THE IMP-77 LANGUAGE

Asimplemented by
PETER S. ROBERTSON

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF EDINBURGH

A REFERENCE MANUAL

first edition: DECEMBER 1977
this edition reproduced: FEBRUARY 2003

INTRODUCTION

IMPisan"ALGOL-like" high-level language. Relativeto ALGOL 60, the language adds program
structuring, data structuring, event signalling, and string handling facilities, but removes (or retainsin a
modified form) intrinsically inefficient features such as the ALGOL 60 name (substitution) parameter.

The language, based on Atlas Autocode, was originally designed as the implementation language for the
Edinburgh Multi-Access System - hence its name - but has since been used successfully for implementing
systems, teaching programming and as a general-purpose programming language on many different machines.

Two of the magjor design aims were:

1. The language should compile to efficient machine code.

2. The syntax of the language should be verbose rather than obscure.

The main disadvantage of IMP isthat it is not currently in widespread use.

Most IMP systems provide comprehensive compile-time and run-time diagnostics, together with an option to
suppress generation of run-time checks when compiling tested programs.

Input/output facilities are provided through the externa procedure mechanism and are therefore open-ended
and can be defined as required, though a standard set of procedures is supported.

PROGRAM LAY OUT CONVENTIONS ...ttt ettt e e e s e et s e s s s s e s aa s s e e e s s eaabaa s 1
INEWVLINE . ettttteteeeeeeeettee e e e e e e et et b e s e e eesee e aba s s see s e e e ab b s eeas s e e e s b s sseas s e e e b b s seas s e e e b ba s ssee s e e e s baansseessensbrannsseeanns 1
R = N 1
(IO TLY7 = O X o Iy = =T 1
L U 11 T SRR 1
] = 1 = 1
YN I =Y 1= 5N 2
TERMINATION .ettttuueteeesteettssasseesseesssasasseesssesssasasssesssesssssasssessessssansssesssesssssnssseessesssssnsseeesesssssnnsseesssessssnnnses 2
INULL ST ATEMENT S e ttttuuttieetitetttessseesstessssasssesseeesssasstessseesssaastesseessssanseessesssssnsseesseessssnnssseessesssrsnnseeesnes 2
NS 1 L0 L) 2
CONTINUATION .t ttttttseeeeeeettssassseesseesssaassssesseesssaaasseasessssaaasseassesssaaasssasssssssannsssessessssssnssseessesssssnnsseesseensnnn 2
LISTING CONTROL ...cetttuuiiieeiitttttesseeesseessasasseessseesssateasseessaaassesseesssaaseessessssansseesseessssnssseessesssrnnsseesnes 3
N T T 3

(OO 1\ ST 1N 1 15 4
INTEGER CONSTANTS (FIXED POINT) . ..eittitieittesie ettt ettt ettt ettt ettt et ettt e 4
REAL CONSTANTS (FLOATING POINT) w.eetieitieitieitiestee st sttt ste e sttt sttt st e e st e sbeesbeesbeesbeesbeesbeesbeesbeenbeenbeens 4
ST RING CON ST AN T S et ttttttttttessteesttettaastessteestsasreateesssaatsasseestaaasssasssesssannsseesssesssanssssessesssssnsseessresrnen 4

L S S O]\ 1T 6
ARITHMETIC EXPRESSIONSeettttuusteeeteessstassesessesssssssssssesssssaseesseesssssstesstesssuteesseesrn et 6
BIT-V ECTOR EXPRESSIONS.....ccttuuiitieiiiettsussseesstssssssesssseessssseesseessssseesseesssmteesteessrmsreesrersin e 6
STRING EXPRESSIONS......eititttttiissieetitetttassseesseestsassesseesssaateesteestaatesteesssannstessteesssassessseessssansseeesressnns 7
PRECEDENCE OF OPERATORS. ...tttttutttettttststasseeestsssssaseesssessssastesseessssteesteests ettt 7

DECLARATIONS. ...ttt sasass s sas s nan 8

RECORD ELEMENT SELECTION ..ottt ettt e ettt s s s e s s e eab s s s s s s eseaba s s eessseesbananses 11

(O LT AT A L Y 7N 7 = I 12

IINTTTALTSATION cceeiiieiiiiiiiiieteeeeeeeeeeeeee et eeeeeeeee et seeeseeeeeeaeesesee s e e asaeesaassseesssasaessase s s seseassesesnsesssenssssssssnssnnnnnns 12

CONST ANT IDENTIFIERS ... oottt ettt e e e e e e e e e e e e e e e e e e e s e s e s e s s s s s e s s e s s s s e s s s s s sssenssaananan 12

F N N PR RRPRTRRRRTRRPPRRRIRE 14

A S S GINIVI EINT ..eteetteittttetesetseeeaeeeese s eeeeea s sesasesaesssaeassssesseeeeasasssessseeseesaeseseesssesssseesssesessessnssnssnsssnnnnnnssnnssnnnnnns 15

RECORD ASSIGNMENT ..outuiiiitiiee s nan 15

STRING RESOLUTION Lottt ettt ettt et e e et et e s s s s e s s s s s s s s s s s s s s s s s s e s s e s s s s s sssssssssssssssssssssssssssssssasssaaaan 16

(00N 5 1 I 1 71 7 17
EVALUATION OF CONDITIONS. c.tttuuutteeettestssassseeseessssssessssessssssssssseesssnseeeseesssssteeteeessin e 18

CONDITIONAL ST AT EM ENT S . e et r e e e s ettt s s e e e s e e s st s s eeessersabanreeaanes 19

ALTERNATIVE FORIMS.....ooeeeiteettttttttetteeeesteessssasssrnnn 19

REPETITION (LOOPS OR CY CLES) ...ttt iieiiie e eee st se e ste e st e stee e sree e snteesnteesteesssenesnaeesnseesnseesnees 21

SIMPLE FORMS S OF LOOP. ..ottt ettt e e e ettt s s e e e e et et s s e e e s e esa b s eeesseesbbanreeaenes 21

CYCLE CONTROL INSTRUCTIONS.......ooiiiititeitit ettt sne e sne s nne e sneeennre e 22

JOINING INSTRUCTIONSUSING ‘AND ...ttt 22

BLOCK STRUGCTURE ...ttt ettt ettt et e b e e ss et e sar e e s n e e an e e e snn e e nnreenreeeanes 23
BEGIN BLOCKS.. .. ettt ettt ettt b et h et e s st e s bt e e R et e e b et e sh et e s ar e e s n e e e b e e e snn e e sareenneenanes 23
LOCAL AND GLOBAL VARIABLES......c oottt 24
PROCEDURES ...ttt et h et s st e s st e s bt e e R et e e b et e sh et e s b e e s n e e e b e e e snneesareennneeennes 25
PARAMETERS.....c ettt s e bt s bt e sh e e s b e e s n e e e n e e snr e nar e e s ne e nnes 27
PROCEDURE PARAMETERS. ...ttt ettt n e e 28
GENERAL TYPE PARAMETERS...... .ottt ettt nnee e 28
PROCEDURE SPECIFICATION ..ottt ettt sne et nnee e snne s e nneeennes 30
CONTROL TRANSFER INSTRUCTIONS......cctii ittt ne e 31

LABELS AND JUMPS ...ttt ettt ettt e sab e r e n e e e sb et e s nr e e sr e e s nne e e snneennreenns 31
OTHER CONTROL TRANSFER INSTRUCTIONS.... ...t 32
EXTERNAL LINKAGEottt ettt ettt ane et s e e s n e an e e e ann e e nnr e e s ne e eanes 33
PREDEFINED PROCEDURES ...ttt nn e snn e s e nneeenes 34
Y N T OSSP RPN 35
APPENDIX L.ttt h e sttt E R e n Rt e R et aR e R r e n e e nr e e reeennne s 38
COMPILER ERROR MESSAGES........oo ottt ettt snee et e sne s sne e nneeennne e 38
APPENDIX 2.ttt E e e e n et Rt aR e e n Rt e n e nr e e r e nnre s 39
SAMPLE PROGRAM LISTING ..ottt ne e nnne e nnre e 39
APPENDIX 3.ttt ettt E e e e n Rt e R et aR e e R e e nr e e nr e e r e nnne s 40
DATA PRECISION SPECIFICATION ..ottt 40
APPENDIX 4.ttt E e e et Rt aR e R e e s e n e e r e nnne s 41
IMP KEYWORDSttt et e b s bt e s st e st e e e b e e e ebe e e ss et e nnr e e sne e e neeennee s 41
APPENDIX 5.ttt e Rt aR et nr e ar e r e nnne s 42

COMPARISON WITH EMAS IMP...eieee ettt sne e nnee e 42

PROGRAM LAYOUT CONVENTIONS

An IMP program is a sequence of statements constructed using the ASCI| character set extended with an
underlined aphabet. Underlined letters, which are used to form keywords, are generated using the shift
character percent (%), which is defined as underlining all subsequent letters, the underlining being terminated
by any non-al phabetic character.
Hence the following statements are equivalent:

YSTRI NG (7) YARRAY I9NAVE P

YSTRI NG (7) YARRAYNAME P
and both represent:

string(7)array nane P

In this manual, keywords are in lower case and underlined.

Newline

The NEWLINE (or LINE BREAK) character is ASCII character 10 (LF).

Spaces

Except when used to terminate keywords or when between quotes (see Quotes) spaces are ignored by the
compiler and may be used to improve the legibility of the program.

Lower Case Letters

Except when enclosed in quotes (see Quotes) lower case letters are equivalent to upper case letters.

Quotes

Several language constructions call for one or more characters to be enclosed in quotes; between quotes all
characters are significant and stand for themselves.

N.B. Space, newline, and percent characters may appear between quotes and stand for space, newline, and
percent.

Two quote characters are used:

- symbol quote eg. A’

- gtring quote e.g. "FRED"

If it is required to include the delimiting quote within the text it must be represented by two consecutive
quotes: e.g.

""" -the symbol quote
"A ""big"" dog" - astring of eleven characters

However, note: "' and "it's mine"

Identifiers

Anidentifier is a sequence of any number of letters and digits starting with a letter, e.g.
MAX, X, CASE 1, CASE 2, CASE 2B

All letters and digits are significant.

Except in the case of simple labels (see Control Transfer Instructions) all identifiers must be declared before
they may be used (see Declarations).

Statements

A STATEMENT is a sequence of atomic elements (keywords, constants, identifiers, etc.) arranged according
to the syntactic rules of IMP.

Termination

Every statement must be terminated by a hewline or a semicolon (however, see Comments).

Null Statements

There are two types of null statement, both of which are ignored by the compiler. They may be used to
improve the legibility of the program.

1. Redundant terminators, e.g. blank lines
2. Comments

A comment is any sequence of characters (the "comment text") preceded by a comment mark and ending
with a newline character (note: a semicolon does not terminate a comment; it isincluded as part of the
comment text).

The comment marks are either the keyword comment or an exclamation mark (1); e.g.

conment main |oop starts here
I return here on error

As a semicolon does not terminate a comment it is a simple matter to ‘comment out’ sections of code.

COWPUTE CASES

I if CASES < O start

! DI SPLAY DATA; NEWLI NE; TI DY UP
! stop

Ifinish

HANDLE CASES

(Also see note on continuation)

Instructions

An instruction is any imperative statement which may be made conditional, and is either an assignment, a
Routine call, or a control transfer.

Continuation

A statement may extend over several physical lines provided that each line break occurs after acomma, or is
preceded by the keyword c. E.g.

if X=YthenP=1c
else P=0

is exactly equivalent to:
if X=YthenP

lelseP=0

Notes

1. A statement may have an unlimited number of continuations.
2. Theline break following c causes underlining to be terminated.

3. cisonly permitted between complete atoms of the language; that is, it may not split keywords, constants,
etc.

4. %C between quotes stands for the two characters percent and C.

5. The effect of acomment mark is limited to one physical line (see Null statements).

Listing Control

During the compilation of a program aline-numbered listing is produced. The statements list and endoflist
may be used respectively to enable or disable the listing for selected parts of a program. The default is for
listing to be enabled.

Include

A file of statements (terminated by "end of file") may be compiled into a program by giving the statement
"include" {file specification}

where {file specification} is a string constant representing a (system dependent) file name. E.g.
i ncl ude "ECSC17. LI STVARS"

Refer to the relevant appendix for details of system-dependent limitations on the use of include.

CONSTANTS

Integer Constants (Fixed Point)

a) DECIMAL constants
A decimal constant is a sequence of decimal digits. For example:
7, 43, 2195, 0, 8, 100 000 000

b) NON-DECIMAL constants

The prefix {decimal constant}" " may be used to specify the base of the following constant. The letters A,
B, ..., Z are used to represent the ‘digits’ 10, 11, ..., 35

E.g.

2 1010 - binary ten

8 12 - octal ten

16 a - hexadecimal ten

¢) CHARACTER constants

The ASCII code value of any character may be obtained by enclosing the character in single quotes. When
the required character is asingle quote it must be represented by two consecutive single quotes.

EXaraneS: IAI, Ial, I+I1 IOI, IIII, IIII, ' I, 1
Note the last three examples, which represent the code values for single quote, space, and newline.

The predefined named constant NL may be used in place of the rather cumbersome form of a newline
character enclosed in quotes.

d) MULTI-CHARACTER constants

The previous form may be extended to pack together the codes for several charactersto form asingle
integer constant.

"over', 'Max', 'I+2', ‘*@®’
The exact nature of the packing and the maximum number of characters which may be packed are both
machine dependent.
An integer expression with operands which are constants may be used wherever an integer constant is required
(see Expressions).

Real Constants (Floating Point)

A real constant is a sequence of decimal digits optionally including one decimal point.

The constant may also be followed by a scaling factor of the form " @"{ signed integer constant} meaning
"times ten to the power { signed integer constant}". For example, the following real constants all have the same
value:

120. 0, 120, |.2@, 12@, |1200@I

Note that a decimal integer constant is a specia case of areal constant.

String Constants

A string constant is a sequence of not more than 255 character enclosed in double quote characters - a double
guote being represented inside a string constant by two consecutive double quotes.

E.Q. "STARTING TIME", "x = y*4+Zz", "a""red"" hood"

a) "A"isastring constant of one character. 'A' is acharacter (integer) constant.

b) The null string, a string of no characters, is permitted and is represented by two consecutive double quotes

).

EXPRESSIONS

Arithmetic Expressions

An arithmetic expression is a sequence of operators and integer or real operands obeying the usual rules of
algebra. An operand is either a constant, a variable, afunction call, amap call, or a numerical expression
enclosed in parentheses (see Declarations and Procedures).

a) Integer Expressions
All the operands and operators in an integer expression must yield an integer value.
The operators available are;
+ addition
- subtraction or unary minus
* multiplication
/I integer division (the remainder of the division, which is of the same sign as the dividend, is ignored).
\\ integer exponentiation. The second operand (the exponent) must be a non-negative integer.
b) Real Expressions

All the operands and operatorsin areal expression must yield real (or integer) results. Where an operator
will take either real or integer operands (E.g. *) and the types of the given operands differ the integer
operand will be converted to areal value, otherwise the result of the operation will be of the same type as
the original operands. The pre-defined real function FLOAT may be used to force the conversion of an
integer expression into areal expression.

The operators available are;

+ addition

- subtraction or unary minus
* multiplication

[division

\ real exponentiation

The modulus or absolute value of an expression (integer or real) may be obtained by enclosing that
expression between vertical bars.

E.g.
| X-Y]
Notes
1. Unary minusistreated as"0- ..."
2. Unary plus (+) is not accepted.

3. An expression may not contain two adjacent operators - they must be separated by parentheses.
E.g. 23*(-14)

4. Integer values will be converted to real where necessary, but real values will never be converted to
integer unlessthisis explicitly specified using the pre-defined functions INT or INTPT.

Bit-Vector Expressions

All operands must yield bit-vector (integer) values. The operations are performed on a bit-by-bit basis using
the operators:

& AND

! INCLUSIVE OR

I EXCLUSIVE OR

« LEFT SHIFT (logical)

» RIGHT SHIFT (logical)

\ COMPLEMENT (unary not)

It is possible to mix integer and bit-vector expressions but the full implications of this may be machine
dependent.

String Expressions

All operands of a string expression must yield values of type string. The only operator availableis "." for
concatenation (joining together). No sub-expressions in parentheses are permitted.

E.Q. "MR".SURNAME

Precedence of operators

Highest: 1. \(unary not)
2.\ <<, >>
3. *LIL&
Lowest: 4. +, - (unary and binary), !, !l

In general, sub-expressions with operators of equal precedence are evaluated from left to right.

The precedence rules may be over-ridden by means of parentheses.

Note:
-1\\2 = -1
(-HD\W2 =1
2\WW2\\3 = 4\\3 = 64

DECLARATIONS

All identifiers (except simple labels) must be declared at the start of ablock before they are used. The scope
of anidentifier isthe rest of the block in which it is declared, including any blocks subsequently defined
therein (see Block Structure and note 3 on Labels and Jumps).

In the following discussion the phrase {type} has four variants:
1. "integer”

"real "

"string" "(" {max} ")"

"record" "(" {format} ")"

W

and {max} is an integer constant in the range 1 <= max <= 255 defining the maximum number of
characters which may be held in the string.

{fmt} defines the structure of therecord (see Records).

Variables

a) Simple Variables

{type} {idlist}

i nteger J, K, COUNT

real PRESSURE

string (30) COUNTRY, TOM
record (CARFM M N, ROVER

Each variable is alocated an appropriate (machine dependent) amount of storage to hold a value of the
appropriate type.

b) Pointer Variables
{type} "name" {idlist}

i nteger nane P

real nane DATUM

string (15) nanme WHO WHERE
record (CARFM nane CAR

Each variable is allocated enough storage to hold a pointer to (i.e. the address of) a simple variable of the
specified type.

c) Array Pointer Variables
{type} "array" "name" {idlist}

or

{type} "name" "array" "name" {idlist}

i nteger array nane AN

real array name VALUES

string (20) array name NAMES, ADDRESSES
record (CARFM array nane MAKE

real nane array nane ANSWERS

Each variable is allocated enough storage to hold a pointer to (i.e. the address of) an one-dimensional array
of the specified type.

. "arra! ZII n (II {di m} II)II "nalne" { idllg}

is provided for declaring pointers to multi-dimensional arrays. E.g.

real array (4) name SPACE TI ME
i nteger nane array (2) nane LISTS

Arrays

{type} "array” {adefn} (*," { adefn})*
or

{type} "name" "array” { adefn} (*," {adefn})*

{adefn} :={idlist}"(" {pair} ("," {pair})* ")"

{pair} ::={integer exprn} ":" {integer exprn}
integer array A(1:10) ,B,C(-4:LIMT)
real array QI:J+K, [:J-K)
string (12) array CLASS(-7:16)
record (CARFM array TABLE(LOWNER UPPER)
i nteger nanme array pointers(1:12)

The bound pairs, { pair}, are evaluated and the required amount of storage is allocated to each
identifier.
Note

1. Ineach bound pair the value of the first expression (lower bound) must be less than or equal to the value of
the second expression (upper bound).

2. The number of bound pairs (the dimension of the array) usually may not exceed six, but this is
implementation dependent.

Records

A record is a named collection of variables, arrays and records. The components (elements) of a record may
be any of the forms discussed in (1) and (2) above, with the following limitations:

a) Arrays must be one-dimensional and have constant bounds.

b) A record may not contain asimple record (or arecord arrays) of itsown format. However it may contain
record pointer variables of its own format.

There are three ways to specify formats:
1. Explicit definition
record "(" { declaration list} ") ...

record (integer X, Y, Z2) R
record (real P, real nane Q nane S, T
record (real array A(1:5), real V) array X(1:4)

2. Using aformat identifier
record format {id} "(" { declaration list} ")"
record "(" {id} ")" ...

record format F (integer X, record(F)nane LI NK)
record (F) HEAD
record (F) array CELL(1:15)

3. Using apreviously declared record as aformat definition.

record (integer ONE, TWO, THREE) R
record (like R S, T

Note

1. Within aformat each identifier must be unique but will not clash with any identifiers outwith that format
(see Block Structure for a discussion of local and global identifiers).

2. When spaceis allocated to arecord variable the elements are laid out in the order in which they were
declared. However see the relevant implementation notes for machine-dependent alignment
considerations.

10

RECORD ELEMENT SELECTION

Selection of a specific element from arecord is achieved by following the record identifier by:
" "{element id}
E.g. given the declarations:

record format F(integer x, record(F) nane LI NK)
record (F) R

some valid references to variables are:

R - arecord of format F

R X - an integer

R_LINK - apointer to arecord of format F
R_LINK_X - an integer

R_LINK_LINK - apointer to arecord of format F
R_LINK_LINK_ X - an integer

11

OWN VARIABLES

Each variable declared in ablock is allocated storage when that block is entered, the storage being returned
(released) when the block isleft. This means that variables (and the valuesin them) are lost between traverses
of the block.

If, however, the prefix own is applied to a declaration the variables are allocated statically and so retain their
values when the block is not being executed (see Procedures). The scope of the identifier is unchanged.

Own arrays must be one-dimensional and have constant bounds.

INITIALISATION

Own variables may be given initial values (effectively before the program starts execution); if no initial valueis

specified the content of an own variable is undefined.
own integer A B=4, C=1
I the initial value in A is undefined
own real R=1.234@5
own string(7) WHO="Anon"

In the case of own name and own array hame variables the initial value (if present) represents the absolute
address of respectively the initial variable to be pointed at or the (possibly hypothetical) ‘ zeroth element’ of an

array.

own i nteger nane CL ==72
own i nteger array name SAVE AREA == 16

Thisis highly machine dependent.

If an own or constant array isto beinitialised, every element in the array must be given avalue. In order to
simplify this, each initial value may be followed by a repetition count in parentheses, and a star, (*), may be
used to represent the number of remaining elementsin the array. For convenience a repetition count of zero is
permitted and means that the initialising constant isto beignored. For example the following declarations are
al equivaent:

own integer array A(2:5) 7,7, 7,7

own i nteger array A(2:5) 7(4)

own integer array A(2:5) - 7(%*)

Thelist of constants may extend over several physical lines without the need for a continuation mark if each
line ends with a comma; aline break is also allowed after the equals sign.

own string(3)array MONTH(1:12) =
"JAN', "FEB', "MAR',
"APR', "MAY", "JUN',
"JuL", "AUG', "SEP',

Any number of null statements may be placed between the lines of constants.

own integer array VALUE(1:50) =; | TAG VALUES
1, 2, 3, 0(7),
N type 1------
11, 22, 33, 4(3), 55(4),
R type 2------------
111, 222, 3, -1(5),
N types 3 & 4-----------
-2(*); I ALL THE REST

CONSTANT IDENTIFIERS

The prefix constant may replace own to indicate that the initial value can never change. A constant integer
may be used wherever an integer constant is required.

12

constant integer MAX = 17

constant real Pl = 3.14159

constant string (7) VERSION = "vsn: 1. 6"
constant integer array VAL(1l: MAX) = 1,6,9,-1(%*)

Constant pointer variables may be declared but are highly machine and system dependent.

constant integer name STATUS REG == 160
constant integer array nane WORD == 0

Note: constant pointers are effectively simple variables of the appropriate type located at the specified
(absolute) address.

The keyword constant may be abbreviated to const.

13

ALIAS

In many programsit is convenient to be able to interpret a variable in severa different ways. This may be
achieved by declaring a new variable to be an alias of an existing variable. Any identifier in the identifier list
of adeclaration may be followed by "aias' {var} where {var} isavariable of any type. The effect is that the
new identifier is alocated storage at the same address in memory as the variable of which it isan dias.

Note:

real VALUE
i nteger REAL BI T PATTERN alias VALUE

record (F1) nanme N1
record (F2) name N2 alias N1

integer X Y, Z
integer array A alias X (1:3)

i nteger name N
integer X alias N
integer Y alias | NTEGER(ADDR(N))

i nteger J
J =X | same as J = ADDR(N)
J =Y, | sane as J = N

An array can be mapped onto an absolutely addressed area of store by means of the built-in map INTEGER
(see Predefined Procedures)

i nteger array SEGMVENT alias | NTEGER(SEGAD) (1:LIMT)

Note that this feature is highly machine dependent.

[ABD note: asfar as| understand it, much of the preceding is simply not true for real IMP-77 compilers. The
real use of aliasisin renaming external routines)

14

ASSIGNMENT

There are three forms of assignment:

1. {variable} "=" { expression}

X=Y
A(P) = A(P)+l
Y = Bl T<<12

PERSON = | NI TI ALS. SURNAME

The expression is evaluated and the resulting value is stored in the given variable. The expression may be of
type integer, real, or string, and the variable must be of the corresponding type; in the case of areal variable an
integer expression will have its result converted to real before the assignment.

Valid types of assignment are:

{integer variable} "=" {integer expression}

{real variable} "=" {real expression}

{real variable} "=" {integer expression}

{string variable} "=" {string expression}
2. {pointer variable} "==" {referenceto avariable}

The pointer variable is dynamically made equivalent to the given variable; the types of both sides of the
assignment must be identical - this includes the formats of records.

The assignment may be thought of as the assignment of the address of the variable to the pointer.

Once equivaenced the pointer variable may be used as an alternative to the variable.

i nteger nanme N

i nteger J

i nteger array A(l:6)

i nteger nanme array PT(2:12)

J=1

N == A(J); I N I'S NOW EQUI VALENT TO A(1)
J =2 I N HAS NOT CHANGED

N = 0; | SAME AS A(1) = 0

PT(J) == A(4)

N.B. Extreme care should be taken if variables declared in different blocks are to be equivalenced asit is
possible to leave a pointer referencing a variable which no longer exists (see Block Structure).

3. {variable} "<-" { expression}

Thisissimilar to 1. above except that the value of the expression will be truncated if necessary (see Data
Precision Specification).

E.g.
string(4) S
S = "12345"; ! fails CAPACITY EXCEEDED at run-tine
S <- "12345"; ! will assign "1234" to S

RECORD ASSIGNMENT

Two extra assignments exist for records:
1. {record variable} "=" {record variable}

The right-hand record is copied bit by bit into the |eft-hand record. The formats of the two records must be the
same.

2. {record variable} "=" 0

Each bit of the record is set to zero.

15

STRING RESOLUTION

The contents of a string variable may be searched for a sub-string and decomposed accordingly.
The format of aresolutioniis:
{string var} "->" {string var}".("{string exp}")."{ string var}
where either the second string variable, the third, or both may be omitted.
S ->T.(","). U
TITLE(J)-> ("Sir"). REST
VWHO

-> WHO (LETTERS."B. Sc.")
S -> ("HELLO'. T)

The string expression is evaluated and the first variable is searched from left to right to find that string of
characters. The string to the left of the sub-string so found is assigned to the second variable and the string to
the right is assigned to the third.

The resolution is deemed to have failed if the required sub-string is not found or either of the second or third
variables has been omitted and would have been assigned a non-null string.
For example, the following resolutions al fail if the string variable S contains the string "ABCDEFG".

S->T.("H).U
S->("CD').U
S -> T.("EF")
S -> (" ABCDEF")

and the following all succeed:

S -> T.("CDE"). U
S -> ("ABC').U
S->T.("G)

S -> (" ABCDEFG')

A resolution may occur in two contexts:
1. asaninstruction, in which case failure of the resolution causes an event to be signalled (see Events)
S->A(WANTED.B; S =AB

2. asasimple condition (see Conditions), in which case failure deems the simple condition false and success
deemsit true; in the latter case the resolution is performed and the necessary assignments are made.

if WHO -> ("SIR ").WHO then KNIGHT = 1

16

CONDITIONS
Conditional statements are specified using the phrase { condition}, which is defined as:
{condition} ::= {simple cond} ("and" {simple cond})*, {simple cond} ("or" {simple cond})*

where {smple cond} has seven forms:-

1 {expression} {comp} {expression}
{comp} ::=
=" - isequal to
H# =" - isnot equal to
<! - islessthan
=" - islessthan or equal to
"> - isgreater than
">=" - isgreater than or equal to

The given expressions are evaluated and compared. The simple condition is true or false depending on the
validity of the relation specified by the comparator. Both expressions must yield values of the same type.

2. {expression} {comp} {expression} {comp} {expression}
This form of simple condition may be thought of as a contraction of the form:
({x1}{comp1}{x2} "and" {x2}{comp2}{x3})

except that the middle expression {x2} isonly evaluated once. Note that the third expression is not evaluated
unless the condition specified by the first two expressionsistrue.

Such asimple condition is frequently used to check for arange of values, E.g.
0 <= VALUE <=100
3. {reference to avariable} "==" {reference to a variable}

The two variables, which must be of identical type, are compared for equivalence, that is their addresses are
compared.

Note that the address of a pointer variable is the address of the variable to which it is equivalent.
4. {predicate call} - see Procedures

The given predicate is called and the simple condition is true or false depending on whether the exit from the
predicate was performed using true or false respectively.

5. {resolution} - see String Resolution

Theresolution is attempted. If it fails the ssmple condition is deemed false, otherwise the resolution is
performed and the condition is deemed true.

Note that this form of simple condition has a side effect if the simple condition is true!
6. "(" [condition] ")"
Thisform of simple condition is provided to enable the use of both and and or in a condition. The connectives
and and or may not appear inthe same condition unless separated by levels of parentheses. E.g.
A=0 or (B=l and C=2) or D=3
7. "not" { simple cond}
The given simple condition is evaluated and its truth is negated. E.g. the following simple conditions are
exactly egquivalent:

A#0
not A =0

17

Evaluation of conditions

The evaluation of a condition proceeds from left to right, simple condition by simple condition, terminating as
soon as the inevitable result of the condition is known.

For example, considering the condition:
A# 0 and BI/A# C

If the variable A has the value zero the condition will be deemed false without attempting the evaluation of
"BIIA#C".

18

CONDITIONAL STATEMENTS

The general form of a conditional statement is:

if {condition} start

~ | STATEMENTS TO BE EXECUTED | F
I {condition} IS TRUE

finish else start
I STATEMENTS TO BE EXECUTED | F
I {condition} IS FALSE

finish

If start-finish brackets enclose one instruction only, that part may be reduced to:

if {condition} then {instruction} else start
or
finish else {instruction}
or in the simplest case:
if {condition} then {instruction} else {instruction}

If nothing is to be done specifically when the condition is false the else part may be omitted.

if {condition} start

~ | STATEMENTS TO BE EXECUTED | F
I {condition} IS TRUE

finish

or
if {condition} then {instruction}

start-finish groups may be nested to any depth.

ALTERNATIVE FORMS

1. A conditional statement of the form:
if {condition} then {instruction}

has the same effect if rewritten in the more natural form:
{instruction} if {condition}
X=ERRORif X>LIMT

2. Thekeyword if may always be replaced by unless with the effect of negating the whole of the condition.
For example, the following two statements are equivalent:

if X=0thenY=1elseY=-1
unless X = 0then Y =-1elseY=1
3. The statement "finish else start" may be abbreviated to "else”.
if X=0 start

" FLAG = 1; COUNT =0
el se

FLAG = 2; COUNT = -1
finish

4. The else part of any conditional group may be replaced by another complete conditional group, treated as
though it were a single instruction.

For example:

19

® o

S

n

N | e i |

20

REPETITION (LOOPS OR CYCLES)

a. Indefinite Repetition
A group of statements may be repeated indefinitely by enclosing them between the statements "cycle" and

repeat”.

cycle
GET DATA
PROCESS DATA
r epeat

Subsequently the group of statements between cycle and repeat will be referred to as the cycle body.
b. Conditional Repetition
1. while{condition} cycle

Before each execution of the cycle body the specified condition is tested. If the condition is true the cycle
body is executed; otherwise control is passed to the statement following the matching repeat.

2. for{control} "=" {init} "," {inc} "," {final} cycle

where

{ control} .:={integer variable} - CONTROL VARIABLE
{init} ::={integer expression} - INITIAL VALUE
{inc} ::={integer expression} - INCREMENT

{final} ;.= {integer expression} - FINAL VALUE

On each entry to the cycle the address of the control variable and the value of the three expression are
evauated and saved; thus the cycle body cannot change them. The control variable is assigned the value
“{init}-{inc}".

The value in the control variable is compared with the value of {fina}. If they are equal control is passed
to the statement following the matching repeat, otherwise the value {inc} is added to the control variable
and the cycle body is executed.

On normal exit from the cycle the control variable will contain the value {final}, however see exit.
Note: the effects of altering the control variable within the cycle body are undefined.
3. Thefina form of conditional cycleis:

cycle
I CYCLE BODY
repeat until {condition}

In this construction, the cycle body is always executed at least once. The loop may aso be qualified by a
while or for as defined above. For example:

whil e {condition} cycle

I CYCLE BODY

repeat until {condition}

cycle-repeat groups may be nested to any depth

SIMPLE FORMS OF LOOP

If the cycle body comprises only one instruction the loop may be rewritten in the form:
{instruction} {loop clause}

i.e.
{instruction} "while" {condition}
{instruction} "for" {control} "=" {init}","{inc}","{final}
{instruction} "until" {condition}

21

For example

A(J) =0for J =1, 1, 20
READSYMBCL(S) until S = NL
SKI PSYMBOL whi Te NEXTSYMBOL = '

CYCLE CONTROL INSTRUCTIONS

Two instructions are provided to control the execution of a cycle from within the cycle body.

1. exit - causesthe cycle to be terminated and control to be passed to the statement following the matching
repeat. In the case of afor loop the control variable will retain the value it contained immediately prior to
the exit.

2. continue - causes control to be passed to the repeat (and any associated until condition) of the current loop.

JOINING INSTRUCTIONS USING ‘AND’

Several simple instructions may be joined together using and to form a more complex instruction. The
execution of such an instruction is achieved by executing each of the component simple instructionsin the
order given. This construction is used to simplify small start-finish or cycle-repeat groups.

E.g.

may be rewritten
P=1and Q=1if X=0
or
if X

Othen P=1and Q=1

22

BLOCK STRUCTURE

An IMP program is constructed using one or more blocks. Blocks may be nested one within another. The
depth to which this nesting may be performed is implementation dependent.

BEGIN BLOCKS

The simplest type of block is enclosed between the statements "begin” and "end" and is referred to as a begin
block. If the block is the outermost block of a complete program it must be terminated by the statement "end of

program".
For example, a complete program might take the form:

begi n
i nteger COUNT, LIMT

begi n
real SUM

end

end of program

A begin block is entered by executing the begin and is left by passing through the end to the following
statement. The main uses of begin blocks are to declare arrays with bounds calculated at run-tine, and to
enabl e the re-use of space taken up by large arrays which are only needed for part of the program.

begi n
i nt eger UPPER
UPPER = ! CALCULATE VALUE FOR UPPER BOUND
begi n
i nteger array CASES(1: UPPER)
end .

end of program

begi n
. begi n
i nteger array TEMP(1:10000)
end
begi n
real array WORK AREA(1:11000)
end .

end of program

23

LOCAL AND GLOBAL VARIABLES

An identifier is described as being local to ablock if it was declared at the head of that block. Any identifiers
which are in scope but which were not declared in the block in question are referred to as being global to the
block.

Clearly identifiers may beloca to only one block but may be global to many.

begi n; | START OF QUTER BLOCK
i nt eger X; I X IS LOCAL TO THI' S BLOCK
begi n; | START OF I NNER BLOCK
integer Y; ! Y IS LOCAL TO TH'S BLOCK
X = 0; I X 1S GLOBAL TO TH' S BLOCK
end; | END OF | NNER BLOCK
end; | END OF OUTER BLOCK

Identifiers may aways be redeclared in any block to which they are global — the local incarnation taking
precedence over the global one.

begi n
i nteger X
begi n
i nteger X
X =0; I USES THE X OF THE PREVI QUS LI NE

end
end

An attempt to redeclare alocal variable will be faulted by the compiler.

On entry to ablock, space from the stack is allocated to any local variables, and when the block is left the
spaceis returned to the stack (but see Own Variables).

24

PROCEDURES
A procedureis ablock which has an associated identifier; a complete procedure block may be considered as the
declaration of the procedure identifier.

Unlike begin blocks, procedures are not entered simply by reaching their first statement (this results in control
being transferred to the statement following the matching end). Instead procedures are activated when they are
called by giving the procedure identifier in a context determined by the type of procedure.

The effect of acal isto suspend t h e current flow of control and to pass control to the procedure. When the
procedure terminates, the previous flow of control is resumed.

There are four forms of procedure, the exact form required being specified by the first statement of the block.

The phrase { param def} ? stands for the optional parameter definition and will be described later (see
Parameters).

1. routine {id}{ param def} ?

When aroutineis called its statements are executed until either the end is reached or the instruction return is
executed. This causes the routine to terminate and the previous flow of control to be resumed.
integer X, Y
routi ne CONVERT
if X<Ystart

X = X+Y
finish el se start
X = XY
finish
end
CONVERT

Cd\lVERT unless X = 0
2. {type} function {id} {param def}?

A function is a procedure which calculates a value of the specified type (integer, real, string, or record) and
may be used wherever an operand of the specified typeis required.

When afunction is called its statements are executed until an instruction of the form:

result "=" {expression}

is executed. This causes the function to terminate, returning the value of the expression.

integer X Y, Z

i nteger function SUM
result = X+Y

end

Z = SUM I SAME EFFECT AS "Z=X+Y"

The keyword function may be abbreviated to fn.
3. {type} map {id}{param def}?

A map is aprocedure which calculates a reference to a variable of the specified type (integer, real, string or
record), and may be used wherever a variable of the specified typeis required.

When amap is called its statements are executed until an instruction of the form:

result "==" {variable reference}
is executed. This causes the map to terminate, returning areference to (i.e. the address of) the given variable.
E.g.

25

i nteger XY
i nteger map M N

if x <Ythen result == X else result ==

end

MN = 0
! THE ABOVE STATEMENT | S EXACTLY EQUI VALENT TO
'if X<Ythen X=0e¢else Y =0

4. predicate {id} {param def}?

A predicate is a procedure which tests the validity of an hypothesis and then returns, being either true or false.
Predicates may be used wherever a ssmple condition is required.

When a predicate is called its statements are executed until either of the instructions "true” or "false” is
executed. This causes the predicate to terminate accordingly.

Note that a predicate does not return any value.

E.g.

i nteger N

predicate SINGCE DIA T

true if 0 <= N<=29

fal se

end

N = N/10 unless SINGCE DIG T
Notes

a. A routine may terminate by reaching end; all other types of procedure must not be able to reach their end,
otherwise the compiler will report afault.

b. Procedures may be nested within any form of block.
c. Procedures may be recursive, that is, they may call themselves.

26

PARAMETERS

In the previous discussion about procedures the phrase { param def} ? was used. This stands for an optional
parameter list definition.
{param def} ::= "(" {dec list} ")"

where {dec list} isalist of declarations defining the FORMAL PARAMETERS. The declarations may be of
any data type except array - arrays may only be passed to a procedure as array hame parameters.

E.g.

routi ne SWOP(i nteger nane P, Q
i nteger function MAX(integer array nanme A, integer F, T)
predi cate EQU V(record(FM nane LEFT, RI GHT)

Parameters are identical to any local variables declared inside the procedure, except that the parameters are
initialised each time the procedure is called.

When aprocedureis called alist of ACTUAL PARAMETERS must be supplied which must match the formal
parameters exactly in number, order, and type. Parameters are effectively assigned using "==" for those passed
by name. (E.g. integer name, real array name) and using "=" for those passed by value (E.g. string(10),
integer).
For example assuming the declarations:

integer L, M N

real R

integer array V(-7:7)

record (FM ONE, TWD

valid calls on the procedures mentioned in the previous example are :

SWOP(L, M
SWOP(V(L), V(M)
N = MAX(V, -1, 0)
M= MAX(V, L, 7)
N=Mif EQUV(ONE, TV

N.B. IMP name type parameters are called by reference and not by substitution (c.f. ALGOL 60).

27

PROCEDURE PARAMETERS

In addition to being able to pass variables to procedures it is possible to pass procedures as parameters. Thisis
achieved by using the procedure heading as the 'declaration’ of the formal parameter.

E.g.

routi ne TRY(routine R(integer X))
i nteger J
R(J) for J =1, 1, 10

end

The routine TRY may now be called with a single parameter which must be the name of aroutine which has
one integer parameter. In this context the formal parameter names used to specify the parameters of a
procedure parameter are otherwise ignored.

Note : If the routine TRY isitself to be passed as a parameter the heading of the receiving routine would be
something like:

routi ne CHECK(routine P(routine Qinteger R)))

and the call would be:
CHECK (TRY)

GENERAL TYPE PARAMETERS

In several situationsit is useful to be able to pass to a procedure a reference to any type of variable. Thisis
done

by specifying an untyped name parameter.
E.g.
routi ne WORK(nane REF)

Such a parameter isintended for system-dependent interface procedures and has severely limited uses. In
particular it may only be passed on to another procedure requiring an untyped name parameter.

An example of the use of such a parameter isin the pre-declared READ routine which will accept an integer,
real, or string parameter.

E.g.

i nteger Y

real Y

string (15) Z

READ(X); REAI(Y); READ(Z)

28

The following is a complete list of formal parameter declarators:

nt eger

nt eger
nt eger

nane

array nane

nt eger

nt eger

fn

function

nt eger

nt eger

nmap

nane array nane

real nane array nane

string({max})nane array nane

record({fnm)
record({fnm)nane

record({fn})array nane

record({fn})nane array nane

record({fm)fn
record({fnm)function

record({fn})nmap

routine

predi cate

nane

string({max})
st ri ng({max}) nane
string({max})array nane

real

real nane

real array nane
real fn

real function
real map

29

string({max})fn
string({max})function
string({max}) map

PROCEDURE SPECIFICATION

In several situations it is necessary to use a procedure before it is possible (or desirable) to defineit. For
example, where two or more procedures call each other (mutual recursion) or where a procedure is to be
defined externally (see External Linkage).

As al procedure identifiers must be declared before being used a procedure specification statement is
introduced.

This takes the form of the normal procedure heading with the keyword spec inserted before the procedure
identifier.
E.g.

routi ne spec MAX(real SIZE)

This has no effect other than declaring the identifier to be a procedure of the specified type which takes the
given parameters. Except in the case of external procedure specifications the procedure must be defined later
on in the same block (but not any blocks defined therein).

For example:

routi ne spec B(integer X)
routi ne A(integer Y)

B(Y- 1)

end
routi ne B(integer X)

A(X+3)
end

Note that the spec statement and the procedure heading must correspond, that is, the type and form of the
statements must match, as must the type, form, order and number of any parameters.

30

CONTROL TRANSFER INSTRUCTIONS
LABELS AND JUMPS

Simple Labels

Any statement, excluding declarations, may be given one or more simple labels, where asimple label is of the
form: {id} ":"
Each label iswritten to the left of the statement.

NEXT: P=P+t1l if P<O
ERRORI : ERROR2: FAULTS = FAULTS+1

Control may be passed to a labelled statement by executing ajump instruction: "->" {id}

-> NEXT
-> ERRORL if DIVISOR = 0

Switch Vectors

A vector of labels may be declared in a similar manner to an array, using the declarator switch.

switch SW4:9)
switch S1, S2(1:10), S3(11:20)

Note
a Thevector must be one-dimensional.
b. The bounds must be constants.

Once declared, switch labels may be used in the same way as simple |abels.

SW 4): CHECK VALUE(I)
SW5): SW6): ERROR FLAG = 1
LAST: SW9): ! ALL FI NI SHED

A star (*) may be used in the definition of a switch label to locate any elements of the vector which would
otherwise be undefined.

switch LET(' A :'Z)

LET(* A'): LET(" E'): LET(" I'): LET(' O): LET(' U):
| DEAL W TH VOVELS

LET(*): ! ALL THE REST |.E. CONSONANTS

The specific label to which ajump will be made is dependent on the value of an integer expression.

->SWN) if N> 0
->SW 100+N)
->SW 6)

Note:

1. Not al of the declared switch labels need be defined (in the previous example SW(7) and SW(8) are
undefined) but an error will occur at run time if an attempt is made to jump to a non-existent switch
label.

2. Simple labels are the only identifiers which may be used before they are declared/defined.

31

3. The scope of both types of label islimited to the block in which they are defined, not including any
blocks defined therein. That is, labels cannot be global to a block and therefore it is not possible to
jump into or out of ablock.

4, Theidentifiers used for labels must not conflict with other local identifiers.

5. Theresults of entering afor loop with ajump and not through the for statement are undefined.

OTHER CONTROL TRANSFER INSTRUCTIONS

stop

Execution of the instruction stop causes control to be returned to the program which initiated the execution of
the current program. Thisis aso the effect of reaching the statement end of program.

Control istransferred by signalling event zero (see Events).
monitor

Thisinstruction causes the run-time diagnostic package to be invoked to produce diagnostic information. If no
diagnostic package is available this instruction will be ignored (in some limited implementations the
production of diagnostics causes execution of the program to be terminated).

For convenience al other control transfer instructions are gathered here.

return return from aroutine.

result={ exp} return the result of a function

result=={ reference} return the result of amap.

true return from a predicate.

fase return from a predicate.

exit jump out of the current cycle to the statement following the matching repeat.
continue jump to the top of the current cycle.

signal event see Events.

32

EXTERNAL LINKAGE

A complete program may be divided into several separately compiled modules which are linked together before
(or possibly while) the program is executed. This linkage is achieved by giving the external attribute to
relevant identifiers.

1. external DATA OBJECTS

An external variable is declared in the same way as an own variable with the keyword own replaced by
external

external integer CHO CE=4, WAIT = -5
external real array MEAN(-6:6)

The identifiers are then available for use by any program that references them. A separately compiled module
that requires to use any of these variables must first declare them using an external specification.

external integer spec WAIT, CHO CE
external real array spec MEAN(- 6:6)

Note
1. Noinitialisation may be specified in an external specification.
2. External arrays must be one-dimensional and have constant bounds.

3. Even though all of the charactersin the identifier of an external entity are significant to the
compiler, the system load software might impose constraints on the number of significant
characters. Refer to the relevant appendix for system dependent restrictions.

2. external PROCEDURES

A procedure may be made available to other modules by prefixing the procedure heading with the keyword
external.

external routine TRIAL(string(63) S)

Such procedures must be compiled in a file comprising only external procedures (and possibly some non-
external procedures and own or external declarations). The whole module is terminated by the statement end
of file

If amodule requires to use an externally defined procedure it must first supply an external procedure
specification. For example:

external predicate spec LETTER(i nteger S)

Thisis similar to a procedure specification but only requires the specified procedure to have been defined by
the time the module is executed.

The prefix external may be replaced by system or dynamic, the exact significance of which may vary from
machine to machine.

33

PREDEFINED PROCEDURES

Every separately compiled module, whether a begin-end program block or afile of external proceduresis
compiled within a conceptua "outermost block” in which are declared a number of standard procedures such
as READ and WRITE. This means that these procedures are global to all parts of a program and so may be
used without having to be declared. Note that as these procedures are global they may be redefined within the
program.

Further, own, constant or external identifiers may be declared in this outermost block and will be global to the
whole of thefile.
own i nteger CALLS =0

external routine DO SOVETH NG
CALLS = CALLSH ; ' RECORD Tl MES ENTERED

end

external integer function ENTRI ES
result = CALLS

end

end of file

Note that the function ‘ENTRIES is used to make the value of CALLS available to other modules without their
being able to change that value, even by mistake.

While the actual procedures which are predeclared may vary from machine to machine, the following are
standard and may be assumed present:

| NPUT/ QUTPUT

routi ne READSYMBOL(i nt eger nane S)
routine SKI PSYMBOL
i nteger function NEXTSYMBOL

routi ne READ(nane N)

routi ne PRI NTSYMBOL(i nteger N)
routi ne PRI NTSTRI NG(string(255) S)
routi ne WRI TE(i nteger N, PLACES)
routi ne NEW.I NE

routi ne NEWLI NES(i nteger N)

routi ne SPACE

routi ne SPACES(i nteger N)

routi ne SELECTI NPUT(i nt eger STREAM
routi ne SELECTOQUTPUT(i nt eger STREAM

STRI NG HANDLI NG

string(1l) function TOSTRI NG i nteger SYMBCL)

string(255) fn SUBSTRI NG string(255)nane S, integer F, T)
i nteger function CHARNOQ(string(255) S, integer N)

i nteger function LENGTH(string(255) S)

EVENT HANDLI NG (see Events)

i nteger function EVENT
i nteger function SUB EVENT
i nteger function EVENT | NFO

STORE MAPPI NG

i nteger function ADDR(nane V)
i nteger map | NTEGER(i nt eger ADDRESS)

real nap REAL(integer ADDRESS)
string(255)mp STRI NGEinteger ADDRESS)

Refer to the relevant system library manual for detailed specifications of these and other standard procedures.

EVENTS

During the execution of a program severa (synchronous) events may occur, such as resolution fails, array
bound faults etc. (see Faults). Normally such events will cause the program to be terminated with an error
report and possibly diagnostic information. However events may be trapped and used to control the further
execution of the program.

The first non-declarative statements of any block may be of the form:
on event {event list} start

I ON- BODY STATEMENTS
finish

where (event list) isalist of integer constants representing the events to be trapped.

On entry to the block the on body is skipped and execution continues from the statements following the finish.
If an event specified in the (event list) is signalled during execution of the statements between the finish of the
on event group and the end of the block, control will be passed to the on-body (and may well pass through the
finish to the following statements). If the event is not trapped in the current block a'return’ is forced and the
event issignalled in the new block at the point from which the old block was entered. The process is repeated
until either the event is trapped or the outermost block of the program is reached in which case the event is
reported as afault and the program terminates.

Three functions are available which give information about the last event to have been signalled.
4. integer function EVENT - returns the class of the last event.

5. integer function SUB EVENT - returns the sub-class of the last event.

6. integer function EVENT INFO - returns any extra information passed with the event.

If no event has occurred each of these functions will return the value zero.

35

The classes of event and their sub-classes of them are:
EVENT SUB-CLASS MEANING (+EXTRA INFORMATION)

0 TERMINATION
-1 ABANDON PROGRAM WITHOUT
DIAGNOSTICS
0 NORMAL TERMINATION (stop)
>0 USER GENERATED ERROR
1 ARITHMETIC OVERFLOW
1 INTEGER OVERFLOW
2 REAL OVERFLOW
2 EXCESS RESOURCE
1 NOT ENOUGH STORE
3 DATA ERROR
1 SYMBOL IN DATA (+SYMBOL)
4 CORRUPT DATA
1 DATA TRANSMISSION ERROR
5 INVALID ARGUMENTS
1 ILLEGAL CYCLE
2 ILLEGAL EXPONENT (+EXPONENT)
3 ARRAY INSIDE-OUT
6 OUT OF RANGE
1 CAPACITY EXCEEDED
2 ARRAY BOUND FAULT (+INDEX)
3 NO SWITCH LABEL (+INDEX)
7 RESOLUTION FAILS
8 UNASSIGNED VARIABLE
INPUT ENDED
10 LIBRARY PROCEDURE ERROR
11-15 GENERAL PURPOSE

At any time during the execution of a program an event can be signalled by executing an instruction of the
form:

si gnal event {N}{QUAL}?

where;

{N

{qual }
{extra}

an integer constant in the range 0 <= N <= 15

"," {sub event}{extra}?

"," {extra info}

and {sub event} and {extrainfo} areinteger expressions.

36

The instruction causes event { n} to be signalled with sub-event (default zero) and extrainformation (default
Zero).

si gnal event 15; I event 15,0,0
signal event 14,7 if X < 0; | event 14,7,0
signal event 13,1,Y if Y # 0; I event 13,1,Y
Note:
1

In both the on and signal statements the keyword event is optional and may be omitted.

2. Anevent signaled inside an incarnation of an on-body will never be trapped into that incarnation.
Instead the search for atrap will start in the previous block.

37

APPENDIX 1

COMPILER ERROR MESSAGES

Any errors detected by the compiler will generate messages of the form:

* {message}

In most cases a marker ([) will be output to indicate the position in the statement at which the error was

detected.
ACCESS

ATOM
BOUNDS

CONTEXT
COPY

FORM

INDEX

MATCH

NAME

ORDER

SIZE

TOO COMPLEX
TYPE

TYPE FOR {op}
%BEGIN MISSING
%CY CLE MISSING
%END MISSING
%FINISH MISSING
%REPEAT MISSING
RESULT MISSING
%START MISSING
"{ID}" MISSING

the statement cannot be reached. Thisis not treated as an error but may

indicate another fault.

unknown atomic €lement.

invalid bounds for an array or switch declaration, or wrong number of constants

for an array initialisation.

formally correct statement given in the wrong context.
attempt to redefine alocal identifier.

incorrectly formed statement.

switch label index out of bounds.

procedure definition does not match a previous spec.
undeclared identifier.

formally correct statement in wrong sequence.
constant out of range.

statement too long or complex to analyse.

variable of wrong type.

operator {op} out of context.

too many end statements

arepeat has been given with no matching cycle.
unterminated blocks remain at end of program or end of file.
outstanding start at end or repeat.

outstanding cycle at end or finish.

afunction, map, or predicate can reach its end.

a finish has been given with no matching start.
undefined procedure or label.

38

APPENDIX 2

SAMPLE PROGRAM LISTING

%begi n
%begi n
% eal nane Q
% nt eger VALUE, X, X
I CoPY

ol A WNPF

%string(256) S
* I Sl ZE

6 %wi tch SA(1l:4), SB(5:4)
* BOUNDS
7 % out i nespec CHECK
8 % nt eger f nspec KEY(% nt eger X)
9 %f X = 4 YUSTARY
* I ATOM
10 VALUE = KEY
* I FORM
11 VALUR = 0
* I NAME
12 SA(5):
* I 1 NDEX
13 %exit
*UCYCLE M SSI NG
14 Yst op
15 X=0
* ACCESS
16 % i ni sh
*YSTART M SSI NG
17 %n %vent 4 Ystart
* CRDER
18 % nt egerfunction KEY(% eal X)
* MATCH
19 %end
*RESULT M SSI NG
20 Q == VALUE
* I TYPE
21 X = Q7
* TYPE FOR " &"
22 %endof program

*UEND M SSI NG
*9-1 Nl SH M SSI NG
*" CHECK" M SSI NG

39

APPENDIX 3

DATA PRECISION SPECIFICATION
On some machines it is possible to offer arange of precisions for variables of type integer or real. The
precision is specified by the use of one of the following prefixes:
short - smaller range than by default
long - larger range than by default
byte - large enough to hold a character (unsigned)
E.g.

byte integer
short integer
[ong integer
[ong real

If the machine on which the program is to be run cannot support the required precision the prefix will be
ignored.

E.g. on the IBM 360 (or ICL 4/75)

byte integer 8-bits unsigned
short integer 16-bits signed

integer 32-bits signed
real 32-bits
long real 64-bits

Note that checks may be applied to ensure that any quantity assigned to a variable is within the correct range
of values.
E.g.

shortinteger S
i nteger X

X = 16_FFFF

S =X

will fail at runtime, as"16 FFFF" isa POSITIVE integer value, but a NEGATIVE short integer value.

The assignment operator "<-" may be used to force truncation if required (see Assignment).

40

APPENDIX 4

IMP KEYWORDS

alias and array

begi n byte

c comment const const ant continue cycle
dynani c

el se end event exit ext er nal

fal se file finish fn for f or mat
if i nclude integer

like list | ong

map moni t or

name not

on of or own

predi cate program

real record r epeat result return routine
short si gnal spec start st op string
swi tch system

t hen true

unl ess unti |

whi | e

41

APPENDIX 5

COMPARISON WITH EMAS IMP

1. New Features

for

repeat until

continue

predicate

include

"=="in conditions
integer array (4) name
finish dseif ...

else

lower case input

like

(*) in owns and switches
constant

function

dias

not

record function

record map
constant expressions
2. Features not implemented
print text
until ... cycle
array format
realslong
reals normal
implied multiplication
3. Changed Features
'‘AA' instead of M'AA'
16 1A2 instead of X'1A2'
procedure parameter specification
record (F) R instead of record R (F)
SUBSTRING instead of FROMSTRING
termination of comments
"\" or "\\" instead of "**"

own initialisation

type checking for record operation
external .. spec instead of extri
events instead of fault trapping

/ givesareal result

string resolution

43

