
a somewhat lower threshold than the first level, and the last two levels will be as
described above.

The above somewhat vague considerations do not specify the exact pattern
selection parameters that should be used for each pass, especially the first three
passes. These were only chosen after much trial and error, which would take too long
to describe here. We do not have any theoretical justification for these parameters;
they just seem to work well.

The table below shows the parameters used to generate the current set of TgX82
patterns, and the results obtained. For levels 2 and 4, the numbers in the "hyphens"

2
3
4
5

2
1
3
1

1
4
2

oo

8

7

1

4

(4)
(5)
(6)
(8)

Table

509
985

1647

1320

S. Current

PATTERN GENERATION 87

level p^arameters patterns hyphens percent

1 1 2 20 (4) 458 67,604 14,156 76.6% 16.0%

7407 11,942 68.2% 2.5%

13,198 551 83.2% 3.1%

1010 2730 82.0% 0.0%

6428 0 89.3% 0.0%

TEX82 pattern*.

column show the number of good and bad hyphens inhibited, respectively. The
numbers in parentheses indicate the maximum length of patterns chosen at that
level.

A total of 4919 patterns (actually only 4447 because some patterns appear more
than once) were obtained, compiling into a suffix-compressed packed trie occupying
5943 locations, with 181 outputs. As shown in the table, the resulting algorithm
finds 89.3% of the hyphens in the dictionary. This improves on the one and two
level examples discussed above. The patterns were generated in 109 passes through
the dictionary, requiring about 1 hour of CPU time.

Examples
The complete list of hyphenation patterns currently used by TfjjX82 appears in

the appendix. The digits appearing between the letters of a pattern indicate the
hyphenation level, as discussed above.

Below we give some examples of the patterns in action. For each of the following
words, we show the patterns that apply, the resulting hyphenation values, and the
hyphenation obtained. Note that if more than one hyphenation value is specified for
a given intercharacter position, then the higher value takes priority, in accordance
with our level scheme. If the final value is odd, the position is an allowable hyphen
point.

computer 4mlp pu2t Spute put3er Co4m5pu2t3er com-put-er

algorithm Ilg4 Igo3 lgo 2ith 4hm allg4o3r2it4hm al-go-rithm

hyphenation hy3ph he2n hena4 hen5at lna n2at i t i o 2io
hy3phe2n5a4t2ion hy-phen-ation

concatenation o2n onlc lea lna n2at I t io 2io
co2nlcateln2alt2ion con-cate-na-tion

mathematics math3 ath5em th2e lma a t l i c 4cs
math5eimatli4cs math-e-mat-ics

38 PATTERN GENERATION

typesetting type3 els2e 4t3t2 2 t l in type3s2e4t3t2ing

type-set-ting

program pr2 lgr pr2olgram pro-gram

supercalifragilisticexpialidocious

ulpe rlc ica alii agli gil4 i l i i i l4iet i s l t i st2i s l t ic

lexp x3p pi3a 2ila i2al 2id ldo lei 2io 2UB

8ulperlcallifraglil4islt2iclex3p2i3al2ildolc2io2uB

su-per-cal-ifrag-ilis-tic-ex-pi-ali-do-cioua

"Below, we show a few interesting patterns. The reader may like to try figuring

out what words they apply to. (The answers appear in the Appendix.)

ainbo
aySal

earSk

e2mel

hach4
hEelo

if4fr

IBogo

n3uin
nyp4

oSaSles

orew4

Bspai
4tarc

4todo

uir4m

And finally, the following patterns deserve mention:

3tex fon4t highS

Chapter 5

History and Conclusion

-The invention of the alphabet was one of the greatest advances in the history
of civilization. However, the ancient Phoenicians probably did not anticipate the
fact that, centuries later, the problem of word hyphenation would become a major
headache for computer typesetters all over the world.

Most cultures have evolved a linear style of communication, whereby a train
of thought is converted into a sequence of symbols, which are then laid out in neat
rows on a page and shipped off to a laser printer.

The trouble was, as civilization progressed and words got longer and longer,
it became occasionally necessary to split them across lines. At first hyphens were
inserted at arbitrary places, but in order to avoid distracting breaks such as the-
rapis t , it was soon found preferable to divide words at syllable boundaries.

Modern practice is somewhat stricter, avoiding hyphenations that might cause
the reader to pronounce a word incorrectly (e.g. eoneidera-tion) or where a single
letter is split from a component of a compound word (e.g. cardi-ovascular).

The first book on typesetting, Joseph Moxon's Mechanick Exercises (1683),
mentions the need for hyphenation but does not give any rules for it. A few dictio-
naries had appeared by this time, but were usually just word lists. Eventually they
began to show syllable divisions to aid in pronunciation, as well as hyphenation.

With the advent of computer typesetting, interest in the problem was renewed.
Hyphenation is the *H' of 'H &i J' (hyphenation and justification), which are the
basic functions provided by any typesetting system. The need for automatic hy-
phenation presented a new and challenging problem to early systems designers.

Probably the first work on this problem, as well as many other aspects of com-
puter typesetting, was done in the early 1950s by a French group led by G. D.
Bafour. They developed a hyphenation algorithm for French, which was later
adapted to English [U.S. Patent 2,702,485 (1955)].

Their method is quite simple. Hyphenations are allowed anywhere in a word
except among the following letter combinations: before two consonants, two vawcJs,

39

40 HISTORY AND CONCLUSION

or x; between two vowels, consonant-h, e-r, or s-s; after two consonants where the
first is not 1, m, n, r, or s; or after c, j , q, v, consonant-w, nra, l r , nb, nf, nl , nm,
nn, or nr.

We tested this method on our pocket dictionary, and it found nearly 70 percent
of the hyphens, but also about an equal amount of incorrect hyphens! Viewed in
another way, about 65% of the erroneous hyphen positions are successfully inhibited,
along with 30% of the correct hyphens. It turns out that a simple algorithm like
this one works quite well in French; however for English this is not the case.

Other early work on automatic hyphenation is described in the proceedings of
various conferences on computer typesetting (e.g. [30]). A good summary appears
in [31], from which the quotes in the following paragraphs were taken.

At the Los Angeles Times, a sophisticated logical routine was developed based
on the grammatical rules given in Webster's, carefully refined and adapted for com-
puter implementation. Words were analyzed into vowel and consonant patterns
which were classified into one of four types, and rules governing each type applied.
Prefix, suffix, and other special case rules were also used. The results were report-
edly "85-95 percent accurate", while the hyphenation logic occupies "only 5,000
positions of the 20,000 positions of the computer's magnetic core memory, less
space than would be required to store 500 8-letter words averaging two hyphens per
word."

Perry Publications in Florida developed a dictionary look-up method, along
with their own dictionary. An in-corc table mapped each word, depending on its
first two letters, into a particular block of words on tape. For speed, the dictionary
was divided between four tape units, and "since the RCA 301 can search tape in
both directions," each tape drive maintained a "homing position" at the middle of
the tape, with the most frequently searched blocks placed closest to the homing
positions.

In addition, they observed that many words could be hyphenated after the 3rd,
5th, or 7th letters. So they removed all such words from the dictionary (saving some
space), and if a word was not found in the dictionary, it was hyphenated after the
3rd, 5th, or 7th letter.

A hybrid approach was developed at the Oklahoma Publishing Company. First
some logical analysis was used to determine the number of syllables, and to check
if certain suffix and special case rules could be applied. Next the probability of
hyphenation at each position in the word was estimated using three probability
tables, and the most probable breakpoints were identified. (This seems to be the
origin of the Time magazine algorithm described in Chapter 1.) An exception

HISTORY AND CONCLUSION 41

dictionary handles the remaining cases; however there was some difference of opinion

as to the size of the dictionary required to obtain satisfactory results.

Many other projects to develop hyphenation algorithms have remained pro-

prietary or were never published. For example, IBM alone worked on "over 35

approaches to the simple problem of grammatical word division and hyphenation".

By now, we might have hoped that an "industry standard" hyphenation algo-

rithm would exist. Indeed Berg's survey of computerized typesetting [32] contains

a description of what could be considered a "generic" rule-based hyphenation algo-

rithm (he doesn't say where it comes from). However, we have seen that any logical

routine must stop short of complete hyphenation, because of the generally illogical

basis of English word division.

The trend in modern systems has been toward the hybrid approach, where a

logical routine is supplemented by an extensive exception dictionary. Thus the in-

core algorithm serves to reduce the size of the dictionary, as well as the frequency

of accessing it, as much as possible.

A number of hyphenation algorithms have also appeared in the computer sci-

ence literature. A very simple algorithm is described by Rich and Stone [33]. The

two parts of the word must include a vowel, not counting a final e, ee or ed. The

new line cannot begin with a vowel or double consonant. No break is made between

the letter pairs eh, gh, p, ch, th, wh, gr, pr, cr, tr , wr, br, f r, dr, vowel-r, vowel-n,

or om. On our pocket dictionary, this method found about 70% of the hyphens with

45% error.

The algorithm used in the Bell Labs document compiler Roff is described by

Wagner [34], It uses suflix stripping, followed by digram analysis carried out in a

back to front manner. In addition a more complicated scheme is described using four

classes of digrams combined with an attempt to identify accented and nonaccented

syllables, but this seemed to introduce too many errors. A version of the algorithm is

described in [35]; interestingly, this reference uses the terms "hyphenating pattern"

(referring to a Snobol string-matching pattern) as well as "inhibiting suffix".

Ockcr [36], in a master's thesis, describes another algorithm based on the rules

in Webster's dictionary. It includes recognition of prcGxes, suffixes, and special

letter combinations that help in determining accentuation, followed by an analysis

of the "liquidity" of letter pairs to find the character pair corresponding to the

greatest interruption of spoken sound.

Moitra et al [37] use an exception table, prefixes, suffixes, and a probabilistic

break-value table, In addition they extend the usual notion of affixes to any letter

42 HISTORY AND CONCLUSION

pattern that helps in hyphenation, including 'root words' (e.g. l in t , pot) intended

to handle compound words.

Pat terns as paradigm
Our pattern matching approach to hyphenation is interesting for a number

of reasons. It has proved to be very effective and also very appropriate for the
problem. In addition, since the patterns are generated from the dictionary, it is
easy to accommodate changes to the word list, as our hyphenation preferences
change or as new words are added. More significantly, the pattern scheme can be
readily applied to different languages, if we have a hyphenated word list for the
language.

The effectiveness of pattern matching suggests that this paradigm may be use-
ful in other applications as well. Indeed more general patten^ matching systems
and the related notions of production systems and augmented transition networks
(ATN's) are often used in artificial intelligence applications, especially natural lan-
guage processing. While AI programs try to understand sentences by analyzing
word patterns, we try to hyphenate words by analyzing letter patterns.

One simple extension of patterns that we have not considered is the idea of
character groups such as vowels and consonants, as used by nearly all other algo-
rithmic approaches to hyphenation. This may seem like a serious omission, because
a potentially useful meta-pattcrn like 'vowel-consonant-consonant-vowel1 would then
expand to 6 x 20 X 20 x C = 14400 patterns. However, it turns out that a suffix-
compressed trie will reduce this to just 6 + 20 + 20 + 6 = 52 trie nodes. So our
methods can take some advantage of such "mcta-patterns".

In addition, the use of inhibiting as well as hyphenating patterns seems quite
powerful. These can be thought of as rules and exceptions, which is another common
AI paradigm.

Concerning related work in AI, we must especially mention the Meta-DENDRAL
program [38], which is designed to infer automatically rules for mass-spectrometry.
An example of such a rule is N—C—C—C —» N—C * C—C, which says that if the
molecular substructure on the left side is present, then a bond fragmentation may
occur as indicated on the right side. Meta-DENDRAL analyzes a set of mass-spectral
data points and tries to infer a set of fragmentation rules that can correctly predict
the spectra of new molecules. The inference process starts with some fairly general
rules and then refines them as necessary, using the experimental data as positive or
negative evidence for the correctness of a rule.

HISTORY AND CONCLUSION 43

The fragmentation rules can in general be considerably more complicated than

our simple pattern rules for hyphenation. The molecular "pattern" can be a tree-

like or even cyclic structure, and there may be multiple fragmentations, possibly

involving "migration" of a few atoms from one fragment to another. Furthermore,

there are usually extra constraints on the form of rules, both to constrain the

search and to make it more likely that meaningful or "interesting" rules will be

generated. Still, there arc some striking similarities between these ideas and our

pattern-matching approach to hyphenation.

Packed tr ies

Finally, the idea of packed tries deserves further investigation. An indexed

trie can be viewed as a finite-state machine, where state transitions are performed

by address calculation based on the current state and input character. This is

extremely fast on most computers.

However indexing usually incurs a substantial space penalty because of space

reserved for pointers that are not used. Our packing technique, using the idea of

storing the index character to distinguish transitions belonging to different states,

combines the best features of both the linked and indexed representations, namely

space and speed. We believe this is a fundamental idea.

There are variou" issues to be explored here. Some analysis of different packing

methods would be interesting, especially for the handling of dynamic updates to a

packed trie.

Our hyphenation trie extends a finite-state machine with its hyphenation "ac-

tions". It would be interesting to consider other applications that can be handled by

extending the basic finite-state framework, while maintaining as much of its speed

as possible.

Another possibly interesting question concerns the size of the character and

pointer fields in trie transitions. In our hyphenation trie half of the space is occupied

by the pointers, while in our spelling checking examples from one-half to three-

fourths of the space is used for pointers, depending on the size of the dictionary.

In the latter case it might be better to use a larger "character" size in the trie, in

order to get a better balance between pointers and data.

When performing a search in a packed trie, following links will likely make us

jump around in the trie in a somewhat random manner. This can be a disadvantage,

both because of the need for large pointers, and also because of the lack of locality,

which could degrade performance in a virtual memory environment. There are

probably ways to improve on this. For example, Frcdkin [10] proposes an interesting

'n-dimcnsional binary trie* idea for reducing pointer size.

44 . HISTORY AND CONCLUSION

We have presented packed tries as a solution to the set representation problem,
with special emphasis on data compression. It would be interesting to compare our
results with other compression techniques, such as Huffman coding. Also, perhaps
one could estimate the amount of information present in a hyphenated word list, as
a lower bound on the size of any hyphenation algorithm.

Finally, our view of finite-state machines has been based on the underlying
assumption of a computer with random-access memory. Addressing by indexing
seems to provide power not available in some other models of computation, such
as pointer machine, or comparison-based models. On the other hand, a 'VLSI* or
other hardware model (such as programmed logic arrays) can provide even greater
power, eliminating the need for our perhaps contrived packing technique. But then
other communication issues will be raised.

If all problems of hyphenation have not been solved,
at least some progress has been made since that night,

when according to legend, an RCA Marketing Manager
received a phone call from a disturbed customer.

His 301 had Just hyphenated "God".

— Paul E. Justus (1972)

TgX82 hyphenation patterns

.ach4

.ad4d«r
••fit
.«13t
.••Sit
.anSc
• »ng4

.aniEa

.ant4

.anSt*

.antiSt

.arBa

.arm*

.ar4ty

.a*3c

.aalp

.ailt

.««ter5

.itc«5

.auld

.ar4i
• awn4

• bi4g

.baEna

.ba*4«

.bar 4

.beSra

.baSaa

.be5fto

.brl2

.but4tl

.caa4pa

.canSc

.capaSb

.carSol

.ca4t

.ce41a
ch4
.chillSi
.el9
.citSr
.co3»
.co4r
.coiSner
.de4moi
. de3o
.de3ra
.deSrl
.dei4c
.dlctloS
.do4t
.du4c
. dumbS
.earthB
.eat31
.eb4
.aer4
• eg2
.el5d
.el3e«
.enam3
• en3g

J

.«nS»

.eqSuiBt

.•r4ri

.Ml

.euS

.eyeS

.fei3

.ior5»ar

•g»2
.ga2
.gen3t4
•geBog
.gi5a
.gl4b
• go4r
.handBi
.hanBk
.he 2
.heroSi
.hatS
.hatS
.M3b
.hi3er
.honSey
.hon3o
.hoT5
.Id41
.idolS
.ia3a
.imSpin
.inl
.In3cl
.ine2
.In2k
.inSt
.ir5r
.ii4i
.]u3r
.Is4cy
.l»4a
.latSar
.lathB
.Ie2
.legSa
.Ien4
.lepS
.lev!
.H4g
.ligSa
.Ii2n
.1130
.114t
.aagSaS
.nalSo
.nanSa
.narEti
.ae2
.ner3e
•EeEtor
.•ill
.•lstSl
.Bon3a

.•oSre

.auBta

.•utaSb

.nl4e

.od2

.oddS

.of5t«

.orSato
• or 3c
.orld
.or St
.0*3
.o»4tl
.othS
.outS
.pud5»l
.paBta
.pe5t.it
.pl4«
.pioBn
.pi2t
.praSa
.ra4c
.ran4t
.ratioBna
.rea2
.reEait
.re«2
.raBatat
.ri4g
,rit5u
.ro4q
.rosSt
.rowSd
.ru4d
.•ci3a
.aelfS
.•ellS
.•e2n
.•eErla
.«h2
.•12
.iing4
.•t4
.•taSbl

•y2
.ta4
.ta2
.tenSan
.th2
.ti2
.til4
.tiaSoS
.ting4
.tinSk
,ton4a
.to4p
.topSl
.tonSa
.tribBat
.vnla
.nn3ca

«/

.cnderS

.nnla

.nn5k

.nn5o
• nnSn
.op 3
.nraS
.u»5a
.Ten4da
.YeEra
.wllBl
.ya4
4ab.
aBbal
aSban
aba2
abBard
abiSa
abSitSab
abSlat
abSoSlli
4abr
abBrog
ab3ul
a4car
acSard
acSaro
a5ceon
aclar
aSchat
4a2ci
a3cie
aclin
a3cio
ac5rob
act5if
ac3ul
ac4um
a2d
ad4din
adSar.
2adi
a3dla
ad3ica
adl4er
a3dio
a3dit
aSdiu
ad41e
ad3cv
adSran
ad4su
4adu
a3duc
adSum
ae4r
aeri4a
a2f
aff4
a4gab
aga4n
aB5ell
>/

aga4o
4ageu

•8li
4ag41
agin
a2go
Sagog
ag3onl
aSguar
agBnl

•<8T
a3ha
a3ha
ah 41
»3ho
a 12
aSla
•Sic.
tiSly
a414n
ainSin
ainBo
aitSen

•1J
aklan
alBab
al3ad
a41ar
4aldi
2ala
al3end
a41entl
a51e5o
alii
al4ia.
ali4e
al51er
4allic
4alB
a51og.
a41y.
4aly«
5a51y«t
Salyt
3alyi
4aaa
aaSab
am3ag
aaaSra
araSaec
a4matlt
a4mSato
anBera
ai»3ic

amSif
amSilf
ami in
ami4no
a2ao
aBaon
amorBi
amp5en

J

•2n
anSag*
3an»ly
aSnar
anSare
anar4i
aSnatl
4 and
ande4»
an3di»
anldl
an4dov
aSnas
aSnan
an5e«t.
»3n«u
2ang
angBl*
anlgl
a4nlic
a3niai
an313f
an4iaa
aSnlai
a5nina
anSio
a3nip
an3iih
anSit
a3nin
an4kll
Sannix
anoi
anSot
anothS
an2sa
an4sco
an4an
an2«p
ans3po
an4tt
an4inr
antal4
an4tie
4 an to
an2tr
an4tw
an3ua
an3ul
aSnur
4ao
apar4
apfiat
apSero
a3phar
4aphi
a4pilla
apSillar
ap3in
ap3ita
a3pitu
a2pl

y

•pocB
apSola
aporEl
apotSt
apiSet
•Spo
•queS
2a2r
arSact
aSrad*
arBadlt
•rSal
aSraaats
aran4g
ara3p
ar4at
aBratie
arSatlr
aBran
arBaT4
•raw4
arbal4
ar4cha«
arSdina
ar4dr
arBaaa
aSraa
arSant
aSraas
ar4fl
ar4M
aril
arSlal
arSian
a3riat
ar4ia
arSinkb
ar31o
ar2ix
ar2al
arBoSd
aBroni
a3roo
ar2p
arSq
arre4
ar4ta
ar2ih
4aa.
aa4ab
»3ant
aahl4
a5iia.
aSalb
a3«lc
EaEai4t
atk31
••41
a4aoc
aaSph
aa4fh
aiStea

J

atltr
iiurBa
•2ta
at-Sabl
•tSae
atSalo
•tSap
ataSc
atBaek
atSago
atSan.
atSara
aterBn
aBtarna
atSaat
atBar
4»th
athEea
aEthaa
at4ho
athSoa
4ati.
aStla
atSlSa
atllc
•tsit
atlonSar
atSltu
a4tog
a2toa
atSoali
a4top
»4to»
altr
atBrop
at4ak
aUtag
atSt*
at4th
a2tn
atSua
atSua
•t3nl
at3ura
a2ty
au4b
anghS
au3gu
au412
aunSd
au3r
auBalb
ait&en
uulth
a2va
av3ag
•Sran
»ve4no
sv3era
arSera
arSery
aril
J

a»14ar
aySlg
aySoe
alTor
3avaj
aw3i
a«41y
avi4
ax4ie
ax4id
aySal
aT«4
ay.4
axl4«r
axxSl
Eba.
badSgar
ba4ge
balla
banSdag
ban4«
banSl
barblB
bari4a
fci«4fi
lbat
b*4i
2blb
b2ba
bSbar
bbUna
4bld
4ba.
baak4
boats
4ba2d
baSda
ba3d*
bo3di
bajgl
baSgn
lbal
belli
baSlo
4be5»
baSnlg
baEnn
4be»4
bo3ap
beSctr
3bet
betSii
baStr
ba3tw
be3w
beSyo
2bf
4b3h
bl2b
bi4d
3bla
blEan

•J

74

TgX82 HYPHENATION PATTERNS 75

bi4ar
2b31f
lbll
bl311i
bim5r4
bln4d
blSnet
bi3ogr
bi6oa
bi2t
3bl3tio
bl3tr
3blt5M
bSltt
blj
bk4
b212
blithS
b41a.
blan4
Bbleip
I31ia
b41o
blnn4t
4bla
4b3n
bneSg
Sbod
bod31
bo4a
bolSlc
boMbl
bon4i

bonSat
Sboo
6bor.
4blora
borSd
Ebor*
6bjrl

6toi4
b5ot»
bothS
bo4to
bounds
4bp
4brlt
brothS
2bSt2
bior4
2bt
bt41
b4to
b3tr
buf4f»r
bu4ga
buSU
buaU
bu4n
buntii
fcu3ra
bntSl*
b«ti4«
SV«at
4b«U
Sbati*

bSuto
blr
4b5»
6 by.
bya4
lea
cab3ia
calbl
cach4
*c»5den
4cag4
2c5ah
ca31at
cal4U
callSU
4calo
canEd
can4«
can41c
canSla
can31z
c»n4ty
cany4
caSpar
carEoa
cattSer
caiStlg
4c*iy
ca4U
4catiT
C«T5«1

cSc
cchaB
ccl4a
ccoapat
ccon4
ecouSt
8c*.
4c*d.
4cadaa
Seal
6c«l.
Scall
lean
Scane
2can4«
4c«nl
Scant
Scap
coSrim
4cata
Scaial
ce«5»i6b
cat5t
cat4
c6a4U
ca»4
3ch
4ch.
4ch3ab
Echanle
chEaSnla
cl.2
C A M » 9

4cka4
(USU

y

3che«i
chBana
ch3e-.
ch3or«
4cklln
Schina.
chSlnaaa
Echini
Echlo
Schlt
chl2z
3cho2
ch4ti
lei
Scia
ci2aRb
cla6r
ci6c
4ciar
Eclfie.
4cli
ci41a
Scili
2cla
2cin
e41na
Scinat
cln3ea
cling
cElng.
Sclno
clon4
4clp«
clSpK
4clplc
4claU
4clatl
2c lit
CltSll
Sell
ckl
ckSl
Ic414
4clar
cSlaratl*
Eclar*
cla4a
4cllc
clla4
cly4
cEn
lco
coSag
coa2
2cog
co4gr
col4
coSinc
colfil
Ecole
colScr
co»5«r
co»4a
c4ea«
cokSg
co*5V

J

co3p»
cop3ic
co4pl
4corb
coro3a
co«4»
corl
C0T64

covEa
cozfi*
coExl
clq
craaSt
ficrat.
Ecratlc
cre3at
Scred
4c3reU
cr«4r
cri2
crlSf
c4rln
crii4

Scrltl
cro4pl
crop5o
cro«4e
crc4d
4c3»2

2clt
Cta4b

ctSang
c6tant
c2t«
c3t«r
c4tico
ctia3i
ctu4r
c4tw
cudS
c4uf
c4ul
cu5ity
Bculi
cul4tla
Scultu
cu2aa
cSuaa
cu4al
Scun
cu3pl
cu5py
carSa4b
cuSrla
lena
cuaa41
3c4ut
cu4ti«
4c5utiT
4cutr
ley
cie4
Id2a
Ma.
2d3a4b
dach4
J

4daf
2dag
da2a2
dan3g
dardS
darkS
4dary
3dat
4dat.iT

4dato
6dtT4

daTE*
6d*y
dlb
dSc
dld4
2de.
deafE
deb&it
do4bon
decan4
do4cil
do5coa
2diod
4doo.
do5if
deli4e
do!5iSq
doSio
d4co
Edea.
3dooic
deaSic.
deSall
de4aona
deaorS
lden
do4mr
d«3no
dantlEf
do3nu
delp
do3p«
depl4
de2pu
d3aq
d4«rh
Edara
dernEli
der&a
daa2
d2aa.
delac
de2tSo
de*3tl
de3atr
do4«tt

delt
da2to
d«lr
dov3il
4dey
4dlt
d4g»
d3ge^t
djll

d2gy
dlh2
Edi.
•d413a
diafib
di4caa
d4ice
3dict
3did
5di3on
dllf
di3ga
di41ato
dlln
ldina
Sdina.
Edinl
dlEnlx
ldio
dioEg
di4pl
dir2
dilra
dirtSi
disl
Edi«i
d4is3t
d2iti
ldllT
dlj
d5)c2
4d51a
3dle.
3dled
3dlaa.
4dloia

2d31o
4d5lB

2dly
dla
4dln4
Ido
3do.
doEda
Edoa
2dSof
d4og
do41a
doli4
doBlor
doa5iz
do3nat
donl4
doo3d
dop4p
d4or
3doa
4d5oat
do4r
3dox
dip
ldr
dragSoa
<dr»i
dre4
dreaSr

J

Edren
dri4b
dril4
dro4p
4drow
Edrupll
4dry
2dla2
da4p
d4av
d4«y
d2th
Ida
dlola
du2c
dluca
dacSer
4duct.
4d'icti

du5el
du4g
d3ulo
dua4ba
du4n
4dap
du4p«
dlT
dlw
d2y
5dyn
dy4aa
dyaSp
ela4b
«3act
•adl
aadSl*
•»4g«
aaEgar
aa41
aalEar
•I13OB

aan3ar
aSand
aar3a
aar4c
aarSaa
aar41c
aar411
aarSk
aar2t
e»rt3»

aaSap
e3a»«

aaatS
•*2t

aatfien
eath31
aSatlf
«4a3tB

B » 2 T

eaT3on

aaTSi
eaTSo

I.Ik
•4b«l.
•4bel«

/

e4ben
e<bit
e3br
a4cad
«canEc
ecca5
•lea
•cSeaaa
ec2i
e4cib
ecSificat
ecSifla
ecBlfy
acSia
•cl4t
eSclt*
•4claa
a4clna
a2col
a4coaa
e4coap«
e4conc
e2cor
acSora
ecoSro
alcr
a4crea
ec4ta&
ac4t«
alca
a4cal
ec3ula
2a2da
4ed3d
a4dl«r
ade4a
4adl
• 3dia
adSib

• ed3ica

adMa
•dlit
adlfii
4edo
•4dol
adon2
a4drl
• 4dul
adSule
aa2c
aed31
aa2f
aal31
««41y
aa2a
••4na
«e4pl
aa2a4
aatt4
eo4ty
aSas
•If
e«f3«ra
lalf
•4flc
Safici
J

afil4
•3fina
atSiSnlt*
Satlt
•forEa*
•4fva«.
4agal
•gar4
•gSlb
•g41c
•gElng
aSgltS
agEn
a4go.
a4go«
eglal
•Sgur
Bagy
•lb.4
eher4
•12
•51c
•16d
•Ig2
•lEgl
•Slab
•3inf
•Ung
•Elnat
•Ir4d
• it3a

alSth
• 6ity
•1J
•4]nd
•jEadl
akl4n
•k41a
alia
•41a.
•41ac
•Ian4d
•lEatlT
a41av
•Iaza4
•Sl«a
•IBabra
Selac
•41«d
•13aga
•Elan
•411«r
•ll«a
•12f
•121
•31ib«
•4161c.
•131ca
•311rr
•161gl»
•Ella
•413in«
•311o
•211a
•lSlak
•311*3

7

76 HYPHENATION PATTEON8

4ella

el41ab
ello4

aSloe
•16og

•13op.
•12«h

•14ta

• S l n d <•

el Bug

•4aae

•4nag

eEnan
eaSana

eaSb

elite

•2nal

e4met

eaSica
eal4e

emSlgra
emlir.2

eoSlna

em3i3ni

•4ai«
emSiah
•Emiaa
•n31x
Semnlx
eno4g
•monlSo
•a3pl
•4mul
emSula
omuSn

•3my

•nSaao

•4nant

•nch4ar
en3dlc
eSnaa
eBnee
•n3ea
enBtro

•nSeal
•nSeat

•n3etr
•3new

•nSlcf

•Snia

•Enll
a3nlo

en31»h

•n31t

t-Snltt

Sanil
4enn

4eno
ano4g

e4noi
an3oT
en4aw

entbage
4anthaa

on3vu
•nEuf

•3ny.
4en3x
•Sof

•o2g
•4ol4

•3ol
aop3ar
alor

' eo3re

eoSrol
eos4

•4ot

eo4to

•Soot
•Sow

•2pa

•3pal

epSanc
• Spel

e3pent

epSetitie
ephe4.
e4pli

alpo

e4prec
.epSreca
•4pr«d
•p3rah
•3pro
•4prob
•p4ah
•pStlEb
•4pnt
epButa

•lq
•qulSl

e4q3ul3a

aria

era4b
4er»nd
•r3ar
4er»tl.
2erb

•r4bl
•r3ch

•r4cha
2«ra.
•3real

araSco
ereSin

•rSal.

ar3eao
arSena
•rSenca

4«rena
arSant
ara4q

arEaai
nrSeat

areU

arlh
aril

alrla4
Serlck
e3rien

•rl4«r

• \J

or3ine
elrio

4erlt

er41n
erl4T

e4rira
er3m4

er4nia
4ernlt

Eernix
«r3no

2ero
erSob

aSroc

ero4r
erlon

aria

er3«et
ert3er
4ertl

•r3tw

4aru
•rn4t
Berwau .

els4a
e4«age.

•4sages

••2c
•2*ca
••Scan
e3»cr
••Sen
elt2e

•2>ec
eiEecr

e«Bone

•4aart.

a4aerta

•4aerra

4eah
•3aha
aahEan
elal
e2»ic
•2ald
••Elden
•aSlgna

•2aEia

e«414n
e»U4ta

aal4u
aSakln
et4ai

•2tol
e»3olu

e2aon
aaSona

elfp
ai3par

eiSplra
ea4pra

2e«a
e«4al4b
e«tan4

ea3tlg
aaStla

v'

4ei2to
e3iton
2e«tr
e5stro
estrucS

e2(ur
esSurr
••4v

ata4b

eton4d

e3teo

ethod3

•tlic
eEtlda

etin4
ati4no

eStir

eStltlo
etSitlr
4etn

•tSona

•3tra
•3tro

et3ric

et5rif
«t3rog

et5roa
et3ua
etEya

•tSz

4m
•Sun
•3np

•u3ro
eu>4

•ute4
•uti61

euEtr
eva2pB
e2vaa

evEaat
eSvea
•r3ell

evel3o
eSveng
even4i

•Tier

eBverb

elTi
•T3id

6T141

•4Tin
« T 1 4 T

•STOC

•ETU

elwa
«4wag

•Swea
o3»h

ewllS
e»3ing
o3wit

lexp
Seyc

Eeya.
ey«4

J

lfa
fa3bl
fab3r

fa4c«
4fag

fain4
fallSa

4fa4na

famEia

Efar
farSth

fa3ta
fa3the

4fato
faults

4fEb
4fd
4fe.
feas4

feath?
fe4b

4feca
Efect

2fod

fe311

f e 4.-00

'en2d
fend6e
ferl
5ferr
fev4
4flf
f4fe»

f4fie
latin.
f2fSia

f4fly
f2fy

4fh
lfi
fi3a

2f3ic.
4f3ical

f3ican
4flcata

f3icen
fi3cer

fic4i

Sflcia
Sficla

4flca
fi3cn

fiSdel
fightS
f 1151

fiUSin

4fUy
2fin
Efina

fin2d5

fi2ne
fIin3g

fin4n
fis4ti
f412
fSless

J

flin4
flo3re

f21rS

4fa
4fn
lfo
Efon
fon4de

fon4t

fo2r
foErat

forSay
foreEt

for41

fortSa
fosS

4fEp

fra4t
fSrea

fresSc
fri2

fril4
frolS
2f3a

2ft
?4to

f2ty

3fu
fuEel
4fug
fu4o>in
fuSne
fu3rl

fusl4
fu«4«

4futa

lfy
lga
gaf4
Sgal.

3gall
ga31o
2gaa

gaSmet
gSano
ganSia
ga3nii

ganlSxa
4gano

gar6n4

ga*«4
gath3

4gatlr
4gaz

g3b
gd4
2ga.
2ged
geez4

gel41n
geSUa

ge5liz
4gely

lgen
ge4nat
geSnia

4geno
4geny
lgeo

ge3om
g4ery
Egeal
gethS

4geto
ge4ty

ga4T

4glg2

g3ger
ggln6

gh31n
ghSout

gh4to

Sgl.
Igi4a

glaEr
gllc

Eglcla
g4ico

gienS
Egiea.
gil4
g3imen

3g4in.
glnSga
6g41n«
6gio
Sglr
gir41
g3ial
gl4u

BgiT

3gll
gl2
gla4

gladSl
6glaa

lgla
gli4b

g31ig
3glo

glo3r

gl»

gn4a

g4na.
gnet4t

glnl
g2nln
g4nlo

glno
g4non

lgo
3go.

gobS

6goe
3g4o4g

go3ia
gon2

4g3o3na
gondoS

•y •

go3nl
Bgoo

goSrlz
gorSou
figot.

gOTl

g3p
lgr
4grada

g4ral
gran2

figraph.

gEraphar

EgrapMc
4graphy
4gray

gr«4n
<gree«.

4grlt

g4ro

gruf4

8*2
gSst*
gth3

gu4a

3guard
2gue

EgulSt
3gun
3gna
4gu4t

g3»
lgy
2g5y3n
gyEra

h3ab41

h*ch4
hae4a

hae4t
hSagu
ha31a
halaSa
ha'Sa
hin4ci
han4cy
Shand.
han4g

hangSar
hangSo

hEa&nlt
han4k
han4ta
hap31

hapBt

ha3ran
haErat
h»r2d

h»rd3p

har41a

harpSen

harStar
haiSs

haun4
Ehax

haz3a

Ub

V

lhead
3hear

he4can
hSecat
h4ed

heEdoS
he3141

hel4Ua

hel41y

hEelo
hea4p

he2n

hena4
henSat

heoEr
hepS

h4era
hera3p
her4ba

hereSa
h3ern

hSero«
hSary

hlea

he2aEp
h«4t

het4ad
hou4

hit
hlh
hiEan

hl4co
hlghS

M112

hiBor4
h41na
hlon4a

hl4p

hlr41
hi3ro
hir4p

hlr4r
hl«3el

hl*4a

hithSar
hl2r

4hk
4hU4

hlan4
h21o

hlo3rl
4MB

hmot4
2hln
hSodii

hSoda
ho4g

hoge4
holSar

3hol4a
ho4aa
hoae3

hon4a
hoSny
3hcod

AO0A4

y
f76«

HYPHENATION PATTERNS 77

horfiat
hoSrit
hortSa
hoSro
hoi4e
hoSsen
hoalp
Jhou«.
hou»e3
hor5«l
4h5p
4hr4
hreoS
hroEnlt
hro3po
4hl«2
h4ih
h4tar
htlen
htSe«
h<ty
hu4g
hu4min
hunSka
hun4t
hci3t4 '
hu4t
hlw
h4wart
hy3pa
hy3ph
hy2t
211*
i2al
lam*
laaSata
12an
4ianc
ian3i
4ian4t
laEp*
iaaa4
14atir
ia4trle
i4ata
Ibe4
ib3era
ib5ert
ibSia
ib3in
ibSit.
ibBlta
ilbl
Ib311
iEbo
llbr
12bSri
lSbun
41cam
Eicap
41car
14car.
14cara
lcaaS
14cay
lcc««

J •

4iceo
4ich
2icl
ificid
icSina
12cip
icSipa
14cly
12cEoe
411cr
Eicra
i4cry
Ic4t«
ictu2
ic4t3ua
ic3ula
ic4ua
icBuo
i3cur
21d
i4dai
idSanc
ldSd
ide3al
ida4a
12dl
ldSian
Idl4ar
iSdia
id3io
idifi i
ldlit
idElu
13dl«
14doa
id3o*
14dr
12dn
ldSuo
21«4
ied4«
EleSga
Iflld3
ienEa4
Ien4a
iSenn
13entl
liar.
13atc
ilaat
13et
411.
ifSaro
ltfSan
1141r
4111c.
1311a
1311
41ft

2U
iga5b
ig3era
Ight31
41gi
13glb
1(311

J

Ig3in
ig3it
14g41
12go
Ig3or
igSot
iBgra
iguSi
iglnr
13h
41E14
13j
41k
Ilia
113a4b
141ada
1216aB
llaEra
131eg
lller
Iler4
1161
1111
1131a
1121b
1131o
1141st
2ilit
1121z
lllSab
411n
ilSoq
114ty
HEur
113T

14mag
Im3aga
iraaBry
inentaSr
41met
lmll
lmSida
lmlEla
lEmlnl
41nlt
In4nl
13oon
12mn
inSuli
2in.
14n3an
4inar
Incel4
in3car
41nd
lnSdling
21na
13nee
Iner4ar
ISneaa
4inga
4inga
inBgen
41ngl
lnSgllng
4ingo

J

4ingu
2inl
lfinl.
14nia
in3io
inlis
iEnlta.
Einltio
in3ity
4 Ink
41nl
21nn
2Uno
14no4c
ino4«
14not
2ina *
' In3aa
insurEa
2int.
2in4tft
inlu
ISnus
4iny
21o
41o.
Iogo4
io2gr
ilol
Io4a
Ion3at
ion4ory
ion3i
ioEph
Ior31
14o«
ioEth
lEoti
Io4to
14our
2ip
Ipa4
iphra§4
Ip31
Ip41c
Ip4re4
Ip3ul
13qua
iqSuef
Iq3uld
Iq3ul3t
41r
lira
Ira4b
14rac
ird5e
lretde
14rel
14rel4
14res
irEgl
lrli
Irl5do
Ir4if
iri3tu
615r2iz

ir4mln
iro4g
6iron.
lrSnl
21a.
It5ag
i*3ar
ifa«S
21tlc
Is3ch
41>a
l<3er
Sisl
laShan
i*3hon
ish5op
is31b
Isl4d
iEsls
lsSltiT
41s4k
islan4
4iccs
12co
Iso5mor
lalp
Is2pi
is4py
4isls
ii4sal
is<on4
Ii4sea
l<4ta.
iilte
liltl
iet41y
41*tral
12«u
lsSua
4ita.
Ita4bl
14tag
41ta5m
13tan
13tat
21ta
it3era
ISteri
it4ea
21th
ilti
4itia
412tle
It31ca
E15tlck
It31g
it5111
12tim
21tlo
41tla
14tlsm
12t5o5n
41 ton
14traa
itSry
41tt

•J

It3nat
lEtud
It3ul
4itz.
iln
2iT
iT3ell
iv3en.
14v3er.
14ver«.
lrSil.
ii5io
lTlit
ISrora
iv3o3ro
14v3ot
415w
Ix4o
4iy
41zar
iz!4
Slzont
Sja
jac4q
ja4p
lje
jerSs
4je«tie
4Je«ty
jew3
Jo4p
6jndg
3ka.
k3ab
kSag
kala4
kal4
klb
k2ed
lkoa
ke4g
keSU
k3en4d
klar
kea4
k3eat.
ke4ty
k3f
kh4
kll
Ekl.
Sk21e
k4111
kiloS
k4ia
k41n.
kin4da
kSlneaa
kln4g
kl4p
ki«4
k51«h
kk4
kll
4kley
4kly

J

kla
kEnea
Ik2no
koSr
koah4
k3on
kroSn
4kla2
k4ae
ka41
May
kSt
klw
Iab3ic
14abo
lacU
Hade
Ia3dy
Iag4n
Iara3o
31and
Iau4dl
lanSet
Ian4ta
Iar4g
Iar3i
Ias4a
Ia6tan
41atall
41atlr
41»T
Ia4r4a
211b
Ibin4
411c2
Ice4
13cl
21d
12da
Id4era
Id4eri
Idl4
ldSla
13dr
14dri
l«2a
Ie4bl
laftS
Slag.
Elagg
Ia4nat
leaSatlc
41an.
3 lane
filana.
llant
Ie3ph
Ie4pr
leraSb
Ier4a
31erg
314eri
14ero
lo«2
laSaca
Blaaq

y

31eaa
Eleaa.
13ara
Ier4er.
leT4ara
Iev4era
31ay
41eya
211
lEtr
411g4
lSga
lgarS
14gaa
Igo3
213h
114ag
U2aa
liarElt
114»«
114ato
HSbl
Sllclo
114cor
411ca
411ct.
141cn
13icy
131da
lldSar
Slldl
Ilt3ar
14111
11411
filigata
SUgh
114gra
311k
414141

•Iln4bl
Ila31
U4ao
141a4p
141na
1141na
Iln3aa
Un31
llnkSar
USog
414iq
Ili4p
lilt
12it.
Slltlca
lSlStlct
Ilr3ar
Ills
41j
Ika3
13kal
Ika4t
111
141av
121a
ISlea
131ac

y

131eg
131al
131a4n
131a4t
1121
1211n4
lSllna
114e
lloqalS
llEoat
161ov
21a
lEaat
Ia31ng
14aod
I>on4
2 1 1 B 2

31o.
lobSal
Io4cl
4 lot
Slogle
ISogo
Slogn
Ioa3ar
Elong
Ion41
13o3nii
loodE
Plop*.
lopSl
13opa
Iora4
Io4rato
loSrla
lorfios
Eloa. <
loaSat
Slotophli
Eloiophf
Ioa4t
Io4ta
lonnSd
21ont
41or
21p
lpaSb
13pha
lfiphl
lpSlng
13plt
14pl
lEpr
411r
211a2
14ac
12aa
14.1a
41t
Itiag
Itana5
llta
lUa4
lt«ra«
1U31
Utlaa.

y

78 T\jX82 HYPHENATION PATTERNS

Hif4
lltr
Itu2
Itur3i
luBa
In3br
Iuch4
Iu3ci
Iu3en
laM
luBld
In4aa
Eluai
lSumn.
61aanla
Iu3o
Iuo3r
41up
Iuaa4
Im3t«
lint
lEren
15ret4
211*

117
41ya
41yb
lyBae
lySno
21ya4
lfyaa
laa
2mab
•a2ca
BaBchlM
aa4cl
EagSia
Saagn
2mah
naidS
4mald
na31ig
BtaSlln
•al41i
nal4ty
Baanla
canBli
man31t
4map
Biaorine.
aaEriz
mar41y
•ar3v
maSac*
nas4e
aaalt
5mate
nath3
na3tia
4matiia
4mlb
Bba4t5
mSbll
!>4b3ing
nbl4r
4»5c

./

4M.

2ned
4 med.
Soedla
aeSdie
•SeBdy
•e2g
aelEon
me!4t
ne2«
aemloS
lmen
aen4a
menBac
nen4d«
4 mono
ncn41
msni4
men«u6
3ment
aen4t«
neBon
aSeraa
2nes
Smesti
ae4ta
•et3al
oelte
meSthi
a4atr
Snetric
BeStri*
Eie3try
Be4T
4mlf
2ah
6al.
nl3a
•id4a
•Id4g
rig4
Smllit
•SiSlis
•4111
•In4a
SBlnd
aSinee
a4ingl
BlnSgli
aSingly
ain4t
a4inu
BlOt4
a2ia
nia4er.
BlaBl
aia4tl
B51atry
4alth
u21i
4mk
4all
ill
BuiaSry
4aln
«jv4a,/

J

a4nin
nn4o
IBO

4mocr
Snocratiz
mo2dl
Bo4gO
Bola2
aoiSaa
4BOIC

aoSleat
uo3me
BonSet
Bon6g«
aonl3a
Bon4iia
aon4iat
ao3niz
aonol4
ao3ny.
ao2r
4aora.
aoa2
moSsey .
ao3sp
aoth3
nSouf
3mou*
B O 2 T

4mlp
nparaS
npaSrab
aparSl
a3pet
aphaa4
a2pl
mpi4a
apSiet
o4plin
nSpir
mpBif
npo3ri
apoaSlt*
a4poua
•poTS
ap4tr
m2py
4n3r
4mla2
B4ah
mSal
4at
laa
nalaSr4
5 mult
BUlti3
3moa
mun2
4 sup
au4n •
4a*
laa
2nla2b
n4abu '
4aac.
na4ca

J

nSact
nagSer.
nak4
na41i
naBlla
4nalt
naSmit
n2an
nancl4
nan4it
nank4
nar3c
4nare
nar31
nar41
nBara
n4aa
na«4c
nasBti
n2at
na3tal
natoSmiz
n2au
nau3se
3naut
nav4o
4nlb4
ncarS
n4ces.
n3cha
nScheo
nSchil
n3chis
nclin
nc4it
ncourBa
nlcr
nlcu
n4dal
nSdan
nlde
ndSoat.
ndl4b
n5d2if
nldit
r.3dii
nSduc
ndu4r
nd2we
2ne.
n3ear
ne2b
nob3u
no2c
Bneck
2ned
ne4gat
negSatlr
Bnega
ne41a
nelSlz
ne5ai
ne4mo
lnon
4nene
3neo

J

ne4po
ne2q
nler
neraSb
n4erar
n2ere
n4erBi
ner4r
lnei
2ne«.
4neip
2neat
4nea*
Snetlc
ne4r
nSera
ne4*
n3f
n4gab
n3gel
nge4n4e
n&gere
nSgeri
ngSha
n3gib
nglin
n5git
n4gla
ngov4
ng&th
nigu
n4gum
n2gy
4nlh4
nhs4
nhab3
nhe4
3n4ia
ni3ar>
ni4ap
ni3la
ni4bl
ni4d
niSdi
ni4er
nl2fl
niEficat
nBigr
nik4
nils
nl3mii
niin
Bnine.
nin4g
ni4o
Snli.
nis4ta
n2it
r.4ith
3nitio
n3itor
nl3tr
nlj
4nk2
n5kero
n3ket

J

nk3J.n
nlkl
4nll
nEm
nne4
iunet4
4nln2
nne4
nni3al
nni4T
nob41
no3bl«
nSocl
4n3o2d
3noe
4nog
noge4
noieBi
no514i
Bnologia
3nomic
nBoSmia
no4mo
no3roy
no4n
non4ag
nonSi
n5oniz
4nop
Enop5oSli
norSab
no4rary
4nosc
nos4e
noaSt
noSta
lnou
3noun
nov3ol3
no*13
nlp4
npl4
npre4c
nlq
nlr
nru4
2nl«2
nsBab
nsatl4
ns4c
n2se
n4e3ea
naldl
nslg4
n2«l
na3n
n4soc
ns4pe
nfispi
nsta5bl
nit
nta4b
nter3»
nt21
n5tib
nti4or

J

nti2f
n3tin«
n4t31ng
nti4p
ntrolSli
nt4»
ntu3ae
nula
nu4d
nu5en
nuMfe
n3uln
3nu31t
n4ua
nulma
nBuml
3nu4n
n3uo
nu3tr
nlr2
nl«4
nyn4
nyp4
4nz
n3za
4oa
oad3
oSaSlea
oard3
oa84e
oastBa
oatBi
ob3a3b
oSbar
obe41
olbl
o2bin
obSing
o3br
ob3ul
oSco
och4
o3chet
oclf3
o4cll
o4clam
o4cod
oc3rac
ocfiratli
ocre3
Bocrit
octorBa
oc3ula
oScure
odBded
od31c
odi3o
o2do4
odor3
odSuct.
od5ucta
o4el
oBeng
o3er
oe4ta
ooeY

o2fl
oi51te
oflt4t
o2gSaCr
ogBatlr
o4gato
olge
oSgen*
oSgeo
o4ger
o3gie
lolgia
og31t
o4gl
o6g21y
3ognlz
o4gro
oguBi
logy
2ogyn
olh2
ohab5
012
olc3ea
oi3der
oiff4
oig4
oiBlet
o3ing
ointSer
oSiaa
olSaon
olatBen
oi3ter
oB]
2ok
o3ken
ok51«
olla
o41an
olam4
ol2d
oldie
ol3ar
o31eac
o31et
ol4fi
ol21
o311a
o311ce
olBid.
o3114f
oBlil
ol31ng
06II0
oBlia.
ol31sh
oSlite
oSlltlo
oBliT
011146
olSoglz
olo4r
olSpl
ol2t
ol3ub

J

ol3ua«
olSun
oElua
O12T

o21y
onSah
oraaBl
pmSatlt
oa2ba
on4bl
O2B«

oa3ena
0Bi5eraa
o4aet
oaBatry
o3ola
o&3ic.
oa31ca
oBald
omlln
oSalni
Boounend
0B04g*
o4aon
oa3pi
ocproS
o2n
onla
on4ac
o3nan
onlc
3oncll
2ond
onBdo
o3nen
onEeat
on4gu
onllc
o3nlo
cnllf
o6nlu
on3koy
on4odl
on3oay
on3i
onapl4
or,«plrBa
ontu4
onten4
on3t41
ontlfS
onBua
onraB
oo2
oodBe
oodSl
oo4k
oop31
o3ord
ooatE
o2pa
opeSd
opler
3opera
4operag
2oph

./

TgXBJ HYPHENATION PATTERNS 79

eSpham
oSphar
epSing
o3pit
oEpon
o4poil
olpr
oplu
opy5
olq
olra
oSra.
o4r3ag
orEaliX
orSanga
or«5»
oSraal
orSal
oraSsh
orSeat.
oraw4
or4gu
4oSrla
or3<C4
o5ril
orlln
elrlo
or3ity
o3riu
or2«i
orn2a
oSrof
orSoug
orfipa
Sorrh
or4aa
or*Sen
orst4
oi3thi
or3thy
or4ty
oErua
olry
oa3al
oa2c
o«4ca
o3scop
4oscopl
oSscr
o.4i4e
OSSitiT
o«3ito
oa3ity
osl4u
o«41
o2so
os4pa
os4po
oi2ti
o5statl
os5til
o«5tit
o4tan
otale4g
ot3er.
otSara

J

o4Ua
4oth
othSeal
oth314
otSlc.
ctSica
o3tlca
oStif
o3tls
otoSa
ou2
ou3bl
oachSl
ouSet
ou41
ouncEar
oun2d
O U E T

or4en
orer4na
«-. arSa
or4art
o3vi§
OTltl4
o5v4ol
ow3dar
ow3al
owSaat
owli
ownSi
o4»o
oyla
lpa
pa4ca
pa4ca
pac4t
p4ad
Spagan
p3agat
p4ai
pain4
p4al
pan4a
panSal
pan4ty
pa3ny
palp
pa4pu
paraSbl
parSaga
parSdl
3para
parSal
p4a4rl
par41a
paCta
paStar
Spathic
paSthy
pa4tric
pav4
Spay
4plb
pd4
4pe.
3pe4a

J

pear41
po2c
2p2ed
Speda
Spedl
padla4
ped4ic
p4aa
pee4d
pak4
pe41a
peli4a
pa4nan
p4enc
pen4th
paSon
p4ara.
paraSbl
p4erag
p4ari
parlfiat
per4mal
parneS
p4arn
parSo
par3ti
peEru
par IT
pe2t
paStan
paStlx
4pf
4pg
4ph.
pharSi
phe3no
ph4er
ph4ea.
phlic
Sphie
phSing
Ephisti
3phiz
ph21
3phob
Sphona
Ephonl
pho4r
4phs
ph3t
Epliu
lphy
pi3a
plan4
pi4cia
pl4cy
p41d
pSlda
pi3de
Spidl
3plec
pi3en
pl4grap
pl31o
pl2n
p41n.

' J

plnd4
p4ino
3p j lo
pion4
p3ith
piStha
pi2ta
2p3k2
Ip212
Splan
plaaSt
pll3a
pllEer
4plig
pll4n
plol4
plu4«
plnn4b
<pl«
2p3n
po4c
Spod.
poSaa
poSetS
Epo4g
poin2
Epolnt
polySt
po4ni
po4p
Ip4or
po4ry
lpos
pools
p4ot
po4ta
Bpoun
4plp
ppa5ra
p2pe
piped
p5pel
p3pen
p3per
p3pet
ppoSslta
pr2
pray4a
Spreci
preSco
pre3em
prefSac
pre41a
pre3r
p3resa
3presa
preStan
pre3v
5prl4a
prin4t3
pri4a
prls3o
p3roca
profElt
pro31
pros3a

J

prolt
2pls2
p2aa
ps4h
p4aib
2plt
pt5»4b
p2t«
p2th
ptl3aj
ptu4r
p4tv
pub 3
puo4
puf4
pulSc
po4a
pu2n
pur4r
Epus
pu2t
Eputa
putSsr
pu3tr
put4tad
put4tln
P3w
qu2
quaSr
2qua.
3quer
3quat
2rab
ra3bl
rach4e
r5acl
rai5fi
raf4t
r2al
ra41o
ran3et
r2ami
rane5o
ran4ga
r4ani
raSno
rap3er
3raphy
rarSc
rare4
rarSef
4raril
r2aa
ratlon4
rau4t
raSvai
ray3el
raSilo
rib
r4bab
14 bag
rbi2
rbi4f
r2bin
rSblna
rbSlng.

J

rb4o
rlc
r2ca
rcan4 r>e
r3cha*
rch4ar
r4cl4b
rc4it
rcu>3
r4dal
rd21
rdl4a
rdl4er
rdln4
rdSlng
2ra.
ralal
re3an
raSarr
Sraav
re4i*
rEabrat
raeSoll
recEonpa
re4cre
2r2ad
ralda
re3dis
radSit
re4fac
ra2fa
reSfar.
re3H
ra4fy
reg3is
re5it
rolli
reSlu
r4en4ta
ren4ta
relo
roSpln
re4posi
relpn
rler4
r4erl
rero4
reSrn
r4ea.
re4spl
resaSib
res2t
reSstal
reSstr
re4tar
re4t!4x
re3tri
reu2
reSutl
rey2
re4Tal
rar3al
rSeySer.
reSvors
reSyerC
reS?ll

J

rer5ol«
r»4wh

rlf

r4fy

rg2
rg3ar
r3gat
rSgie
rgl4n
rgSlng
rEgls
rEglt
rlgl
rgo4n
r3g«

rh4
4rh.
4rhil
rl3a
ri*4b
rl4ag
r4ib
ribSa
ricEas
r4ica
4ricl
Srlcld
ri4cla
r41co
ridSar
ri3anc
riSent
riler
rlSet
rlgEaft
6rigi
ril3ix
Erinan
rimSi
3rimo
rU4pa
r2ina
Srina.
rin4d
rin4o
rin4g
rilo
Srlph
rlphSa
ri2pl
ripSlie
r4iq
r31i
r4ia.
ri«4c
r3ish
rla4p
ri3ta3b
rSltad.
ritEer.
ritSers
rit31c
ri2tu
rltSur
rivSel

J

ritSat
rirSi

r3j
r3kat
rk41a
rk41in

rll
rl«4
r21ad
r4Ug
r41is
rlElak
rSlo4

rla
r«a5c
r2aa
rSaaa
raEera
raSlng
r4Blng.
r4alo
rSait

r4«y
r4nar
r3n*l
r4ner
rSnat
rSnay
rSnlc
rlnls4
rSnit
rSnlT
rno4
r4aoa
r3n«
robSl
r2oc
roScr •
ro4a
rolia
roSfll
rok2
roEker
Erole.
roa>Sat«
rom4i
rom4p
ron4al
ron4e
roSn4ia
ron4ta
lrooa
Sroot
ro3pel
rop3ic
ror3i
roSro
ros5par
ros4a
ro4tha
ro4ty •
ro4va
rovSol
rox5

rip
r4paa

/

r!pr«t
rpSar.
r3pat
rp4h4
rpSing
r3po

rlr4
rre4e

rr«4l
r4reo
rre4ft

rrl4a
rrt4»
rrou4
rroa4
rry§4
4ra2
rlaa
naBtl

r*4c
r2ta
rSaac
raa4cr
raEar.
r»3aa
raaSrS
rlak
rSaha
rial
r4sl4b
raonS
rlap
rEav
rtach4
r4tag
rStab
rt«n4d
rtaSo
rltl
rtBlb
rtl4d
r4tior
r3tlg
rtllSt
rtiUl
r4tily
r4tlat
r4tlT
r3tri
rtroph4
rt4ah
ru3a
ru3e41
ru3en
ru4gl
ru3ia
nw3pl
ru2a
runkS
run4ty
rSaac
rutlEn
rv4e
rvel41
r3ven
ryBer.

v/

80 1£X8> HYPHENATION PATTERNS

rEreet
rSrey
r3ric
T T 1 4 T

r3ro
rlw
>7<c
Srynga
rjr3t
•a2
2* lab
Stack
tacSrl
tSaet
Stai
•»lir4
•a!4a
taSlo
•al4t
3aanc
•an4da
• lap
•aSta
SiaStle
•atSn
•au4
•aSTor
fiia*
4«Sb
•can4tS
• ca4p
•cavS
• 4ced
4scei
e4cee
•ch2
•4che
3s4cla
Eacin4d
ecleS
•tell
•coM
4icopy
•conr5a
alcn
4eSd
4te.
•e4a
seai4
aeaSw
•e2c3o
3eect
4i4ed
•e4d4a
• Sedl
•»2g
•eg3r
5aei
•ella
heelt
Eselr
A s erne
•e4aol
lenSat
4senc
•en4d

/

eSened
»»i.5g
•Benin
4»entd
4tentl
•ep3a3
4il«r.
• 4erl
«er4o
4fervo
tla4«
•eSah
•eiSt
EieSua
Slav
»ey3en
•aw4i
6iez
4«3f
2«3g
• 2h
2§h.
• Mar
Ether
thlin
•h3io
3ahip
ahlvS
«ho4
•hSuld
• ho.i3
•hor4
•hortS
4ihw
silb
•Slcc
Slide.
Eaidee
Etidi
•iEdii
4«igna
• il4e
4til7
2»lin
•2ina
Seine.
•3ing
leio
Salon
•lonSa
• 12r
•irSa
leie
3altlo
Eiiu
lliT

Saiz
•kS
4ske
•3ket
•kEine
akEing
• 112
•31at
•21e
•llthS

J

2»1«
•3ma
anal13
•aanS
aael4
eSnen
Eaalth
••olEd4
•In4
leo
•o4ce
•oft3
•o41ab
•ol3d2
•o311c
EeolY
S»o«
3a4on.
iona4
•on4g
•4op
Saophle
•Sophls
•Sophy
•orEc
•orSd
4*OT
•oSrl
2ipa
Sepal
•pa4n
•pen4d
2«5peo
2iper
•2phe
Sapher
•phoS
•pil4
ipSing
4«pio
.4ply
•4pon
•por4
4spot
•qual41
air
2ee
•lea
••aa3
•2eSc
•3eel
•5aeng
e4iei.
•S*et
• lei
»4«le
••14er
•s5ily
• 4al
••411
•4sn
••pend4
••2t
••urSa
••Ew
2a t.

y

>2tag
•2tal
•tan4i
Estand
•4ta4p
Satat.
•4ted
iternSl
•Staro
•ta2v
•tewSa
•3tha
•t21
•4tl.
•Stla
title
Sstick
•4tla
•3tif
•tSlng
Estlr
• ltla
Sstock
•tom3a
£•tone
•4 top
Sitore
•t4r
•4trad
Estratu
«4tray
•4trid
4atry
4et3w
»2ty

In
•ulal
su4b3
«u2g3
8U5il
suit3
«4ul
•u2o
•un3i
EU2JI

•u2r
4«T
•w2
4iwo
•4y
4»yc
Ssyl
•yn5o
•y5ri*
lta
3ta.
2tab
taSblsa
Stabollt
4taci
ta5do
4taM
taiSlo
ta21
taSla
talSen

J-

talSi
4talk
tal41i«
taSlog
taSmo
tan4da
tanta3
taSper
taSpl
tar4a
4 tare
4 tare
ta3rlx
ta*4e
taSiy
4tatie
ta4tur
taun4
tav4
2taw
taz41e
2tlb

lie
t4ch
tchSet
4tld
4ta.
t.ead41
4te»t
teco4
Etect
2tled
teSdi
ltee
t«g4
te5ger
te5gi
3tel.
teli4
Btele
ta2ma2
teo3at
3tenan
3 tone
3 tend
4tenee
ltont
ten4tag
lteo
te4p
te5pa
t«r3c
Ster3d
lteri
ter5ie»
ter3is
terlEza
Sternit
terSv
4tos.
4te«a
t3os».
tethSa
3teu
3 tax
4tey

•J

2tlt
4tlg
2th.
than4
th2e
4 the*
th3ei»
theSat
tho31e

Sthat
thSle.
thBica
4thll
Sthink
4thl

thEoda
Ethodlc
4thoo
thorSlt
thoSris
2th«
ltla
tl«ab
U4ato
2tl2b
4tick
t4ico
t4iclu
Etidl
3tlan
tlf2
tlBfy
2tig
Stign
tillSin
ltiB
4timp
tim5ul
2tlin
t2ina
3tine.
3tini
ltio
ti5oc
tionSaa
5tiq
ti3>a
3ti«e
tia4n
tl5eo
tie4p
Sti»tica
ti3tl
ti4a
ltiT
tiv4a
ltiz
tl3za
ti3zon
2tl
tSla
tlan4
3tlo.
3tled
3tle».
tSlet.

y

tSle
4tl«
t*o4
2tln2
lto
to3b
toScrat
4todo
2tof
to2gr
toSlc
to2aa
tom4b
to Say
ton4all
toSnat
4tono
4 tony
to2ra
to3rie

torBls
toi2
Etour
4 tout
toSvar
4tlp
ltrt
traSb
traSck
tracl4
trac41t
trac4ta
tra»4
tra5ven
travSelS
treSf
tr«4a
tremSl
Etria
triSce*
Etricla
4trica
2tria
tri4T
troSai
tronSi
4trony
tro5pha
tro3ep
tro3r
truSi
true4
4tle2
t4ec
tsh4
t4cw
4t3t2
t4tei
tSto
ttu4
ltu
tula
tu3ar
tu4bl
tud2
4tue

4tnf4
EtttSi

Stoa
U4nlt
2tSup.
Stura
Sturl
tnrSla
turBo
tuSry
3tu«
4tT
t»4
4tlva
t«i«4
4tTO
lty
4tya
2tyl
typaS
tySph
4ti
tx4e
4mb
u»c4
uaEnt
nan4t
uarSant
uar2d
narSl
uarSt
ulat
uav4
ub4a
u4bel
u3ber
u4bara
ulb41
u4bSlhg

• u3bla.
u3ca
ucl4b
uc4it
ncla3
u3cr
u3cu
u4cy
udSd
ud3er
udEest
udev4
oldie
ud3ied
uJ3ie«
ud5i«
uSdit
u4don
ud4sl
u4du
u4ena
uens4
uen4ta
uer411
3ufa
u3fl
ugh3en

J

mgSU
2nl2
nilBli

«14n
ullng
ulr4a
ulta4
U1T3

«lT4ar.

afj
4ok
nllt
ul*Bb
nBliti
alch4
Eulcha
ulSder
«14a
«Uaa
nl4gl
ul2i
nSlla
ulSlng
ulSlsh
vl41ar
ul4114b
nl411f
4ulSa
ull4o
4ul.
ul«5aa
nlltl
«ltra9
4«ltn
a31n
ulBul
ulSr
uaEab
\im4bi

ua4bly
ulal
n4a31ng
oaorSo
ua2p
unat4

n2na
un4er
ulnl
un4ia
u2nin
nnSiah
IU\13T

un3»4
un4ow
unt3ab
un4ter.
un4tee
unu4
unEy
unSz
u4ore
nSo*
ulou
ulpe
uperS*
uSpla

\ njX82 HYPHENATION PATTERNS
81

opSlng
. a3pl

np3p
apportS
nptSlb
aptu4
olra
4ura.
n4rag
u4ra» ,
or4ba
nrc4
arid
uraEat
ur4far
ur4fr
u3rif •
urHflc
urlin
uSrlo
nlrit
urSis
or2i
arising.
ur4no
uro»4
ur4pe
nr4pl
artSar
orStaa
ur3the
urti4
uMtla
o3ro
2ua
uEsad
oSaan .
aa4ap
o»c2
uaScl
uaeSa
uSala
u3aic
ui411n
uilp
uaSil
utStar*
ualtr
n2«u
osur4
uta4b
u3tat
4uta.
4utel
4uten
uten4i
4ult21
at!Sill
u3tina
ut3ing
utlonSa
u4tia

' SuEtlx
u4tll
utSof
utoSg

ntoGnatlc
oSton
u4tou
Qtf4
o3u
uu4«
Q1T2

uru3
nx4a

. Ira
Era.
2rla4b
racSll
rac3n
rag4
Ta4g«
T.Elia
TalEo
T»llU
raSao
TaEnix
raSpl
varSlad
Srat
4T6.
4rad
TegS
T3«1.

T « 1 3 H

ra41o
T4ely
Ten3oa
TEanua
T4erd
ETara.
T4eral
T3eran
verSenc
v4eraa
rer3ie
Terni4n
3reraa
Tor3th
T4e2«
4rea.
Tea4ta
ve4ta
tet3or
re4ty
TlSall
fiTlan
Erida.

- Srlded
4r3iden
Erldaa
STldi
T311

yiSgn
vik4
2Til
Evllit
v3i31ix
Tlin
4ri4na
T2inc
TlnSd

J

4Tlng
rio31
T3io4r
TllOU
Ti4p
TlSro
Til3it
T13IO

Tl3au
4Titi
rit3r
4Tlty
3T1T

ETC
T0i4 .
STO)C

To41a
TSola
ETOlt
STOIT

TOBSI

TorEab
Tori 4
To4ry .
To4ta
4T0ta«
4TT4

T4y
wSabl
2wac
waSgar
wagSo
waits
wSal.
waa4
war4t
wat4t
walta
waSTer
wlb
weaSria
reath3
wed4n
weet3
weeST
wel41
wlar
weatS
w3eT
whi4

vlS
wil2
wlllSin
wln4de
wln4g
wir4
3wisa
«ith3
wixS
w4k
il4o«
wl31n
w4no
Iwo2
woal
soSren

J

»5p
Tra4
wri4
wrlta4
w3ih
wt41
wi4pa
wEi4t
4wt

zla
xacSa
z4ago
zao3
z4ap
zaaS
z3c2
zla
ie4coto
z2ed
zer41
zeSro

x)h
xhl2
zhilS
zhu4
z3i
zlSa
ziEc
ziSdi
x41ma
xiEmlz
z3o
z4ob
x3p
xpan4d
xpectoS
xpe3d
zlt2
z3tl
Zla
xu3a
zx4
ySae
3yar4
y5at
ylb
yi<=
y2ca
ycSer
y3ch
ycMa
ycoa4
ycoU
yld
yEea
ylar
y4arf
ye»4
ye4t

ysgi
4y3h

yii
y31a
ylla5bl
y31o

J

y51tt
yabolS

y»e4
ynpaS
yn3chr
ynSd
ynfig
ynBlc
Bynx
ylo4
yoEd
y4oSg
yoa4
yoEnat
y4ona
y4ot
y4ped
yperB
yp3i
y3po
y4poc
yp2U
yBptt
yraEa
yrSla
y3ro
yr4r
ya4c
y3«2«
yt31ca
yi3io
3yai(
y4io
y»f4
yslt
y»3ta
ygar*.
y3thi«
yt3ic
ylw
zal
z5a2b
zar2
4zb
2x*
ze4n
za4p
zler
ze3ro
xat4
2x11
* • *i411

z41a
Exl
4za
lzo
zo4a
zoBol
zta4
4zlz2

x4zy

<

Answers

moun-tain-ous vil-lain-ous

be-tray-al de-fray-al por-tray-al

hear-ken

ex-treme-ly su-preme-ly

tooth-aches

bach-e-lor ech-e-lon

.riff-raff

anal-o-gous ho-mol-o-gous

gen-u-ine

any-place

co-a-lesce

fore-warn fore-word

de-spair

ant-arc-tic corn-starch

mast-odon

squirmed

82

References

[1] Knuth, Donald E. T&Land METflFONT, New Directions in Typesetting. Digital
Press, 1979.

[2] Webster's Third New International Dictionary. G. & C. Merriam, 1961.

[3] Knuth, Donald E. The WEB System of Structured Documentation. Preprint,
Stanford Computer Science Dept., September 1982.

[4] Knuth, Donald E. Tie Art of Computer Programming, Vol. 3, Sorting and
Searching. Addison-Wesley, 1973.

[5] Standish, T. A. Data Structure Techniques. Addison-Wesley, 1980.

[6] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. Algorithms and Data Structures.
Addison-Wesley, 1982.

[7] Bloom, B. Space/time tradeoffs in hash coding with allowable errors. CACM

13, July 1970, 422-436.

[8] Carter, L., Floyd, R., Gill, J., Markowslcy, G., and Wegman, M. Exact and
approximate membership testers. Proc. 10th ACM SIGACT Symp., 1978, 59-
65.

[9] de la Briandais, Rene. File searching using variable length keys. Proc. Western

Joint Computer Conf. x5, 1959, 295-298.

[10] Fredkin, Edward. Trie memory. CACM 3, Sept. 1960, 490-500.

[11] TVabb Pardo, Luis. Set representation and set intersection. Ph.D. thesis, Stan-
ford Computer Science Dept., December 1978.

[12] Mehlhorn, Kurt. Dynamic binary search. SIAM J. Computing 8, May 1979,
175-198.

[13] Maly, Kurt. Compressed tries. CACM 19, July 1976, 409-415.

[14] Knuth, Donald E. Tj$L82. Preprint, Stanford Computer Science Dept., Septem-
ber 1982.

[15] Resnikoff, H. L. and Dolby, J. L. The nature of affixing in written English.
Mechanical Translation 8, 1965, 84-89. Part II, June 1966, 23-33.

[16] Tie Merriam-Webster Pocket Dictionary. G. & C. Merriam, 1974.

[17] Gorin, Ralph. SPELL.REG[UP,DOC] at SU-AI.

[18] Peterson, James L. Computer programs for detecting and correcting spelling
errors. CACM 23, Dec. 1980. 673-687.

83

84 REFERENCES

[19] Nix, Robert. Experience with a space-efficient way to store a dictionary. CACM

24, May 1981, 297-298.

[20] Morris, Robert and Cherry, Lorinda L. Computer detection of typographical

errors. IEEE Trans. Prof. Comm. PC-18, March 1975, 54-64.

[21] Downey, P., Sethi, R., and Tarjan, R. Variations on the common subexpression

problem. JACM 27, Oct. 1980, 758-771.

[22] Tarjan, R. E. and Yao, A. Storing a sparse table. CACM 22, Nov. 1979,608-611.

[23] Zeigler, S. F. Smaller faster table driven parser. Unpublished manuscript, Madi-

son Academic Computing Center, U. of Wisconsin, 1977.

[24] Aho, Alfred V. and Ullman, Jeffrey D. Principles of Compiler Design, sections

3.8 and 6.8. Addison-Wesley, 1977.

[25] Pfleeger, Charles P. State reduction in incompletely specified finite-state ma-

chines. IEEE Trans. Computers C-22, Dec. 1973, 1099-1102.

[26] Kohavi, Zvi. Switching and Finite Automata Theory, section 10-4. McGraw-

Hill, 1970.

[27] Knuth, D. E., Morris, J. H., ar. i Pratt, V. R. Fast pattern matching in string*.

SIAM J. Computing 6, June 1977, 323-350.

[28] Aho, A. V. In R. V. Book (ed.), Formal Language Theory: Perspectives and

Open Problems. Academic Press, 1980.

[29] Kucera, Henry and Francis, W. Nelson. Computational Analysis of Present-Day

American English. Brown University Press, 1967.

[30] Research and Engineering Council of the Graphic Arts Industry. Proceedings of

the 13th Annual Conference, 1963.

[31] Stevens, M. E. and Little, J. L. Automatic Typographic-Quality Typesetting

Techniques: A State-of-the-Art Review. National Bureau of Standards, 1967.

[32] Berg, N. Edward. Electronic Composition, A Guide to the Revolution in Type-

setting. Graphical Arts Technical Foundation, 1975.

[33] Rich, R. P. and Stone, A. G. Method for hyphenating at the end of a printed

line. CACM 8, July 1965, 444-445.

[34] Wagner, M. R. The search for a simple hyphenation scheme. Bell Laboratories

Technical Memorandum MM-71-1371-8.

[35] Gimpel, James F. Algorithms in Snobol 4. Wiley-Interscience, 1976.

REFERENCES 85

[36] Ocker, Wolfgang A. A program to hyphenate English words. IEEE Trans. Prof.
Comm. PC-18, June 1975, 78-84.

[37] Moitra, A., Mudur, S. P., and Narwekar, A. W. Design and analysis of a hy-

phenation procedure. Software Prac. Exper. 0, 1979, 325-337.

[38] Lindsay, R., Buchanan, B. G., Feigenbaum, E. A., and Lederberg, J. DENDRAL.

McGraw-Hill, 1980.

