
Learning Evaluation Functions

for Global Optimization

Justin Andrew Boyan

August 1, 1998

CMU-CS-98-152

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A dissertation submitted in partial ful�llment of the

requirements for the degree of Doctor of Philosophy

Thesis committee:

Andrew W. Moore (co-chair)

Scott E. Fahlman (co-chair)

Tom M. Mitchell

Thomas G. Dietterich, Oregon State University

Copyright c
 1998, Justin Andrew Boyan

Support for this work has come from the National Defense Science and Engineering Graduate
fellowship; National Science Foundation grant IRI-9214873; the Engineering Design Research Center
(EDRC), an NSF Engineering Research Center; the Pennsylvania Space Grant fellowship; and the
NASA Graduate Student Researchers Program fellowship. The views and conclusions contained in
this document are those of the author and should not be interpreted as representing the o�cial
policies, either expressed or implied, of ARPA, NSF, NASA, or the U.S. government.

Keywords: Machine learning, combinatorial optimization, reinforcement learn-

ing, temporal di�erence learning, evaluation functions, local search, heuristic search,

simulated annealing, value function approximation, neuro-dynamic programming,

Boolean satis�ability, radiotherapy treatment planning, channel routing, bin-packing,
Bayes network learning, production scheduling

1

Abstract

In complex sequential decision problems such as scheduling factory production, plan-

ning medical treatments, and playing backgammon, optimal decision policies are in

general unknown, and it is often di�cult, even for human domain experts, to manually
encode good decision policies in software. The reinforcement-learning methodology

of \value function approximation" (VFA) o�ers an alternative: systems can learn

e�ective decision policies autonomously, simply by simulating the task and keeping

statistics on which decisions lead to good ultimate performance and which do not.
This thesis advances the state of the art in VFA in two ways.

First, it presents three new VFA algorithms, which apply to three di�erent re-
stricted classes of sequential decision problems: Grow-Support for deterministic prob-

lems, ROUT for acyclic stochastic problems, and Least-Squares TD(�) for �xed-policy
prediction problems. Each is designed to gain robustness and e�ciency over current
approaches by exploiting the restricted problem structure to which it applies.

Second, it introduces STAGE, a new search algorithm for general combinatorial
optimization tasks. STAGE learns a problem-speci�c heuristic evaluation function as
it searches. The heuristic is trained by supervised linear regression or Least-Squares

TD(�) to predict, from features of states along the search trajectory, how well a fast
local search method such as hillclimbing will perform starting from each state. Search
proceeds by alternating between two stages: performing the fast search to gather new
training data, and following the learned heuristic to identify a promising new start
state.

STAGE has produced good results (in some cases, the best results known) on
a variety of combinatorial optimization domains, including VLSI channel routing,
Bayes net structure-�nding, bin-packing, Boolean satis�ability, radiotherapy treat-

ment planning, and geographic cartogram design. This thesis describes the results
in detail, analyzes the reasons for and conditions of STAGE's success, and places

STAGE in the context of four decades of research in local search and evaluation func-

tion learning. It provides strong evidence that reinforcement learning methods can
be e�cient and e�ective on large-scale decision problems.

2

3

Dedication

To my grandfather,

Ara Boyan, 1906{93

4

5

Acknowledgments

This dissertation represents the culmination of my six years of graduate study at

CMU and of my formal education as a whole. Many, many people helped me achieve

this goal, and I would like to thank a few of them in writing. Readers who disdain

sentimentality may wish to turn the page now!

First, I thank my primary advisor, Andrew Moore. Since his arrival at CMU one

year after mine, Andrew has been a mentor, role model, collaborator, and friend. No

one else I know has such a clear grasp of what really matters in machine learning and

in computer science as a whole. His long-term vision has helped keep my research

focused, and his technical brilliance has helped keep it sound. Moreover, his patience,

ability to listen, and innate personal generosity will always inspire me. Unlike the

stereotypical professor who has his graduate students do the work and then helps

himself to the credit, Andrew has a way of listening to your half-baked brainstorming,

reformulating it into a sensible idea, and then convincing you the idea was yours all

along. I feel very lucky indeed to have been his �rst Ph.D. student!

My other three committee members have also been extremely helpful. Scott

Fahlman, my co-advisor, helped teach me how to cut to the heart of an idea and

how to present it clearly. When my progress was slow, Scott always encouraged me

with the right blend of carrots and sticks. Tom Mitchell enthusiastically supported

my ideas while at the same time asking good, tough questions. Finally, Tom Diet-

terich has been a wonderful external committeemember|from the early stages, when

his doubts about my approach served as a great motivating challenge, until the very

end, when his comments on this document were especially thorough and helpful.

Three friends at CMU|Michael Littman, Marc Ringuette, and Je� Schneider|

also contributed immeasurably to my graduate education by being my regular part-

ners for brainstorming and arguing about research ideas. I credit Michael with in-

troducing me to the culture of computer science research, and also thank him for his

extensive comments on a thesis draft.

Only in the past year or two have I come to appreciate how amazing a place CMU

is to do research. I would like to thank all my friends in the Reinforcement Learning

group here, especially Leemon Baird, Shumeet Baluja, Rich Caruana, Scott Davies,

Frank Dellaert, Kan Deng, Geo� Gordon, Thorsten Joachims, Andrew McCallum,

Peter Stone, Astro Teller, and Belinda Thom. Special thanks also go to my o�cemates

over the years, including Lin Chase, Fabio Cozman, John Hancock, and Jennie Kay.

The CMU faculty, too, could not have been more supportive. Besides my commit-

tee members, the following professors all made time to discuss my thesis and assist

6

my research: Avrim Blum, Jon Cagan, Paul Heckbert, Jack Mostow, Steven Rudich,

Rob Rutenbar, Sebastian Thrun, Mike Trick, and Manuela Veloso. I would also like

to thank the entire Robotics Institute for allowing me access to over one hundred of

their workstations for my 40,000+ computational experiments!

The third major part of what makes the CMU environment so amazing is the

excellence of the department administration. I would particularly like to thank Sharon

Burks, Catherine Copetas, Jean Harpley, and Karen Olack, who made every piece of

paperwork a pleasure (well, nearly), and who manage to run a big department with

a personal touch.

Outside CMU, I would like to thank the greater reinforcement-learning and machine-

learning communities|especially Chris Atkeson, Andy Barto, Wray Buntine, Tom

Dietterich, Leslie Kaelbling, Pat Langley, Sridhar Mahadevan, Satinder Singh, Rich

Sutton, and Gerry Tesauro. These are leaders of the �eld, yet they are all wonderfully

down-to-earth and treat even greenhorns like myself as colleagues.

Finally, I thank the following institutions that provided �nancial support for my

graduate studies: the Winston Churchill Foundation of the United States (1991{

92); the National Defense Science and Engineering Graduate fellowship (1992{95);

National Science Foundation grant IRI-9214873 (1992{94); the Engineering Design

Research Center (EDRC), an NSF Engineering Research Center (1995{96); the Penn-

sylvania Space Grant fellowship (1995{96); and the NASA Graduate Student Re-

searchers Program (GSRP) fellowship (1996{98). I thank Steve Chien at JPL for

sponsoring my GSRP fellowship.

* * *

On a more personal level, I would like to thank my closest friends during graduate

school, who got me through all manner of trials and tribulations: Marc Ringuette,

Michael Littman, Kelly Amienne, Zoran Popovi�c, Lisa Falenski, and Je� Schneider.

Peter Stone deserves special thanks for making possible my trips to Brazil and Japan

in 1997. I also thank Erik Winfree and all my CTY friends in the Mattababy Group

for their constant friendship.

Second, I would like to thank the teachers and professors who have guided and

inspired me throughout my education, including Barbara Jewett, Paul Sally, Stuart

Kurtz, John MacAloon, and Charles Martin.

Finally, I would like to thank the two best teachers I know: my parents, Steve

and Kitty Boyan. They taught me the values of education and thoughtfulness, of

moderation and balance, and of love for all people and life. To thank them properly|

for all the opportunities and freedoms they provided for me, and for all their wisdom

and love|would �ll the pages of another book as long as this one.

7

Table of Contents

1 Introduction . 11

1.1 Motivation: Learning Evaluation Functions 11

1.2 The Promise of Reinforcement Learning 12

1.3 Outline of the Dissertation . 14

2 Learning Evaluation Functions for Sequential Decision Making 17

2.1 Value Function Approximation (VFA) 17

2.1.1 Markov Decision Processes . 17

2.1.2 VFA Literature Review . 20

2.1.3 Working Backwards . 24

2.2 VFA in Deterministic Domains: \Grow-Support" 25

2.3 VFA in Acyclic Domains: \ROUT" 27

2.3.1 Task 1: Stochastic Path Length Prediction 31

2.3.2 Task 2: A Two-Player Dice Game 31

2.3.3 Task 3: Multi-armed Bandit Problem 32

2.3.4 Task 4: Scheduling a Factory Production Line 35

2.4 Discussion . 38

3 Learning Evaluation Functions for Global Optimization 41

3.1 Introduction . 41

3.1.1 Global Optimization . 41

3.1.2 Local Search . 43

3.1.3 Using Additional State Features 44

3.2 The \STAGE" Algorithm . 47

3.2.1 Learning to Predict . 47

3.2.2 Using the Predictions . 49

3.3 Illustrative Examples . 51

3.3.1 1-D Wave Function . 51

3.3.2 Bin-packing . 54

3.4 Theoretical and Computational Issues 55

3.4.1 Choosing � . 57

3.4.2 Choosing the Features . 63

3.4.3 Choosing the Fitter . 64

3.4.4 Discussion . 68

8 Table of Contents|Continued

4 STAGE: Empirical Results . 69

4.1 Experimental Methodology . 70
4.1.1 Reference Algorithms . 70

4.1.2 How the Results are Tabulated 71

4.2 Bin-packing . 72

4.3 VLSI Channel Routing . 79

4.4 Bayes Network Learning . 84

4.5 Radiotherapy Treatment Planning . 90

4.6 Cartogram Design . 93
4.7 Boolean Satis�ability . 95

4.7.1 WALKSAT . 95

4.7.2 Experimental Setup . 97

4.7.3 Main Results . 99

4.7.4 Follow-up Experiments . 101
4.8 Boggle Board Setup . 102

4.9 Discussion . 106

5 STAGE: Analysis . 107

5.1 Explaining STAGE's Success . 107

5.1.1 ~V � versus Other Secondary Policies 108
5.1.2 ~V � versus Simple Smoothing 110

5.1.3 Learning Curves for Channel Routing 113
5.1.4 STAGE's Failure on Boggle Setup 117

5.2 Empirical Studies of Parameter Choices 117

5.2.1 Feature Sets . 118
5.2.2 Fitters . 124

5.2.3 Policy � . 127
5.2.4 Exploration/Exploitation . 130

5.2.5 Patience and ObjBound . 132

5.3 Discussion . 133

6 STAGE: Extensions . 137

6.1 Using TD(�) to learn V � . 137
6.1.1 TD(�): Background . 138

6.1.2 The Least-Squares TD(�) Algorithm 142

6.1.3 LSTD(�) as Model-Based TD(�) 144

6.1.4 Empirical Comparison of TD(�) and LSTD(�) 147

6.1.5 Applying LSTD(�) in STAGE 150

6.2 Transfer . 153

6.2.1 Motivation . 153

Table of Contents|Continued 9

6.2.2 X-STAGE: A Voting Algorithm for Transfer 155

6.2.3 Experiments . 156
6.3 Discussion . 159

7 Related Work . 161

7.1 Adaptive Multi-Restart Techniques 161
7.2 Reinforcement Learning for Optimization 164

7.3 Rollouts and Learning for AI Search 167
7.4 Genetic Algorithms . 169

7.5 Discussion . 171

8 Conclusions . 173

8.1 Contributions . 173

8.2 Future Directions . 175
8.2.1 Extending STAGE . 175
8.2.2 Other Uses of VFA for Optimization 177

8.2.3 Direct Meta-Optimization . 178
8.3 Concluding Remarks . 180

A Proofs . 181

A.1 The Best-So-Far Procedure Is Markovian 181

A.2 Least-Squares TD(1) Is Equivalent to Linear Regression 185

B Simulated Annealing . 187

B.1 Annealing Schedules . 187
B.2 The \Modi�ed Lam" Schedule . 188
B.3 Experiments . 191

C Implementation Details of Problem Instances 195

C.1 Bin-packing . 195

C.2 VLSI Channel Routing . 196

C.3 Bayes Network Learning . 197
C.4 Radiotherapy Treatment Planning . 197
C.5 Cartogram Design . 199

C.6 Boolean Satis�ability . 199

References . 201

10

11

Chapter 1

Introduction

In the industrial age, humans delegated physical labor to machines. Now, in the

information age, we are increasingly delegating mental labor, charging computers

with such tasks as controlling tra�c signals, scheduling factory production, planning

medical treatments, allocating investment portfolios, routing data through commu-

nications networks, and even playing expert-level backgammon or chess. Such tasks

are di�cult sequential decision problems:

� the task calls not for a single decision, but rather for a whole series of decisions

over time;

� the outcome of any decision may depend on random environmental factors be-

yond the computer's control; and

� the ultimate objective|measured in terms of tra�c
ow, patient health, busi-

ness pro�t, or game victory|depends in a complicated way on many interacting

decisions and their random outcomes.

In such complex problems, optimal decision policies are in general unknown, and it is

often di�cult, even for human domain experts, to manually encode even reasonably

good decision policies in software. A growing body of research in Arti�cial Intelligence

suggests the following alternative methodology:

A decision-making algorithm can autonomously learn e�ective

policies for sequential decision tasks, simply by simulating the

task and keeping statistics on which decisions tend to lead to

good ultimate performance and which do not.

The �eld of reinforcement learning, to which this thesis contributes, de�nes a princi-

pled foundation for this methodology.

1.1 Motivation: Learning Evaluation Functions

In Arti�cial Intelligence, the fundamental data structure for decision-making in large

state spaces is the evaluation function. Which state should be visited next in the

12 INTRODUCTION

search for a better, nearer, cheaper goal state? The evaluation function maps features

of each state to a real value that assesses the state's promise. For example, in the do-

main of chess, a classic evaluation function is obtained by summingmaterial advantage

weighted by 1 for pawns, 3 for bishops and knights, 5 for rooks, and 9 for queens. The

choice of evaluation function \critically determines search results" [Nilsson 80, p.74]

in popular algorithms for planning and control (A�), game-playing (alpha-beta), and

combinatorial optimization (hillclimbing, simulated annealing).

Evaluation functions have generally been designed by human domain experts.

The weights f1,3,3,5,9g in the chess evaluation function given above summarize the

judgment of generations of chess players. IBM's Deep Blue chess computer, which

defeated world champion Garry Kasparov in a 1997 match, used an evaluation func-

tion of over 8000 tunable parameters|the values of which were set initially by an

automatic procedure, but later carefully hand-tuned under the guidance of a human

grandmaster [Hsu et al. 90, Campbell 98]. Similar tuning occurs in combinatorial

optimization domains such as the Traveling Salesperson Problem [Lin and Kernighan

73] and VLSI circuit design tasks [Wong et al. 88]. In such domains the state space

consists of legal candidate solutions, and the domain's objective function|the func-

tion that evaluates the quality of a �nal solution|can itself serve as an evaluation

function to guide search. However, if the objective function has many local optima

or regions of constant value (plateaus) with respect to the available search moves,

then it will not be e�ective as an evaluation function. Thus, to get good optimization

results, engineers often spend considerable e�ort tweaking the coe�cients of penalty

terms and other additions to their objective function; I cite several examples of this

in Chapter 3. Clearly, automatic methods for building evaluation functions o�er

the potential both to save human e�ort and to optimize search performance more

e�ectively.

1.2 The Promise of Reinforcement Learning

Reinforcement learning (RL) provides a solid foundation for learning evaluation func-

tions for sequential decision problems. Standard RL methods assume that the prob-

lem can be formalized as a Markov decision process (MDP), a model of controllable

dynamic systems used widely in control theory, arti�cial intelligence, and operations

research [Puterman 94]. I describe the MDP model in detail in Chapter 2. The key

fact about this model is that for any MDP, there exists a special evaluation function

known as the optimal value function. Denoted by V �(x), the optimal value function

predicts the expected long-term reward available from each state x when all future

decisions are made optimally. V � is an ideal evaluation function: a greedy one-step

x1.2 THE PROMISE OF REINFORCEMENT LEARNING 13

lookahead search based on V � identi�es precisely the optimal long-term decision to

make at each state. The problem, then, becomes how to compute V �.

Algorithms for computing V � are well understood in the case where the MDP state

space is relatively small (say, fewer than 107 discrete states), so that V � can be imple-

mented as a lookup table. In small MDPs, if we have access to the transition model

which tells us the distribution of successor states that will result from applying a given

action in a given state, then V � may be calculated exactly by a variety of classical algo-

rithms such as dynamic programming or linear programming [Puterman 94]. In small

MDPs where the explicit transition model is not available, we must build V � from

sample trajectories generated by direct interaction with a simulation of the process; in

this case, recently discovered reinforcement learning methods such as TD(�) [Sutton

88], Q-learning [Watkins 89], and Prioritized Sweeping [Moore and Atkeson 93] apply.

These algorithms apply dynamic programming in an asynchronous, incremental way,

but under suitable conditions can still be shown to converge to V � [Bertsekas and

Tsitsiklis 96,Littman and Szepesv�ari 96].

The situation is very di�erent for large-scale decision tasks, such as the trans-

portation and medical domains mentioned at the start of this chapter. These tasks

have high-dimensional state spaces, so enumerating V � in a table is intractable|a

problem known as the \curse of dimensionality" [Bellman 57]. One approach to es-

caping this curse is to approximate V � compactly using a function approximator such

as linear regression or a neural network. The combination of reinforcement learning

and function approximation, known as neuro-dynamic programming [Bertsekas and

Tsitsiklis 96] or value function approximation [Boyan et al. 95], has produced several

notable successes on such problems as backgammon [Tesauro 92,Boyan 92], job-shop

scheduling [Zhang and Dietterich 95], and elevator control [Crites and Barto 96].

However, these implementations are extremely computationally intensive, requiring

many thousands or even millions of simulated trajectories to reach top performance.

Furthermore, when general function approximators are used instead of lookup ta-

bles, the convergence proofs for nearly all dynamic programming and reinforcement

learning algorithms fail to carry through [Boyan and Moore 95,Bertsekas 95,Baird

95,Gordon 95]. Perhaps the strongest convergence result for value function approx-

imation to date is the following [Tsitsiklis and Roy 96]: for an MDP with a �xed

decision-making policy, the TD(�) algorithm may be used to calculate an accurate

linear approximation to the value function. Though its assumption of a �xed policy

is quite limiting, this theorem nonetheless applies to the learning done by STAGE, a

practical algorithm for global optimization introduced in this dissertation.

14 INTRODUCTION

1.3 Outline of the Dissertation

This thesis aims to advance the state of the art in value function approximation for

large, practical sequential decision tasks. It addresses two questions:

1. Can we devise new methods for value function approximation that are robust

and e�cient?

2. Can we apply the currently available convergence results to practical problems?

Both questions are answered in the a�rmative:

1. I discuss three new algorithms for value function approximation, which apply

to three di�erent restricted classes of Markov decision processes: Grow-Support

for large deterministic MDPs (x2.2), ROUT for large acyclic MDPs (x2.3), and

Least-Squares TD(�) for large Markov chains (x6.1). Each is designed to gain

robustness and e�ciency by exploiting the restricted MDP structure to which

it applies.

2. I introduce STAGE, a new reinforcement learning algorithm designed specif-

ically for large-scale global optimization tasks. In STAGE, commonly applied

local optimization algorithms such as stochastic hillclimbing are viewed as in-

ducing �xed decision policies on an MDP. Given that view, TD(�) or supervised

learning may be applied to learn an approximate value function for the policy.

STAGE then exploits the learned value function to improve optimization per-

formance in real time.

The thesis is organized as follows:

Chapter 2 presents formal de�nitions and notation for Markov decision processes

and value function approximation. It then summarizes Grow-Support and

ROUT, algorithms which learn to approximate V � in deterministic and acyclic

MDPs, respectively. Both these algorithms build V � strictly backward from the

goal, even when given only a forward simulation model, as is usually the case.

These algorithms have been presented previously [Boyan and Moore 95,Boyan

and Moore 96], but this chapter o�ers a new uni�ed discussion of both algo-

rithms and new results and analysis for ROUT.

Chapter 3 introduces STAGE, the algorithm which is the main contribution of this

dissertation [Boyan and Moore 97,Boyan and Moore 98]. STAGE is a practical

method for applying value function approximation to arbitrary large-scale global

optimization problems. This chapter motivates and describes the algorithm and

discusses issues of theoretical soundness and computational e�ciency.

x1.3 OUTLINE OF THE DISSERTATION 15

Chapter 4 presents empirical results with STAGE on seven large-scale optimization

domains: bin-packing, channel routing, Bayes net structure-�nding, radiother-

apy treatment planning, cartogram design, Boolean formula satis�ability, and

Boggle board setup. The results show that on a wide range of problems, STAGE

learns e�ciently, e�ectively, and with minimal need for problem-speci�c param-

eter tuning.

Chapter 5 analyzes STAGE's success, giving evidence that reinforcement learning

is indeed responsible for the observed improvements in performance. The sensi-

tivity of the algorithm to various user choices, such as the feature representation

and function approximator, and to various algorithmic choices, such as when to

end a trial and how to begin a new one, is tested empirically.

Chapter 6 o�ers two signi�cant investigations beyond the basic STAGE algorithm.

In Section 6.1, I describe a least-squares implementation of TD(�), which gen-

eralizes both standard supervised linear regression and earlier results on least-

squares TD(0) [Bradtke and Barto 96]. In Section 6.2, I discuss ways of trans-

ferring knowledge learned by STAGE from already-solved instances to novel

similar instances, with the goal of saving training time.

Chapter 7 reviews the relevant work from the optimization and AI literatures, sit-

uating STAGE at the con
uence of adaptive multi-start local search methods,

reinforcement learning methods, genetic algorithms, and evaluation function

learning techniques for game-playing and problem-solving search.

Chapter 8 concludes with a summary of the thesis contributions and a discussion

of the many directions for future research in value function approximation for

optimization.

16

17

Chapter 2

Learning Evaluation Functions for Sequential

Decision Making

Given only a simulator for a complex task and a measure of overall cumulative per-

formance, how can we e�ciently build an evaluation function which enables optimal

or near-optimal decisions to be made at every choice point? This chapter discusses

approaches based on the formalism of Markov decision processes and value functions.

After introducing the notation which will be used throughout this dissertation, I give

a review of the literature on value function approximation. I then discuss two original

approaches, Grow-Support and ROUT, for approximating value functions robustly in

certain restricted problem classes.

2.1 Value Function Approximation (VFA)

The optimal value function is an evaluation function which encapsulates complete

knowledge of the best expected search outcome attainable from each state:

V �(x) = the expected long-term reward starting from x, assuming optimal decisions.
(2.1)

Such an evaluation function is ideal in that a greedy local search with respect to V �

will always make the globally optimal move. In this section, I formalize the above

de�nition, review the literature on computing V �(x), and motivate a new class of

approximation algorithms for this problem based on working backwards.

2.1.1 Markov Decision Processes

Formally, let our search space be represented as a Markov decision process (MDP),

de�ned by

� a �nite set of states X, including a set of start states S � X;

� a �nite set of actions A;

� a reward function R : X � A ! <, where R(x; a) is the expected immediate

reward (or negative cost) for taking action a in state x; and

18 LEARNING FOR SEQUENTIAL DECISION MAKING

� a transition model P : X �X �A! <, where P (x0jx; a) gives the probability

that executing action a in state x will lead to state x0.

An agent in an MDP environment observes its current state xt, selects an action

at, and as a result receives a reward rt and moves probabilistically to another state

xt+1. It is assumed that the agent can fully observe its current state at all times;

more general partially observable MDP models [Littman 96] are beyond the scope of

this dissertation. The basic MDP model is
exible enough to represent AI planning

problems, stochastic games (e.g., backgammon) against a �xed opponent, and com-

binatorial optimization search spaces. With natural extensions, it can also represent

continuous stochastic control domains, two-player games, and many other problem

formulations [Littman 94,Harmon et al. 95, Littman and Szepesv�ari 96,Mahadevan

et al. 97].

Decisions in an MDP are represented by a policy � : X ! A, which maps each

state to a chosen action (or, more generally, a probability distribution over actions).

I assume that the policy is stationary, that is, unchanging over the course of a simu-

lation. For any stationary policy �, the policy value function V �(x) is de�ned as the

expected long-term reward accumulated by starting from state x and following policy

� thereafter:

V �(x) = E
� 1X
t=0

tR(xt; �(xt)) j x0 = x
	
: (2.2)

Here,
 2 [0; 1] is a discount factor which determines the extent of our preference

for short-term rewards over long-term rewards. Assuming bounded rewards, V � is

certainly well-de�ned for any choice of
 < 1; in the undiscounted case of
 =

1, V � remains well-de�ned under the additional condition that every trajectory is

guaranteed to terminate, i.e., reach a special absorbing state for which all further

rewards are 0. Most of the problems considered in this dissertation have this property

naturally; furthermore, an arbitrary MDP evaluated with a discount factor
 < 1 may

be transformed into an absorbing MDP whose undiscounted returns are equivalent

to the original problem's discounted returns, simply by introducing a termination

probability of 1�
 at each state. Therefore, I will generally assume
 = 1 throughout

this dissertation, giving equal weight to short-term and long-term rewards.

The policy value function V � satis�es this linear system of Bellman equations for

prediction:

8x; V �(x) = R(x; �(x)) +

X
x02X

P (x0jx; �(x))V �(x0) (2.3)

x2.1 VALUE FUNCTION APPROXIMATION (VFA) 19

The solution to an MDP is an optimal policy �� which simultaneously maximizes

V �(x) at every state x. A deterministic optimal policy exists for every MDP [Bellman

57]. The policy value function of �� is the optimal value function V � of Equation 2.1.

It satis�es the Bellman equations for control :

8x; V �(x) = max
a2A

�
R(x; a) +

X
x02X

P (x0jx; a)V �(x0)
�

(2.4)

From the value function V �, it is easy to recover the optimal policy: at any state x,

any action which instantiates the max in Equation 2.4 is an optimal choice [Bellman

57]. This formalizes the notion that V � is an ideal evaluation function.

Algorithms for computing V � are well understood in the case where the MDP

state space is relatively small (say, fewer than 107 discrete states), so that V � can be

implemented as a lookup table. In small MDPs, if we have explicit knowledge of the

transition model P (x0jx; a) and reward function R(x; a), then V � may be calculated

exactly by a variety of classical algorithms such as linear programming [D'Epenoux

63], policy iteration [Howard 60], modi�ed policy iteration [Puterman and Shin 78],

or value iteration [Bellman 57]. In small MDPs where the transition model is not

explicitly available, we must build V � from sample trajectories generated by direct

interaction with a simulation of the process; in this case, reinforcement learning (RL)

methods apply. RL methods are either model-based, which means they build an

empirical transition model from the sample trajectories and then apply one of the

aforementioned classical algorithms (e.g., Dyna-Q [Sutton 90], Prioritized Sweeping

[Moore and Atkeson 93])|ormodel-free, which means they estimate V � values directly

(e.g., TD(�) [Sutton 88], Q-learning [Watkins 89], SARSA [Rummery and Niranjan

94,Singh and Sutton 96]). I will have more to say on the issue of model-based versus

model-free algorithms in Section 6.1.2. Broadly speaking, all these algorithms may

be viewed as applying dynamic programming in an asynchronous, incremental way;

and under suitable conditions, all can still be shown to converge to the exact optimal

value function [Bertsekas and Tsitsiklis 96,Singh et al. 98].

The situation is very di�erent for practical large-scale decision tasks. These tasks

have high-dimensional state spaces, so enumerating V � in a table is intractable|a

problem known as the \curse of dimensionality" [Bellman 57]. Computing V � requires

generalization. One natural approach is to encode the states as real-valued feature

vectors and to use a function approximator to �t V � over the feature space. This

approach goes by the name value function approximation (VFA) [Boyan et al. 95].

20 LEARNING FOR SEQUENTIAL DECISION MAKING

2.1.2 VFA Literature Review

The current state of the art in value function approximation is surveyed thoroughly in

the book Neuro-Dynamic Programming [Bertsekas and Tsitsiklis 96]. Here, I brie
y

review the history of the �eld and the state of the art, so as to place this chapter's

algorithms in context.

Any review of the literature on reinforcement learning and evaluation functions

must begin with the pioneering work of Arthur Samuel on the game of checkers

[Samuel 59,Samuel 67]. Samuel implicitly recognized the worth of the value function,

saying that

... we are attempting to make the score, calculated for the current board

position, look like that calculated for the terminal board position of the

chain of moves which most probably will occur during actual play. Of

course, if one could develop a perfect system of this sort it would be

the equivalent of always looking ahead to the end of the game. [Samuel

59, p. 219]

Samuel's program incrementally changed the coe�cients of an evaluation polynomial

so as to make each visited state's value closer to the value obtained from lookahead

search.

In the dynamic-programming community, Bellman [63] and others explored poly-

nomial and spline �ts for value function approximation in continuous MDPs; reviews

of these e�orts may be found in [Johnson et al. 93, Rust 96]. But Arti�cial Intel-

ligence research into evaluation function learning was sporadic until the 1980s. In

the domain of chess, Christensen [86] tried replacing Samuel's coe�cient-tweaking

procedure with least-squares regression, and was able to learn reasonable weights for

the chess material-advantage function. In Othello, Lee and Mahajan [88] trained a

nonlinear evaluation function on expertly played games, and it played at a high level.

Christensen and Korf [86] put forth a uni�ed theory of heuristic evaluation functions,

advocating the principles of \outcome determination" and \move invariance"; these

correspond precisely to the two key properties of MDP value functions, that they rep-

resent long-term predictions and that they satisfy the Bellman equations. Finally, in

the late 1980s, the reinforcement learning community elaborated the deep connection

between AI search and dynamic programming [Barto et al. 89,Watkins 89, Sutton

90,Barto et al. 95]. This connection had been unexplored despite the publication of

an AI textbook by Richard Bellman himself [Bellman 78].

Reinforcement learning's most celebrated success has also been in a game domain:

backgammon [Tesauro 92,Tesauro 94]. Tesauro modi�ed Sutton's TD(�) algorithm

x2.1 VALUE FUNCTION APPROXIMATION (VFA) 21

[Sutton 88], which is designed to approximate V � for a �xed policy �, to the task

of learning an optimal value function V � and optimal policy. The modi�cation is

simple: instead of generating sample trajectories by simulating a �xed policy �,

generate sample trajectories by simulating the policy � which is greedy with respect

to the current value function approximation ~V :

�(x) = argmax
a2A

�
R(x; a) +

X
x02X

P (x0jx; a) ~V (x0)
�

(2.5)

(Occasional non-greedy \exploration" moves are also usually performed [Thrun 92,

Singh et al. 98], but were found unnecessary in backgammon because of the domain's

inherent stochasticity [Tesauro 92].) The modi�ed algorithm has been termed opti-

mistic TD(�) [Bertsekas and Tsitsiklis 96], because little is known of its convergence

properties. An implementation is sketched in Table 2.1.2. When � = 0, the algorithm

strongly resembles Real-Time Dynamic Programming (RTDP) [Barto et al. 95], ex-

cept that RTDP assigns target values at each state by a \full backup" (averaging over

all possible outcomes, as in value iteration) rather than TD(0)'s \sample backups"

(learning from only the single observed outcome). Applying optimistic TD(�) with

a multi-layer perceptron function approximator, Tesauro's program learned an eval-

uation function which produced expert-level backgammon play. These results have

been replicated by myself [Boyan 92] and others.

Tesauro's combination of optimistic TD(�) and neural networks has been ap-

plied to other domains, including elevator control [Crites and Barto 96] and job-shop

scheduling [Zhang and Dietterich 95]. (I will discuss the scheduling application in

detail in Section 7.2.) Nevertheless, it is important to note that when function ap-

proximators are used, optimistic TD(�) provides no guarantees of optimality. The

following paragraphs summarize the current convergence results for value function

approximation. For both the prediction learning (approximating V �) and control

learning (approximating V �) tasks, the relevant questions are (1) do the available

algorithms converge, and (2) if so, how good are their resulting approximations?

We �rst consider the case of approximating the policy value function V � of a �xed

policy �. The TD(�) family of algorithms applies here. When � = 1, TD(�) reduces to

performing stochastic gradient descent to minimize the squared di�erence between the

approximated predictions ~V � and the observed simulation outcomes. Under standard

conditions, using any parametric function approximator, this will converge to a local

optimum of the squared-error function. For su�ciently small �, however, TD(�) may

diverge when nonlinear function approximators are used [Bertsekas and Tsitsiklis 96].

Only in the case where the function approximator is a linear architecture over state

features has TD(�) been proven to converge for arbitrary � [Tsitsiklis and Roy 96].

22 LEARNING FOR SEQUENTIAL DECISION MAKING

Optimistic TD(�) for value function approximation:

Given:

� a simulation model for MDP X;

� a function approximator ~V (x) parametrized by weight vector w;

� a sequence of step sizes �1; �2; : : : for incremental weight updating; and
� a parameter � 2 [0; 1].

Output: a weight vector w such that ~V (x) � V �(x).

Set w := 0 (or an arbitrary initial estimate):

for n := 1; 2; : : : do: f

1. Using the greedy policy for the current evaluation function ~V (see Eq. 2.5),
generate a trajectory from a start state in X to termination:

x0 ! x1 � � � ! xT . Record the rewards r0; r1; : : : rT received at each step.

2. Update the weights of ~V from the trajectory as follows:

for i := T downto 0, do: f

targ
i
:=

(
rT (the terminal reward) if i = T

ri + � � targ
i+1 + (1� �) � ~V (xi+1) otherwise.

Update ~V 's weights by delta rule: w := w + �n(targi � ~V (xi))rw
~V (xi).

g

g

Table 2.1. Optimistic TD(�) for undiscounted value function approximation in an

absorbing MDP. This easy-to-implement version performs updates after the termina-
tion of each trajectory. For an incremental version that performs updates after each

transition, refer to [Sutton 87]. In practice, trajectories are often generated using a

mixture of greedy moves and exploration moves [Thrun 92,Singh et al. 98].

x2.1 VALUE FUNCTION APPROXIMATION (VFA) 23

A useful error bound has also been shown in the linear case: the resulting �t is worse

than the best possible linear �t by a factor of at most (1 �
�)=(1 �
), assuming a

discount factor of
 < 1 [Tsitsiklis and Roy 96]. This implies that TD(1) is guaranteed

to produce the best �t, but the bound quickly deteriorates as � decreases. The same

qualitative conclusion applies (though the formula for the bound is more complex)

for
 = 1 [Bertsekas and Tsitsiklis 96].

We now proceed to the harder problem of approximating the optimal value func-

tion V �. First, independent of how we construct it, is an approximate value function
~V useful for deriving a decision-making policy? Singh and Yee [94] show that if ~V

di�ers from V � by at most � at any state, then the expected return of the greedy

policy for ~V will be worse than that of the optimal policy by a factor of at most

2
�=(1�
). A similar result holds in the undiscounted case, assuming all policies are

proper (
 is then replaced by a contraction factor in a suitably weighted max norm).

This bound is not particularly comforting, since 1=(1 �
) will be large in practical

applications, but at least it guarantees that policies cannot be arbitrarily bad.

How should we construct V �? In general, algorithms based on value iteration's

one-step-backup operator, such as optimistic TD(�), use function approximator pre-

dictions to assign new training values for that same function approximator|a re-

cursive process that may propagate and enlarge approximation errors, leading to pa-

rameter divergence. I have demonstrated empirically that such divergence can indeed

happen when o�ine value iteration is combined with commonly used function approx-

imators, such as polynomial regression and neural networks [Boyan and Moore 95].

Small illustrative examples of divergence have also been demonstrated [Baird 95,Gor-

don 95]. Sutton has argued that certain of these instabilities may be prevented by

sampling states along simulated trajectories, as optimistic TD(�) does [Sutton 96];

but there are no convergence proofs of this as yet.

Parameter divergence in o�ine value iteration can provably be prevented by us-

ing function approximators belonging to the class of averagers, such as k-nearest-

neighbor [Gordon 95]. However, this class excludes practical function approximators

which extrapolate trends beyond their training data (e.g., global or local polyno-

mial regression, neural networks). Residual algorithms, which attempt to blend opti-

mistic TD(�) with a direct minimization of the residual approximation errors in the

Bellman equation, are guaranteed stable with arbitrary parametric function approx-

imators [Baird 95]; these methods are promising but as yet unproven on real-world

problems.

24 LEARNING FOR SEQUENTIAL DECISION MAKING

2.1.3 Working Backwards

Value iteration (VI) computes V � by repeatedly sweeping over the state space, ap-

plying Equation 2.4 as an assignment statement (this is called a \one-step backup")

at each state in parallel. Suppose the lookup table is initialized with all 0's. Then

after the ith sweep of VI, the table will store the maximum expected return of a path

of length i from each state. For so-called stochastic shortest path problems in which

every trajectory produced by the optimal policy inevitably terminates in an absorbing

state [Bertsekas and Tsitsiklis 96], this corresponds to the intuition that VI works by

propagating correct V � values backwards, by one step per iteration, from the terminal

states.

I have explored the e�ciency and robustness gains possible when VI is modi�ed

to take advantage of the working-backwards intuition. There are two main classes

of MDPs for which correct V � values can be assigned by working strictly backwards

from terminal states:

1. deterministic domains with no positive-reward cycles and with every state able

to reach at least one terminal state. This class includes shortest-path and

minimum \cost-to-go" problems [Bertsekas and Tsitsiklis 96].

2. (possibly stochastic) acyclic domains: domains where no trajectory can pass

through the same state twice. Many problems naturally have this property (e.g.,

board-�lling games like tic-tac-toe and Connect-Four, industrial scheduling as

described in Section 2.3.4 below, and any �nite-horizon problem for which time

is a component of the state).

Using VI to solve MDPs belonging to either of these special classes can be quite

ine�cient, since VI performs backups over the entire space, whereas the only back-

ups useful for improving V � are those on the \frontier" between already-correct and

not-yet-correct V � values. In fact, for small problems there are classical algorithms

for both problem classes which compute V � more e�ciently by explicitly working

backwards: for the deterministic class, Dijkstra's shortest-path algorithm; and for the

acyclic class, Directed-Acyclic-Graph-Shortest-Paths (DAG-SP) [Cormen et

al. 90].1 DAG-SP �rst topologically sorts the MDP, producing a linear ordering of

the states in which every state x precedes all states reachable from x. Then, it runs

through that list in reverse, performing one backup per state. Worst-case bounds for

VI, Dijkstra, and DAG-SP in deterministic domains with X states and A actions per

state are O(AX2), O(AX logX), and O(AX), respectively.

1Although Cormen et al. [90] present DAG-SP only for deterministic acyclic problems, it applies
straightforwardly to the stochastic case.

x2.2 VFA IN DETERMINISTIC DOMAINS: \GROW-SUPPORT" 25

Another di�erence between VI and working backwards is that VI repeatedly re-

estimates the values at every state, using old predictions to generate new training

values. By contrast, Dijkstra and DAG-SP are always explicitly aware of which states

have their V � values already known, and can hold those values �xed. This distinction

is important in the context of generalization and the possibility of approximation

error.

In sum, I have presented two reasons why working strictly backwards may be

desirable: e�ciency, because updates need only be done on the \frontier" rather

than all over state space; and robustness, because correct V � values, once assigned,

need never again be changed. I have therefore investigated generalizations of the

Dijkstra and DAG-SP algorithms speci�cally modi�ed to accommodate huge state

spaces and value function approximation. My variant of Dijkstra's algorithm, called

Grow-Support, was presented in [Boyan and Moore 95] and is summarized brie
y

in Section 2.2. My variant of DAG-SP is an algorithm called ROUT [Boyan and

Moore 96], which I describe in more detail and with new results in Section 2.3. Other

researchers have also investigated learning control by working backwards, notably

Atkeson [94] for the case of deterministic domains with continuous dynamics.

2.2 VFA in Deterministic Domains: \Grow-Support"

This section summarizes Grow-Support, an algorithm for value function approxima-

tion in large, deterministic, minimum-cost-to-goal domains [Boyan and Moore 95].

Grow-Support is designed to construct the optimal value function with a generalizing

function approximator while remaining robust and stable. It recognizes that function

approximators cannot always be relied upon to �t the intermediate value functions

produced by value iteration. Instead, it assumes only that the function approximator

can represent the �nal V � function accurately, if given accurate training values for a

prespeci�ed collection of sample states. The speci�c principles of Grow-Support are

as follows:

1. We maintain a \support" subset of sample states whose �nal V � values have

been computed, starting with terminal states and then growing backward from

there. The �tter ~V is trained only on these values, which we assume it is capable

of �tting.

2. Instead of propagating values by one-step backups, we use rollouts|simulated

trajectories guided by the current greedy policy on ~V . They explicitly verify the

achievability of a state's estimated future reward before that state is added to

the support set. In a rollout, the new ~V training value is derived from rewards

26 LEARNING FOR SEQUENTIAL DECISION MAKING

along an actual path to the goal, not from the predictions made by the previous

iteration's function approximation. This prevents divergence.

3. We take maximum advantage of generalization. On each iteration, we add to

the support set any sample state that can, by executing a single action, reach a

state that passes the rollout test. In a discrete environment, this would cause the

support set to expand in one-step concentric \shells" back from the goal, similar

to Dijkstra's algorithm. But in the continuous case, the function approximator

may be able to extrapolate correctly well beyond the support region|and when

this happens, we can add many points to the support set at once. This leads to

the very desirable behavior that the support set grows in big jumps in regions

where the value function is smooth.

Grow-Support(X̂;G;A;NextState;Cost; ~V):

Given: � a �nite collection of states X̂ = fx1; x2; : : : xNg sampled from the
continuous state space X � <

n, and goal region G � X

� a �nite set of allowable actions A
� a deterministic transition function NextState : X �A! X

� the 1-step cost function Cost : X �A! <

� a smoothing function approximator ~V
� a tolerance level � for value function approximation error

Support := f(xi 7! 0) j xi 2 Gg

repeat

Train ~V to approximate the training set Support
for each xi 62 Support do

c := mina2A

h
Cost(xi; a) +RolloutCost(NextState(xi; a); ~V)

i
if c <1 then

add (xi 7! c) to the training set Support

until Support stops growing or includes all sample points.

RolloutCost(state x, �tter ~V):

Starting from x, simulate the greedy policy de�ned by value function ~V until

either reaching the goal, or exceeding a total path cost of ~V (x) + �.

Then return:

�! the actual total cost of the path, if goal is reached with cost � ~V (x) + � ;

�!1, if goal is not reached in cost ~V (x) + �.

Table 2.2. The Grow-Support algorithm and RolloutCost subroutine

x2.3 VFA IN ACYCLIC DOMAINS: \ROUT" 27

The algorithm is sketched in Table 2.2. In a series of experiments reported in

[Boyan and Moore 95], I found that Grow-Support is more robust than value iteration

with function approximation. (Several follow-up studies provide additional insight

into value iteration's potential for divergence [Gordon 95,Sutton 96].) Grow-Support

was also seen to be no more computationally expensive, and often much cheaper,

despite the overhead of performing rollouts. Reasons for this include: (1) the rollout

test is not expensive; (2) once a state has been added to the support, its value is

�xed and it needs no more computation; and most importantly, (3) the aggressive

exploitation of generalization enables the algorithm to converge in very few iterations.

It is easy to prove that Grow-Support will always terminate after a �nite number

of iterations. If the function approximator is inadequate for representing the V �

function, Grow-Support may terminate before adding all sample states to the support

set. When this happens, we then know exactly which of the sample states are having

trouble and which have been learned. This suggests potential schemes for adaptively

adding sample states in problematic regions. The ROUT algorithm, described next,

does adaptively generate its own set of sample states for learning.

2.3 VFA in Acyclic Domains: \ROUT"

As Grow-Support scaled up Dijkstra's algorithm for deterministic domains, ROUT

aims to scale up DAG-Shortest-Paths (DAG-SP) for stochastic, acyclic domains. In

large combinatorial spaces requiring function approximation, DAG-SP's key prepro-

cessing step|topologically sorting the entire state space|is no longer tractable. In-

stead, ROUT must expend some extra e�ort to identify states on the current frontier.

Once identi�ed (as described below), a frontier state is assigned its optimal V � value

by a simple one-step backup, and this fstate!valueg pair is added to a training set

for a function approximator. I determine the training value by a one-step backup

rather than rollouts because, unlike the deterministic MDPs to which Grow-Support

applies, stochastic MDPs would require performing not one but many rollouts for

accurate value determination. However, ROUT still does use an analogue of Grow-

Support's \rollout test" to identify the states at which the one-step backup may be

safely applied.

In sum, ROUT's main loop consists of identifying a frontier state; determining its

V � value; and retraining the approximator. The training set, constructed adaptively,

grows backwards from the goal. HuntFrontierState is the key subroutine ROUT

uses to identify a good state to add to the training set. The criteria for such a state

x are as follows:

28 LEARNING FOR SEQUENTIAL DECISION MAKING

1. All states reachable from x should already have their V � values correctly ap-

proximated by the function approximator. This ensures that the policy from x

onward is optimal, and that a correct target value for V �(x) can be assigned.

2. x itself should not already have its V � value correctly approximated. This

condition aims to keep the training set as small as possible, by excluding states

whose values are correct anyway thanks to good generalization.

3. x should be a state that we care to learn about. For that reason, ROUT

considers only states which occur on trajectories emanating from a starting

state of the MDP.

The HuntFrontierState operation returns a state which with high probability

satis�es these properties. It begins with some state x and generates a number of

trajectories from x, each time checking to see whether all states along the trajectory

are self-consistent (i.e., satisfy Equation 2.4 to some tolerance �). If all states after

x on all sample trajectories are self-consistent, then x is deemed ready, and ROUT

will add x to its training set. If, on the other hand, a trajectory from x reveals any

inconsistencies in the approximated value function, then we
ag that trajectory's last

such inconsistent state, and restart HuntFrontierState from there. Table 2.3

speci�es the algorithm, and Figure 2.3 illustrates how the routine works.

The parameters of the ROUT algorithm are H, the number of trajectories gen-

erated to certify a state's readiness, and �, the tolerated Bellman residual. ROUT's

convergence to the optimal V �, assuming the function approximator can �t the V �

training set perfectly, can be guaranteed in the limiting case where H !1 (assuring

exploration of all states reachable from x) and � = 0. In practice, of course, we want

to be tolerant of some approximation error. Typical settings I used were H = 20 and

� = roughly 5% of the range of V �.

The following sections present experimental results with ROUT on three domains:

a prediction task, a two-player dice game, and a k-armed bandit problem. For all

problems, I compare ROUT's performance with that of optimistic TD(�) given the

equivalent function approximator. I measure the time to reach best performance

(in terms of total number of state evaluations performed) and the quality of the

learned value function (in terms of Bellman residual, closeness to the true V �, and

performance of the greedy control policy). The results show that ROUT learned

evaluation functions which were as good or better than those learned by TD(�), and

used an order of magnitude less training data in doing so. I also report preliminary

results on a fourth domain, a simpli�ed production scheduling task.

x2.3 VFA IN ACYCLIC DOMAINS: \ROUT" 29

START

Figure 2.1. A schematic of ROUT working on an acyclic two-dimensional navi-
gation domain, where the allowable actions are only !, %, and ". Suppose that
ROUT has thus far established training values for V � at the triangles, and that the

function approximator has successfully generalized V � throughout the shaded region.
Now, when HuntFrontierState generates a trajectory from the start state to

termination (solid line), it �nds that several states along that trajectory are incon-
sistent (marked by crosses). The last such cross becomes the new starting point for

HuntFrontierState. From there, all trajectories generated (dashed lines) are fully

self-consistent, so that state gets added to ROUT's training set. When the function

approximator is re-trained, the shaded region of validity should grow, backwards from
the goal.

30 LEARNING FOR SEQUENTIAL DECISION MAKING

ROUT(start states X̂, �tter ~V):
/* Assumes that the world model MDP is known and acyclic. */

initialize training set S := ;, and ~V := an arbitrary �t;

repeat:

for each start state x 2 X̂ not yet marked \done", do:

s := HuntFrontierState(x; ~V);

add fs 7! one-step-backup(s)g to training set S and re-train �tter ~V on S;
if (s = x), then mark start state x as \done".

until all start states in X̂ are marked \done".

HuntFrontierState(state x, �tter ~V):

/* If the value function is self-consistent on all trajectories from x, return

x. (That is determined probabilistically by Monte Carlo trials.) Other-

wise, return a state on a trajectory from x for which the self-consistency

property is true. */
for each legal action a 2 A(x), do:

repeat up to H times:

generate a trajectory ~T from x to termination, starting with action a;

let y be the last state on ~T with Bellman residual > �;

if (y 6= ;) and (y 6= x), then break out of loops, and

restart procedure with HuntFrontierState(y; ~V).

/* reaching this point, x's subtree is deemed all self-consistent and correct! */

return x.

Table 2.3. The ROUT algorithm and the HuntFrontierState subroutine

x2.3 VFA IN ACYCLIC DOMAINS: \ROUT" 31

2.3.1 Task 1: Stochastic Path Length Prediction

The \Hopworld" is a small domain designed to illustrate how ROUT combines working

backwards, adaptive sampling and function approximation. The domain is an acyclic

Markov chain of 13 states in which each state has two equally probable successors:

one step to the right or two steps to the right. The transition rewards are such

that for each state V �(n) = �2n. Our function approximator ~V makes predictions

by interpolating between values at every fourth state. This is equivalent to using a

linear approximator over the four-element feature vector representation depicted in

Figure 2.2.

-3.0 -3.0

-3.0 -3.0

START

[0, 0, 1/4, 3/4]

[0, 0, 1/2, 1/2] [0, 0, 0, 1]

[0, 0, 3/4, 1/4]

[1, 0, 0, 0]

[3/4, 1/4, 0, 0]

[1/2, 1/2, 0, 0]

12 11 10 3 2 1 0
-2.0

-3.0

-3.0

-3.0

-3.0

Figure 2.2. The Hopworld Markov chain. Each state is represented by a four-
element feature vector as shown. The function approximator is linear.

In ROUT, we �t the training set using a batch least-squares �t. In TD, the coef-

�cients are updated using the delta rule with a hand-tuned learning rate. The results

are shown in Table 2.4. ROUT's performance is e�cient and predictable on this

contrived problem. At the start, HuntFrontierState �nds ~V is inconsistent and

trains ~V (1) and ~V (2) to be -2 and -4, respectively. Linear extrapolation then forces

states 3 and 4 to be correct. On the third iteration, ~V (5) is spotted as inconsistent

and added to the training set, and bene�cial extrapolation continues. By compari-

son, TD also has no trouble learning V �, but requires many more evaluations. This is

because TD trains blindly on all transitions, not only the useful ones; and because its

updates must be done with a fairly small learning rate, since the domain is stochastic.

TD could be improved by an adaptive learning rate, or better yet, by eliminating its

learning rates and performing Least-Squares TD as described later in Section 6.1.2.

2.3.2 Task 2: A Two-Player Dice Game

\Pig" is a two-player children's dice game. Each player starts with a total score of

zero, which is increased on each turn by dice rolling. The �rst to 100 wins. On her

turn, a player accumulates a subtotal by repeatedly rolling a 6-sided die. If at any

time she rolls a 1, however, she loses the subtotal and gets only 1 added to her total.

32 LEARNING FOR SEQUENTIAL DECISION MAKING

Thus, before each roll, she must decide whether to (a) add her currently accumulated

subtotal to her permanent total and pass the turn to the other player; or (b) continue

rolling, risking an unlucky 1.

Pig belongs to the class of symmetric, alternating Markov games. This means

that the minimax-optimal value function can be formulated as the unique solution

to a system of generalized Bellman equations [Littman and Szepesv�ari 96] similar to

Equation 2.4. The state space, with two-player symmetry factored out, has 515,000

positions|large enough to be interesting, but small enough that computing the exact

V � is tractable.

For input to the function approximator, we represent states by their natural 3-

dimensional feature representation: X's total, O's total, and X's current subtotal.

The approximator is a standard MLP with two hidden units. In ROUT, the network

is retrained to convergence (at most 1000 epochs) each time the training set is aug-

mented. Note that this extra cost of ROUT is not re
ected in the results table, but

for practical applications, a far faster approximator than backpropagation would be

used with ROUT.2

The Pig results are charted in Table 2.4 and graphed in Figure 2.3. The graph

shows the learning curves for the best single trial of each of six classes of runs: TD(0),

TD(0.8) and TD(1), with and without exploration. (The vertical axis measures per-

formance in expected points per game against the minimax optimal player, where

+1 point is awarded for a win and �1 for a loss.) The best TD run, TD(0) with

exploration, required about 30 million evaluations to reach its best performance of

about �0:15. By contrast, ROUT completed successfully in under 1 million evalua-

tions, and performed at the signi�cantly higher level of �0:09. ROUT's adaptively

generated training set contained only 133 states.

2.3.3 Task 3: Multi-armed Bandit Problem

Our third test problem is to compute the optimal policy for a �nite-horizon k-armed

bandit [Berry and Fristedt 85]. While an optimal solution in the in�nite-horizon

case can be found e�ciently using Gittins indices, solving the �nite-horizon problem

is equivalent to solving a large acyclic, stochastic MDP in belief space [Berry and

Fristedt 85]. I show results for k = 3 arms and a horizon of n = 25 pulls, where

the resulting MDP has 736,281 states. Solving this MDP by DAG-SP produces the

2Unlike TD, which works only with parametric function approximators for which rw

~V (x) can be
calculated, ROUT can work with arbitrary function approximators, including batch methods such
as projection-pursuit and locally weighted regression. For these comparative experiments, however,
we used linear or neural network �ts for both algorithms.

x2.3 VFA IN ACYCLIC DOMAINS: \ROUT" 33

training total RMS RMS policy

Problem Method samples evals Bellman kV �
�Fk quality

HOP Discrete� 12 21 0 0 -24 �

ROUT 4 158 0. 0. -24
TD(0) 5000 10,000 0.03 0.1 -24

TD(1) 5000 10,000 0.03 0.1 -24

PIG Discrete� 515,000 3.6M 0 0 0 �

ROUT 133 0.8M 0.09 0.14 -0.093

TD(0) + explore 5 M 30 M 0.23 0.29 -0.151
TD(0.8) + explore 9 M 60 M 0.23 0.33 -0.228

TD(1) + explore 6 M 40 M 0.22 0.30 -0.264
TD(0) no explore 8+ M 50+ M 0.12 0.54 -0.717

TD(0.8) no explore 5 M 35 M 0.33 0.44 -0.308
TD(1) no explore 5 M 30 M 0.23 0.32 -0.186

BAND Discrete� 736,281 4 M 0 0 0.682 �

ROUT 30 15,850 0.01 0.05 0.668
TD(0) 150,000 900,000 0.07 0.14 0.666

TD(1) 100,000 600,000 0.02 0.04 0.669

Table 2.4. Summary of results. For each algorithm on each problem, I list two
measurements of time to quiescence followed by three measurements of the solution
quality. The measurements for TD were taken at the time when, roughly, best perfor-

mance was �rst consistently reached. (Key: M=106; * denotes optimal performance
for each task.)

34 LEARNING FOR SEQUENTIAL DECISION MAKING

-1

-0.8

-0.6

-0.4

-0.2

0

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07

pe
rf

or
m

an
ce

 v
s.

 o
pt

im
al

 o
pp

on
en

t

number of function evaluations

ROUT
/

ROUT
TD(0), explor

TD(0.8), explor
TD(1), explor

TD(0), no explor
TD(0.8), no explor

TD(1), no explor

Figure 2.3. Performance of Pig policies learned by TD and ROUT. ROUT's per-

formance is marked by a single diamond at the top left of the graph.

x2.3 VFA IN ACYCLIC DOMAINS: \ROUT" 35

optimal exploration policy, which has an expected reward of 0.6821 per pull.

Each state is encoded as a six-dimensional feature vector of [#succ
arm1; #failarm1;

#succ
arm2; #failarm2; #succarm3; #failarm3] and attempted to learn a neural network

approximation to V � with TD(0), TD(1), and ROUT. Again, the parameters for all

algorithms were tuned by hand.

The results are shown in Table 2.4. All methods do spectacularly well, although

the TD methods again require more trajectories and more evaluations. Careful in-

spection of the problem reveals that a globally linear value function, extrapolated

from the states close to the end, has low Bellman residual and performs very nearly

optimally. Both ROUT and TD successfully exploit this linearity.

2.3.4 Task 4: Scheduling a Factory Production Line

Production scheduling, the problem of deciding how to con�gure a factory sequentially

to meet demands, is a critical problem throughout the manufacturing industry.3 We

assume we have a modest number of products (2{100) and must produce enough

of each to keep warehouse stocks high enough to satisfy customer requests for bulk

shipments. This production model is common, for example, for most goods found in

a supermarket.

An instance of the production scheduling problem is composed of �ve parts:

Machines and products. This is a list of what machines are present in the factory,

and what products can be made on the machines. There may be complex

constraints such as \machine A can only make product 1 when machine B is

not making product 3." A complete, legal assignment of products onto the set of

machines is called a con�guration. There is also a special \closed" con�guration

which represents a decision to shut the factory down.

Changeover times. It generally takes a certain amount of time to switch the factory

from one con�guration to another. During that time, there is no production.

The problem de�nition includes a (possibly stochastic) estimate of how long it

takes to change each con�guration to each other con�guration.

Production rates. Each con�guration produces a set of products at a certain rate.

There may be dependencies between the machines. For example, machine B

may produce product 2 faster if machine A is also producing product 2. The

actual production rates in the factory may be very stochastic; for example, some

machines may jam frequently, causing irregular delays on the production line.

3The application of RL to production scheduling reported here is the result of a collaboration
with Je� Schneider and Andrew Moore [Schneider et al. 98].

36 LEARNING FOR SEQUENTIAL DECISION MAKING

Aug 1 Sep 1 Oct 1 Nov 1

predicted inventory

with no scheduled production

zero inventory

machine07

machine00

machine01

machine1m

machine11

machine10

machine2n

machine21

machine20

scrap

raw

product

finished

products

schedule these
machines

Figure 2.4. Demand inventory curves (left) and factory layout (right). See text for
further explanation.

Inventory demand curves. At the time a schedule is created, a demand curve for

each product is available from a corporate marketing and forecasting group. As

shown in Fig. 2.4, each curve starts at the left with the current inventory of

that product. The inventory decreases over time as future product shipments

are made and eventually goes below zero if no new production occurs. To avoid

penalties, the scheduler should call for more production before the demand curve

falls below zero. These curves may also change over time as new information

about future product demand becomes available.

Schedule costs. Running a schedule generates a dollar measure of net pro�t or loss.

This includes the costs of running the factory, paying the workers, purchasing

the raw materials, and carrying inventory at the warehouse. It also includes

heuristic costs such as an estimate of the damage done by failing to �ll a cus-

tomer request when the warehouse inventory goes to zero. Finally, it includes

the revenue generated from selling product to a customer.

Given this problem description, the task of production scheduling is to maximize

expected pro�t by selecting factory con�gurations over a period of time. In cases

where the production rates and demand curves are assumed deterministic, the prob-

lem reduces to �nding the optimal open-loop schedule: that is, �nd a �xed sequence

of con�gurations that maximizes pro�t. In the general stochastic case, the optimal

choice of con�guration at time t will depend on the outcomes of earlier con�gurations,

so the optimal solution has the form of a closed-loop scheduling policy.

The production scheduling problem is modelled very naturally as a Markov Deci-

sion Process, as follows:

� The system state is de�ned by the current time t 2 0 : : : T ; the current inventory

x2.3 VFA IN ACYCLIC DOMAINS: \ROUT" 37

of each product p1 : : : pN ; and, if there are con�guration-dependent changeover

times, the current factory con�guration.

� The action set consists of all legal factory con�gurations. We assume a discrete-

time model, so the con�guration chosen at time t will run unchanged until time

t+ 1.

� The stochastic transition function applies a simulation of the factory to com-

pute the change in all inventory levels realized by running con�guration ct for 1

timestep. This model handles random variations in production rates straight-

forwardly; it also handles changeover times by simply decreasing production in

proportion to the (possibly stochastic) downtime. The time t is incremented on

each step, and the process terminates when t = T .

� The immediate reward function is computed from the inventory levels, based

on the demand curve at time t. It incorporates the revenues from production,

penalties from late production, employee costs, operating costs and changeover

cost incurred during the period. On the �nal time period (transition from

t = T � 1 to T), a terminal \reward" assigns additional penalties for any

outstanding unsatis�ed demands.

The MDP model fully represents uncertainty in production rates and changeover

times. As de�ned here, the model also handles noise in the demands if that noise

is time-independent, but it cannot account for the possibility of the demand curves

being randomly updated in the middle of a schedule, since that would make the MDP

transition probabilities nonstationary. Finally, since the current time t is included as

part of the state, the MDP is acyclic: ROUT may be applied.

I applied ROUT to a highly simpli�ed version of a real factory's scheduling prob-

lem. The task involves scheduling 8 weeks of production; however, con�gurations may

be changed only at 2-week intervals, and only 17 con�guration choices are available.

Of these 17, nine have deterministic production rates; the other eight each have two

stochastic outcomes, producing only 1=3 of their usual amount with probability 0:5.

With a total of 9 � 1 + 8 � 2 = 25 outcomes possible from every state, and four

scheduling periods, there are 254 = 390; 625 possible trajectories through the space.

The optimal policy can be computed by tabulating V �(x) at every possible interme-

diate state x of the factory, of which there are 1 + 25 + 252 + 253 = 16; 276. The

optimal policy results in an expected cumulative reward of �$22:8M. By contrast, a

random schedule attains a reward of �923M . A greedy policy, which at each step

selects a con�guration to maximize only the next period's pro�t, attains �$97:9M.

38 LEARNING FOR SEQUENTIAL DECISION MAKING

I applied ROUT to this instance, trying two di�erent memory-based function

approximators: 1-nearest neighbor and locally weighted linear regression [Cleveland

and Devlin 88]. (The local regression used a kernel width of 1
8
of the range of each

input dimension in the training data; this fraction was tuned manually over powers of
1
2
.) Since these function approximators are nonparametric, TD(�) cannot be used to

train them, so ROUT is compared only to the optimal, greedy, and random policies.

ROUT's exploration and tolerance parameters were also tuned manually.

Algorithm Mean Pro�t 95% C.I. optimal runs

Optimal -22.8 1

Random -923.2 �58.7 0
Greedy -97.9 �15.1 0
ROUT + nearest neighbor N/A 0

ROUT + locally weighted linear -45.0 �16.9 10/16

Table 2.5. Results on the production scheduling task

Table 2.5 summarizes the results. When nearest-neighbor was used as the function

approximator, ROUT did not obtain su�cient generalization from its training set and

failed to terminate within a limit of several hours. However, with a locally weighted

regression model, ROUT did run to completion and produced an approximate value

function which signi�cantly outperformed the greedy policy. Moreover, over half of

these runs did indeed terminate with the optimal closed-loop scheduling policy. In

these cases, ROUT's �nal self-built training set for value function approximation

consisted of only about 110 training points|a substantial reduction over the 16; 276

required for full tabulation of V �. ROUT's total running time (� 1 hour on a 200 MHz

Pentium Pro) was roughly half of that required to enumerate V � manually.

From these preliminary results, I conclude that ROUT does indeed have the po-

tential to approximate V � extremely well, given a suitable function approximator

for the domain. However, since it runs quite slowly on even this simple problem,

I believe ROUT will not scale up to practical scheduling instances without further

modi�cation.

2.4 Discussion

When a function approximator is capable of �tting V �, ROUT will, in the limit, �nd

it. However, for ROUT to be e�cient, the frontier must grow backward from the goal

quickly, and this depends on good extrapolation from the training set. When good

extrapolation does not occur, ROUT may become stuck, repeatedly adding points

x2.4 DISCUSSION 39

near the goal region and never progressing backwards. Some function approximators

may be especially well-suited to ROUT's required extrapolation from accurate train-

ing data, and this deserves further exploration. Another promising re�nement would

be to adapt the tolerance level �, thereby guaranteeing progress at the expense of

accuracy.

Grow-Support and ROUT represent �rst steps toward a new class of algorithms

for solving large-scale MDPs. Their primary innovation is that, without falling prey

to the curse of dimensionality, they are able to explicitly represent which states are

already solved and which are not yet solved. Using this information, they \work

backwards," computing accurate V � values at targeted unsolved states using either

function approximator predictions at solved states or Monte Carlo rollouts. Impor-

tantly, and unlike the Dijkstra and DAG-SP exact algorithms on which they are

based, they grow the solution set for V � back from the goal without requiring an

explicit backward model for the MDP. Only forward simulations are used; this con-

strains the distribution of visited states to areas that are actually reachable during

task execution. By treating solved and unsolved states di�erently, Grow-Support and

ROUT eliminate the possibility of divergence caused by repeated value re-estimation.

This chapter has reviewed the state of the art in reinforcement learning, a �eld

which is grounded solidly in the theory of dynamic programming but provides few

guarantees for the practical cases where function approximators, rather than lookup

tables, must be used to construct the value function. I have described two novel

algorithms for approximating V � which are guaranteed stable and which perform

well in practice. In the remaining chapters of this thesis, I consider the simpler VFA

problem of approximating V � for a �xed policy �, on which TD(�) with linear function

approximators does come with strong convergence guarantees|and I demonstrate a

practical way of exploiting these approximations to improve search performance on

global optimization tasks.

40

41

Chapter 3

Learning Evaluation Functions for

Global Optimization

3.1 Introduction

3.1.1 Global Optimization

Global optimization|the problem of �nding the best possible con�guration from a

large space of possible con�gurations|is among the most fundamental of computa-

tional tasks. Its numerous applications in science, engineering, and industry include

� design and layout: optimizing VLSI circuit designs for computer architectures

[Wong et al. 88], packing automobile components under a car hood [Szykman

and Cagan 95], architectural design, magazine page layout

� resource allocation: airline scheduling [Subramanian et al. 94], school timetabling,

factory production scheduling, military logistics planning

� parameter optimization: generating accurate models for weather prediction,

ecosystem modeling [Duan et al. 92], economic modeling, tra�c simulations,

intelligent database querying [Boyan et al. 96]

� scienti�c analysis: computational biology (gene sequencing) [Karp 97], compu-

tational chemistry (protein folding) [Neumaier 97]

� engineering: medical robotics (radiotherapy for tumor treatment) [Webb 91],

computer vision (line matching) [Beveridge et al. 96]

Formally, an instance of global optimization consists of a state space X and an

objective function Obj : X ! <. The goal is to �nd a state x� 2 X which minimizes

Obj, that is, Obj(x�) � Obj(x) 8x 2 X. If the space X is so small that every state

can be evaluated, then obtaining the exact solution x� is trivial; otherwise, special

knowledge of the problem structure must be exploited. For example, if X is a convex

linearly constrained subset of <n and Obj is linear, then x� can be found e�ciently

by linear programming.

42 LEARNING FOR GLOBAL OPTIMIZATION

But for many important optimization problems, e�cient solution methods are

unknown. Practical combinatorial optimization problems where X is �nite but enor-

mous, such as the applications listed under \design and layout" and \resource alloca-

tion" above, all too often fall into the class of NP-hard problems, for which e�cient

exact algorithms are thought not to exist [Garey and Johnson 79]. Recent progress

in cutting-plane and branch-and-bound algorithms, especially as applied to mixed-

integer linear programming and Travelling Salesperson Problems, has led to exact

solutions for some large NP-hard problem instances [Applegate et al. 95, Subrama-

nian et al. 94]. However, for most real-world domains, practitioners resort to heuristic

approximation methods which seek good approximate solutions.

To illustrate the discussion that follows, I will present an example optimization

instance from the domain of one-dimensional bin-packing. In bin-packing, we are

given a bin capacity C and a list L = (a1; a2; :::an) of n items, each having a size

s(ai) > 0. The goal is to pack the items into as few bins as possible, i.e., partition

them into a minimum number m of subsets B1; B2; :::; Bm such that for each Bj ,P
ai2Bj

s(ai) � C. This problem has many real-world applications, including loading

trucks subject to weight limitations, packing commercials into station breaks, and

cutting stock materials from standard lengths of cable or lumber [Co�man et al. 96].

It is also a classical NP-complete optimization problem [Garey and Johnson 79].

Figure 3.1 depicts a small bin-packing instance with thirty items. Packed optimally,

these items �ll 9 bins exactly to capacity.

 29
 28
 27
 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 8
 7
 6
 5
 4
 3
 2
 1
 0

Figure 3.1. A small bin-packing domain. Left: initial state (30 items, each in its

own bin). Right: the global optimum (nine bins packed with 0 waste).

x3.1 INTRODUCTION 43

3.1.2 Local Search

Many special-purpose approximation algorithms have been proposed and analyzed

for the bin-packing problem [Co�man et al. 96]. However, we will focus instead on

a broad class of general-purpose algorithms for the general global optimization prob-

lem: the class of local search algorithms. All of these work by de�ning a neighborhood

N(xi) � X for each state xi 2 X. Usually, the neighborhood of x consists of simple

perturbations to x|states whose new Obj value can be computed incrementally and

e�ciently from Obj(x). However, complex neighborhood structures can also be e�ec-

tive (e.g., the Lin-Kernighan algorithm for the Traveling Salesman Problem [Lin and

Kernighan 73]). The neighborhood structure and objective function together give

rise to a cost surface over the state space. Local search methods start at some initial

state, perhaps chosen randomly, and then search for a good solution by iteratively

moving over the cost surface from state to neighboring state.

The simplest local search method is known variously as greedy descent, iterative

improvement or, most commonly, hillclimbing.1 Hillclimbing's essential property is

that it never accepts a move that worsens Obj. There are several variants. In steepest-

descent hillclimbing, every neighbor x0 2 N(x) is evaluated, and the neighbor with

minimal Obj(x0) is chosen as the successor state (ties are broken randomly). Steepest-

descent terminates as soon as it encounters a local optimum, a state x for which

Obj(x) � Obj(x0) 8x0 2 N(x). In another variant, stochastic hillclimbing (also known

as �rst-improvement), random neighbors of x are evaluated one by one, and the �rst

one which improves on Obj(x) is chosen. Whether or not to accept equi-cost moves, to

a neighboring state of equal cost, is a parameter of the algorithm. Another parameter,

called patience, governs termination: the search halts after patience neighbors have

been evaluated consecutively and all found unhelpful. Thus, the �nal state reached

is only probabalistically, not with certainty, a local optimum. Despite this, stochastic

hillclimbing is often preferred for its ability to �nd a good solution very quickly.

Hillclimbing's obvious weakness is that it gets stuck at the �rst local optimum

it encounters. Alternative local search methods provide a variety of heuristics for

accepting some moves to worse neighbors. The possibilities include

� \Force-best-move" approaches: move to the best neighbor, even if its value is

worse. (This approach has been successful in the GSAT algorithm [Selman and

Kautz 93].)

1In this dissertation, I will use the term \hillclimbing" even though we seek a minimum of the
cost surface. Simply imagine that the goal of our metaphorical mountain climber is to minimize his
distance from the sky.

44 LEARNING FOR GLOBAL OPTIMIZATION

� More generally, \biased random walk" approaches: allow moves to worse neigh-

bors stochastically, perhaps depending on how much worse the neighbor is.

(This approach has been successful in the WALKSAT algorithm [Selman et

al. 96] and others.)

� Simulated annealing [Kirkpatrick et al. 83]. This popular approach is like the

biased random walk, but gradually lowers the probability of accepting a move

to a worse neighbor. Search terminates at a local optimum after the proba-

bility falls to zero. Simulated annealing approaches are discussed in detail in

Appendix B.

� Multiple restarting. Because stochastic hillclimbing is so fast, a reasonable

approach is to apply it repeatedly and return the best result. The restart can

be from the start state, a randomly chosen state, or a state selected according to

some \smarter" heuristic. I review the literature on smart restarting methods

in Section 7.1. Multiple restarting is e�ective not only for hillclimbing but for

any of the search procedures listed above.

In all of these procedures, since the objective function value does not improve mono-

tonically over time, the search outcome is de�ned to be the best state ever evaluated

over the entire trajectory.

Local search approaches are easy to apply. For the bin-packing domain described

above, a solution state x simply assigns a bin number b(ai) to each item. Each item

is initially placed alone in a bin: b(a1) = 1; b(a2) = 2; : : : ; b(an) = n. Neighbor-

ing states can be generated by moving any single item ai into a random other bin

with enough spare capacity to accommodate it. (For details, please see Section 4.2.)

Figure 3.2 illustrates the solutions discovered by three independent runs of stochastic

hillclimbing without equi-cost moves on the example instance of Figure 3.1. The local

optima shown use 11, 14, and 12 bins, respectively. In 400 further runs, hillclimbing

produced a 10-bin solution seven times but never the optimal 9-bin solution.

3.1.3 Using Additional State Features

Local search has been likened to \trying to �nd the top of Mount Everest in a thick

fog while su�ering from amnesia" [Russell and Norvig 95, p.111]. Whenever the

climber considers a step, he consults his altimeter, and decides whether to take the

step based on how his altitude has changed. But suppose the climber has access to

not only an altimeter, but also additional senses and instruments|for example, his x

and y location, the slope of the ground underfoot, whether or not he is on a trail, and

x3.1 INTRODUCTION 45

 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

Figure 3.2. Three bin-packing local-optima

the height of the nearest tree. These additional \features" may enable the climber to

make a more informed, more foresightful, evaluation of whether to take a step.

In real optimization domains, such additional features of a state are usually plen-

tiful. For example, here are a few features for the bin-packing domain:

� the variance in fullness of the bins

� the variance in the number of items in each bin

� the fullness of the least-full bin

� the average ratio of largest to smallest item in each bin

� the \raw" state b(a1); b(a2); :::

Features like these, if combined and weighted correctly, can form a new objective

function which indicates not just how good a state is itself as a �nal solution, but

how good it is at leading search to other, better solutions.

This point is illustrated in Figure 3.3. The �gure plots the three hillclimbing

trajectories which produced the three bin-packing solutions shown above (Figure 3.2).

Each visited state xi is plotted as a point in a 2-D feature space where feature #1 is

simply Obj(xi) and feature #2 is the variance in fullness of the bins under packing

xi. In this feature space, the three trajectories all begin at the bottom left, which

corresponds to the initial state shown in Figure 3.1: here, Obj= 30 and the variance

is low, since all the bins are nearly empty. The trajectories proceed rightward, as

each accepted move reduces by one the number of bins used. The variance �rst

increases, as some bins become fuller than others, and then decreases near the end of

the trajectory as all the bins become rather full. The trajectories terminate at local

minima of quality 11, 14, and 12, respectively.

46 LEARNING FOR GLOBAL OPTIMIZATION

0

0.02

0.04

0.06

0.08

0.1

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
 v

ar
ia

nc
e

of
 b

in
 fu

lln
es

s

Feature #1: Obj(x) = number of bins used

HC trajectory #1
HC trajectory #2
HC trajectory #3

Figure 3.3. Three stochastic hillclimbing trajectories in bin-packing feature space

The key observation to make in Figure 3.3 is that the variance feature can help

predict the future search outcome. Apparently, hillclimbing trajectories which pass

through higher-variance states tend to reach better-quality solutions in the end. This

makes sense: higher variance states have more nearly empty bins, which can be more

easily emptied. This is the kind of knowledge that we would like to integrate into an

improved evaluation function for local search.

It is well-known that extra features can be used to help improve the searchability of

the cost surface. In simulated annealing practice, engineers often spend considerable

e�ort tweaking the coe�cients of penalty terms and other additions to their objective

function. This excerpt, from a book on VLSI layout by simulated annealing [Wong

et al. 88], is typical:

Clearly, the objective function to be minimized is the channel width w.

However, w is too crude a measure of the quality of intermediate solutions.

Instead, for any valid partition, the following cost function is used:

C = w2 + �p � p
2 + �U � U (3.1)

where ... �p and �U are constants, ...

x3.2 THE \STAGE" ALGORITHM 47

In this application, the authors hand-tuned the coe�cients and set �p = 0:5; �U =

10. (The next chapter will demonstrate an algorithm that discovered that much

better performance can be achieved by assigning, counterintuitively, a negative value

to �U .) Similar examples of evaluation functions being manually con�gured and

tuned for good performance can be found in, e.g., [Cohn 92, Szykman and Cagan

95,Falkenauer and Delchambre 92].

The question I address is the following: can extra features of an optimization

problem be incorporated automatically into improved evaluation functions, thereby

guiding search to better solutions?

3.2 The \STAGE" Algorithm

This section introduces the algorithm which is the main contribution of this disserta-

tion. STAGE applies the methods of value function approximation to automatically

analyze sample trajectories, like those shown above in Figure 3.3, and to construct

predictive evaluation functions. It then uses these new evaluation functions to guide

further search. STAGE is general, principled, simple, and e�cient. In the next chap-

ter, I will also demonstrate empirically that it is successful at �nding high-quality

solutions to large-scale optimization problems.

3.2.1 Learning to Predict

STAGE aims to exploit a simple observation: the performance of a local search al-

gorithm depends on the state from which the search starts. We can express this

dependence in a mapping from starting states x to expected search result:

V �(x)
def
= expected best Obj value seen on a trajectory that starts

from state x and follows local search method �

(3.2)

Here, � represents a local search method such as any of the hillclimbing variants

or simulated annealing. Formal conditions under which V � is well-de�ned will be

given in Section 3.4.1. For now, the intuition is most important: V �(x) evaluates x's

promise as a starting state for �.

For example, consider minimizing the one-dimensional function Obj(x) = (jxj �

10) cos(2�x) over the domain X = [�10; 10], as depicted in Figure 3.4. Assuming

a neighborhood structure on this domain where tiny moves to the left or right are

allowed, hillclimbing search clearly leads to a suboptimal local minimum for all but

the luckiest of starting points. However, the quality of the local minimum reached

does correlate strongly with the starting position x, making it possible to learn useful

predictions.

48 LEARNING FOR GLOBAL OPTIMIZATION

-10 -5 5 10

-10

-5

5

-10 -5 5 10

-10

-5

5

10

Figure 3.4. Left: Obj(x) for a one-dimensional function minimization domain.

Right: the value function V �(x) which predicts hillclimbing's performance on that
domain.

We seek to approximate V � using a function approximation model such as linear

regression or multi-layer perceptrons, where states x are encoded as real-valued fea-

ture vectors. As discussed above in Section 3.1.3, these input features may encode

any relevant properties of the state, including the original objective function Obj(x)

itself. We denote the mapping from states to features by F : X ! <
D, and our

approximation of V �(x) by ~V �(F (x)).

Training data for supervised learning of ~V � may be readily obtained by running

� from di�erent starting points. Moreover, if the algorithm � behaves as a Markov

chain|i.e., the probability of moving from state x to x0 is the same no matter when

x is visited and what states were visited previously|then intermediate states of

each simulated trajectory may also be considered alternate \starting points" for that

search, and thus used as training data for ~V � as well. This insight enables us to get

not one but perhaps hundreds of pieces of training data from each trajectory sampled.

Under conditions which I detail in Section 3.4.1 below, all of the local search methods

mentioned in Section 3.1.2 have the Markov property.

Under certain additional conditions, detailed in Section 3.4.1, the function V �

can be shown to be precisely the policy value function of a Markov chain. It is then

possible to apply dynamic-programming-based algorithms such as TD(�), which may

learn more e�ciently than supervised learning. I defer a detailed discussion of this

approach until Section 6.1. For the remainder of this and the next two chapters, I

will assume that V � is approximated by supervised learning as outlined above.

The state space X is huge, so we cannot expect our simulations to explore any

signi�cant fraction of it. Instead, we must depend on good extrapolation from the

function approximator if we are to learn V � accurately. Speci�cally, we hope that

the function approximator will predict good results for unexplored states which share

x3.2 THE \STAGE" ALGORITHM 49

many features with training states that performed well. If V � is fairly smooth, this

hope is reasonable.

3.2.2 Using the Predictions

The learned evaluation function ~V �(F (x)) evaluates how promising x is as a starting

point for algorithm �. To �nd the best starting point, we must optimize ~V � over X.

We do this by simply applying stochastic hillclimbing with ~V � instead of Obj as the

evaluation function.2

The \STAGE" algorithm provides a framework for learning and exploiting ~V �

on a single optimization instance. As illustrated in Figure 3.5, STAGE repeatedly

alternates between two di�erent stages of local search: running the original method

� on Obj, and running hillclimbing on ~V � to �nd a promising new starting state for

�. Thus, STAGE can be viewed as a smart multi-restart approach to local search.

π

π~
optimize V
Hillclimb to

for V ; retrain the fitteroptimize Obj
πRun to

starting state for

~produces new training data

produces good new
π

Figure 3.5. A diagram of the main loop of STAGE

A compact speci�cation of the algorithm is given in Table 3.2.2 (p. 52). In the

remainder of this section, I give a verbose description of the algorithm.

STAGE's inputs are X, S, �, Obj, ObjBound, F , Fit, N , Pat, and TotEvals:

� the state space X

� starting states S � X (and a method for generating a random state in S)

� �, the local search method from which STAGE learns. � is assumed to be

Markovian and proper, conditions which I discuss in detail in Section 3.4.1.

2Note that even if ~V � is smooth with respect to the feature space|as it surely will be if we
represent ~V � with a simple model like linear regression|it may still give rise to a complex cost
surface with respect to the neighborhood structure on X.

50 LEARNING FOR GLOBAL OPTIMIZATION

Intuitively, it is easiest to think of the prototypical case, hillclimbing. Note

that � encapsulates the full speci�cation of the method including all its internal

parameters; for example, � = stochastic hillclimbing, rejecting equi-cost moves,

with patience 200.

� the objective function, Obj : X ! <, to be minimized

� a lower bound on Obj, ObjBound 2 < (or �1 if no bound is known). Its use

is described in step 2d below.

� a featurizer F mapping states to real-valued features, F : X ! <
D

� Fit, a function approximator. Given a set of training pairs of the form f(fi1; fi2; : : : ; fiD) 7!

yig, Fit produces a real-valued function over <D which approximately �ts the

data.

� a neighborhood structure N : X ! 2X and patience parameter Pat for running

stochastic hillclimbing on ~V �

� TotEvals, the number of state evaluations allotted for this run.

STAGE's output is a single state ~x, which has the lowest Obj value of any state

evaluated during the run. It also outputs the �nal learned evaluation function ~V �,

which provides interesting insights about what combination of features led to good

performance. (If those insights apply generally to more than one problem instance,

then the learned ~V � may be pro�tably transferred, as I show in Section 6.2.)

STAGE begins by initializing x0 to a random start state. The main loop of STAGE

proceeds as follows:

Step 2a: Optimize Obj using �. From x0, run search algorithm �, producing a

search trajectory (x0; x1; x2; : : : ; xT).

Note that we have assumed � is a proper search procedure: the trajectory is

guaranteed to terminate.

Step 2b: Train ~V �. For each point xi on the search trajectory, de�ne yi := minj=i:::T Obj(xj),

and add the pair fF (xi) 7! yig to the training set for Fit. Retrain Fit ; call the

resulting learned evaluation function ~V �.

We accumulate a training set of all states ever visited by �. The target values

yi correspond to our de�nition of V � in Equation 3.2 (p. 47). Note that for

hillclimbing-like policies � which monotonically improve Obj, yi = Obj(xT) 8i.

Section 3.4.3 below shows how to make this step time- and space-e�cient.

x3.3 ILLUSTRATIVE EXAMPLES 51

Step 2c: Optimize ~V � using hillclimbing. Continuing from xT , optimize ~V �(F (x))

by performing a stochastic hillclimbing search over the neighborhood structure

N . Cut o� the search when either Pat consecutive moves produce no im-

provement, or a candidate state zt+1 is predicted to be impossibly good, i.e.
~V �(F (zt+1)) < ObjBound. Denote this search trajectory by (z0; z1; : : : ; zt).

Note that this stochastic hillclimbing trajectory begins from where the previous

� trajectory ended. This decision is evaluated empirically in Section 5.2.4. ~V �

leads search to a state which is predicted to be a good new start state for �.

We cut o� the search if it reaches a state which promises a solution better than

a known lower bound for the problem. For example, in bin-packing, we cut o�

if ~V � predicts that � will lead to a solution which uses a negative number of

bins! This re�nement can help prevent ~V � from leading search too far astray if

the function approximation is very inaccurate. I show the empirical bene�ts of

this re�nement in Section 5.2.5.

Step 2d: Set smart restart state. Set x0 := zt. But in the event that the ~V �

hillclimbing search accepted no moves (i.e., zt = xT), then reset x0 to a new

random starting state.

This reset operation is occasionally necessary to \un-stick" the search from a

state which is a local optimum of both Obj and ~V �. For example, on STAGE's

�rst iteration, Fit has been trained on only one outcome of �, so ~V � will be

constant|presenting no hill to climb. Lacking any information about which

search directions lead to smart restart states, we restart randomly. This provi-

sion ensures that STAGE reverts to randommulti-restart � in certain degenerate

cases, e.g. if every state in X has identical features.

STAGE terminates as soon as TotEvals states have been evaluated. This count

includes both accepted and rejected states considered during both the Step 2a search

and the Step 2c search.

3.3 Illustrative Examples

We now illustrate STAGE's performance on the two sample domains described earlier

in this chapter, the one-dimensional wave function and the small bin-packing problem.

3.3.1 1-D Wave Function

For the wave function example of Figure 3.4 (p. 48), the baseline search from which

STAGE learns is hillclimbing with neighborhood moves of �0:1. We encode the

52 LEARNING FOR GLOBAL OPTIMIZATION

STAGE(X, S, �, Obj, ObjBound, F , Fit, N , Pat, TotEvals):
Given:

� a state space X
� starting states S � X (and a method for generating a random state in S)
� a local search procedure � that is Markovian and proper (e.g., hillclimbing)
� an objective function, Obj : X ! <, to be minimized
� a lower bound on Obj, ObjBound 2 < (or �1 if no bound is known)
� a featurizer F mapping states to real-valued features, F : X ! <

D

� a function approximator Fit
� a neighborhood structure N : X ! 2X and patience parameter Pat for running

stochastic hillclimbing on ~V �

� TotEvals, the number of state evaluations allotted for this run

1. Initialize the function approximator; let x0 2 S be a random starting state for

search.

2. Loop until number of states evaluated exceeds TotEvals:

(a) Optimize Obj using �. From x0, run search algorithm �, producing a
search trajectory (x0; x1; x2; : : : ; xT).

(b) Train ~V �. For each point xi on the search trajectory, de�ne yi :=
minj=i:::T Obj(xj), and add the pair fF (xi) 7! yig to the training set for
Fit. Retrain Fit ; call the resulting learned evaluation function ~V �.

(c) Optimize ~V � using hillclimbing. Continuing from xT , optimize
~V �(F (x)) by performing a stochastic hillclimbing search over the neigh-

borhood structure N . Cut o� the search when either Pat consecutive
moves produce no improvement, or a candidate state zt+1 is predicted to

be impossibly good, i.e. ~V �(F (zt+1)) < ObjBound. Denote this search

trajectory by (z0; z1; : : : ; zt).

(d) Set smart restart state. Set x0 := zt. But in the event that the ~V �

hillclimbing search accepted no moves (i.e., zt = xT), then reset x0 to a

new random starting state.

3. Return the best state found.

Table 3.1. The STAGE algorithm

x3.3 ILLUSTRATIVE EXAMPLES 53

state using a single input feature, x itself, and we model ~V � by quadratic regres-

sion. Thus, STAGE will be building parabola-shaped approximations to the staircase-

shaped true V �. We assume no prior knowledge of a bound on the objective function,

i.e., ObjBound = �1.

A sample run is depicted in Figure 3.6. The �rst iteration begins at a random

starting state of x0 = 9:3 and greedily descends to the local minimum at (9;�1). In

Step 2b, our function approximator trains on the trajectory's feature/outcome pairs:

ff9:3 7! �1g; f9:2 7! �1g; f9:1 7! �1g; f9:0 7! �1gg (shown in the diagram as small

diamonds). The resulting least-squares quadratic approximation is, of course, the

line ~V � = �1. In Step 2c, hillclimbing on this
at function accepts no moves, so in

Step 2d, we reset to a new random state|in this example run, x0 = 7:8.

-10

-5

0

5

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

va
lu

e

states x

Objective function
Iteration 1

-10

-5

0

5

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

va
lu

e

states x

Objective function
Iteration 1
Iteration 2

-10

-5

0

5

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

va
lu

e

states x

Objective function
Iteration 1
Iteration 2
Iteration 3

-10

-5

0

5

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

va
lu

e

states x

Objective function
Iteration 1
Iteration 2
Iteration 3
Iteration 4

Figure 3.6. STAGE working on the 1-D wave example

On the second iteration (top right), greedy descent leads to the local minimum at

(8;�2), producing three new training points for ~V � (shown as small '+' symbols). The

54 LEARNING FOR GLOBAL OPTIMIZATION

new best-�t parabola predicts that fantastically promising starting states can be found

to the left. Hillclimbing on this parabola in Step 2c, we move all the way to the left

edge of the domain, x0 = �10, from which ~V � predicts that hillclimbing will produce

an outcome of �212! (Note that with a known ObjBound, STAGE would have

recognized ~V �'s overoptimistic extrapolation and cut o� hillclimbing before reaching

the left edge. But no harm is done.)

The third iteration (bottom left) quickly punishes ~V �'s overenthusiasm. Greedy

descent takes one step, from (�10; 0) to (�9:9;�0:08). The two new training points,

(�10 7! �0:08) and (�9:9 7! �0:08) (shown as squares), give rise to a nice concave

parabola which correctly predicts that the best starting points for � are near the

center of the domain. Hillclimbing on ~V � produces a smart restart point of x0 = 0:1.

From there, on iteration 4, � easily reaches the global optimum at (0;�10). After

ten iterations (bottom right), much more training data has been gathered near the

center of the domain, and ~V � leads � to the global optimum every time.

This problem is contrived, but its essential property|that features of the state

help to predict the performance of an optimizer|does indeed hold in many practical

domains. Simulated annealing does not take advantage of this property, and indeed

performs poorly on this problem. This problem also illustrates that STAGE does

more than simply smoothing out the wiggles in Obj(x)|doing so here would produce

an unhelpful
at function. STAGE does smooth out the wiggles, but in a way that

incorporates predictive knowledge about local search.

3.3.2 Bin-packing

Our second illustrative domain, bin-packing, is more typical of the kind of practical

combinatorial optimization problem we want STAGE to attack. We return to the

example instance of Figure 3.1 (p. 42). The baseline search from which STAGE will

learn is stochastic hillclimbing over the search neighborhood described on page 43.

The starting state is the packing which places each item in its own separate bin.

Recall that in Figure 3.3 (p. 46), we observed that a simple state feature, vari-

ance in bin fullness levels, correlated with the quality of solution hillclimbing would

eventually reach. To apply STAGE, we will use this feature and the true objective

function to encode each state. We again model ~V � by quadratic regression over these

two features. We assume no prior knowledge of bounds on the objective function,

i.e., ObjBound = �1.

Snapshots from iterations 1, 2, 3 and 7 of a STAGE run are depicted in Figure 3.7.

On the �rst iteration (top left plot), STAGE hillclimbs from the initial state (Obj(x) =

30;Var(x) = 0:011) to a local optimum (Obj(x) = 13;Var(x) = 0:019). Training each

x3.4 THEORETICAL AND COMPUTATIONAL ISSUES 55

state of that trajectory to predict the outcome 13 results in a
at ~V � function (top

right). Hillclimbing on this
at ~V � accepts no moves, so in Step 2d STAGE resets to

the initial state.

On the second iteration of STAGE (second row of Figure 3.7), the new stochastic

hillclimbing trajectory happens to do better than the �rst, �nishing at a local optimum

(Obj(x) = 11;Var(x) = 0:022). Our training set is augmented with target values of 11

for all states on the new trajectory. The resulting quadratic ~V � already has signi�cant

structure. Note how the contour lines of ~V �, shown on the base of the surface plot,

correspond to smoothed versions of the trajectories in our training set. Extrapolating,
~V � predicts that the the best starting points for � are on arcs with higher Var(x).

STAGE hillclimbs on the learned ~V � to try to �nd a good starting point. The

trajectory, shown as a dashed line in the third plot, goes from (Obj(x) = 11;Var(x) =

0:022) up to (Obj(x) = 12;Var(x) = 0:105). Note that the search was willing to

accept some harm to the true objective function during this stage. From the new

starting state, hillclimbing on Obj does indeed lead to a yet better local optimum at

(Obj(x) = 10;Var(x) = 0:053).

During further iterations, the approximation of ~V � is further re�ned. Continuing

to alternate between standard hillclimbing on Obj (solid trajectories) and hillclimbing

on ~V �, STAGE manages to discover the global optimum at (Obj(x) = 9;Var(x) =

0) on iteration seven. STAGE's complete trajectory is plotted at the bottom left

of Figure 3.7. Contrast this STAGE trajectory with the multi-restart stochastic

hillclimbing trajectory shown in Figure 3.8, which never reached any solution better

than Obj(x) = 11.

This example illustrates STAGE's potential to exploit high-level state features

to improve performance on combinatorial optimization problems. It also illustrates

the bene�t of training ~V � on entire trajectories, not just starting states: in this run

a useful quadratic approximation was learned after only two iterations. Extensive

results on larger bin-packing instances, and on many other large-scale domains, are

presented in Chapter 4.

3.4 Theoretical and Computational Issues

STAGE is a general algorithm: it learns to predict the outcome of a local search

method � with a function approximator Fit over a feature space F . There are many

choices for �, Fit, and F . This section describes how to make those choices so that

STAGE is well-de�ned and e�cient.

56 LEARNING FOR GLOBAL OPTIMIZATION

0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
 v

ar
ia

nc
e

of
 b

in
 fu

lln
es

s

Feature #1: Obj(x) = number of bins used

HC on Obj

Vpi_0 (first iteration)

10
15

20
25

300

0.05

0.1

0

5

10

15

20

Obj(x) = number of bins used

Var(x) = variance

0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
 v

ar
ia

nc
e

of
 b

in
 fu

lln
es

s

Feature #1: Obj(x) = number of bins used

HC on Obj
HC on Vpi_0

HC on Obj

Vpi_1 (second iteration)
 8
 9
 10
 11
 12
 13
 14

10
15

20
25

300

0.05

0.1

-15

-10

-5

0

5

10

15

20

Obj(x) = number of bins used

Var(x) = variance

0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
 v

ar
ia

nc
e

of
 b

in
 fu

lln
es

s

Feature #1: Obj(x) = number of bins used

HC on Obj
HC on Vpi_0

HC on Obj
HC on Vpi_1

HC on Obj

Vpi_2 (third iteration)
 8
 9
 10
 11
 12
 13
 14

10
15

20
25

300

0.05

0.1-10

-5

0

5

10

15

20

Obj(x) = number of bins used

Var(x) = variance

0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
 v

ar
ia

nc
e

of
 b

in
 fu

lln
es

s

Feature #1: Obj(x) = number of bins used

HC on Obj
HC on Vpi_0

HC on Obj
HC on Vpi_1

HC on Obj
HC on Vpi_2

HC on Obj
HC on Vpi_3

HC on Obj
HC on Vpi_4

HC on Obj
HC on Vpi_5

HC on Obj

Vpi_6 (seventh iteration)
 8
 9
 10
 11
 12
 13
 14

10
15

20
25

300

0.05

0.1

-5

0

5

10

15

20

Obj(x) = number of bins used

Var(x) = variance

Figure 3.7. STAGE working on the bin-packing example

x3.4 THEORETICAL AND COMPUTATIONAL ISSUES 57

0

0.02

0.04

0.06

0.08

0.1

0.12

1015202530

F
ea

tu
re

 #
2:

 V
ar

(x
)

=
 v

ar
ia

nc
e

of
 b

in
 fu

lln
es

s

Feature #1: Obj(x) = number of bins used

Figure 3.8. Trajectory of multi-restart hillclimbing in bin-packing feature space

3.4.1 Choosing �

STAGE learns from a baseline local search procedure �. Here, I identify precise

conditions on � that make it suitable for STAGE. First, some de�nitions.

A run of a local search procedure �, starting from state x0 2 X, stochastically

produces a sequence of states called a trajectory, denoted � � (x�0; x
�

1; x
�

2; : : :). In

general, the trajectory may be in�nite, or it may terminate after a �nite number

of steps j� j. For any terminating trajectory, we de�ne x�
i
to equal a special state,

denoted end, for all i > j� j.

Let T denote the set of all possible trajectories overX. Formally, � is characterized

by the probability with which it generates each trajectory:

De�nition 1. A local search procedure is a stochastic function � : X ! T . Given a

starting state x 2 X, let P(� jx�0 = x) denote the probability distribution with which

� produces � 2 T .

I now de�ne three key properties that � may have:

De�nition 2. A local search procedure � is said to be proper if, from any starting

state x 2 X, the end state is eventually reached with probability 1.

De�nition 3. A local search procedure � is said to be Markovian if, no matter when

a state xi is visited, a step to another state xi+1 occurs with the same �xed probability,

denoted p(xi+1jxi). In symbols: for all i 2 N and x0; x1; : : : ; xi; xi+1 2 X [fendg,

P(x�
i+1 = xi+1 j x

�

0 = x0; x
�

1 = x1; : : : ; x
�

i
= xi) = p(xi+1jxi)

58 LEARNING FOR GLOBAL OPTIMIZATION

De�nition 4. A local search procedure � is said to be monotonic with respect to

Obj if, for every trajectory � 2 T that � can generate,

Obj(x�0) � Obj(x�1) � Obj(x�2) � � � �

If all the inequalities are strict (until perhaps reaching an end state) for every tra-

jectory, then � is called strictly monotonic.

Note that the conditions of being proper, Markovian, or monotonic are independent:

a local search procedure may satisfy none, any one, any two, or all three de�nitions.

What conditions on � make it suitable for learning by STAGE? The essence of

STAGE is to approximate the function V �(x), which predicts the expected best Obj

value on a trajectory that starts from state x and follows procedure �. Formally, we

de�ne V � as follows.

De�nition 5. For any local search procedure � and objective function Obj : X ! <,

the function V � : X ! < is de�ned by

V �(x)
def
= E

�
inffObj(x�

k
) j k = 0; 1; 2; : : : g

�
;

where the expectation is taken over the trajectory distribution P(� jx�0 = x).

Under one very reasonable assumption, we can show that V � is well-de�ned for

any policy �, i.e., that the expectation of De�nition 5 exists:

Proposition 1. If Obj is bounded below, then V �(x) is well-de�ned at every state

x 2 X and for all policies �.

Proof. Writing out the expectation of De�nition 5, we have

V �(x) =
X
�2T

P (� jx�0 = x) inffObj(x�
k
) j k = 0; 1; 2; : : : g:

Each trajectory's in�mum is bounded below by the assumed global bound on Obj,

and bounded above by the value of the starting state, Obj(x�0) = Obj(x). Thus,

V �(x) is a convex sum of bounded quantities, which is a well-de�ned quantity.

V � is well-de�ned for any policy �, even improper ones. However, STAGE learns

by collecting multiple sample trajectories of �; and in order for that to make sense, the

trajectories must terminate. Hence, STAGE requires that � be proper (De�nition 2).

Later in this section, I will discuss several ways of turning improper policies into

proper ones for use with STAGE.

x3.4 THEORETICAL AND COMPUTATIONAL ISSUES 59

STAGE also requires � to be Markovian. The reason for this condition is that when

� is Markovian, STAGE can use the sample trajectory data it collects much more

e�ciently. The key insight is that in any trajectory � = (x0; x1; : : : ; xi; xi+1; : : :), each

tail of the trajectory (xi; xi+1; : : :) is generated with exactly the same probability as

if � had started a new trajectory from xi. In other words, when � is Markovian,

every state visited is e�ectively a new starting state. This means that in Step 2b of

the STAGE algorithm (refer to page 52), STAGE can use every state of every sample

trajectory as training data for approximating V �.

Exploiting the Markov property can increase the amount of available training data

by several orders of magnitude. In practice, though, the extra training points collected

this way may be highly correlated, so it is unclear how much they will improve

optimization performance. Section 5.2.3 shows empirically that the improvement can

be substantial.

So far, we have required that � be proper for reasons of algorithmic validity and

that � be Markovian for reasons of data e�ciency. These are the only conditions

imposed by the basic STAGE algorithm of page 52. However, we can impose the

additional condition that � be monotonic, for reasons of memory e�ciency. When

� is monotonic, Markovian and proper, the in�mum in the de�nition of V � can be

rewritten as an in�nite sum:

V �(x) = E
�
inffObj(x�

k
) j k = 0; 1; 2; : : : g

�
= E

�
lim
k!1

Obj(x�
k
)
�

(since � is monotonic)

= E

"
1X
k=0

R(x�
k
; x�

k+1)

#
(since � is proper)

(3.3)

where all expectations are taken over the trajectory distribution P(� jx�0 = x), and

the additive cost function R is de�ned by

R(x; x0)
def
=

(
Obj(x) if x 6= end and x0 = end;

0 otherwise.
(3.4)

Writing V � in this form reveals that it is precisely the policy value function of

the Markov chain (X;�;R), as de�ned earlier in Section 2.1.1. This means that V �

satis�es the Bellman equations for prediction (Eq. 2.3), and all the algorithms of re-

inforcement learning apply. In particular, using the method of Least-Squares TD(�),

STAGE can learn a linear approximation to V � without ever storing a trajectory in

memory, thereby reducing memory usage signi�cantly, and with no additional com-

putational expense over supervised linear regression. The details of this technique

are given in Section 6.1.

60 LEARNING FOR GLOBAL OPTIMIZATION

We have shown that in order for STAGE to learn from a local search procedure �,

it is desirable for � to be proper, Markovian and monotonic. The remainder of this

section investigates to what extent these conditions hold, or can be made to hold, for

commonly used local search algorithms.

Steepest-descent hillclimbing. Steepest-descent takes a step from x to a neigh-

boring state x0 2 N(x) which maximally improves over Obj(x). If no neighbors

improve Obj, the trajectory terminates.

Steepest-descent is strictly monotonic. A strictly monotonic policy never visits

the same state twice on any trajectory, so if X is �nite (as is the case with com-

binatorial optimization problems), steepest-descent is guaranteed to terminate.

Steepest-descent is also clearly Markovian: at a local optimum it terminates

deterministically, and from any other state it steps with equal probability to

any x0 2 N(x) for which Obj(x0) = minz2N(x)Obj(z).

Thus, steepest-descent procedures are strictly monotonic, Markovian, and (if X

is �nite) proper.

Stochastic hillclimbing. For search problems where the neighborhoods N(x) are

large, stochastic hillclimbing is cheaper to run than steepest-descent. We con-

sider �rst the case where equi-cost moves are rejected, that is, a move from x

to x0 is accepted only if x0 belongs to the set G(x)
def
= fg 2 N(x) : Obj(g) �

Obj(x)g. Let HC represent this procedure for a given state space X, neighbor-

hood function N , objective function Obj, and patience value Pat.

HC is strictly monotonic. As above, assuming X is �nite, HC is guaranteed to

terminate. HC is also Markovian, with the following transition probabilities:

p(endjx) =
�
jN(x)j�jG(x)j

jN(x)j

�Pat
p(x0jx) =

(
1

jG(x)j

�
1 � p(endjx)

�
if x0 2 G(x)

0 if x0 =2 G(x) [fendg.

These transition probabilities assume that all neighbors are equally likely to

be sampled; it is straightforward to reweight them in the case of non-uniform

sampling distributions.

However, if we drop the assumption of rejecting equi-cost moves, stochastic hill-

climbing with patience-based termination is no longer Markovian. The reason

is that after an equi-cost move, the patience counter is not reset to zero, so

p(endjx) is not �xed but rather depends on the previous states visited. Possi-

bility 3 listed in the next paragraph describes a remedy.

x3.4 THEORETICAL AND COMPUTATIONAL ISSUES 61

Biased random walks. This general category includes any local search procedure

where state transitions are memoryless: stochastic hillclimbing with or without

equi-cost moves; force-best-move; GSAT and WALKSAT; and random walks in

the state space X. These procedures are Markovian over X but, in general,

not proper. To make them proper, a termination condition must be speci�ed.

I consider three possibilities:

Possibility 1: Run the procedure for a �xed number of steps.

This destroys the Markov condition, since the termination probability

p(endjx) depends not just on x but on the global step counter. It is

possible, however, to include this counter as part of the state, as I will

discuss under the heading of Simulated Annealing below.

Possibility 2: Introduce a termination probability � > 0.

If p(endjx) � � for every state x, then the procedure remains Markovian

and becomes proper, thus making it suitable for STAGE. However, this

approach may randomly cause termination to occur during a fruitful part

of the search trajectory.

Possibility 3: Use patience-based termination and the best-so-far abstraction.

This approach means cutting o� search after Pat consecutive steps have

failed to improve on the best state found so far on the trajectory. This

makes the search procedure proper if jXj is �nite, but breaks the Markov

property, since p(endjx) depends on not just x but also the current pa-

tience counter and the best Obj value seen previously. However, we can

use a simple trick to reclaim the Markov property.

De�nition 6. Given a local search procedure �, the best-so-far abstraction

of this policy is a new policy bsf(�) which �lters out all but the best-

so-far states on each trajectory produced by �. That is, if � produces

� = (x�0; x
�

1; x
�

2; : : :) with probability P (� jx�0 = x0), then with that same

probability, bsf(�) produces

� 0 = (x�
i0
; x�

i1
; x�

i2
; : : :)

where (i0; i1; i2; : : :) is the subsequence consisting of all indices that satisfy

Obj(xik) < min
fj:0�j<ikg

Obj(xj)

62 LEARNING FOR GLOBAL OPTIMIZATION

For example, given a trajectory of � with associated Obj values:

x0; x1; x2; x3; x4; x5; x6; x7; x8; end

#

42; 44; 39; 31; 35; 31; 40; 28; 30

the procedure bsf(�) would produce the monotonic trajectory

x0; x2; x3; x7; end

#

42; 39; 31; 28

Given this de�nition, we can prove the following:

Proposition 2. If local search procedure � is Markovian over a �nite state

space X, and �0 is the procedure that results by adding patience-based ter-

mination to �, then procedure bsf(�0) is proper, Markovian, and strictly

monotonic.

The proof is given in Appendix A.1. In practical terms, this means we can

run STAGE just as described on page 52, except that in Step 2b, we train

the �tter on only the best-so-far states of each sample trajectory. Com-

pared with random termination (Possibility 2), patience-based termination

vastly reduces the number of training samples we collect for �tting V �, but

gives us both a more natural cuto� criterion and the monotonicity needed

to apply reinforcement-learning methods. In Section 4.7, I compare these

two possibilities empirically on the domain of Boolean satis�ability.

Simulated annealing. The steps taken during simulated annealing search depend

on not only the current state but also a time-varying temperature parameter

ti > 0. In particular, from state xi at time i, simulated annealing evaluates a

random neighbor x0 2 N(xi) and sets

xi+1 :=

8><
>:
end if i > TotEvals

x0 if rand < e[Obj(xi)�Obj(x
0)]=ti

xi otherwise

(3.5)

where rand is a random variable uniformly chosen from [0; 1). The temperature

ti decreases over time. At high temperatures, moves that worsen the objective

function even by quite a lot are often accepted, whereas at low temperatures,

worsening moves are usually rejected. Improving moves and equi-cost moves

are always accepted no matter what the temperature.

x3.4 THEORETICAL AND COMPUTATIONAL ISSUES 63

Because of the dependence on temperature, simulated annealing is not Marko-

vian. However, any local search procedure can be made Markovian by aug-

menting the state space with whatever extra variables are relevant to future

transition probabilities. In the case of simulated annealing, if the temperature

schedule ti is �xed in advance, it su�ces to augment X with a single variable

i 2 N, the move counter. For example, if � uses the schedule

ti :=

(
2:0 � i=1000 if i < 1000

0:99(i�1000) if i � 1000
;

which decays the temperature linearly and then exponentially, then � is Marko-

vian inX�N. In the expanded space, V �(x; i) predicts the outcome of simulated

annealing when search starts from state x at time i.

However, this formulation is of limited usefulness to STAGE. For any �xed x, we

expect the best value of V � to occur at i = 0, since search should always bene�t

from having more time remaining. Thus, in Step 2c, STAGE can �x i = 0 while

searching for a good starting point; but then there is little bene�t in having

trained on all the simulated annealing trajectory states with i > 0. In other

words, it would seem that to apply the basic STAGE algorithm to simulated

annealing, one may as well train on only the actual starting state x0 of each

trajectory, and forego the improved data e�ciency that the Markov assumption

usually brings. I test this empirically in Section 5.2.3. Later, in Section 8.2.2, I

also discuss a modi�ed version of STAGE which allows simulated annealing to

exploit V � more fully.

This section has analyzed a variety of hillclimbing and random-walk local search

procedures from which STAGE can learn. From a theoretical point of view, the ideal

procedure should be proper, Markovian, and monotonic. From a practical point of

view, the procedure should also be (1) e�ective at �nding good solutions on its own,

so STAGE begins from a high performance baseline; and (2) predictable, so that V �

has learnable structure. In practice, stochastic hillclimbing rejecting equi-cost moves

seems to be a good choice; it is used for the bulk of the results in Chapter 4. Alter-

native choices for � are explored in Section 4.7 (� = WALKSAT) and Section 5.2.3

(� = simulated annealing).

3.4.2 Choosing the Features

STAGE approximates V � with statistical regression over a real-valued feature rep-

resentation of the state space X, ~V �(F (x)) � V �(x). Clearly, the quality of the

64 LEARNING FOR GLOBAL OPTIMIZATION

approximation will depend on the feature representation we choose. As with any

function approximation task, the features are \usually handcrafted, based on what-

ever human intelligence, insight, or experience is available, and are meant to capture

the most important aspects of the current state" [Bertsekas and Tsitsiklis 96].

As discussed earlier in Section 3.1.3, most practical problems are awash in features

that could help predict the outcome of local search. In the bin-packing example

of Section 3.1.3, we listed half a dozen plausible features, such as variance in bin

fullness. For a travelling salesperson problem, some reasonable features of a tour x

might include

� Obj(x) = the sum of the intercity distances in x

� the variance of the distances in x. (This could identify whether tours with some

short and some long hops are more or less promising than tours with mostly

medium-length hops.)

� the number of improving steps in the search neighborhood of x. (The general

usefulness of this feature as a local search heuristic has been investigated by

[Moll et al. 97].)

� for each city c, the distance to the next city c0 assigned by x. (These �ne-

grained features nearly specify x completely, but may be too numerous for

e�cient learning.)

� geometric features of the tour (if applicable), such as the average bend angle at

each city or average �x and �y of the distances in x.

Empirically, STAGE seems to do at least as well as random multi-restart � no

matter what features are chosen. Note that if no features are used, ~V � is always

constant, and STAGE reduces to random multi-restart �. I generally choose just

a few coarse, simple-to-compute features of a problem space, such as the variance

features mentioned above or subcomponents of the objective function. Using only a

few features minimizes the computational overhead of training ~V �, and works well in

practice. Chapter 4 gives many more examples of e�ective feature sets for large-scale

domains, and Section 5.2.1 investigates the empirical e�ect of using di�erent feature

sets.

3.4.3 Choosing the Fitter

STAGE relies on a function approximator Fit to produce ~V � from sample training

data. Examples of function approximators include polynomial regression; memory-

based methods such as k-nearest-neighbor and locally weighted regression [Cleveland

x3.4 THEORETICAL AND COMPUTATIONAL ISSUES 65

and Devlin 88]; neural networks such as multi-layer perceptrons [Rumelhart et al. 86],

radial basis function networks [Moody and Darken 89], and cascaded architectures

[Fahlman and Lebiere 90]; CMACs [Albus 81]; multi-dimensional splines [Friedman

91]; decision trees such as CART [Breiman et al. 84]; and many others.

What qualities of Fit make it most suitable for STAGE? The most important

requirements are the following:

Incremental STAGE trains on many states|perhaps on the order of millions|

during the course of an optimization run, so the �tter must be able to handle

large quantities of data without an undue memory or computational burden.

Training occurs once per STAGE iteration and must be e�cient. Evaluating

the learned function occurs on every step of hillclimbing on ~V � and must be

very e�cient. In the terminology of [Sutton and Whitehead 93], the �tter must

be strictly incremental.

Noise-tolerant The training values STAGE collects are the outcomes of long stochas-

tic search trajectories. Thus, the �tter must be able to tolerate substantial noise

in the training set.

Extrapolating STAGE hillclimbs on the learned function in search of promising,

previously unvisited states. Thus, STAGE can bene�t from a �tter that extrap-

olates trends from the training samples. Figure 3.9 contrasts the �ts learned by

quadratic regression and 1-nearest-neighbor on a small one-dimensional train-

ing set. Even though the quadratic approximation has worse residual error on

the training samples, it is more useful for STAGE's hillclimbing. Note that

STAGE's ObjBound cuto� helps compensate in cases where the �tter over-

extrapolates.

2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

2

4

6

8

10

Figure 3.9. Quadratic regression and 1-nearest-neighbor

66 LEARNING FOR GLOBAL OPTIMIZATION

Given these requirements, the ideal function approximators for STAGE are those

in the class of linear architectures. Following the development of [Bertsekas and

Tsitsiklis 96], a general linear architecture has the form

~V (x;�) =

KX
k=1

�[k]�k(x) (3.6)

where �[1]; �[2]; : : : ; �[K] are the components of the coe�cient vector �, and the �k
are �xed, easily computable real-valued basis functions. For example, if the state x

ranges over < and �k(x) = xk�1 for each k = 1 : : :K, then ~V represents a polynomial

in x of degree K�1. Other examples of linear architectures include CMACs, random

representation networks [Sutton and Whitehead 93], radial basis function networks

with �xed basis centers, and multi-dimensional polynomial regression. Figure 3.10

illustrates the chain of mappings by which STAGE produces a prediction ~V � from an

optimization state x.

The particular linear architecture I prefer for STAGE is quadratic regression.

Quadratic regression produces K = (D+1)(D+2)=2 basis functions from the features

F (x) = f1; f2; : : : ; fD:

�(F (x)) = (1; f1; f2; : : : ; fD; f
2
1 ; f1f2; : : : ; f1fD; f

2
2 : : : ; f2fD; : : : ; f

2
D
) (3.7)

Quadratic regression is
exible enough to capture global �rst-order and second-order

trends in the feature space and to represent a global optimum at any point in feature

space, but also biased enough to smooth out signi�cant training set noise and to

extrapolate aggressively.

state 7! features 7! basis vector 7! prediction

x 2 X 7! F (x) 2 <D
7! �(F (x)) 2 <K

7! � � �(F (x)) 2 <

 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

7!
fObj = 14;

V ar = 0:027g
7!

f1; 14; 0:027;
196; 0:381;
0:000741g

7! 12:4

Figure 3.10. Approximation of ~V � by a linear architecture (quadratic regression)

Linear architectures meet the \strictly incremental" requirement: compared with

any of the other function approximators listed at the beginning of this section, training

x3.4 THEORETICAL AND COMPUTATIONAL ISSUES 67

them is very e�cient in time and memory. Let our training set be denoted by

f�(1) 7! y1;�(2) 7! y2; : : : ;�(N) 7! yNg

where �(i) = (�1(F (xi)); : : : ; �K(F (xi))) is the ith training basis vector, and yi is

the ith target output. The goal of training is to �nd coe�cients that minimize the

squared residuals between predictions and target values; that is,

�� = argmin
�2<K

NX
i=1

�
yi � � � �(i)

�2
Finding the optimal coe�cients �� is a linear least squares problem that can be solved

by e�cient linear algebra techniques. The su�cient statistics for �� are the matrix

A (of dimension K �K) and vector b (of length K), computed as follows:

A =

NX
i=1

�(i)�
T

(i) b =

NX
i=1

�(i)yi (3.8)

Given this compact representation of the training set, the coe�cients of the linear �t

can be calculated as

�� = A�1b (3.9)

Singular Value Decomposition is the method of choice for inverting A, since it is

robust when A is singular [Press et al. 92].

On each iteration of STAGE, many new training samples are added to the training

set, and then the function approximator is re-trained once. With a linear architecture,

adding new training samples is simply a matter of incrementing the A matrix and b

vector of Equation 3.8. For each sample, this incurs a cost of O(K2) to compute the

outer product �(i)�
T

(i) and O(K) to compute �(i)yi. The training samples can then

be discarded. Updated values of �� are computed by Equation 3.9 in O(K3) time,

independent of the number of samples in the training set.

Linear architectures also have the advantage of low memory use. Between itera-

tions of STAGE, we need store only A and b, not the whole training set. Therefore,

the bottleneck on memory usage is the space required to store the state features

along any single trajectory during Step 2a (refer to page 52). This is usually quite

modest, but can become signi�cant for local search procedures which visit tens of

thousands of states on a single trajectory. In such cases, the Least-Squares TD(1)

algorithm can be used. Least-Squares TD(1) produces the same coe�cients �� as

Equation 3.9 above with the same amount of computation, but requires no memory

68 LEARNING FOR GLOBAL OPTIMIZATION

for saving trajectories: it performs its computations fully incrementally as the trajec-

tory is generated. Least-Squares TD(1) may be applied in STAGE when the baseline

local search procedure � is monotonic; the algorithm is described in its general TD(�)

form in Section 6.1.

3.4.4 Discussion

This section has considered the theoretical and computational issues that arise in

choosing a local search procedure �, feature mapping F , and function approximator

Fit for use by STAGE. To summarize the practical conclusions of this section:

1. A good choice for � is stochastic hillclimbing, rejecting equi-cost moves, with

patience-based termination. This procedure is proper, Markovian, monotonic,

and easy to apply in almost any domain.

2. Features F (x) of a state x must be hand chosen, but are generally abundant.

A good choice is to use a few simple, coarse features such as subcomponents of

Obj(x).

3. A good choice for Fit is quadratic regression. Its training time and memory

requirements are small and independent of the number of training samples.

STAGE has two further inputs that have not yet been discussed: N and Pat,

the neighborhood structure and patience parameter used for stochastic hillclimbing

on the learned evaluation function ~V �. In general, I simply set these to the same

neighborhood structure and patience parameter which were used to de�ne �.

69

Chapter 4

STAGE: Empirical Results

The last chapter introduced STAGE, an optimization algorithm that learns to

incorporate extra features of a problem into an evaluation function and thereby im-

prove overall performance. In this chapter, I �rst de�ne my methodology for measur-

ing STAGE's performance and comparing it to other algorithms empirically. I then

describe my implementations of seven large-scale optimization domains with widely

varying characteristics:

� Bin-packing (x4.2): pack a collection of items into as few bins as possible|

the classic NP-complete problem, as discussed in the examples of Chapter 3;

� Channel routing (x4.3): minimize the area needed to produce a speci�ed

circuit in VLSI;

� Bayes net structure-�nding (x4.4): determine the optimal graph of data

dependencies between variables in a dataset;

� Radiotherapy treatment planning (x4.5): given an anatomical map of a

patient's brain tumor and nearby sensitive structures, plan a minimally harmful

radiation treatment;

� Cartogram design (x4.6): for geographic visualization purposes, redraw a

map of the United States so that each state's area is proportional to its popu-

lation, minimizing deformations;

� Satis�ability (x4.7): given a Boolean formula, �nd a variable assignment that

makes the formula true; and

� Boggle board setup (x4.8): �nd a 5 � 5 grid of letters containing as many

English words in connected paths as possible.

For each of these domains, I apply STAGE as described in Section 3.2, unmodi�ed,

and report statistically signi�cant results.

70 STAGE: EMPIRICAL RESULTS

4.1 Experimental Methodology

The e�ectiveness of a heuristic optimization algorithm should be measured along

three main dimensions [Barr et al. 95,Johnson 96]:

� Solution quality. How close are the solutions found by the method to opti-

mality?

� Computational e�ort. How long did the method take to �nd its best solu-

tion? How quickly does it �nd good solutions?

� Robustness. Does the method work across multiple problem instances and

varying domains? In the case of a randomized method, are its results consistent

when applied repeatedly to the same problem?

This chapter evaluates the performance of STAGE in each of these dimensions through

a statistical analysis of the results of thousands of experimental runs. STAGE's results

are contrasted to the optimal solution (if available), special-purpose algorithms for

each domain (if available), and two general-purpose reference algorithms: multiple-

restart stochastic hillclimbing and simulated annealing.

4.1.1 Reference Algorithms

I compare STAGE's performance to that of multi-restart stochastic hillclimbing and

simulated annealing on every problem instance. Multi-restart stochastic hillclimbing

is not only straightforward to implement, but also a surprisingly e�ective heuristic

on some domains. For example, hillclimbing with 100 random restarts is gener-

ally adequate for �nding high-quality solutions to a geometric line-matching prob-

lem [Beveridge et al. 96]. For the comparative experiments of this chapter, I run

hillclimbing with the following parameters:

� At each step, moves are randomly chosen in a problem-dependent way. The

�rst such move that either improves Obj or keeps it the same is accepted.

� The patience parameter is set individually for each problem; generally the best

setting is on the same order of magnitude as the number of available actions.

Search restarts whenever patience consecutive moves have been evaluated since

�nding the state whose objective function value is best on the current trajectory.

� Search restarts at either a special start state or a random state; this distribution

is also set individually for each domain.

x4.1 EXPERIMENTAL METHODOLOGY 71

� The total number of moves evaluated is limited to TotEvals, the same pa-

rameter that governs STAGE's termination.

Conceptually, simulated annealing is only slightly more complicated: it accepts

all improving and equi-cost moves, but also probabilistically accepts some worsening

moves. In practice, though, implementing an e�ective temperature annealing schedule

which regulates the evolution of the acceptance probabilities can be di�cult. Based

on a review of the literature and a good deal of experimentation, I implemented

Swartz's modi�cation of the Lam temperature schedule [Swartz and Sechen 90,Lam

and Delosme 88]. This adaptive schedule produces excellent results across a variety of

domains. Appendix B provides detailed justi�cation for and implementation details

of this \modi�ed Lam" schedule.

4.1.2 How the Results are Tabulated

For the purpose of summarizing the solution quality, computational e�ort, and robust-

ness of STAGE and competing heuristics, it would be ideal to plot each algorithm's

average performance versus elapsed time. However, my experiments were run on

a pool of over 100 workstations having widely varying job loads, processor speeds,

and system architectures; collecting meaningful average timing measurements was

therefore impossible. Instead, for each algorithm I plot average performance ver-

sus number of moves considered. In practical applications where evaluating Obj is

relatively costly, this quantity correlates strongly with total running time, yet is inde-

pendent of machine speed and load. I also do give sample timing comparisons on each

domain, measured on an SGI Indigo2 R10000 workstation, but since this workstation

is multi-user, these �gures should be considered very rough. Each time reported is

the median of three independent runs.

Note that for STAGE, the number of moves considered includes moves made

during both stages of the algorithm, i.e., both running � and optimizing ~V �. However,

this number does not capture STAGE's additional overhead for feature construction

and function approximator training. With linear approximation architectures (see

Section 3.4.3) and simple features, this overhead is minimal|typically, less than 10%

of the execution time.

On any single run of a search algorithm, after n moves have been considered, the

performance is de�ned as the best Obj value found up to that point. The overall

performance of the algorithm at time n, Q(n), is de�ned as the expected single-run

performance:

Q(n)
def
= E

�
min
i=0:::n

Obj(xi)
	

72 STAGE: EMPIRICAL RESULTS

where the expectation is taken over all trajectories (x0; x1; : : :) that the algorithm

may generate on the problem. For experimental evaluation purposes, I sample Q(n)

by taking the mean best value seen over multiple independent runs. The variable n

ranges from 0 to TotEvals. Note that Q(n) is non-increasing regardless of whether

the search algorithm monotonically improves Obj.

Figure 4.1 illustrates how a performance curve is produced for an algorithm and

a problem. In this example, a search algorithm is run �ve times for TotEvals =

500 steps each run. The upper-left graph plots the objective function value of the

states visited during the course of these �ve runs. The upper-right graph plots the

performance of each run, that is, the best Obj value seen so far at each step. The third

graph, at bottom left, plots the mean performance of the �ve runs over time. Finally,

the fourth graph summarizes the algorithm's overall performance in a boxplot. The

boxplot is calculated at the endpoint of the runs, where n = TotEvals. It gives the

95% con�dence interval of the mean performance (shown as a box around the mean)1

and the end result of the best and worst of the runs (shown as \whiskers").

For each comparative experiment in this chapter, the results are presented in two

�gures and a table:

� a mean performance curve, like the lower left graph of Figure 4.1, indicates how

quickly each algorithm reached its best performance level;

� a boxplot, like the lower right graph of Figure 4.1, provides a useful visual means

for comparing the algorithms against one another [Barr et al. 95]; and

� a results table numerically displays the same data as the boxplot. In each table,

the best minimum, best maximum, and statistically best mean performances

are boldfaced. Each table also reports the running time and overall percentage

of moves accepted

TotEvals
for each algorithm, but these �gures are medians of only three

runs and should thus be considered rough estimates.

I now proceed to describe the various optimization domains, experiments, and

results by which I have evaluated STAGE.

4.2 Bin-packing

Bin-packing, a classical NP-hard optimization problem [Garey and Johnson 79],

has often been used as a testbed for combinatorial optimization algorithms (e.g.,

1The 95% con�dence interval of the mean is simply 2 standard errors on either side: �� 2�p
N

.

x4.2 BIN-PACKING 73

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350 400 450 500

O
bj

ec
tiv

e
fu

nc
tio

n

Number of moves considered

Run 1
Run 2
Run 3
Run 4
Run 5

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350 400 450 500

Number of moves considered

Run 1 best-so-far
Run 2 best-so-far
Run 3 best-so-far
Run 4 best-so-far
Run 5 best-so-far

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350 400 450 500

O
bj

ec
tiv

e
fu

nc
tio

n

Number of moves considered

Average best-so-far

5

10

15

20

25

30

35

40

45

Boxplot of algorithm performance at n=500

Figure 4.1. From a number of independent runs of an algorithm (upper left) and

their best-so-far curves (upper right), a single performance curve (lower left) and box

plot (lower right) are generated to summarize the algorithm's performance. Please
refer to the text for a detailed explanation.

74 STAGE: EMPIRICAL RESULTS

[Falkenauer 96,Baluja and Davies 97]). The problem was introduced earlier in Chap-

ter 3. Recall that we are given a bin capacity C and a list L = (a1; a2; :::an) of items,

each having a size s(ai) > 0. The goal is to pack the items into as few bins as possible,

i.e., partition them into a minimum number m of subsets B1; B2; :::; Bm such that for

each Bj,
P

ai2Bj
s(ai) � C.

In this section, I present results on benchmark problem instances from the Opera-

tions Research Library (see Appendix C.1 for details). The �rst instance considered,

u250 13 [Falkenauer 96], has 250 items of sizes uniformly distributed in (20; 100) to

be packed into bins of capacity 150. The item sizes sum to 15294, so a lower bound

on the number of bins required is d15294
150

e = 102.

Falkenauer reported excellent results|on this problem, a solution with only 103

bins|using a specially modi�ed search procedure termed the \Grouping Genetic

Algorithm" and a hand-tuned objective function:

We thus settled for the following cost function for the BPP [binpacking

problem]: maximize fBPP =
Pm

i=1(�lli=C)
k

m
with m being the number of bins

used, �lli the sum of sizes of the objects in the bin i, C the bin capacity and

k a constant, k > 1.... The constant k expresses our concentration on the

well-�lled \elite" bins in comparison to the less �lled ones. Should k = 1,

only the total number of bins used would matter, contrary to the remark

above. The larger k is, the more we prefer the \extremists" as opposed

to a collection of equally �lled bins. We have experimented with several

values of k and found out that k = 2 gives good results. Larger values

of k seem to lead to premature convergence of the algorithm, as the local

optima, due to a few well-�lled bins, are too hard to escape. [Falkenauer

and Delchambre 92, notation edited for consistency]

STAGE requires neither the complex \group-oriented" genetic operators of Falke-

nauer's encoding, nor any hand-tuning of the cost function. Rather, it uses natural

local-search operators on the space of legal solutions. A solution state x simply as-

signs a bin number b(ai) to each item. Each item is initially placed alone in a bin:

b(a1) = 1; b(a2) = 2; : : : ; b(an) = n. Neighboring states are generated by moving a

single item ai, as follows:

1. Let B be the set of bins other than b(ai) that are non-empty but still have

enough spare capacity to accommodate ai;

2. If B = ;, then move ai to an empty bin;

3. Otherwise, move ai to a bin selected randomly from B.

x4.2 BIN-PACKING 75

Note that hillclimbing methods always reject moves of type (2), which add a new bin;

and that if equi-cost moves are also rejected, then the only accepted moves will be

those that empty a bin by placing a singleton item in an occupied bin.

The objective function STAGE is given to minimize is simply Obj(x) = m, the

number of bins used. There is no need to tune the evaluation function manually. For

automatic learning of its own secondary evaluation function, STAGE is provided with

two state features, just as in the bin-packing example of section 3.3.2 (p. 54):

� Feature 1: Obj(x), the number of bins used by solution x

� Feature 2: Var(x), the variance in bin fullness levels

This second feature provides STAGE with information about the proportion of \ex-

tremist" bins, similar to that provided by Falkenauer's cost function. STAGE then

learns its evaluation function by quadratic regression over these two features.

The remaining parameters to STAGE are set as follows: the patience parameters

are set to 250 and the ObjBound cuto� is disabled (set to �1). In a few informal

experiments, varying these parameters had a negligible e�ect on the results. Table 4.1

lists all of STAGE's parameter settings.

Parameter Setting

� stochastic hillclimbing, rejecting equi-cost moves, patience=250

ObjBound �1

features 2 (number of bins used, variance of bin fullness levels)

�tter quadratic regression

Pat 250

TotEvals 100,000

Table 4.1. Summary of STAGE parameters for bin-packing results. (For descrip-
tions of the parameters, see Section 3.2.2.)

STAGE's performance is contrasted with that of four other algorithms:

� HC0: multi-restart stochastic hillclimbing with equi-cost moves rejected, pa-

tience=1000. On each restart, search begins at the initial state which has each

item in its own bin.

� HC1: the same, but with equi-cost moves accepted.

� SA: simulated annealing, as described in Appendix B.

76 STAGE: EMPIRICAL RESULTS

� BFR: multi-restart \best-�t-randomized," a simple bin-packing algorithm with

good worst-case performance bounds [Kenyon 96,Co�man et al. 96]. BFR be-

gins with all bins empty and a random permutation of the list of items. It then

successively places each item into the fullest bin that can accommodate it, or

a new empty bin if no non-empty bin has room. When all items have been

placed, BFR outputs the number of bins used. The process then repeats with

a new random permutation of the items.

All algorithms are limited to 100,000 total moves. (For BFR, each random permuta-

tion tried counts as a single move.)

105

110

115

120

125

20000 40000 60000 80000 100000

N
um

be
r

of
 b

in
s

(1
03

 is
 o

pt
im

al
)

Number of moves considered

HC0
HC1

SA
BFR

STAGE

105

110

115

120

125

HC0 HC1 SA BFR STAGE

Figure 4.2. Bin-packing performance

The results of 100 runs of each algorithm are summarized in Table 4.2 and dis-

played in Figure 4.2. Stochastic hillclimbing rejecting equi-cost moves (HC0) is clearly

the weakest competitor on this problem; as pointed out earlier, it gets stuck at the �rst

solution in which each bin holds at least two items. With equi-cost moves accepted

(HC1), hillclimbing explores much more e�ectively and performs almost as well as

simulated annealing. Best-�t-randomized performs even better. However, STAGE|

building itself a new evaluation function by learning to predict the behavior of HC0,

the weakest algorithm|signi�cantly outperforms all the others. Its mean solution

quality is under 105 bins, and on one of the 100 runs, it equalled the best solution

(103 bins) found by Falkenauer's specialized bin-packing algorithm [Falkenauer 96].

x4.2 BIN-PACKING 77

The best-so-far curves show that STAGE learns quickly, achieving good performance

after only about 10000 moves, or about 4 iterations on average.

STAGE's timing overhead for learning was on the order of only 7% over HC0.

In fact, the timing di�erences between SA, HC1, HC0, and STAGE are attributable

mainly to their di�erent ratios of accepted to rejected moves: rejected moves are

slower in my bin-packing implementation since they must be undone. Since SA ac-

cepts most moves it considers early in search, it �nishes slightly more quickly. The

BFR runs took much longer, but the performance curve makes it clear that its best

solutions were reached quickly.2

Instance Algorithm Performance (100 runs each) � moves

mean best worst time accepted

u250 13 HC0 119.68�0.17 117 121 12.4s 8%

HC1 109.38�0.10 108 110 11.4s 71%
SA 108.19�0.09 107 109 11.1s 44%

BFR 106.10�0.07 105 107 95.3s |

STAGE 104.60�0.11 103 106 13.3s 6%

Table 4.2. Bin-packing results

As a follow-up experiment, I ran HC1, SA, BFR, and STAGE on all 20 bin-packing

problem instances in the u250 class of the OR-Library (see Appendix C.1). All runs

used the same settings shown in Table 4.1. The results, given in Table 4.3, show

that STAGE consistently found the best packings in each case. STAGE's average

improvements over HC1, SA, and BFR were 5:0�0:3 bins, 3:8�0:3 bins, and 1:6�0:3

bins, respectively.

How did STAGE succeed? The STAGE runs followed the same pattern as the runs

on the small example bin-packing instance of last chapter (x3.3.2). STAGE learned a

secondary evaluation function, ~V �, that successfully traded o� between the original

objective and the additional bin-variance feature to identify promising start states.

A typical evaluation function learned by STAGE is plotted in Figure 4.3.3 As in

2Falkenauer reported a running time of 6346 seconds for his genetic algorithm to �nd the global
optimum on this instance [Falkenauer 96], though this was measured on an SGI R4000 and our times
were measured on an SGI R10000.

3The particular ~V � plotted is a snapshot from iteration #15 of a STAGE run, immediately after
the solution Obj(x) = 103 was found. The learned coe�cients are

~V �(Obj;Var) = �99:1 + 636 Var + 3462 Var2 + 2:64 Obj� 9:03 Obj �Var� 0:00642 Obj2:

78 STAGE: EMPIRICAL RESULTS

Inst. Alg. Performance (25 runs)
mean best worst

u250 00 HC1 105.9�0.2 105 107
SA 104.7�0.2 104 105
BFR 102.1�0.1 102 103
STAGE 100.8�0.2 100 102

u250 01 HC1 106.4�0.2 105 107
SA 105.0�0.2 104 106
BFR 103.0�0.1 102 103

STAGE 101.2�0.2 100 103

u250 02 HC1 108.8�0.2 108 109

SA 107.6�0.3 106 108
BFR 105.1�0.1 105 106

STAGE 103.9�0.5 103 109

u250 03 HC1 106.2�0.2 105 107
SA 105.3�0.2 105 106
BFR 103.1�0.1 103 104
STAGE 101.6�0.2 101 102

u250 04 HC1 107.6�0.2 106 108
SA 106.8�0.2 106 107
BFR 104.0�0.1 104 105
STAGE 102.7�0.2 102 103

u250 05 HC1 108.0� 0 108 108
SA 106.8�0.1 106 107
BFR 105.0�0.1 105 106
STAGE 103.1�0.2 102 104

u250 06 HC1 108.1�0.2 107 109
SA 106.8�0.2 106 107
BFR 105.0�0.1 104 106
STAGE 102.8�0.2 102 104

u250 07 HC1 110.4�0.2 110 111
SA 109.0�0.1 109 110
BFR 107.0�0.1 107 108
STAGE 105.1�0.1 105 106

u250 08 HC1 111.9�0.1 111 112
SA 111.1�0.1 111 112
BFR 109.1�0.1 109 110
STAGE 107.4�0.2 106 108

u250 09 HC1 107.7�0.2 107 108
SA 106.1�0.1 106 107
BFR 104.1�0.1 104 105
STAGE 102.5�0.3 101 104

Inst. Alg. Performance (25 runs)
mean best worst

u250 10 HC1 111.8�0.2 111 112
SA 110.4�0.2 110 111
BFR 108.2�0.1 108 109
STAGE 106.8�0.2 106 108

u250 11 HC1 108.2�0.2 107 109
SA 107.0�0.1 106 108
BFR 104.9�0.1 104 105

STAGE 103.0�0.2 102 105

u250 12 HC1 112.4�0.2 111 113

SA 111.2�0.2 110 112
BFR 109.2�0.2 109 110
STAGE 107.3�0.2 106 108

u250 13 HC1 109.3�0.2 109 110
SA 108.2�0.2 108 109
BFR 106.2�0.1 106 107
STAGE 104.5�0.2 104 105

u250 14 HC1 106.4�0.2 106 107
SA 105.2�0.2 105 106
BFR 103.1�0.1 103 104
STAGE 101.3�0.2 100 102

u250 15 HC1 112.0�0.2 111 113
SA 111.0�0.1 110 112
BFR 109.0�0.1 108 110
STAGE 107.0�0.1 107 108

u250 16 HC1 103.8�0.2 103 104
SA 102.4�0.2 102 103
BFR 100.0�0.1 100 101
STAGE 98.7�0.2 98 99

u250 17 HC1 106.1�0.1 106 107
SA 104.9�0.2 104 106
BFR 103.0�0.1 103 104
STAGE 101.1�0.2 100 102

u250 18 HC1 107.0�0.2 106 108
SA 105.8�0.1 105 106
BFR 103.0� 0 103 103

STAGE 101.9�0.3 101 104

u250 19 HC1 108.4�0.2 108 109
SA 107.5�0.2 107 108
BFR 105.1�0.1 105 106
STAGE 103.8�0.2 103 105

Table 4.3. Bin-packing results on 20 problem instances from the OR-Library

x4.3 VLSI CHANNEL ROUTING 79

the example instance of last chapter (Figure 3.7), STAGE learns to direct the search

toward the high-variance states from which hillclimbing is predicted to excel.

Vpi (iteration #15)
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150

100
150

200
2500

0.01
0.02

0.03
0.04

0.05
0.06

0.07

50

100

150

200

Obj(x)

Var(x)

Figure 4.3. An evaluation function learned by STAGE on bin-packing instance
u250 13. STAGE learns that the states with higher variance (wider arcs of the contour

plot) are promising start states for hillclimbing.

4.3 VLSI Channel Routing

The problem of \Manhattan channel routing" is an important subtask of VLSI circuit

design [Deutsch 76,Yoshimura and Kuh 82,Wong et al. 88,Chao and Harper 96,Wilk

96]. Given two rows of labelled terminals across a gridded rectangular channel, we

must connect like-labelled pins to one another by placing wire segments into vertical

and horizontal tracks (see Figure 4.4). Segments may cross but not otherwise overlap.

The objective is to minimize the area of the channel's rectangular bounding box|or

equivalently, to minimize the number of di�erent horizontal tracks needed.

Channel routing is known to be NP-complete [Szymanski 85]. Specialized algo-

rithms based on branch-and-bound or A* search techniques have made exact solu-

tions attainable for some benchmarks [Lin 91]. However, larger problems still can be

80 STAGE: EMPIRICAL RESULTS

5

7

6

7

7

9

5

8

9

0

3

4

4

5

1

3

2

4

4

6

1

2

8

9

Figure 4.4. A small channel routing instance, shown with a solution occupying 7
horizontal tracks.

solved only approximately by heuristic techniques, e.g. [Wilk 96]. My implementa-

tion is based on the SACR system [Wong et al. 88, Chapter 4], a simulated annealing

approach. SACR's operator set is sophisticated, involving manipulations to a parti-

tioning of vertices in an acyclic constraint graph. If the partitioning meets certain

additional constraints, then it corresponds to a legal routing, and the number of

partitions corresponds to the channel size we are trying to minimize.

Like Falkenauer's bin-packing implementation described above, Wong's channel

routing implementation required manual objective function tuning:

Clearly, the objective function to be minimized is the channel width w(x).

However, w(x) is too crude a measure of the quality of intermediate so-

lutions. Instead, for any valid partition x, the following cost function is

used:

C(x) = w(x)2 + �p � p(x)
2 + �U � U(x) (4.1)

where p(x) is the longest path length of Gx [a graph induced by the

partitioning], both �p and �U are constants, and ... U(x) =
P

w(x)

i=1 ui(x)
2,

where ui(x) is the fraction of track i that is unoccupied. [Wong et al. 88,

notation edited for consistency]

x4.3 VLSI CHANNEL ROUTING 81

They hand-tuned the coe�cients and set �p = 0:5; �U = 10. To apply STAGE

to this problem, I began with not the contrived function C(x) but the natural ob-

jective function Obj(x) = w(x). The additional objective function terms used in

Equation 4.1, p(x) and U(x), along with w(x) itself, were given as the three input

features to STAGE's function approximator. Thus, the features of a solution x are

� Feature 1: w(x) = channel width, i.e. the number of horizontal tracks used by

the solution.

� Feature 2: p(x) = the length of the longest path in a \merged constraint graph"

Gx representing the solution. This feature is a lower bound on the channel width

of all solutions derived from x by merging subnets [Wong et al. 88]. In other

words, this feature bounds the quality of solution that can be reached from x

by repeated application of a restricted class of operators, namely, merging the

contents of two tracks into one. The inherently predictive nature of this feature

suits STAGE well.

� Feature 3: U(x) = the sparseness of the horizontal tracks, measured by
P

w(x)

i=1 ui(x)
2,

where ui(x) is the fraction of track i that is unoccupied. Note that this feature

is real-valued, whereas the other two are discrete; and that 0 � U(x) < w(x).

Table 4.4 summarizes the remaining STAGE parameter settings.

Parameter Setting

� stochastic hillclimbing, rejecting equi-cost moves, patience=250

ObjBound �1

features 3 (w(x); p(x); U(x))

�tter linear regression

Pat 250

TotEvals 500,000

Table 4.4. Summary of STAGE parameters for channel routing results

STAGE's performance is contrasted with that of four other algorithms:

� HC0: multi-restart stochastic hillclimbing with equi-cost moves rejected, pa-

tience=400. On each restart, search begins at the initial state which has each

subnet on its own track.

� HC1: the same, but with equi-cost moves accepted.

82 STAGE: EMPIRICAL RESULTS

� SAW: simulated annealing, using the hand-tuned objective function of Equa-

tion 4.1 [Wong et al. 88].

� SA: simulated annealing, using the true objective function Obj(x) = w(x).

� HCI: stochastic hillclimbing with equi-cost moves accepted, patience=1 (i.e.,

no restarting).

All algorithms were limited to 500,000 total moves. Results on YK4, an instance

with 140 vertical tracks, are given in Figure 4.5 and Table 4.5. By construction (see

Appendix C.2 for details), the optimal routing x� for this instance occupies only 10

horizontal tracks, i.e. Obj(x�) = 10. A 12-track solution is depicted in Figure 4.6.

10

15

20

25

30

35

40

45

50

100000 200000 300000 400000 500000

A
re

a
of

 c
irc

ui
t l

ay
ou

t (
10

 is
 o

pt
im

al
)

Number of moves considered

HC0
HC1
SAW

SA
HCI

STAGE

10

15

20

25

30

35

40

45

50

HC0 HC1 SAW SA HCI STAGE

Figure 4.5. Channel routing performance on instance YK4

None of the local search algorithms successfully �nds an optimal 10-track solution.

Experiments HC0 and HC1 show that multi-restart hillclimbing performs terribly

when equi-cost moves are rejected, but signi�cantly better when equi-cost moves

are accepted. Experiment SAW shows that simulated annealing, as used with the

objective function of [Wong et al. 88], does considerably better. Surprisingly, the

annealer of Experiment SA does better still. It seems that the \crude" evaluation

function Obj(x) = w(x) allows a long simulated annealing run to e�ectively random-

walk along the ridge of all solutions of equal cost, and given enough time it will

fortuitously �nd a hole in the ridge. In fact, increasing hillclimbing's patience to 1

(disabling restarts) worked nearly as well.

x4.3 VLSI CHANNEL ROUTING 83

Instance Algorithm Performance (100 runs each) � moves

mean best worst time accepted

YK4 HC0 41.17�0.20 38 43 212s 8%
HC1 22.35�0.19 20 24 200s 80%

SAW 16.49�0.16 14 19 245s 32%

SA 14.32�0.10 13 15 292s 57%
HCI 14.69�0.12 13 16 350s 58%

STAGE 12.42�0.11 11 14 405s 5%

Table 4.5. Channel routing results

Figure 4.6. A 12-track solution found by STAGE on instance YK4

84 STAGE: EMPIRICAL RESULTS

STAGE performs signi�cantly better than all of these. How does STAGE learn

to combine the features w(x), p(x), and U(x) into a new evaluation function that

outperforms simulated annealing? I have investigated this question extensively; the

analysis is reported in Chapter 5. Later, in Section 6.2, I also report the results of

transferring STAGE's learned evaluation function between di�erent channel routing

instances.

The disparity in the running times of the algorithm deserves explanation. The

STAGE runs took about twice as long to complete as the hillclimbing runs, but

this is not due to the overhead for STAGE's learning: linear regression over three

simple features is extremely cheap. Rather, STAGE is slower because when the search

reaches good solutions, the process of generating a legal move candidate becomes

more expensive; STAGE is victimized by its own success. STAGE and HCI are also

slowed relative to SA because they reject many more moves, forcing extra \undo"

operations. In any event, the performance curve of Figure 4.5 indicates that halving

any algorithm's running time would not a�ect its relative performance ranking.

4.4 Bayes Network Learning

Given a dataset, an important data mining task is to identify the Bayesian network

structure that best models the probability distribution of the data [Mitchell 97,Heck-

erman et al. 94, Friedman and Yakhini 96]. The problem amounts to �nding the

best-scoring acyclic graph structure on A nodes, where A is the number of attributes

in each data record.

Several scoring metrics are common in the literature, including metrics based on

Bayesian analysis [Chickering et al. 94] and metrics based on Minimum Description

Length (MDL) [Lam and Bacchus 94, Friedman 97]. I use the MDL metric, which

trades o� between maximizing �t accuracy and minimizing model complexity. The

objective function decomposes into a sum over the nodes of the network x:

Obj(x) =

AX
j=1

�
�Fitness(xj) +K � Complexity(xj)

�
(4.2)

Following Friedman [96], the Fitness term computes a mutual information score at

each node xj by summing over all possible joint assignments to variable j and its

parents:

Fitness(xj) =
X
vj

X
VParj

N(vj ^ VParj) log
N(vj ^ VParj)

N(VParj)

x4.4 BAYES NETWORK LEARNING 85

Here, N(�) refers to the number of records in the database that match the speci�ed

variable assignment. I use theADtree data structure to make calculatingN(�) e�cient

[Moore and Lee 98].

The Complexity term simply counts the number of parameters required to store

the conditional probability table at node j:

Complexity(xj) =
�
Arity(j)� 1

� Y
i2Parj

Arity(i)

The constant K in Equation 4.2 is set to log(R)=2, where R is the number of records

in the database [Friedman 97].

No e�cient methods are known for �nding the acyclic graph structure x which

minimizes Obj(x); indeed, for Bayesian scoring metrics, the problem has been shown

to be NP-hard [Chickering et al. 94], and a similar reduction probably applies for the

MDL metric as well. Thus, multi-restart hillclimbing and simulated annealing are

commonly applied [Heckerman et al. 94, Friedman 97]. My search implementation

works as follows. To ensure that the graph is acyclic, a permutation xi1; xi2; : : : ; xiA
on the A nodes is maintained, and all links in the graph are directed from nodes of

lower index to nodes of higher index. Local search begins from a linkless graph on

the identity permutation. The following move operators then apply:

� With probability 0.7, choose two random nodes of the network and add a link

between them (if that link isn't already there) or delete the link between them

(otherwise).

� With probability 0.3, swap the permutation ordering of two random nodes of

the network. Note that this may cause multiple graph edges to be reversed.

Obj can be updated incrementally after a move by recomputing Fitness and Complexity

at only the a�ected nodes.

For learning, STAGE was given the following seven extra features:

� Features 1{2: mean and standard deviation of Fitness over all the nodes

� Features 3{4: mean and standard deviation of Complexity over all the nodes

� Features 5{6: mean and standard deviation of the number of parents of each

node

� Feature 7: the number of \orphan" nodes

86 STAGE: EMPIRICAL RESULTS

Figure 4.7. The SYNTH125K dataset was generated by this Bayes net (from [Moore
and Lee 98]). All 24 attributes are binary. There are three kinds of nodes. The nodes

marked with triangles are generated with P (ai = 0) = 0:8, P (ai = 1) = 0:2. The

square nodes are deterministic. A square node takes value 1 if the sum of its four

parents is even, else it takes value 0. The circle nodes are probabilistic functions
of their single parent, de�ned by P (ai = 1 j Parent = 0) = 0 and P (ai = 1 j

Parent = 1) = 0:4. This provides a dataset with fairly sparse values and with many

interdependencies.

x4.4 BAYES NETWORK LEARNING 87

Figure 4.8. A network structure learned by a sample run of STAGE from the
SYNTH125K dataset. Its Obj score is 719074. By comparison, the actual network

that was used to generate the data (shown earlier in Figure 4.7) scores 718641. Only

two edges from the generator net are missing from the learned net. The learned net
includes 17 edges not in the generator net (shown as curved arcs).

88 STAGE: EMPIRICAL RESULTS

I applied STAGE to three datasets: MPG, a small dataset consisting of 392 records

of 10 attributes each; ADULT2, a large real-world dataset consisting of 30,162 records

of 15 attributes each; and SYNTH125K, a synthetic dataset consisting of 125,000

records of 24 attributes each. The synthetic dataset was generated by sampling from

the Bayes net depicted in Figure 4.7. A perfect reconstruction of that net would

receive a score of Obj(x) = 718641. For further details of the other datasets, please

see Appendix C.3.

The STAGE parameters shown in Table 4.6 were used in all domains. Figures 4.9{

4.11 and Table 4.7 contrast the performance of hillclimbing (HC), simulated annealing

(SA) and STAGE. For reference, the table also gives the score of the \linkless" Bayes

net|corresponding to the simplestmodel of the data, that all attributes are generated

independently.

Parameter Setting

� stochastic hillclimbing, patience=200

ObjBound 0

features 7 (Fitness �; �; Complexity �; �;#Parents �; �;#Orphans)

�tter quadratic regression

Pat 200

TotEvals 100,000

Table 4.6. Summary of STAGE parameters for Bayes net results

Instance Algorithm Performance (100 runs each) � moves

mean best worst time accepted

MPG HC 3563.4� 0.3 3561.3 3567.4 35s 5%

(linkless score SA 3568.2� 0.9 3561.3 3595.5 47s 30%

= 5339.4) STAGE 3564.1� 0.4 3561.3 3569.5 48s 2%

ADULT2 HC 440567� 52 439912 441171 239s 6%

(linkless score SA 440924� 134 439551 444094 446s 28%
= 554090) STAGE 440432� 57 439773 441052 351s 6%

SYNTH125K HC 748201�1714 725364 766325 151s 10%

(linkless score SA 726882�1405 718904 754002 142s 29%

= 1,594,498) STAGE 730399�1852 718804 782531 156s 4%

Table 4.7. Bayes net structure-�nding results

On SYNTH125K, the largest dataset, simulated annealing and STAGE both im-

prove signi�cantly over multi-restart hillclimbing, usually attaining a score within 2%

x4.4 BAYES NETWORK LEARNING 89

3560

3570

3580

3590

3600

3610

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

B
ay

es
 n

et
 s

co
re

Number of moves considered

HC
SA

STAGE

3560

3570

3580

3590

3600

3610

HC SA STAGE

Figure 4.9. Bayes net performance on instance MPG

439000

440000

441000

442000

443000

444000

445000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

B
ay

es
 n

et
 s

co
re

Number of moves considered

HC
SA

STAGE

439000

440000

441000

442000

443000

444000

445000

HC SA STAGE

Figure 4.10. Bayes net performance on instance ADULT2

720000

740000

760000

780000

800000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

B
ay

es
 n

et
 s

co
re

Number of moves considered

HC
SA

STAGE

720000

740000

760000

780000

800000

HC SA STAGE

Figure 4.11. Bayes net performance on instance SYNTH125K

90 STAGE: EMPIRICAL RESULTS

of that of the Bayes net that generated the data, and on some runs coming within

0.04%. A good solution found by STAGE is drawn in Figure 4.8. Simulated an-

nealing slightly outperforms STAGE on average (however, Section 6.1.5 describes an

extension which improves STAGE's performance on SYNTH125K). On the MPG and

ADULT2 datasets, HC and STAGE performed comparably, while SA did slightly less

well on average. SA's odd-looking performance curves deserve further explanation. It

turns out that they are a side e�ect of the large scale of the objective function: when

single moves incur large changes in Obj, the adaptive annealing schedule (refer to Ap-

pendix B) takes longer to raise the temperature to a suitably high initial level, which

means that the initial part of SA's trajectory is e�ectively performing hillclimbing.

During this phase SA can �nd quite a good solution, especially in the real datasets

(MPG and ADULT2), for which the initial state (the linkless graph) is a good starting

point for hillclimbing. The good early solutions, then, are never bettered until the

temperature decreases late in the schedule; hence the best-so-far curve is
at for most

of each run.

All algorithms require comparable amounts of total run time, except on the

ADULT2 task where SA and STAGE both run slower than HC. On that task, the dif-

ference in run times appears to be caused by the types of graph structures explored

during search; SA and STAGE spend greater e�ort exploring more complex net-

works with more connections, at which the objective function evaluates more slowly.

STAGE's computational overhead for learning is insigni�cant.

In sum, STAGE's performance on the Bayes net learning task was less dominant

than on the bin-packing and channel routing tasks, but it was still more consistently

best or nearly best than either HC or SA on the three benchmark instances attempted.

4.5 Radiotherapy Treatment Planning

Radiation therapy is a method of treating tumors [Censor et al. 88]. As illustrated

in Figure 4.12, a linear accelerator that produces a radioactive beam is mounted on

a rotating gantry, and the patient is placed so that the tumor is at the center of the

beam's rotation. Depending on the exact equipment being used, the beam can be

shaped in various ways as it rotates around the patient. A radiotherapy treatment

plan speci�es the beam's shape and intensity at a �xed number of source angles.

A map of the relevant part of the patient's body, with the tumor and all im-

portant structures labelled, is available. Also known are reasonably good clinical

forward models for calculating, from a treatment plan, the distribution of radiation

that will be delivered to the patient's tissues. The optimization task, then, is the

following \inverse problem": given the map and the forward model, produce a treat-

x4.5 RADIOTHERAPY TREATMENT PLANNING 91

Figure 4.12. Radiotherapy treatment planning (from [Censor et al. 88])

ment plan that meets target radiation doses for the tumor while minimizing damage

to sensitive nearby structures. In current practice, simulated annealing and/or linear

programming are often used for this problem [Webb 91,Webb 94].

Figure 4.13 illustrates a simpli�ed planar instance of the radiotherapy problem.

The instance consists of an irregularly shaped tumor and four sensitive structures: the

eyes, the brainstem, and the rest of the head. A treatment for this instance consists of

a plan to turn the accelerator beam either on or o� at each of 100 beam angles evenly

spaced within [�3�
4
; 3�

4
]. Given a treatment plan, the objective function is calculated

by summing ten terms: an overdose penalty and an underdose penalty for each of the

�ve structures. For details of the penalty terms, please refer to Appendix C.4.

I applied hillclimbing (HC), simulated annealing (SA), and STAGE to this domain.

Objective function evaluations are computationally expensive here, so my experiments

considered only 10,000 moves per run. The features provided to STAGE consisted of

the ten subcomponents of the objective function. STAGE's parameter settings are

given in Table 4.8.

Results of 200 runs of each algorithm are shown in Figure 4.14 and Table 4.9. All

performed comparably, but STAGE's solutions were best on average. Note, however,

that the very best solution over all 600 runs was found by a hillclimbing run. The

objective function computation dominates the running time; STAGE's overhead for

learning is relatively insigni�cant.

92 STAGE: EMPIRICAL RESULTS

EYE1 EYE2

BRAINSTEM TUMOR

Figure 4.13. Radiotherapy instance 5E

Parameter Setting

� stochastic hillclimbing, patience=200

ObjBound 0

features 10 (overdose penalty and underdose penalty for each organ)

�tter quadratic regression

Pat 200

TotEvals 10,000

Table 4.8. Summary of STAGE parameters for radiotherapy results

Instance Algorithm Performance (200 runs each) � moves

mean best worst time accepted

5E HC 18.822�0.030 18.003 19.294 550s 5.5%
SA 18.817�0.043 18.376 19.395 460s 29%

STAGE 18.721�0.029 18.294 19.155 530s 4.9%

Table 4.9. Radiotherapy results

x4.6 CARTOGRAM DESIGN 93

18

18.5

19

19.5

20

20.5

21

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
ad

io
th

er
ap

y
ob

je
ct

iv
e

fu
nc

tio
n

Number of moves considered

HC
SA

STAGE

18

18.5

19

19.5

20

20.5

21

HC SA STAGE

Figure 4.14. Radiotherapy performance on instance 5E

4.6 Cartogram Design

A \cartogram" or \Density Equalizing Map Projection" is a geographic map whose

subarea boundaries have been deformed so that population density is uniform over the

entire map [Dorling 94,Gusein-Zade and Tikunov 93,Dorling 96]. Such maps can be

useful for visualization of, say, geographic disease distributions, because they remove

the confounding e�ect of population density. I considered the particular instance of

redrawing the map of the continental United States such that each state's area is

proportional to its electoral vote for U.S. President. The goal of optimization is to

best meet the new area targets for each state while minimally distorting the states'

shapes and borders.

I represented the map as a collection of 162 points in <2; each state was de�ned

as a polygon over a subset of those points. Search begins at the original, undistorted

U.S. map. The search operator consisted of perturbing a random point slightly;

perturbations that would cause two edges to cross were disallowed. The objective

function was de�ned as

Obj(x) = �Area(x) + �Gape(x) + �Orient(x) + �Segfrac(x)

where �Area(x) penalizes states for missing their new area targets, and the other

three terms penalize states for di�ering in shape and orientation from the true U.S.

map. For details of these penalty terms, please refer to Appendix C.5. Each of the

94 STAGE: EMPIRICAL RESULTS

CA

OR

WA

NV

AZ

UT

ID
MT

WY

CO

NM

TX

OK

KS

NE

SD

ND
MN

IA

MO

AR

LA
MS AL GA

FL

SC
TN NC
KY

VA
WV

MDDE
NJ
CTRI
MA

ME
NHVT

NY

PA
OHINIL

WI
MI

DC

CA

OR
WA

NV

AZ

UT

IDMT

WY

CO

NM

TX
OK

KS

NE
SD
ND MN

IA

MO

AR

LAMS AL GA

FL

SC

TN
NC

KY VA
WV MD

DE

NJ

CT
RI
MA

ME

NHVT

NY

PAOHIN
IL

WI
MI

DC

L2L1

OCEAN

CA

OR
WA

NV

AZ

UT

ID
MT
WY

CO

NM

TX

OK

KS

NE
SD
ND

MN

IA

MO

AR

LA

MS AL GA

FL

SC
TN NC
KY

VA
WV MDDE

NJ

CT
RI

MA

ME
NHVT

NY

PA
OH

INIL

WI MI

DC

Figure 4.15. Cartograms of the continental U.S. Each state's target area is propor-
tional to its electoral vote for U.S. President. The undistorted U.S. map (top left) has

zero penalty for state shapes and orientations but a large penalty for state areas, so

Obj(x) = 525:7. Hillclimbing produces solutions like the one shown at top right, for

which Obj(x) = 0:115: The third cartogram, found by STAGE, has Obj(x) = 0:043:

x4.7 BOOLEAN SATISFIABILITY 95

feature values can be updated incrementally when a single vertex is moved, so local

search can be applied to optimize Obj(x) quite e�ciently.

For STAGE, I represented each con�guration by four features|namely, the four

subcomponents of Obj. Learning a new evaluation function with quadratic regression

over these features, STAGE produced a signi�cant improvement over hillclimbing, but

was outperformed by simulated annealing. Table 4.10 shows STAGE's parameters,

and Table 4.11 and Figure 4.16 show the results. Later, in Sections 5.2.1{5.2.4, I

report the results of further experiments on the cartogram domain using varying

feature sets and function approximators.

Parameter Setting

� stochastic hillclimbing, patience=200

ObjBound 0

features 4 (subcomponents of Obj)

�tter quadratic regression

Pat 200

TotEvals 1,000,000

Table 4.10. Summary of STAGE parameters for cartogram results

Instance Algorithm Performance (100 runs each) � moves

mean best worst time accepted

US49 HC 0.174�0.002 0.152 0.195 190s 14%
SA 0.037�0.003 0.031 0.170 130s 32%
STAGE 0.056�0.003 0.038 0.132 172s 7%

Table 4.11. Cartogram results

4.7 Boolean Satis�ability

4.7.1 WALKSAT

Finding a variable assignment that satis�es a large Boolean expression is a fundamental|

indeed, the original|NP-complete problem [Garey and Johnson 79]. In recent years,

surprisingly di�cult formulas have been solved by WALKSAT [Selman et al. 96], a

simple local search method. WALKSAT, given a formula expressed in CNF (a con-

junction of disjunctive clauses), conducts a random walk in assignment space that is

96 STAGE: EMPIRICAL RESULTS

0

0.1

0.2

0.3

0.4

0.5

200000 400000 600000 800000 1e+06

M
ap

 e
rr

or
 fu

nc
tio

n

Number of moves considered

HC
SA

STAGE

0

0.1

0.2

0.3

0.4

0.5

HC SA STAGE

Figure 4.16. Cartogram performance on instance US49

biased toward minimizing

Obj(x) = # of clauses unsatis�ed by assignment x.

When Obj(x) = 0, all clauses are satis�ed and the formula is solved.

WALKSAT searches as follows. On each step, it �rst selects an unsatis�ed clause

at random; it will satisfy that clause by
ipping one variable within it. To decide

which one, it �rst evaluates how much overall improvement to Obj would result from

ipping each variable. If the best such improvement is positive, it greedily
ips a

variable that attains that improvement. Otherwise, it
ips a variable which worsens

Obj: with probability (1-noise), a variable which harms Obj the least, and with

probability noise, a variable at random from the clause. The best setting of noise is

problem-dependent [McAllester et al. 97].

WALKSAT is so e�ective that it has rendered nearly obsolete an archive of

several hundred benchmark problems collected for a 1993 DIMACS Challenge on

satis�ability [Selman et al. 96]. Within that archive, only the \32-bit parity func-

tion learning" instances (nefariously constructed by Crawford, Kearns, Schapire, and

Hirsh [Crawford 93]) are known to be solvable in principle, yet not solvable byWALK-

SAT. The development of an algorithm to solve these 32-bit parity instances has been

listed as one of ten outstanding challenges for research in propositional reasoning and

search [Selman et al. 97]. Most of my experiments in the satis�ability domain have

focused on the �rst such instance in the archive, par32-1.cnf, a formula consisting of

x4.7 BOOLEAN SATISFIABILITY 97

10277 clauses on 3176 variables. After presenting extensive results on this instance,

I will report additional results on the four other benchmark instances in the par32

family.

4.7.2 Experimental Setup

WALKSAT is generally run in a random multi-restart regime: after every cuto�

search steps, where cuto� is another parameter of the algorithm, it resets the search to

a random new assignment. Can STAGE, by observing WALKSAT trajectories, learn

a smarter restart policy? Certainly, a variety of additional state features potentially

useful for STAGE's learning are readily available in this domain. I used the following

set of �ve simple features:

� proportion of clauses currently unsatis�ed (/ Obj(x))

� proportion of clauses satis�ed by exactly 1 variable

� proportion of clauses satis�ed by exactly 2 variables

� proportion of variables that would break a clause if
ipped

� proportion of variables set to their \naive" setting4

All of these features can be computed incrementally in O(1) time after any variable

is
ipped.

For comparison, I evaluated the performance of the following algorithms, allowing

each a total of 108 bit
ips per run:

� (HC): random multi-start hillclimbing, patience = 104, accepting equi-cost

moves. Candidate moves are generated using the same bit-
ip distribution

as WALKSAT, but moves that increase the number of unsatis�ed clauses are

rejected.

� (S/HC): STAGE applied to � = HC. Quadratic regression is used to predict

hillclimbing outcomes from the �ve features above. For STAGE's second phase

(stochastic hillclimbing on V �), the patience is set to 1000, and candidate bits

to
ip are chosen uniformly at random, not with the WALKSAT distribution.

4Given a CNF formula F , the naive setting of variable xi is de�ned to be 0 if :xi appears in
more clauses of F than xi, or 1 if xi appears in more clauses than :xi.

98 STAGE: EMPIRICAL RESULTS

� (W): WALKSAT, noise = 0, cuto� = 106. These parameter settings were hand-

tuned for best performance over the range noise 2 f0; 0:05; 0:1; 0:15; : : : ; 0:5g,

cuto� 2 f103; 104; 105; 106; 107; 108g. Note that the chosen cuto� level of 106

means that WALKSAT performs exactly 100 random restarts per run.

� (S/W): STAGE applied to � = WALKSAT. This combination raises some

technical issues involving WALKSAT's termination criterion, as I explain below.

Theoretically, as discussed in Section 3.4.1, STAGE can learn from any procedure

� that is proper (guaranteed to terminate) and Markovian. WALKSAT's normal ter-

mination mechanism, cutting o� after a pre-speci�ed number of steps, is not Marko-

vian: it depends on an extraneous counter variable, not just the current assignment.

To apply STAGE to � = WALKSAT, I tried three modi�ed termination criteria:

� (S/W1): use STAGE's normal patience-based mechanism for cutting o� each

WALKSAT trajectory, just as I do for hillclimbing. Since WALKSAT is non-

monotonic, this mechanism also violates the Markov property: the probability

of cutting o� at state x depends not just on x but also on an extraneous counter

variable and the best Obj value seen previously. However, this is easily corrected

by the following adjustment.

� (S/W2): use patience-based cuto�s, but train the function approximator on only

the best-so-far states of each sample WALKSAT trajectory. By Proposition 2

(presented on page 62, proven in Appendix A.1), this subsequence of states

constitutes a sample trajectory from a higher-level search procedure which is

proper, strictly monotonic, and Markovian, so V � is well-de�ned.

� (S/W3): cut o� WALKSAT's trajectory with a �xed probability � > 0 after

every
ip. This approach results in a proper Markovian trajectory, so V � is

again well-de�ned. A possible drawback to this approach is that termination

may randomly occur during a fruitful part of the search trajectory.

For (S/W1), I hand-tuned WALKSAT's noise and patience parameters over the same

ranges I used for tuning Experiment (W). Here, I found best performance at noise =

0:25 (more random actions) and patience = 104 (more frequent restarting). Without

further tuning, I set patience = 104 in (S/W2), � = 10�4 in (S/W3), and noise = 0:25

in both. The parameters for STAGE's second phase, hillclimbing on V �, were set as

in Experiment (S/HC) above.

Serendipitously, I discovered that introducing an additional WALKSAT param-

eter could improve STAGE's performance. The new parameter, call it �w, has the

x4.7 BOOLEAN SATISFIABILITY 99

Parameter Setting

� (S/HC): stochastic hillclimbing, patience=104; OR

(S/W): WALKSAT, noise=0.25, patience=104, �w = 10

ObjBound 0

features 5 (Obj, % clauses with 1 true, % clauses with 2 true, % clause-
breaking variables, % naive variables)

�tter quadratic regression

Pat 1000

TotEvals 100,000,000

Table 4.12. Summary of STAGE parameters for satis�ability results

following e�ect: any
ip that would worsen Obj by more than �w is rejected. Nor-

mal WALKSAT has �w = 1. Hillclimbing, as done in Experiment (HC) above, is

equivalent to WALKSAT with �w = 0, which performs badly. However, using inter-

mediate settings of �w|thereby prohibiting only the most destructive of WALKSAT's

moves|seems not to harm WALKSAT's performance, and in some cases improves it.

For the (S/W) runs reported here, I set �w = 10. STAGE's parameter settings for

both Experiments (S/HC) and (S/W) are summarized in Table 4.12.

4.7.3 Main Results

The main results are shown in Figure 4.17 and in the top six lines of Table 4.13.

Experiment (HC) performs quite poorly, leaving about 50 clauses unsatis�ed on each

run; STAGE's learning improves on this signi�cantly (S/HC), to about 20 unsatis-

�ed clauses. WALKSAT does better still, leaving 15 unsatis�ed clauses on average.

However, all the STAGE/WALKSAT runs do signi�cantly better, leaving only about

5 clauses unsatis�ed on average, and as few as 1 or 2 of the formula's 10277 clauses

unsatis�ed on the best runs. Although STAGE did not manage to �nd an assign-

ment with 0 clauses unsatis�ed, these are currently the best published results for this

benchmark [Kautz 98].

I also repeated the STAGE/WALKSAT experiments using linear regression, rather

than quadratic regression, as the function approximator for V �. With only 6 coe�-

cients being �t instead of 21, STAGE still produced about the same level of improve-

ment over plain WALKSAT (see Table 4.13). Indeed, the �xed-probability termina-

tion criterion experiment (S/W3) performed signi�cantly better under this simpler

regression model.

Table 4.14 shows the approximate running time required by each algorithm on

100 STAGE: EMPIRICAL RESULTS

Instance Algorithm Performance (N runs each)
mean best worst

par32-1.cnf HC 48.03�0.59 40 54

(N = 100) S/HC (STAGE, � = hillclimbing) 21.64�0.77 11 31
W (WALKSAT) 15.22�0.35 9 19

S/W1 (STAGE, � = WALKSAT) 5.36�0.33 1 9

S/W2 5.04�0.27 2 8

S/W3 5.60�0.29 2 9
S/W1+linear 5.27�0.37 2 14

S/W2+linear 6.21�0.30 2 10
S/W3+linear 4.43�0.28 2 8

par32-2.cnf W 15.40�0.57 13 18

(N = 25) S/W3+linear 4.32�0.48 2 7

par32-3.cnf W 15.84�0.45 14 18

(N = 25) S/W3+linear 4.32�0.53 2 7

par32-4.cnf W 15.28�0.46 13 17

(N = 25) S/W3+linear 4.63�0.60 2 7

par32-5.cnf W 15.48�0.61 11 18

(N = 25) S/W3+linear 4.76�0.63 2 9

Table 4.13. Satis�ability results on the 32-bit parity benchmarks

0

10

20

30

40

50

60

2e+07 4e+07 6e+07 8e+07 1e+08

U
ns

at
is

fie
d

cl
au

se
s

Number of moves considered

HC
S/HC

W
S/W1
S/W2
S/W3

0

10

20

30

40

50

60

HC S/HC W S/W1 S/W2 S/W3

Figure 4.17. Satis�ability: main results on instance par32-1.cnf

x4.7 BOOLEAN SATISFIABILITY 101

instance par32-1.cnf. In this domain, STAGE takes about twice as long to complete

as WALKSAT; for that matter, so does hillclimbing (HC). By pro�ling the executions,

I identi�ed three sources of the disparity. First, WALKSAT saves time by accepting

all of the 108 proposed bit
ips. Every time HC or STAGE rejects a move, it must

un
ip the modi�ed bit and re-update the counts of violated clauses, so rejecting a

move takes twice as long as accepting a move. Second, for all the STAGE runs other

than S/W2, signi�cant time is spent in memory management for storing WALKSAT

trajectories. These trajectories often consist of tens of thousands of states, and my

implementation is not optimized to handle such long trajectories e�ciently. Since

the S/W2 runs train on only the best-so-far states, they have much less data to store

and do not pay this penalty. Finally, the function approximation (computing the

coe�cients of ~V � by least-squares regression) adds about 3% additional overhead to

STAGE's running time.

Table 4.14 also reveals that the S/W3+linear run accepts fully 97% of its moves.

This simply indicates that it is spending the bulk of its e�ort in the WALKSAT stage

of search (during which 100% of moves are accepted), and relatively little time on the

stage of hillclimbing on ~V �. A closer look shows that this happens because the linear

approximation is quite inaccurate, with an RMS error of 9.5 on its training set, and

STAGE's ObjBound parameter cuts o� hillclimbing as soon as the predicted ~V �(x)

falls below zero|typically after only a few hundred moves on each iteration. Though

these runs reject fewer moves than their S/W3+quadratic counterparts, their extra

WALKSAT runs mean extra memory management for trajectory storage, so their

running time is not signi�cantly lessened.

Despite STAGE's overhead in this domain, it is clear from the plot of Figure 4.17

that even if running times were equalized by halving STAGE's allotted number of

moves, STAGE's performance would still signi�cantly exceed pure WALKSAT's.

4.7.4 Follow-up Experiments

I conducted three additional follow-up experiments. First, I compared pure WALK-

SAT with STAGE/WALKSAT on the other four 32-bit parity instances from the

DIMACS archive. The results, shown in Table 4.13, corroborate the results on par32-

1: STAGE consistently leaves 2=3 fewer unsatis�ed clauses than WALKSAT on these

problems.

Second, I studied each of the WALKSAT parameter di�erences between Exper-

iments (W) and (S/W3) in isolation. Speci�cally, I ran eight head-to-head exper-

imental comparisons of WALKSAT and STAGE/WALKSAT with the WALKSAT

parameters �xed to be the same in both algorithms. The eight experiments corre-

102 STAGE: EMPIRICAL RESULTS

Algorithm � time moves

accepted

extra time

to undo

moves

extra time

for memory

management

HC 3200s 61%

S/HC (STAGE, � = hillclimbing) 5000s 38%

W (WALKSAT) 1900s 100%
S/W1 (STAGE, � = WALKSAT) 4100s 69%
S/W2 3200s 54%

S/W3 3900s 70%

S/W1+linear 4100s 55%
S/W2+linear 3100s 55%

S/W3+linear 3600s 97%

Table 4.14. Approximate running times on instance par32-1.cnf. The stopwatch

icons indicate which aspects of search caused running time to exceed WALKSAT's.

sponded to all combinations of the following settings:

(cuto�;noise; �w) 2 f10
6; 104g � f0; 0:25g � f1; 10g

The results were as follows. In two of the eight comparisons, namely, where cuto� =

106 and noise = 0, WALKSAT and STAGE performed statistically equivalently;

STAGE's adaptive restarting performed neither better nor worse than WALKSAT's

random restarting. In the other six comparisons, however, STAGE improved perfor-

mance dramatically over plain WALKSAT.

Third, in an attempt to get STAGE to satisfy all the clauses of formula par32-1.cnf,

I ran eight additional runs of (S/W3+linear) with an extended limit of TotEvals =

2 � 109 bit
ips. These runs used about 24 hours of computation each. The result

was that one run left 1 clause unsatis�ed, �ve runs left 2 clauses unsatis�ed, and two

runs left 3 clauses unsatis�ed. None solved the formula. Future work will pursue

this further: I hope a more insightful set of features, a less hasty job of parameter-

tuning, or longer runs will enable STAGE to \cross the �nish line." In any event,

STAGE certainly shows promise for hard satis�ability problems|perhaps especially

for MAXSAT problems where near-miss solutions are useful [Jiang et al. 95].

4.8 Boggle Board Setup

In the game of Boggle, 25 cubes with letters printed on each face are shaken into

a 5 � 5 grid (see Figure 4.18).5 The object of the game is to �nd English words

5Boggle is published by Parker Brothers, Inc. The 25-cube version is known as \Big Boggle" or
\Boggle Master."

x4.8 BOGGLE BOARD SETUP 103

that are spelled out by connected paths through the grid. A legal path may include

horizontal, vertical, and/or diagonal steps; it may not include any cube more than

once. Long words are more valuable than short ones: the scoring system counts 1

point for 4-letter words, 2 points for 5-letter words, 3 points for 6-letter words, 5

points for 7-letter words, and 11 points for words of length 8 or greater.

G R Y
H V P
Z K Y W
D D D

A D Y

R
W X

W

T

SY
J G

R S T C S
D E A E
G N L R P
E A T E S

S S D

I

IM

Figure 4.18. A random Boggle board (8 words, score=10, Obj=�0:010) and an
optimized Boggle board (2034 words, score=9245, Obj=�9:245). The latter includes
such high-scoring words as depreciated, distracting, specialties, delicateness and des-

perateness.

Given a �xed board setup x, �nding all the English words in it is a simple computa-

tional task; by representing the dictionary6 as a pre�x tree, Score(x) can be computed

in about a millisecond. It is a di�cult optimization task, however, to identify what

�xed board x� has the highest score. For consistency with the other domains of this

chapter, I pose the problem as a minimization task, where Obj(x) = �Score(x)=1000:

(I used the scaling factor of 1=1000 to avoid a possible repeat of the
at simulated

annealing performance curves found and explained in Section 4.4.) Note that I allow

any letter to appear in any position of x, rather than constraining them to the faces

of real 6-sided Boggle cubes. Exhaustive search of 2625 Boggle boards is intractable,

so local search is a natural approach.

I set up the search space as follows. The initial state is constructed by choosing

25 letters uniformly at random. Then, to generate a neighboring state, either of the

following operators is applied with probability 0.5:

� Select a grid square at random and choose a new letter for it. (The new letter

is selected with probability equal to its unigram frequency in the dictionary.)

6My experiments make use of the 126,468-word O�cial Scrabble Player's Dictionary.

104 STAGE: EMPIRICAL RESULTS

� Or, select a grid square at random, and swap the letter at that position with

the letter at a random adjacent position.

The following features of each state x were provided for STAGE's learning:

1. The objective function, Obj(x) = �Score(x)=1000.

2. The number of vowels on board x.

3. The number of distinct letters on board x.

4. The sum of the unigram frequencies of the letters of x. (These frequencies, com-

puted directly from the dictionary, range from Freq(e) = 0:1034 to Freq(q) =

0:0016.)

5. The sum of the bigram frequencies of all adjacent pairs of x.

These features are cheap to compute incrementally after each move in state space,

and intuitively should be helpful for STAGE in learning to distinguish promising from

unpromising boards.

Parameter Setting

� stochastic hillclimbing, patience=1000

ObjBound �1

features 5 (Obj, # vowels, # distinct,
P

unigram,
P

bigram)

�tter quadratic regression

Pat 200

TotEvals 100,000

Table 4.15. Summary of STAGE parameters for Boggle results

However, STAGE's results on Boggle were disappointing. STAGE's parameters

are shown in Table 4.15 and comparative results are shown in Figure 4.19 and Ta-

ble 4.16. Average runs of hillclimbing (patience=1000), simulated annealing, and

STAGE all reach the same Boggle score, about 8400{8500 points.

Boggle is the only domain I have tried on which STAGE's learned smart restarting

does not improve signi�cantly over random-restart hillclimbing. This provides an

interesting opportunity to compare the properties of a domain that is poor for STAGE

with the other domains; I do so in Section 5.1.4.

x4.8 BOGGLE BOARD SETUP 105

Instance Algorithm Performance (100 runs each) � moves

mean best worst time accepted

5 � 5 HC -8.413�0.066 -9.046 -7.473 2235s 2.4%

SA -8.431�0.086 -9.272 -7.622 1720s 33%
STAGE -8.480�0.077 -9.355 -7.570 2450s 1.3%

Table 4.16. Boggle results. The mean performances do not di�er signi�cantly from
one another.

-10

-9

-8

-7

-6

-5

-4

20000 40000 60000 80000 100000

-
B

og
gl

e
sc

or
e

(in
 th

ou
sa

nd
s)

Number of moves considered

HC
SA

STAGE

-10

-9

-8

-7

-6

-5

-4

HC SA STAGE

Figure 4.19. Performance on the Boggle domain

106 STAGE: EMPIRICAL RESULTS

4.9 Discussion

This chapter has demonstrated that STAGE may be pro�tably applied to a wide

variety of global optimization problems. In addition to the domains reported here, an

algorithm closely related to STAGE has also been successfully applied to the \Dial-

a-Ride" problem, a variant of the Travelling Salesperson Problem, by Moll et al. [97].

Empirically, in both discrete domains (e.g., channel routing, Bayes net structure-

�nding, satis�ability) and continuous domains (e.g., cartogram design), STAGE is

able to learn from and improve upon the results of local search trajectories. In the

next chapter, I will probe more deeply into the reasons for STAGE's success.

107

Chapter 5

STAGE: Analysis

In the preceding chapter, I gave empirical evidence that STAGE is an e�ective

optimization technique for a wide variety of domains. In this chapter, I break down

the causes for that e�ectiveness. Does STAGE's power derive from its use of machine

learning, per its design? Or are incidental aspects of the way it organizes its search just

as responsible for STAGE's success? How robust is the algorithm to varying choices

of feature sets, function approximators, and other user-controllable parameters?

This chapter reports the results of a series of experiments that explore these

questions empirically. Most of the experiments are performed in the domains of VLSI

channel routing, as described in Section 4.3, and cartogram design, as described in

Section 4.6.

5.1 Explaining STAGE's Success

STAGE performs superbly on the channel routing domain, not only outperforming

hillclimbing as it was trained to do, but also �nding better solutions on average than

the best simulated annealing runs. How can we explain its success? There are at

least three possibilities:

Hypothesis A: STAGE works according to its design. Gathering data from a num-

ber of hillclimbing trajectories, it learns to predict the outcome of hillclimbing

starting from various state features, and it exploits these predictions to reach

improved local optima.

Hypothesis B: Since STAGE alternates between simple hillclimbing and another

policy, it simply bene�ts from having more random exploration. STAGE uses

hillclimbing on the learned ~V � as its secondary policy, but alternative policies

would do just as well.

Hypothesis C: The function approximator may simply be smoothing the objective

function, which helps eliminate local minima and plateaus.

In this section, I �rst describe experiments which reject the latter two hypotheses.

I then describe experiments giving further evidence for Hypothesis A, that STAGE

does indeed work as designed. Finally, I analyze an instance where STAGE failed.

108 STAGE: ANALYSIS

5.1.1 ~V � versus Other Secondary Policies

Hypothesis B attributes STAGE's success to its unusual regime of alternating between

hillclimbing and a secondary search policy. Perhaps any secondary policy which

perturbed the search away from its current local optimum would be just as e�ective

as STAGE's secondary policy of hillclimbing on the learned evaluation function ~V �.

To test this, I ran experiments with several alternative choices for STAGE's sec-

ondary policy:

Policy B0 (normal STAGE): Hillclimb on ~V �.

Policy B1: Perform a random walk of �xed length !. (I tried setting ! to 1, 3, 10,

and 40.)

Policy B2: Hillclimb on the inverse of ~V �. In other words, move stochastically to

a state which ~V � predicts to be the worst place from which to begin a search.

Policy B3: Hillclimb on a corrupted version of ~V �, trained by replacing every target

value in its training set with a random value.

Each of these policies was alternated with standard hillclimbing (patience=250), so

as to imitate STAGE's normal regime. Experiments B0, B2 and B3 approximated ~V �

using linear regression over the three channel routing features hw; p; Ui, each scaled to

the range [0; 1]. I ran each resulting algorithm 50 times on channel routing instance

YK4, limiting each run to TotEvals = 105 total moves considered. (Note that the

results of Section 4.3 were tabulated over longer runs of length TotEvals = 5 � 105.)

Instance Algorithm Performance (50 runs each)

mean best worst

YK4 B0 (STAGE) 13.54�1.13 12 41
B1 (! = 1) 16.94�0.23 15 19

B1 (! = 3) 17.16�0.24 16 19

B1 (! = 10) 19.12�0.27 17 21

B1 (! = 40) 22.64�0.26 20 25

B2 37.86�3.52 14 52

B3 15.38�0.64 13 27

Table 5.1. Results of di�erent secondary policies on channel routing instance YK4.
In each case, TotEvals = 105.

The results, given in Figure 5.1 and Table 5.1, show conclusively that the choice of

secondary policy does matter. STAGE's policy signi�cantly outperformed all others,

x5.1 EXPLAINING STAGE'S SUCCESS 109

10

15

20

25

30

35

40

45

50

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

STAGE
B1(w= 1)
B1(w= 3)
B1(w=10)
B1(w=40)

B2
B3

10

15

20

25

30

35

40

45

50

STAGE B1(w=1) B1(w=3) B1(w=10)B1(w=40) B2 B3

Figure 5.1. Performance of di�erent secondary policies on channel routing instance

YK4

with 48 of its 50 runs producing a solution circuit of quality between 12 and 14.

(One outlier run did no better than 41; I analyze this in Section 5.1.3.) The random

walk policies (B1) were consistently inferior. Indeed, the pattern of the B1 results

shows clearly that performance degraded more and more as additional undirected

exploration was allowed. Experiment B2, in which the search was purposely led

against ~V � toward states judged unpromising, performed much worse than even the

random-walk policies. This provides further evidence that ~V � has learned useful

predictive information about the features.

Finally, Experiment B3 performed better than the random-walk policies, but still

signi�cantly worse than STAGE. Why did assigning random target values to the

training set for ~V � result in even moderately good performance? The answer is that

in this experiment, the linear regression model has only four coe�cients to �t, and

one of these (the coe�cient of the constant term) has no e�ect when ~V � is used as

an evaluation function to guide search. Thus, even choosing random values for the 3

meaningful coe�cients would sometimes lead search in the same useful direction as

the true V �. This analysis is supported by the plot of Figure 5.2. This plot compares

the successive local minima visited by a typical run of STAGE and a typical run of

Experiment B3. Clearly, STAGE learns a policy which keeps it in a high-quality part

of the space during most of its search, while B3 only occasionally \lucks into" a good

solution. Still, these results highlight the potential for an alternative algorithm to

110 STAGE: ANALYSIS

10

20

30

40

50

60

0 20000 40000 60000 80000 100000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

STAGE
B3

Figure 5.2. Quality of local minima reached on each successive iteration of a STAGE
run and a B3 run. Gaps in the STAGE plot correspond to iterations on which a restart
occurred.

STAGE, which works by optimizing the coe�cients of a ~V �-like function directly (see

Section 8.2.3).

The results of this series of experiments do not prove that hillclimbing on ~V �

is the only policy which can productively lead search away from a local minimum

and into the attracting basin of a potentially better local minimum. However, they

do at least demonstrate that not every secondary policy will be e�ective|and that

STAGE's learned policy is more e�ective than most.

5.1.2 ~V � versus Simple Smoothing

STAGE performs \predictive smoothing" of the original objective function Obj: the

function ~V � is a continuous mapping from the features of state x to the Obj value

that policy � is predicted to eventually reach from x. But perhaps, as suggested

by Hypothesis C above, the predictive aspect of STAGE's smoothing is irrelevant.

Perhaps STAGE's success could be replicated by simply smoothing Obj directly over

the feature space, which would eliminate the original objective function's local minima

and plateaus.

One
aw of this hypothesis is immediately apparent: in channel routing as in most

of the other domains described in Chapter 4, the objective function value Obj(x) is

x5.1 EXPLAINING STAGE'S SUCCESS 111

provided to STAGE as one of the features of the input feature space. Therefore, any

function approximator could �t Obj perfectly over the feature space by simply copying

the Obj(x) feature from input to output. Clearly, this perfect \smoothing" of Obj

would not eliminate any local minima from Obj; STAGE would reduce to standard

multi-restart hillclimbing. Experiment C0, described below, empirically demonstrates

precisely this e�ect.

However, perhaps an imperfect smoothing of Obj would produce the hypothesized

good outcome. I performed the following series of experiments. For all experiments

except HC, the basic STAGE regime is unchanged; only the training set's target

values for the function approximator are modi�ed.

Experiment HC: Multi-restart hillclimbing, accepting equi-cost moves, patience =

500.

Experiment STAGE (same as Experiment B0): Normal STAGE, modelling V �(x)

by linear regression over the three features hw(x); p(x); U(x)i.

Experiment C0 (perfect \smoothing"): For each state in STAGE's training set,

represented by the features hw(x); p(x); U(x)i, train the function approximator

to model not V �(x) but the objective function Obj(x) = w(x). Here, the

function approximator can simply copy w(x) from input to output, so no real

smoothing occurs. Results are shown in Table 5.2 and Figure 5.3: as expected,

this policy performed similarly to multi-start hillclimbing.

Experiment C1: I eliminated the w feature from the training set, so the function

approximator had to model Obj(x) as a linear function of only hp(x); U(x)i.

The results were extremely poor. A closer look explained why. Recall that

Wong de�ned

U(x) =

w(x)X
i=1

ui(x)
2

where ui(x) is the fraction of track i that is unoccupied [Wong et al. 88]. In

poor-quality solutions such as those visited at the beginning of a search, ui(x)

is close to 1 for each track, so U(x) � Obj(x). Thus, even a linear function

approximator can model Obj quite accurately by simply copying U(x) from

input to output. But this smoothed objective function, U(x), makes a terrible

evaluation function for optimization. Starting from a local optimum of Obj,

where no single move can reduce w(x) further, the only way a greedy search can

reduce U is to reduce the variance of the ui(x) values, that is, to distribute the

112 STAGE: ANALYSIS

wires evenly throughout the available tracks. That is exactly the opposite of the

successful strategy that STAGE discovers: to distribute the wires as unevenly as

possible, thereby creating some near-empty tracks which hillclimbing can more

readily eliminate.

Experiment C2: Using the insight gained from the last experiment, I replaced U(x)

by a closely related feature:

V (x)
def
=

w(x)X
i=1

(1 � ui(x))
2

With a bit of algebra, it can be shown that V (x) � U(x)�w(x) +C, where C

is a constant. With w(x) subtracted from the feature, the regression model can

no longer �t Obj well by simply copying a feature through. Indeed, after 105

steps of STAGE, the linearly smoothed �t of Obj over hp(x); V (x)i has an RMS

error around 13, compared with an RMS error of less than 0:1 in Experiment

C1. Thus, this �t does perform signi�cant smoothing. The smoothed �t assigns

a negative coe�cient to V (x), so searching on it tends to increase the variance

of the ui, resulting in improved overall performance relative to both C0 and

C1. Nevertheless, C2's performance is still much worse than STAGE's. (In

Section 5.2.1 below, I show that STAGE's performance with the p and V features

is even better than STAGE with w, p and U .)

Instance Algorithm Performance (50 runs each) RMS

mean best worst of �t

YK4 HC 21.32�0.22 19 23 |

STAGE 13.54�1.13 12 41 2.1

C0 21.06�0.74 15 27 0.0
C1 40.00�0.18 38 41 0.05

C2 19.34�1.00 15 28 13.6

Table 5.2. Performance comparison of STAGE with STAGE-like algorithms that

simply smooth Obj. For each run, TotEvals = 105. The RMS column gives a
typical root-mean-square error of the learned evaluation function over its training set
at the end of the run.

In addition to the results plotted above, I also repeated experiments C1 and

C2 using quadratic rather than linear regression to smooth Obj. This did decrease

the RMS error of the approximations, to approximately 0.04 for C1 and 3.9 for C2.

x5.1 EXPLAINING STAGE'S SUCCESS 113

10

15

20

25

30

35

40

45

50

0 10000 20000 30000 40000 50000 60000 70000 80000 90000100000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

HC
STAGE

C0
C1
C2

10

15

20

25

30

35

40

45

50

HC STAGE C0 C1 C2

Figure 5.3. Performance on the experiments of Section 5.1.2

However, it did not improve optimization performance in either case. From this series

of experiments, I conclude that, at least for this problem, STAGE's success cannot

be attributed to simple smoothing of the objective function. STAGE's predictive

smoothing works signi�cantly better.

5.1.3 Learning Curves for Channel Routing

I have presented evidence that STAGE's secondary policy, searching on ~V �, is more

helpful to optimization than other reasonable policies based on randomness or smooth-

ing. This evidence contradicts Hypotheses B and C outlined on page 107. I now

examine STAGE's success on channel routing more closely, to support Hypothesis A:

that STAGE's leverage is indeed due to machine learning.

Figure 5.4 illustrates three short runs of STAGE on routing instance YK4. In each

row of the �gure, the left-hand graph illustrates the successive local minima visited

over the course of STAGE's run: a diamond symbol (}) marks a local minimum of

Obj, and a plus symbol (+) marks a local minimum of the learned evaluation function
~V �. There is a gap in the plot each time STAGE resets search to the poor initial

state. Observe that the �rst two runs, (A) and (B), perform well, both attaining a

best solution quality of 12; whereas run (C) performs uncommonly poorly, with a

best solution quality of 34.

The right-hand graphs track the evolution of ~V � over the course of each run,

114 STAGE: ANALYSIS

plotting the coe�cients �w, �p, and �U on each iteration, where

~V �(x) = �w � w(x) + �p � p(x) + �U � U(x) + �1

For clarity, the constant coe�cient �1 is omitted from the plots: its value, typically

around �80, has no e�ect on search since it leaves the relative ordering of states

unchanged.

The coe�cient plots show that all runs converge rather quickly to similar ~V � func-

tions. The learned ~V � functions have a high positive coe�cient on w(x), a negative

coe�cient of nearly equal magnitude on U(x), and a coe�cient near zero on p(x).

The assignment of a negative coe�cient to U is surprising, because U measures the

sparseness of the horizontal tracks. U correlates strongly positively with the objec-

tive function to be minimized; a term of �U in the evaluation function ought to pull

search toward terrible solutions in which each subnet occupies its own track. Indeed,

the hand-tuned evaluation function built by Wong et al. for this problem assigned

�U = +10 [Wong et al. 88].

However, the positive coe�cient on w cancels out this bias. Recall from Experi-

ment C2 of the previous section that the following relation holds:

V (x) = U(x)� w(x) + C

where V (x) is a feature measuring the variance in track fullness levels, and C is a

constant. By assigning �w � ��U , STAGE builds the evaluation function

~V �(x) � ��U � w(x) + �p � p(x) + �U � U(x) + �1

= �U(U(x)� w(x)) + �p � p(x) + �1

= �U � V (x) + �p � p(x) + �01

Thus, in order to predict search performance, STAGE learns to extract the variance

feature V (x). The coe�cient �U is negative, so minimizing STAGE's learned evalua-

tion function biases search toward increasing V (x)|that is, toward creating solutions

with an uneven distribution of track fullness levels. Although this characteristic is

not itself the mark of a high-quality solution, it does help lead hillclimbing search to

high-quality solutions.

Given that all three STAGE runs of Figure 5.4 learned quickly to extract the

variance feature U � w, why are their performance curves so di�erent? A close

look reveals that the third feature, p(x), matters: performance breaks through to

the \excellent" level when the coe�cient �p becomes positive. In run (A), which is

most typical, �p is positive throughout the entire run, and STAGE reaches excellent

solutions on every iteration. In run (B), �p becomes consistently positive only around

x5.1 EXPLAINING STAGE'S SUCCESS 115

(A)

10

20

30

40

50

60

0 20000 40000 60000 80000 100000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

STAGE Trajectory (A)
local optimum of Obj
local optimum of Vpi

-15

-10

-5

0

5

10

15

0 20000 40000 60000 80000 100000

C
oe

ffi
ci

en
ts

 o
f l

ea
rn

ed
 V

_p
i f

un
ct

io
n

Number of moves considered

coefficient on w
coefficient on p
coefficient on U

(B)

10

20

30

40

50

60

0 20000 40000 60000 80000 100000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

STAGE Trajectory (B)
local optimum of Obj
local optimum of Vpi

-15

-10

-5

0

5

10

15

0 20000 40000 60000 80000 100000

C
oe

ffi
ci

en
ts

 o
f l

ea
rn

ed
 V

_p
i f

un
ct

io
n

Number of moves considered

coefficient on w
coefficient on p
coefficient on U

(C)

10

20

30

40

50

60

0 20000 40000 60000 80000 100000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

STAGE Trajectory (C)
local optimum of Obj
local optimum of Vpi

-15

-10

-5

0

5

10

15

0 20000 40000 60000 80000 100000

C
oe

ffi
ci

en
ts

 o
f l

ea
rn

ed
 V

_p
i f

un
ct

io
n

Number of moves considered

coefficient on w
coefficient on p
coefficient on U

Figure 5.4. Three runs of STAGE on channel routing instance YK4. Left-hand

graphs plot the Obj value reached at the end of each search trajectory within STAGE;
right-hand graphs plot the evolution of the coe�cients of ~V �(x) over the run.

116 STAGE: ANALYSIS

(C)

10

20

30

40

50

60

0 100000 200000 300000 400000 500000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

STAGE Trajectory (C)
local optimum of Obj
local optimum of Vpi

-15

-10

-5

0

5

10

15

0 100000 200000 300000 400000 500000

C
oe

ffi
ci

en
ts

 o
f l

ea
rn

ed
 V

_p
i f

un
ct

io
n

Number of moves considered

coefficient on w
coefficient on p
coefficient on U

Figure 5.5. Run (C) of Figure 5.4, extended to TotEvals = 500; 000.

move 60000, which corresponds to STAGE's breakthrough. Finally, in the outlier

run (C), �p remains negative throughout the �rst 100; 000 moves. However, it is slowly

increasing, and in fact, if the same run is allowed to extend to TotEvals = 500; 000,

then �p soon becomes positive and performance improves (see Figure 5.5). This run

reaches a solution quality of 12 after 145; 000 moves.

These runs illustrate that STAGE's convergence rate may depend on the particular

regions that STAGE happens to explore. In run (C), STAGE apparently becomes

\stuck" in a region of poor local optima until the �p coe�cient becomes positive,

triggering a random restart from which the learned ~V � can be e�ectively exploited.

This suggests that faster convergence may be attained by more frequent random

restarts; I investigate this in Section 5.2.4.

Despite the varying convergence rates, all the STAGE runs on instance YK4 do

eventually converge to an approximation of V � close to the following:

~V �(x) � 10 � w(x) + 0:5 � p(x) � 10 � U(x)� 80 (5.1)

The coe�cients on all three features are signi�cant. As discussed above, the compo-

nent 10(w(x) � U(x)) biases search toward solutions with an uneven distribution of

track fullness levels. As for p(x), recall from Section 4.3 that it provides a lower bound

on all solutions derived from x by future merging of tracks. Thus, the coe�cient of

+0:5 on p(x) helps keep the search from straying onto unpromising trajectories. In

Section 6.2 I show that STAGE learns similar coe�cients on a number of other in-

stances of the channel routing problem.

x5.2 EMPIRICAL STUDIES OF PARAMETER CHOICES 117

5.1.4 STAGE's Failure on Boggle Setup

STAGE improved signi�cantly over multi-restart hillclimbing on six of the seven large-

scale optimization domains presented in Chapter 4. On the \Boggle setup" domain

of Section 4.8, however, STAGE failed to produce a signi�cant improvement. What

explains this failure?

According to Hypothesis A, STAGE succeeds when it can identify and exploit

trends in the mapping from starting state to hillclimbing outcome. As it turns out,

the Boggle domain illustrates the converse: when the results of hillclimbing from a

variety of starting states show no discernible trend, then STAGE will fail.

The following experiment makes this clear. I ran 50 restarts of hillclimbing for

each of six di�erent restarting policies:

random: Reassign all 25 tiles in the grid randomly on each restart.

EEE: Start with each tile in the grid to the letter `E'.

SSS: Start with each tile in the grid to the letter `S'.

ZZZ: Start with each tile in the grid to the letter `Z'.

ABC: Start with the grid set to ABCDE/FGHIJ/KLMNO/PQRST/UVWXY.

cvcvc: Assign the �rst, third, and �fth rows of the grid to random consonants, and

the second and fourth rows of the grid to random vowels. High-scoring grids

often have a pattern similar to this (or rotations of this).

The boxplot in Figure 5.6 compares the performance of hillclimbing from these

sets of states. Apparently, the restarting policy is irrelevant to hillclimbing's mean

performance: on average, hillclimbing leads to a Boggle score near 7000 no matter

which of the above types of starting states is chosen. Thus, STAGE cannot learn

useful predictions of V �, and its failure to outperform multi-restart hillclimbing is

consistent with our understanding of how STAGE works.

5.2 Empirical Studies of Parameter Choices

We have shown that STAGE learns to predict search performance as a function of

starting state features, and exploits these predictions to improve optimization results.

However, STAGE's performance clearly depends on the user's choice of features F (x),

the function approximator used to model ~V �, the policy � being learned, and other

parameters. Section 3.4 analyzed these choices theoretically; this section continues

the analysis from an empirical perspective.

118 STAGE: ANALYSIS

-10

-9

-8

-7

-6

-5

-4

random EEE SSS ZZZ ABC cvcvc

-
B

og
gl

e
sc

or
e

(in
 th

ou
sa

nd
s)

Figure 5.6. Boggle: average performance of 50 restarts of hillclimbing from six
di�erent sets of starting states

5.2.1 Feature Sets

Practical domains are generally abundant in potentially useful state features. But

which of these should be given to STAGE for its learning? Providing many detailed

state features, perhaps even a complete description of the state, gives STAGE the

opportunity to model V � very accurately; however, the extra features require more

parameters to be �t, which increases the complexity of the �tter's task and may slow

STAGE down intolerably. Conversely, using only a few coarse features results in

e�cient �tting, but limits the prediction accuracy that STAGE can achieve.

I compared STAGE's performance with a wide variety of feature sets on two

domains: channel routing (instance YK4) and cartogram design (instance US49).

These results are consistent with my informal experience with STAGE on many other

domains: smaller feature sets learn faster and work better.

On the channel routing benchmark, I compared seven sets of features for repre-

senting any given state x. The other parameters to STAGE are detailed in Table 5.3.

The results of 50 runs with each feature set are summarized in Figure 5.7 and Ta-

ble 5.4. The table also gives the average �nal RMS error for ~V � on each experiment,

but note that these numbers are not directly comparable, since the training set distri-

butions can be markedly di�erent from experiment to experiment. The feature sets

x5.2 EMPIRICAL STUDIES OF PARAMETER CHOICES 119

tried were as follows:

WPU: hw(x); p(x); U(x)i, the original features used in Section 4.3 and analyzed

above.

PU: hp(x); U(x)i only, dropping the objective function Obj(x) = w(x) from the

input space. This performs badly, for the same reasons as Experiment C1 of

Section 5.1.2 above. From this and other (unreported) experiments, I conclude

that Obj(x) should generally be included as a feature.

PV: hp(x); V (x)i, where V (x)
def
=
P

w(x)

i=1 (1� ui(x))
2, as suggested by Experiment C2

of Section 5.1.2 above. This performs well and, as can be seen in Figure 5.7,

reaches good solutions very quickly! This shows that knowing what features are

good for prediction and explicitly providing them leads to great performance.

But it was through STAGE's success with the original features that this more

compact feature set was discovered.

rrr: hr1(x); r2(x); r3(x)i, where ri(x) is a pseudorandom number in [0; 1] chosen de-

terministically as a function of x and i. That is, these are three features of

the state which are completely irrelevant for predicting V �. As expected, this

performs poorly, similar to the random-walk experiments of Section 5.1.1 above.

WPUrrr: hw(x); p(x); U(x); r1(x); r2(x); r3(x)i. This experiment tests whether per-

formance degrades in the presence of irrelevant features. The result is encour-

aging: there is only a very slight performance degradation relative to WPU.

Early on in each run, ~V � learns to assign near-zero coe�cients to the irrelevant

features.

WPU2: hw(x); w(x)2; p(x); p(x)2; U(x)i. This includes the two quadratic terms that

were used in the hand-tuned evaluation function for simulated annealing of

[Wong et al. 88]. Apparently, these two terms are not useful to STAGE, as they

are assigned relatively small coe�cients and do not improve performance. (An

outlier run in this series is responsible for the increased standard error of the

mean.)

WPU2++: hw(x); w(x)2; p(x); p(x)2; U(x); ft(1)(x); ft(2)(x); : : : ft(144)(x)i. Here, t(i)

denotes the current track (1 : : : w(x)) on which subnet i has been placed, and

fk(x) = 1 � uk(x) denotes the fullness of track k. These 149 features provide

much detail of state x, though not enough to reproduce x completely. The

result: learning occurs slowly, both in terms of running time per iteration (since

120 STAGE: ANALYSIS

a 150 � 150 matrix must be inverted after each hillclimbing trajectory) and in

terms of number of iterations to reach good performance. However, when these

runs are allowed to extend ten times longer, to TotEvals = 5�106, performance

does reach the same excellent level as the other good STAGE runs.

Parameter Setting

� stochastic hillclimbing, rejecting equi-cost moves, patience=250

ObjBound �1

features between 2 and 149, depending on experiment

�tter linear regression

Pat 250

TotEvals 500,000

Table 5.3. Summary of STAGE parameters for channel routing feature comparisons

10

15

20

25

30

35

40

45

50

100000 200000 300000 400000 500000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

WPU
PU
PV
rrr

WPUrrr
WPU2

WPU2++

10

15

20

25

30

35

40

45

50

WPU PU PV rrr WPUrrr WPU2 WPU2++

Figure 5.7. Performance of di�erent feature sets on channel routing instance YK4

The second experiment with feature sets is from the U.S. cartogram domain.

Recall from Section 4.6 that the objective is to deform the map's states so that

their areas meet new prescribed targets (in this instance, proportional to electoral

vote), but their shapes and connectivity remain similar to the un-deformed map.

The objective function was de�ned as

Obj(x) = �Area(x) + �Gape(x) + �Orient(x) + �Segfrac(x)

x5.2 EMPIRICAL STUDIES OF PARAMETER CHOICES 121

Instance Algorithm Performance (50 runs each) RMS

mean best worst of �t

YK4 WPU 12.34�0.15 11 13 2.7

PU 39.54�0.16 38 40 2.8

PV 12.08�0.10 11 13 2.8
rrr 32.86�0.56 29 36 3.7

WPUrrr 12.80�0.22 12 16 2.7

WPU2 12.92�1.11 11 40 2.7
WPU2++ 21.44�1.20 12 30 1.7

Table 5.4. Results with di�erent feature sets on channel routing instance YK4

and STAGE used those four subcomponents of the objective function as its features for

learning. Many other features can be imagined for this domain; I examine STAGE's

performance with several of them here. These experiments used linear regression to

�t ~V �. Other STAGE parameters are detailed in Table 5.5, and the results are shown

in Figure 5.8 and Table 5.6. The feature sets compared are as follows:

Asp.1: hAsp(x)i, a single feature describing the aspect ratio of the current map's

bounding rectangle. Note that most moves leave this feature unchanged. STAGE

learns a coe�cient near zero for this feature, and its performance of Obj � 0:16

is about the same as that of multi-restart hillclimbing.

Peri.1: hPeri(x)i, a single feature which sums the perimeter over all the states.

STAGE works surprisingly well with this feature. It learns a positive coe�-

cient on Peri(x); that is, it learns that hillclimbing performs better when it

begins from a map which is \scrunched."

Cop.2: the horizontal and vertical coordinates of map x's center of population. I

thought these would be a good pair of features for the US49 domain, since a

good cartogram should have its population center near the geometric center of

the map. However, these features were ine�ective, under both linear regression

(shown in graphs) and quadratic regression (not shown).

Obj.4: hArea(x);Gape(x);Orient(x);SegFrac(x)i, the four subcomponents of the ob-

jective function. These features worked quite well, though not as well as Peri.1

on average. Note that the better STAGE results of Section 4.6 used quadratic

regression over these four features.

ObjPeri.5: Given the good performance of Peri.1 and Obj.4, it is natural to combine

122 STAGE: ANALYSIS

them into a 5-feature representation for STAGE. This feature set performed

comparably to experiment Obj.4.

St.15: This larger feature set concentrates on �ve \important" states of the map:

New York, Texas, Florida, California, and Illinois. For each of these it provides

three features: the horizontal and vertical coordinates of the state's current

centroid (expressed relative to the map's current bounding rectangle) and the

state's area. Note that this is the �rst feature set I have tailored speci�cally

to this instance. However, STAGE's performance with these features, while

better than multi-restart hillclimbing, is worse than with most of the simple

instance-independent feature sets discussed above.

St.147: This experiment includes the three centroid and area features for all 49 of

the map's states. With this many features, STAGE is signi�cantly slowed down.

For a �xed number of moves, however, solution quality is signi�cantly better

than multi-restart hillclimbing.

This series of experiments shows that for almost any natural choice of domain features,

STAGE is able to discover a structure over those features which can be exploited to

improve performance signi�cantly over multi-restart hillclimbing.

Parameter Setting

� stochastic hillclimbing, rejecting equi-cost moves, patience=200

ObjBound 0

features between 1 and 147, depending on experiment

�tter linear regression

Pat 200

TotEvals 1,000,000

Table 5.5. Summary of STAGE parameters for cartogram feature comparisons.

From the experiments reported here on the channel routing and cartogram do-

mains, and from other informal experiments not shown, I conclude that STAGE works

best with small, simple sets of features. Small feature sets not only are speediest for

STAGE to work with, but can also, in cases such as cartogram Experiment Peri.1,

provide a bias toward good extrapolation by ~V �, enabling successful exploration. Fea-

tures associated with subcomponents of the objective function, or the variance of such

subcomponents, were often helpful. With the function approximators tested here,

STAGE is not overly sensitive to the inclusion of extra random features; however, it

x5.2 EMPIRICAL STUDIES OF PARAMETER CHOICES 123

0

0.1

0.2

0.3

0.4

0.5

200000 400000 600000 800000 1e+06

M
ap

 e
rr

or
 fu

nc
tio

n

Number of moves considered

(HC)
Asp.1
Peri.1
Cop.2
Obj.4

ObjPeri.5
St.15

St.147

0

0.1

0.2

0.3

0.4

0.5

(HC) Asp.1 Peri.1 Cop.2 Obj.4 ObjPeri.5 St.15 St.147

Figure 5.8. Cartogram performance with di�erent feature sets

Instance Algorithm Performance (50 runs each)
mean best worst

US49 Asp.1 0.158�0.004 0.120 0.185

Peri.1 0.067�0.004 0.052 0.144

Cop.2 0.187�0.008 0.096 0.246

Obj.4 0.092�0.011 0.039 0.170

ObjPeri.5 0.085�0.008 0.045 0.210

St.15 0.132�0.007 0.091 0.206
St.147 0.109�0.009 0.064 0.205

Table 5.6. Cartogram results with di�erent feature sets

124 STAGE: ANALYSIS

can sometimes be drawn into abysmal performance even worse than multi-restart hill-

climbing by a particularly bad set of features, as in channel routing Experiment PU.

5.2.2 Fitters

Another key parameter to STAGE is the function approximator or \�tter" used to

model V �(x). In Section 3.4.3, I argued that �tters having a linear architecture,

such as polynomial regression (of any degree), are best suited to STAGE. Here, I

empirically investigate the performance of STAGE with a range of polynomial �t-

ters, ranging from degree 1 to degree 5, on both the channel routing and cartogram

domains.

The table below lists the eight �tters I tested. Let hf1; f2; : : : ; fDi denote the

features of each domain given to STAGE; note that D = 3 in the channel routing

domain and D = 4 in the cartogram domain. For each �tter, the table also gives the

total number of coe�cients being �t, both as a function of arbitrary D and in the

case where D = 4.

Key Description # params

F1: linear regression D + 1 = 5

F2: quadratic regression
�
D+2

2

�
= 15

F3: cubic regression
�
D+3

3

�
= 35

F4: quartic regression
�
D+4

4

�
= 70

E2: quadratic regression without cross-terms.
For each domain feature fi, this model in-
cludes the terms fi and f2

i
but no cross-

terms involving the product of more than
one feature.

2D + 1 = 9

E3: cubic regression without cross-terms 3D + 1 = 13

E4: quartic regression without cross-terms 4D + 1 = 17

E5: quintic regression without cross-terms 5D + 1 = 21

Results are given in the usual form in Tables 5.7 and 5.8 and Figures 5.9 and 5.9.

On both domains, the results indicate that the choice of �tter has a relatively minor

impact on performance. On the channel routing domain, slightly better results and

fewer poor outlier runs were obtained from the most highly biased models, linear

regression and crossterm-less quadratic regression. This is consistent with our earlier

observation that the linear approximation V �(x) � 10w(x) + 0:5p(x) � 10U(x) � 80

su�ces for excellent performance here. On the cartogram domain, however, somewhat

more complex models performed slightly better.

In these experiments, STAGE's computational overhead for function approxima-

tion was not a signi�cant component of running time, even for the most complex

x5.2 EMPIRICAL STUDIES OF PARAMETER CHOICES 125

model here, quartic regression with all cross-terms. However, since the expense of

least-squares quartic regression increases as O(D12), this overhead would certainly

become prohibitive for more than D = 4 features. In my experience, quadratic regres-

sion (either with or without cross terms) provides su�cient model
exibility, enough

bias to enable aggressive extrapolation, and e�cient computational performance.

Instance Algorithm Performance (50 runs each)
mean best worst

YK4 F1 (linear) 12.26�0.17 11 14

F2 (quadratic) 14.30�1.16 12 37

F3 (cubic) 13.08�0.35 12 19

F4 (quartic) 12.86�0.42 11 19

E2 (crossterm-less quadratic) 12.30�0.14 11 13

E3 (crossterm-less cubic) 12.80�1.07 12 39

E4 (crossterm-less quartic) 13.54�1.15 11 39

E5 (crossterm-less quintic) 15.02�0.71 12 24

Table 5.7. Channel routing results with di�erent polynomial function approximators
over the 3 features hw; p; Ui

Instance Algorithm Performance (50 runs each)

mean best worst

US49 (HC) 0.174�0.002 0.152 0.195

F1 (linear) 0.092�0.011 0.039 0.170
F2 (quadratic) 0.057�0.004 0.038 0.103

F3 (cubic) 0.057�0.004 0.038 0.126

F4 (quartic) 0.069�0.003 0.045 0.096

E2 (crossterm-less quadratic) 0.078�0.010 0.041 0.174

E3 (crossterm-less cubic) 0.067�0.005 0.038 0.135

E4 (crossterm-less quartic) 0.058�0.004 0.040 0.111
E5 (crossterm-less quintic) 0.069�0.005 0.041 0.106

Table 5.8. Cartogram performance with di�erent polynomial function approxima-

tors over the 4 features h�Area;�Gape;�Orient;�Segfraci. All the STAGE runs

signi�cantly outperform multi-restart hillclimbing (HC).

126 STAGE: ANALYSIS

10

15

20

25

30

35

40

45

50

0 50000100000150000200000250000300000350000400000450000500000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

F1
F2
F3
F4
E2
E3
E4
E5

10

15

20

25

30

35

40

45

50

F1 F2 F3 F4 E2 E3 E4 E5

Figure 5.9. Performance of di�erent function approximators on channel routing
instance YK4

0

0.1

0.2

0.3

0.4

0.5

0 1000002000003000004000005000006000007000008000009000001e+06

M
ap

 e
rr

or
 fu

nc
tio

n

Number of moves considered

(HC)
F1
F2
F3
F4
E2
E3
E4
E5

0

0.1

0.2

0.3

0.4

0.5

(HC) F1 F2 F3 F4 E2 E3 E4 E5

Figure 5.10. Cartogram performance with di�erent polynomial function approxi-

mators

x5.2 EMPIRICAL STUDIES OF PARAMETER CHOICES 127

5.2.3 Policy �

Thus far, I have discussed how the user's choice of features and �tters a�ects STAGE's

ability to learn and exploit ~V �(F (x)). But what about the choice of � itself? In

every domain of Chapter 4 besides Boolean satis�ability, � was chosen to be a very

simple search procedure: stochastic �rst-improvement hillclimbing, rejecting equi-

cost moves. But clearly, stronger local search procedures are available. For example,

stochastic hillclimbing accepting equi-cost moves often performs better, and simulated

annealing performs better still. Can STAGE learn to improve upon these, and achieve

yet better performance?

Theoretically, even if a procedure �1 is signi�cantly better than another procedure

�2, it is by no means guaranteed that STAGE on �1 will outperform STAGE on

�2. For example, �2 may produce more diverse outcomes as a function of starting

state, enabling useful extrapolation in ~V �2; whereas if �1 is expected to reach the

same solution quality no matter what state it starts from|as was the case with the

Boggle example of Section 5.1.4|then ~V �1 will be
at, and STAGE will not produce

improvement.

In this section, I consider the following three policies on the cartogram domain:

� �1: regular �rst-improvement hillclimbing, rejecting equi-cost moves, patience=200.

� �2: hillclimbing as above, but modi�ed so that equi-cost and some slightly

harmful moves are accepted. Speci�cally, a move is rejected if and only if it

worsens Obj by more than �=0.0001. (This value of � was the most e�ective

of a wide range tried on this domain.) On average, �2 performs signi�cantly

better than �1.

� �3: simulated annealing with a shortened schedule length of 20,000 moves. The

short schedule allows it to be used in the context of a multi-restart procedure.

For each of these three policies, I sought to compare the default restarting method to

a \smart" restarting method learned by STAGE. In the cases of �1 and �2, the default

restarting method is to reset to the domain's initial state (the original undeformed

U.S. map). In the case of �3, I found that a better default restarting method is to

start each new annealing schedule in the same state where the previous trajectory

�nished. These procedures are labelled PI1, PI2 and PI3 in the results presented

below.

In applying STAGE to �2 and �3, a complication arises: neither of these proce-

dures is Markovian. Methods for coping with this theoretical di�culty were discussed

128 STAGE: ANALYSIS

in detail at the end of Section 3.4.1 (p. 61), and in the context of WALKSAT in Sec-

tion 4.7.2. In the case of �2, a simple �x is to train V �2(x) on only those states which

are the best-so-far on their trajectory. (Note that on the pure hillclimbing trajecto-

ries generated by �1, every state is the best-so-far.) These procedures are labelled

STAGE(PI1) and STAGE(PI2) in the results. In the case of �3, even training only

on best-so-far states does not make V �3(x) theoretically well-de�ned (though results

for STAGE(PI3) are given below nonetheless). Instead, giving up on the Markov

property, I resort to training V �3 on just the single starting state of each simulated

annealing trajectory. This variant of STAGE is well-de�ned for any proper policy �;

its results for all three of our policies are shown as STAGE0(PI1), STAGE0(PI2), and

STAGE0(PI3).

The results, displayed in Table 5.9 and Figures 5.11{5.13, point to several conclu-

sions. First, as demonstrated by Experiment STAGE(PI2), STAGE can successfully

learn from a non-Markovian policy by training only on best-so-far states. Second,

from Experiment STAGE(PI3) we can conclude that STAGE may not be e�ective

at learning evaluation functions from simulated annealing; this is unsurprising, since

SA's initial period of random search makes the outcome quite unpredictable from

the starting state. Third, from the set of STAGE0 experiments, it is apparent that

STAGE learns muchmore quickly when it is able to train on entire trajectories, rather

than just starting states. Thus, STAGE is able to exploit the Markov property of V �

for e�cient performance.

Instance Algorithm Performance (50 runs each)

mean best worst

US49 PI1 = hillclimbing 0.174�0.002 0.152 0.192

STAGE(PI1) 0.057�0.004 0.038 0.103

STAGE0(PI1) 0.099�0.013 0.042 0.174

PI2 = hillclimbing/�=0.0001 0.140�0.003 0.115 0.167

STAGE(PI2) 0.052�0.003 0.040 0.083

STAGE0(PI2) 0.077�0.009 0.045 0.136

PI3 = simulated annealing 0.049�0.001 0.044 0.070

STAGE(PI3) 0.050�0.002 0.042 0.091

STAGE0(PI3) 0.060�0.005 0.043 0.142

Table 5.9. Cartogram performance with STAGE learning ~V � from a variety of

di�erent choices of policy �. All algorithms were limited to considering TotEvals =
106 moves.

x5.2 EMPIRICAL STUDIES OF PARAMETER CHOICES 129

0

0.1

0.2

0.3

0.4

0.5

200000 400000 600000 800000 1e+06

M
ap

 e
rr

or
 fu

nc
tio

n

Number of moves considered

PI1
STAGE(PI1)

STAGE0(PI1)

0

0.1

0.2

0.3

0.4

0.5

PI1 STAGE(PI1) STAGE0(PI1)

Figure 5.11. Cartogram performance of STAGE using �1 = hillclimbing

0

0.1

0.2

0.3

0.4

0.5

200000 400000 600000 800000 1e+06

M
ap

 e
rr

or
 fu

nc
tio

n

Number of moves considered

PI2
STAGE(PI2)

STAGE0(PI2)

0

0.1

0.2

0.3

0.4

0.5

PI2 STAGE(PI2) STAGE0(PI2)

Figure 5.12. Cartogram performance of STAGE using �2 = hillclimbing accepting
equi-cost and slightly harmful moves

130 STAGE: ANALYSIS

0

0.1

0.2

0.3

0.4

0.5

200000 400000 600000 800000 1e+06

M
ap

 e
rr

or
 fu

nc
tio

n

Number of moves considered

PI3
STAGE(PI3)

STAGE0(PI3)

0

0.1

0.2

0.3

0.4

0.5

PI3 STAGE(PI3) STAGE0(PI3)

Figure 5.13. Cartogram performance of STAGE using �3 = simulated annealing

5.2.4 Exploration/Exploitation

In any time-bounded search process there arises a tradeo� between exploitation, i.e.,

pursuing what appears to be the best path given the limited observations made thus

far, and exploration, i.e., trying paths about which little is yet known. Treating this

tradeo� optimally is in general intractable, and various heuristics have been proposed

in the reinforcement learning literature [Thrun 92,Moore and Atkeson 93,Dearden et

al. 98]. For its exploration, STAGE relies primarily on extrapolation by the function

approximator to guide search to unvisited regions, and secondarily on random restarts

when search stalls.

However, there is another aspect of STAGE's search strategy than impinges on

the exploration/exploitation dilemma. On each iteration, STAGE runs � to generate

a trajectory (x0 : : : xT), uses this trajectory to update ~V �, and then searches for a

good starting state of � by hillclimbing on the new ~V �. This section investigates the

design decision of where to begin each search of ~V �:

Continue: This is STAGE's normal policy|namely, to begin each search of ~V � by

simply continuing from the current local optimum xT .

Re-init: Begin each search of ~V � from a random initial state. This promotes greater

global exploration of the space, at the cost of losing the bene�t of the work just

done by � to reach a local optimum of Obj.

x5.2 EMPIRICAL STUDIES OF PARAMETER CHOICES 131

Compromises between Continue and Re-init are possible. Let Re-init(K)

denote the policy of jumping to a random initial state if and only if K consec-

utive STAGE iterations have failed to improve on the best optimum yet seen.

Thus, Re-init(0) always starts from a random state, and Re-init(1) is the

same as the Continue policy. I tested a range of settings for K.

Best-ever: Begin each search of ~V � from the best state seen so far on this run.

This promotes greater exploitation of a known excellent solution, at the cost of

possibly becoming over-focused on one area of search space.

Again, compromises are possible. In this case, I implemented Best-ever(p),

which on each iteration either jumps to the best-so-far state with probability

p or continues from the current state xT with probability 1 � p. Note that

Best-ever(0), like Re-init(1), is equivalent to Continue.

I compared Continue, Re-init(0), Re-init(5), Re-init(20), Best-ever(0:1),

Best-ever(0:4), Best-ever(0:7), and Best-ever(1) on cartogram domain US49.

The results are given in Table 5.10 and Figure 5.10. The results show that frequent

jumping to a random state, as Re-init(K) does for small K, does negatively a�ect

solution quality, whereas frequent jumping to the best-so-far state, as done by Best-

ever(p), neither helps performance nor hurts it signi�cantly. STAGE's Continue

policy seems to strike an acceptable balance between exploration and exploitation.

Instance Algorithm Performance (50 runs each)

mean best worst

US49 Continue (normal STAGE) 0.057�0.003 0.037 0.103
Re-init(0) 0.171�0.003 0.150 0.197

Re-init(2) 0.072�0.004 0.045 0.112

Re-init(5) 0.059�0.004 0.040 0.109

Re-init(20) 0.056�0.005 0.037 0.114
Best-ever(0:1) 0.056�0.004 0.037 0.100

Best-ever(0:4) 0.062�0.006 0.038 0.147

Best-ever(0:7) 0.060�0.005 0.041 0.129

Best-ever(1:0) 0.062�0.004 0.039 0.113

Table 5.10. Cartogram performance under various modi�cations of STAGE's policy

for initializing search of ~V � on each round

132 STAGE: ANALYSIS

0

0.1

0.2

0.3

0.4

0.5

200000 400000 600000 800000 1e+06

M
ap

 e
rr

or
 fu

nc
tio

n

Number of moves considered

Cont
Re(0)
Re(2)
Re(5)

Re(20)
Be(0.1)
Be(0.4)
Be(0.7)

Be(1)

0

0.1

0.2

0.3

0.4

0.5

Cont Re(0) Re(2) Re(5) Re(20) Be(0.1)Be(0.4)Be(0.7) Be(1)

Figure 5.14. Cartogram performance under various modi�cations of STAGE's pol-

icy for initializing search of ~V � on each round

5.2.5 Patience and ObjBound

Finally, I investigated the e�ect of the two remaining STAGE parameters: Pat and

ObjBound. Recall from the STAGE algorithm (p. 52) that these parameters jointly

determine when STAGE's second phase of search, stochastic hillclimbing on ~V �,

should terminate. ObjBound corresponds to a known lower bound on the objec-

tive function; it cuts the search o� when ~V �(F (x)) predicts that x is an impossibly

good starting state, i.e., ~V �(F (x)) < ObjBound. This cuto� may be disabled by

setting ObjBound = �1. The other parameter, Pat, cuts the search o� when too

many consecutive moves have failed to improve ~V �. If either of these parameters is

set too aggressively (too tight a bound, too-low patience), then STAGE will fail to

reach the best starting points predicted by its function approximator. If, on the other

hand, these are set too loosely, then STAGE may waste valuable time that could in-

stead have been spent on the �rst phase of search, namely, running � and gathering

new training data. How sensitive is STAGE to the precise settings used?

Experimental results of varying these parameters on the cartogram domain are

presented in Table 5.11 and Figures 5.15 and 5.16. STAGE's other parameters were

set as in the cartogram experiments of Section 4.6 (p. 95). The results show that

STAGE's performance su�ered when Pat was very low or very high, but worked well

for a wide range of settings between 64 and 1024. As for the ObjBound parameter,

x5.3 DISCUSSION 133

STAGE performed best when it was set to its true bound of 0, but degraded gracefully

when it was set to �1 (too loose a bound) or +0:1 (too tight). Performance was,

however, signi�cantly worse for ObjBound=1, demonstrating that the ObjBound

parameter is useful. By cutting o� search on ~V � when the function approximator is

provably inaccurate, ObjBound saves computation time and prevents search from

wandering too far astray.

Instance Algorithm Performance (50 runs each)
mean best worst

US49 Pat=16 0.161�0.015 0.079 0.285

Pat=32 0.095�0.008 0.040 0.147

Pat=64 0.065�0.006 0.040 0.151

Pat=128 0.057�0.004 0.039 0.114

Pat=256 0.059�0.007 0.038 0.190
Pat=512 0.062�0.006 0.041 0.134

Pat=1024 0.070�0.005 0.044 0.126

Pat=2048 0.100�0.006 0.046 0.159
Pat=4096 0.126�0.008 0.074 0.187

Pat=8192 0.122�0.007 0.057 0.172
Pat=16384 0.132�0.006 0.068 0.178

Pat=32768 0.129�0.007 0.079 0.189

Pat=65536 0.135�0.007 0.081 0.184

ObjBound=�1 0.083�0.011 0.036 0.189

ObjBound=�1 0.060�0.006 0.037 0.143

ObjBound=0 0.057�0.004 0.038 0.103

ObjBound=0:1 0.061�0.006 0.040 0.171

Table 5.11. Cartogram performance with varying settings of Pat and ObjBound

5.3 Discussion

This chapter gives depth to the results of the previous chapter, demonstrating that

STAGE does indeed obtain its success by exploiting the power of reinforcement learn-

ing, and that it works reliably over a wide range of parameter settings. The chapter's

empirical conclusions may be summarized as follows:

� Evaluation functions other than STAGE's learned ~V �, built at random or by

simply smoothing the objective function, perform much worse than ~V � in the

context of multi-start optimization. STAGE successfully learns and ex-

ploits the predictive power of value functions.

134 STAGE: ANALYSIS

0

0.1

0.2

0.3

0.4

0.5

16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

M
ap

 e
rr

or
 fu

nc
tio

n

setting of patience parameter

Figure 5.15. Cartogram performance with various patience settings

0

0.1

0.2

0.3

0.4

0.5

200000 400000 600000 800000 1e+06

M
ap

 e
rr

or
 fu

nc
tio

n

Number of moves considered

OB=-infinity
OB=-1
OB=0

OB=0.1

0

0.1

0.2

0.3

0.4

0.5

OB=-infinity OB=-1 OB=0 OB=0.1

Figure 5.16. Cartogram performance with di�erent ObjBound levels

x5.3 DISCUSSION 135

� When the baseline policy � does not demonstrate predictable trends as a func-

tion of state features, then ~V � will not be able to guide STAGE to promising

new starting states, so STAGE will not improve (nor hurt) performance com-

pared to multi-start �. This was demonstrated for hillclimbing in the Boggle

domain and for simulated annealing in the cartogram domain.

� For the policy of �=stochastic hillclimbing, STAGE can empirically learn a use-

ful global structure from many di�erent natural choices of feature sets. STAGE

is robust in the presence of irrelevant features, though it works most e�ciently

and e�ectively with small feature sets. As a choice of function approximator,

quadratic regression provides su�cient model
exibility, enough bias to enable

aggressive extrapolation, and e�cient computational performance.

� Empirically, STAGE makes reasonable tradeo�s between exploration and ex-

ploitation, and it performs robustly over a wide range of settings for the param-

eters Pat and ObjBound.

136

137

Chapter 6

STAGE: Extensions

The preceding chapters have demonstrated the e�ectiveness of a simple idea:

learned predictions of search outcomes can be used to improve future search out-

comes. In this chapter, I consider two independent extensions to the basic STAGE

algorithm:

� Section 6.1 investigates the use of the TD(�) family of algorithms, including

a new least-squares formulation, for making more e�cient use of memory and

data while learning V �.

� Section 6.2 illustrates how STAGE's training time on a problem instance may

be reduced by transferring learned ~V � functions from previously solved, similar

problem instances.

6.1 Using TD(�) to learn V
�

In almost all of the experimental results of Chapters 4 and 5, STAGE learned to

approximate V � for a particularly simple choice of �: stochastic hillclimbing with

equi-cost moves rejected. This procedure is proper, Markovian, and monotonic, and

therefore|as shown earlier in Section 3.4.1|induces a Markov chain over the con�g-

uration space X. V �(x) is precisely the value function of the chain.

To approximate V �, STAGE uses simple Monte-Carlo simulation and linear least-

squares function approximation, as described in [Bertsekas and Tsitsiklis 96, x6.2.1].

However, a reinforcement learning technique, TD(�) or temporal di�erence learning,

also applies. TD(�) is a family of incremental gradient-descent algorithms for approx-

imating V �, parametrized by � 2 [0; 1] [Sutton 88]. For the case of � = 0, Bradtke

and Barto [96] demonstrated improved data e�ciency with a least-squares formula-

tion of the algorithm, which he called LSTD(0). LSTD(0) also eliminates all stepsize

parameters from the TD procedure.

In this section, I generalize Bradtke and Barto's results to arbitrary values of

� 2 [0; 1], drawing on the analyses of TD(�) in [Tsitsiklis and Roy 96,Bertsekas and

Tsitsiklis 96]. I show that LSTD(1) produces the same coe�cients as Monte-Carlo

138 STAGE: EXTENSIONS

simulation with linear regression, but requires less memory (and no extra computa-

tion). I also explain how LSTD(�) bridges the gap between model-free and model-

based RL algorithms. Finally, I demonstrate empirical results with STAGE in the

Bayes net structure-�nding domain, showing that LSTD(�) with � set to values less

than 1 can sometimes learn an e�ective approximation of V � from less simulation

data than supervised linear regression.

6.1.1 TD(�): Background

TD(�) addresses the problem of computing the value function V � of a Markov chain,

or equivalently, of a �xed policy � in a Markov Decision Problem. This is an important

subproblem of several algorithms for sequential decision making, including policy

iteration [Bertsekas and Tsitsiklis 96] and STAGE. V �(x) simply predicts the expected

long-term sum of future rewards obtained when starting from state x and following

policy � until termination. This function is well-de�ned as long as � is proper, i.e.,

guaranteed to terminate.1

For small Markov chains whose transition probabilities are all explicitly known,

computing V � is a trivial matter of solving a system of linear equations; TD(�) is not

needed. However, in many practical applications, the transition probabilities of the

chain are available only implicitly: either in the form of a simulation model or in the

form of an agent's actual experience executing � in its environment. In either case, we

must compute V � or an approximation to V � solely from a collection of trajectories

sampled from the chain. This is where the TD(�) family of algorithms applies.

TD(�) was introduced in [Sutton 88]; excellent summaries may now be found in

several books [Bertsekas and Tsitsiklis 96,Sutton and Barto 98]. For each state on an

observed trajectory (x0; x1; : : : ; xL;end), TD(�) incrementally adjusts the coe�cients

of ~V � to more closely satisfy

~V �(xt)
:
= (1� �)

L�1X
k=t

�k�t
�
~V �(xk+1) +

P
k

j=tRj

�
+

�L�t
�P

L

j=tRj

� (6.1)

where Rj is a shorthand for the one-step reward R(xj; xj+1). The right hand side of

Equation 6.1 can be interpreted as computing the weighted average of L� t di�erent

lookahead-based estimates for ~V �(xt). The di�erent estimates are the 1-step trun-

cated return (Rt + ~V �(xt+1)), 2-step truncated return Rt + Rt+1 + ~V �(xt+2), and so

1For improper policies, V � may be made well-de�ned by the use of a discount factor that expo-
nentially reduces future rewards; the TD(�) and LSTD(�) algorithms both extend straightforwardly
to that case. However, for simplicity I will assume here that V � is undiscounted and that � is proper.

x6.1 USING TD(�) TO LEARN V � 139

forth up to the total Monte-Carlo return (Rt+Rt+1+ � � �+RL). The relative weights

of these estimates are determined by the terms involving �, which sum to unity. The

� parameter smoothly interpolates between two extremes:

� TD(1): adjust ~V � based only on the Monte-Carlo return. This gives rise to an

incremental form of supervised learning.

� TD(0): adjust ~V � based only on the 1-step lookahead Rt + ~V �(xt+1). This

gives rise to an incremental, sampled form of Value Iteration.

The target values assigned by TD(1) are unbiased samples of ~V �, but may have

signi�cant variance since each depends on a long sequence of rewards from stochastic

transitions. By contrast, TD(0)'s target values have low variance|the only random

component is the reward of a single state transition|but are biased by the potential

inaccuracy of the current estimate of ~V �. The parameter � trades o� between bias

and variance. Empirically, intermediate values of � seem to perform best [Sutton

88,Singh and Sutton 96,Sutton 96].

A convenient form of the TD(�) algorithm is given in Table 6.1.1. This version

of the algorithm assumes that the policy � is proper, that the approximation archi-

tecture is linear (as described in Section 3.4.3), and that updates are o�ine (i.e., the

coe�cients of ~V � are modi�ed only at the end of each trajectory). On each transition,

the algorithm computes the scalar one-step TD error Rt + (�(xt+1)��(xt))
T�, and

apportions that error among all state features according to their respective eligibilities

zt. The eligibility vector may be seen as an algebraic trick by which TD(�) propa-

gates rewards backward over the current trajectory without having to remember the

trajectory explicitly. Each feature's eligibility at time t depends on the trajectory's

history and on �:

zt =

tX
k=t0

�t�k�(xk)

where t0 is the time when the current trajectory started. In the case of TD(0), only

the current state's features are eligible to be updated, so zt = �(xt); whereas in

TD(1), the features of all states seen so far on the current trajectory are eligible, so

zt =
P

t

k=t0
�(xk).

The reason for the restriction to linear approximation architectures is that TD(�)

provably converges when such architectures are used, under a few mild additional as-

sumptions detailed below [Tsitsiklis and Roy 96]. The currently available convergence

results may be summarized as follows [Bertsekas and Tsitsiklis 96]:

140 STAGE: EXTENSIONS

TD(�) for approximate policy evaluation:

Given:

� a simulation model for a proper policy � in MDP X;

� a featurizer � : X ! <
K mapping states to feature vectors, �(end) = 0;

� a parameter � 2 [0; 1]; and

� a sequence of stepsizes �1; �2; : : : for incremental coe�cient updating.
Output: a coe�cient vector � for which V �(x) � � � �(x).

Set � := 0(arbitrary initial estimate); t := 0.

for n := 1; 2; : : : do: f
Set � := 0.

Choose a start state xt 2 X.

Set zt := �(xt).

while xt 6= end, do: f
Simulate one step of the chain, producing a reward Rt and next state xt+1.
Set � := � + zt

�
Rt + (�(xt+1)� �(xt))

T�
�
.

Set zt+1 := �zt + �(xt+1).
Set t := t+ 1.

g

Set � := � + �n�.
g

LSTD(�) for approximate policy evaluation:

Given: a simulation model, featurizer, and � as above; no stepsizes.
Output: a coe�cient vector � for which V �(x) � � � �(x).

Set A := 0; b := 0; t := 0.

for n := 1; 2; : : : do: f
Choose a start state xt 2 X.

Set zt := �(xt).
while xt 6= end, do: f

Simulate one step of the chain, producing a reward Rt and next state xt+1.

Set A := A + zt(�(xt)� �(xt+1))
T.

Set b := b+ ztRt.
Set zt+1 := �zt + �(xt+1).

Set t := t+ 1.
g

Whenever updated coe�cients are desired: Set � := A�1b. (Use SVD.)

g

Table 6.1. Gradient-descent and least-squares versions of trial-based TD(�) for

approximating the undiscounted value function of a �xed proper policy. Note that A
has dimension K �K, and b, �, �, z, and �(x) all have dimension K � 1.

x6.1 USING TD(�) TO LEARN V � 141

� If the approximator is nonlinear, TD(�) may diverge [Bertsekas and Tsitsiklis

96], though it has been successful with nonlinear neural networks in practice.

� If the function approximator is linear and can represent the optimal V � exactly,

then TD(�) will converge to V �. This result applies primarily to representations

with one independent feature per state, i.e., lookup tables.

� If the approximator is linear but cannot represent V � exactly, then TD(1) will

converge to the best least-squares �t of V �. For values of � < 1, TD(�) will

also converge, but possibly to a suboptimal �t of V �; the error bound worsens

as � decreases toward zero [Bertsekas and Tsitsiklis 96]. In practice, though,

smaller values of � introduce less variance and may enable TD(�) to converge

to an acceptable approximation of V � using less data.

Su�cient conditions for the convergence, with probability 1, of TD(�) are as follows:

1. The stepsizes �n are nonnegative, satisfy
P

1

n=1 �n =1, and satisfy
P

1

n=1 �
2
n
<

1. (The stepsizes �n = c=n satisfy this condition, though in practice a small

constant stepsize is often used.)

2. All states x 2 X have positive probability of being visited given the start state

distribution chosen. (This is a technicality: unvisited states may simply be

deleted from the chain.)

3. The features �(x) are linearly independent of one another over X. That is, the

feature set is not redundant.

What does TD(�) converge to? Examining the update rule for � in Table 6.1.1,

it is not di�cult to see that the coe�cient changes made by TD(�) after an observed

trajectory (x0; x1; : : : ; xL;end) have the form

� := � + �n(d+C� + !)

where

d = E
� LX
i=0

ziR(xi; xi+1)
	

C = E
� LX
i=0

zi
�
�(xi+1)��(xi)

�T	
! = zero-mean noise.

142 STAGE: EXTENSIONS

The expectations are taken with respect to the distribution of trajectories through

the Markov chain. It is shown in [Bertsekas and Tsitsiklis 96] that C is negative

de�nite and that the noise ! has su�ciently small variance, which together with the

stepsize conditions given above, imply that � converges to a �xed point �� satisfying

d+C�� = 0:

In e�ect, TD(�) solves this system of equations by performing stochastic gradient

descent on the potential function k� � ��k
2. It never explicitly represents d or C.

The changes to � depend only on the most recent trajectory, and after those changes

are made, the trajectory and its rewards are simply forgotten. This approach, while

requiring little computation time per iteration, is wasteful with data and may require

sampling many trajectories to reach convergence.

One technique for using data more e�ciently is \experience replay" [Lin 93]: ex-

plicitly remember all trajectories ever seen, and whenever asked to produce an up-

dated set of coe�cients, perform repeated passes of TD(�) over all the saved tra-

jectories until convergence. This technique is similar to the batch training methods

commonly used to train neural networks. However, in the case of linear function

approximators, there is another way.

6.1.2 The Least-Squares TD(�) Algorithm

The Least-Squares TD(�) algorithm, or LSTD(�), converges to the same coe�cients

�� that TD(�) does. However, instead of performing gradient descent, LSTD(�)

builds explicit estimates of the C matrix and d vector (actually, estimates of a con-

stant multiple of C and d), and then e�ectively solves d +C�� = 0 directly. The

actual data structures that LSTD(�) builds from experience are the matrix A (of

dimensionK�K, where K is the number of features) and the vector b (of dimension

K):

b =

tX
i=0

ziR(xi; xi+1)

A =

tX
i=0

zi
�
�(xi)� �(xi+1)

�T
After n independent trajectories have been observed, b is an unbiased estimate of

nd, and A is an unbiased estimate of �nC. Thus, �� can be estimated as A�1b.

As in the least-squares linear regression technique of Section 3.4.3, I use Singular

Value Decomposition to invert A robustly [Press et al. 92]. The complete LSTD(�)

algorithm is speci�ed in the bottom half of Table 6.1.1.

x6.1 USING TD(�) TO LEARN V � 143

LSTD(�) is a generalization of the LSTD(0) algorithm [Bradtke and Barto 96] to

the case of arbitrary �. When � = 0, the equations reduce to

b =

tX
i=0

�(xi)R(xi; xi+1)

A =

tX
i=0

�(xi)
�
�(xi)� �(xi+1)

�T
;

(6.2)

the same as those derived by Bradtke and Barto using a di�erent approach based on

regression with instrumental variables [Bradtke and Barto 96].

At the other extreme, when � = 1, LSTD(1) produces precisely the same A

and b as would be produced by supervised linear regression on training pairs of

(state features 7! observed eventual outcomes), as described for STAGE in Chapter 3

(Equation 3.8, page 67). The proof of this equivalence is given in Appendix A.2.

Thanks to the algebraic trick of the eligibility vectors, LSTD(1) builds the regression

matrices fully incrementally|without having to store the trajectory while waiting to

observe the eventual outcome. When trajectories through the chain are long, this

provides signi�cant memory savings over linear regression.

The computation per timestep required to update A and b is the same as least-

squares linear regression: O(K2), where K is the number of features. LSTD(�) must

also perform a matrix inversion at a cost of O(K3) whenever �'s coe�cients are

needed|in the case of STAGE, once per complete trajectory. (If updated coe�-

cients are required more frequently, then the O(K3) cost can be avoided by recursive

least-squares [Bradtke and Barto 96] or Kalman-�ltering techniques [Bertsekas and

Tsitsiklis 96, x3.2.2], which update � on each timestep at a cost of only O(K2).)

LSTD(�) is more computationally expensive than incremental TD(�), which updates

the coe�cients using only O(K) computation per timestep. However, LSTD(�) o�ers

several signi�cant advantages, as pointed out by Bradtke and Barto in their discussion

of LSTD(0) [96]:

� Least-squares algorithms are \more e�cient estimators in the statistical sense"

because \they extract more information from each additional observation."

� TD(�)'s convergence can be slowed dramatically by a poor choice of the stepsize

parameters �n. LSTD(�) eliminates these parameters.

� TD(�)'s performance is sensitive to k�� � �initk, the distance between �� and

the initial estimate for ��. LSTD(�) requires no arbitrary initial estimate.

� TD(�) is also sensitive to the ranges of the individual features. LSTD(�) is not.

144 STAGE: EXTENSIONS

Section 6.1.4 below presents experimental results comparing TD(�) with LSTD(�) in

terms of data e�ciency and time e�ciency.

6.1.3 LSTD(�) as Model-Based TD(�)

Before giving experimental results with LSTD(�), I would like to point out an in-

teresting connection between LSTD(�) and model-based reinforcement learning. To

begin, let us restrict our attention to the case of a small discrete state space X,

over which V � can be represented and learned exactly by a lookup table. A classical

model-based algorithm for learning V � from simulated trajectory data would proceed

as follows:

1. From the state transitions and rewards observed so far, build in memory an

empirical model of the Markov chain. The su�cient statistics of this model

consist of, for each state x 2 X:

� n(x), the number of times state x was visited;

� c(x0jx), the count of how many times x0 followed x for each state x0 2 X.

We do not need to track the absorption frequency c(endjx) separately,

since c(endjx) = n(x)�
P

x02X
c(x0jx).

� s(x), the sum of all observed one-step rewards from state x. (The expected

reward at x is then given simply by s(x)=n(x).)

2. Whenever a new estimate of the value function V � is desired, solve the current

empirical model. Solving the model means solving the linear system of Bellman

equations (Eq. 2.3), which can be written in the above notation as, 8x 2 X:

V �(x) =
s(x)

n(x)
+
X
x02X

c(x0jx)

n(x)
V �(x0) (6.3)

In matrix notation, if we let N be the diagonal matrix of visitation frequencies

n(x), let C be the matrix of counts where Cij = c(xjjxi), let s be the vector

of summed-rewards s(x), and let v be the vector of V � values, then the above

equations become simply

Nv = s+Cv;

whose solution is given by

v = (N�C)�1s: (6.4)

x6.1 USING TD(�) TO LEARN V � 145

This model-based technique contrasts with TD(�), a model-free approach to the same

problem. TD(�) does not maintain any statistics on observed transitions and rewards;

it simply updates the components of v incrementally after each observed trajectory.

In the limit, assuming a lookup-table representation, both converge to the optimal

V �. The advantage of TD(�) is its low computational burden per step; the advantage

of the classical model-based method is that it makes the most of the available training

data. The empirical advantages of model-based and model-free reinforcement learning

methods have been investigated in, e.g., [Sutton 90,Moore and Atkeson 93,Atkeson

and Santamaria 97,Kuvayev and Sutton 97].

Where does LSTD(�) �t in? The answer is that, when � = 0, it precisely du-

plicates the classical model-based method sketched above. When � > 0, it does

something else sensible, which I describe below; but let us �rst consider LSTD(0).

The assumed lookup-table representation for ~V � means that we have one indepen-

dent feature per state: the feature vector � corresponding to state 1 is (1; 0; 0; : : : ; 0);

corresponding to state 2 is (0; 1; 0; : : : ; 0); etc. LSTD(0) performs the following op-

erations upon each observed transition (cf. Equation 6.2):

b := b+ �(xt)Rt

A := A+ �(xt)(�(xt)� �(xt+1))
T

Clearly, the role of b is to sum all the rewards observed at each state, exactly as the

vector s does in the classical technique. A, meanwhile, accumulates the statistics

(N�C). To see this, note that the outer product given above is a matrix consisting

of an entry of +1 on the single diagonal element corresponding to state xt; an entry

of �1 on the element in row xt, column xt+1; and all the rest zeroes. Summing one

such sparse matrix for each observed transition gives A � N�C. Finally, LSTD(0)

performs the inversion � := A�1b = (N � C)�1s, giving the same solution as in

Equation 6.4.

Thus, when � = 0, the A and b matrices built by LSTD(�) e�ectively record a

model of all the observed transitions. What about when � > 0? Again, A and b

record the su�cient statistics of an empirical Markov model|but in this case, the

model being captured is one whose single-step transition probabilities directly encode

the multi-step TD(�) backup operations, as de�ned by Eq. 6.1. That is, the model

links each state x to all the downstream states that follow x on any trajectory, and

records how much in
uence each has on estimating ~V �(x) according to TD(�). In the

case of � = 0, the TD(�) backups correspond to the one-step transitions, resulting

in the equivalence described above. The opposite extreme, the case of � = 1, is

also interesting: the empirical Markov model corresponding to TD(1)'s backups is

146 STAGE: EXTENSIONS

the chain where each state x leads directly to absorption (i.e., all counts are zero:

C1 = 0). The values s1(x) equal the sum, over all visits to x on all trajectories, of

all the observed rewards between x and termination. LSTD(1) then solves for ~V � as

follows:

� := A�1b = (N�C1)
�1s1 = N�1s1;

which simply computes the average of the Monte-Carlo returns at each state x. In

short, if we assume a lookup-table representation for the function ~V �, we can view

the LSTD(�) algorithm as doing these two steps:

1. It implicitly uses the observed simulation data to build a Markov chain. This

chain compactly models all the backups that TD(�) would perform on the data.

2. It solves the chain by performing a matrix inversion.

The lookup-table representation for ~V � is intractable in practical problems; in

practice, LSTD(�) operates on states only via their (linearly dependent) feature rep-

resentations �(x). In this case, we can view LSTD(�) as implicitly building a com-

pressed version of the empirical model's transition matrixN�C and summed-reward

vector s:

A = �T(N�C)�

b = �Ts;

where � is the jXj�K matrix representation of the function � : X ! <
K. From the

compressed empirical model, LSTD(�) computes the following coe�cients for ~V �:

�� = A�1b

= (�T(N�C)�)�1(�Ts):
(6.5)

Ideally, these coe�cients �� would be equivalent to the empirical optimal coe�cients

��

�
. The empirical optimal coe�cients are those that would be found by building the

full uncompressed empirical model (represented by N � C and s), using a lookup

table to solve for that model's value function (v = (N�C)�1s), and then performing

a least-squares linear �t from the state features � to the lookup-table value function:

��

�
= (�T�)�1(�Tv)

= (�T�)�1�T(N�C)�1s:
(6.6)

It can be seen that Equations 6.5 and 6.6 are indeed equivalent for the case of � = 1,

because that setting of � implies that C = 0 so (N�C) is diagonal. However, for the

case of � < 1, solving the compressed empirical model does not in general produce

the optimal least-squares �t to the solution of the uncompressed model.

x6.1 USING TD(�) TO LEARN V � 147

6.1.4 Empirical Comparison of TD(�) and LSTD(�)

I experimentally compared the performance of TD(�) and LSTD(�) on the simple

\Hopworld" Markov chain described in Section 2.3.1. The chain consists of 13 states,

as illustrated in Figure 2.2 (p. 31). We seek to represent the value function of this

chain compactly|as a linear function of four state features. In fact, this domain has

been contrived so that the optimal V � function is exactly linear in these features:

the optimal coe�cients ��
�
are (�24;�16;�8; 0). This condition guarantees that

LSTD(�) will converge with probability 1 to the optimal ��
�
for any setting of �.

TD(�) is also guaranteed convergence to the optimal V �, under the additional

condition that an appropriate schedule of stepsizes is chosen. As mentioned in Sec-

tion 6.1.1 above, the sequence of stepsizes (�n) must satisfy three criteria: �n � 0 8n;P
1

n=1 �n = 1; and
P

1

n=1 �
2
n
< 1. For example, all three criteria are satis�ed by

schedules of the following form:

�n
def
= �0

n0 + 1

n0 + n
n = 1; 2; : : : (6.7)

The parameter �0 determines the initial stepsize, and n0 determines how gradually

the stepsize decreases over time. I ran each TD(�) experiment with six di�erent

stepsize schedules, corresponding to the six combinations of �0 2 f0:1; 0:01g and

n0 2 f10
2; 103; 106g. These six schedules are plotted in Figure 6.1.

0.0001

0.001

0.01

0.1

0 2000 4000 6000 8000 10000

al
ph

a(
n)

: l
ea

rn
in

g
ra

te

n: trajectory number

a0=0.1, n0=10^6
a0=0.1, n0=10^3
a0=0.1, n0=10^2

a0=0.01, n0=10^6
a0=0.01, n0=10^3
a0=0.01, n0=10^2

Figure 6.1. The six di�erent stepsize schedules used in the experiments with TD(�).

The schedules are determined by Equation 6.7 with various settings for �0 and n0.

148 STAGE: EXTENSIONS

On the Hopworld domain, I ran both TD(�) and LSTD(�) for a variety of settings

of �. Figure 6.2 plots the results for the case of � = 0:4. The plot compares the

performance of six variants of TD(0:4)|corresponding to the six di�erent stepsize

schedules|and LSTD(0:4). The x-axis counts the number of trajectories sampled,

up to a limit of 10,000; and the y-axis measures the RMS error of the approximated

value function ~V �, de�ned by

k~V �
� V �

k =

1

jXj

X
x2X

�
~V �(x)� V �(x)

�2! 1
2

: (6.8)

Each point on the plot represents the average of 10 trials.

0

0.2

0.4

0.6

0.8

1

100 1000 10000

R
M

S
 e

rr
or

 o
f V

pi
 o

ve
r

al
l s

ta
te

s

trajectory number

lambda = 0.4

TD: a0=0.1, n0=10^6
TD: a0=0.1, n0=10^3
TD: a0=0.1, n0=10^2

TD: a0=0.01, n0=10^6
TD: a0=0.01, n0=10^3
TD: a0=0.01, n0=10^2

Least-Squares TD

Figure 6.2. Performance of TD(0:4) and LSTD(0:4) on the Hopworld domain. Note
the logarithmic scale of the x-axis.

The plot shows clearly that for � = 0:4, LSTD(�) learns a good approximation to

V � in fewer trials than any of the TD(�) experiments, and performs better asymp-

totically as well. These results held uniformly across all values of �. Table 6.2 gives

the results for � = 0, � = 0:4, and � = 1. The results may be summarized as follows:

� For all values of �, the convergence rate of LSTD(�) exceeded that of TD(�).

x6.1 USING TD(�) TO LEARN V � 149

Algorithm
Fit error
after 100
trajectories

Fit error
after 10,000
trajectories

TD(0), �0 = 0:1; n0 = 106 0.49� 0.15 0.37� 0.05

TD(0), �0 = 0:1; n0 = 103 0.38� 0.10 0.09� 0.02

TD(0), �0 = 0:1; n0 = 102 0.32� 0.07 0.04� 0.02
TD(0), �0 = 0:01; n0 = 106 9.08� 0.04 0.10� 0.02

TD(0), �0 = 0:01; n0 = 103 9.29� 0.04 0.04� 0.02
TD(0), �0 = 0:01; n0 = 102 10.66� 0.02 0.70� 0.01

LSTD(0) 0.19� 0.09 0.01� 0.01

TD(0:4), �0 = 0:1; n0 = 106 0.42� 0.15 0.40� 0.09
TD(0:4), �0 = 0:1; n0 = 103 0.39� 0.16 0.12� 0.04

TD(0:4), �0 = 0:1; n0 = 102 0.25� 0.08 0.03� 0.01
TD(0:4), �0 = 0:01; n0 = 106 6.73� 0.07 0.14� 0.04

TD(0:4), �0 = 0:01; n0 = 103 6.97� 0.06 0.04� 0.01
TD(0:4), �0 = 0:01; n0 = 102 8.73� 0.04 0.17� 0.01

LSTD(0:4) 0.15� 0.04 0.01� 0.00

TD(1), �0 = 0:1; n0 = 106 0.73� 0.27 0.54� 0.15
TD(1), �0 = 0:1; n0 = 103 0.48� 0.20 0.17� 0.06

TD(1), �0 = 0:1; n0 = 102 0.30� 0.10 0.06� 0.02
TD(1), �0 = 0:01; n0 = 106 1.86� 0.14 0.13� 0.03

TD(1), �0 = 0:01; n0 = 103 2.05� 0.14 0.05� 0.02

TD(1), �0 = 0:01; n0 = 102 3.31� 0.12 0.03� 0.01
LSTD(1) 0.14� 0.04 0.01� 0.00

Table 6.2. Summary of results with TD(�) and LSTD(�) on the Hopworld domain
for � = 0, 0.4, and 1.0. Fit errors are measured according to Equation 6.8; the mean

over 10 trials and 95% con�dence interval of the mean are displayed. Results for other

values of � were similar.

150 STAGE: EXTENSIONS

� The performance of TD(�) depends critically on the stepsize schedule chosen.

LSTD(�) has no tunable parameters other than � itself.

� Varying � had no discernible e�ect on LSTD(�)'s performance.

Because the Hopworld domain is so small and the optimal value function is exactly

linear over the available features, these results are not necessarily representative of

how TD(�) and LSTD(�) will perform on practical problems. For example, if a

domain has many features and simulation data is available cheaply, then incremental

methods will have better real-time performance than least-squares methods [Sutton

92]. On the other hand, some reinforcement-learning applications have been successful

with very small numbers of features (e.g., [Singh and Bertsekas 97]). STAGE's results

certainly meet this description. I investigate the performance of LSTD(�) in the

context of STAGE in the following section.

One exciting possibility for future work is to apply LSTD(�) in the context of

Markov decision problems|that is, for the purpose of approximating not V � but

V �. LSTD(�) could provide an e�cient alternative to TD(�) in the inner loop of

optimistic policy iteration [Bertsekas and Tsitsiklis 96].

6.1.5 Applying LSTD(�) in STAGE

The application of LSTD(�) within STAGE is straightforward. We are given a local

search procedure � that is assumed to be proper, Markovian and monotonic, which

implies that � induces a Markov chain over the con�guration space X. (To use

LSTD(�) with a nonmonotonic local search procedure such as WALKSAT, the best-

so-far abstraction must be applied; see Appendix A.1.) Note that the one-step rewards

in the induced Markov chain are all zero except at termination (see Eq. 3.4, p. 59).

This means that the update step b := b+ ztRt may be moved outside the inner loop

of LSTD(�).

The interesting empirical question concerns the best value of �. The STAGE

experiments of Chapters 4 and 5 all used supervised least-squares regression, which

is equivalent to � = 1. Is that value of � best, since the predictions it generates

are unbiased estimates of the true V � function? Or will a lower setting of � enable

learning in fewer trials, since LSTD(�)'s implicit transition model enables it to treat

noisy training data more informedly?

I performed experiments with LSTD(�) on three optimization problem instances:

cartogram design instance US49 and Bayes net structure-�nding instances SYNTH125K

and ADULT2. Other than �, all STAGE parameters were �xed at the same settings

x6.1 USING TD(�) TO LEARN V � 151

speci�ed earlier in Sections 4.4 and 4.6. The � parameter was varied over six evenly-

spaced settings between 0 and 1.

The experimental results, shown in Table 6.3 and the accompanying three �gures,

were inconclusive. On the cartogram design problem, LSTD(1) decisively outper-

formed all the smaller values of �. By contrast, on SYNTH125K, all values of � � 0:8

produced signi�cantly faster learning than LSTD(1), although Figure 6.4 shows that

LSTD(1) nearly catches up by the time 100,000 moves have been considered. Fi-

nally, on instance ADULT2, there were no signi�cant di�erences between any of the

di�erent settings for �. From this set of results, the most that can be said is that

values of � < 1 sometimes help, sometimes hurt, and sometimes have no e�ect on the

performance of STAGE in practice.

Instance Algorithm Performance (N runs each)
mean best worst

Cartogram LSTD(0:0) 0.083�0.008 0.040 0.178
(US49) LSTD(0:2) 0.078�0.009 0.040 0.183
N = 50;M = 106 LSTD(0:4) 0.074�0.007 0.041 0.170

LSTD(0:6) 0.079�0.010 0.038 0.204
LSTD(0:8) 0.076�0.007 0.042 0.175

LSTD(1:0) 0.057�0.004 0.037 0.105

Bayes net LSTD(0:0) 736241� 1721 720244 784874
(SYNTH125K) LSTD(0:2) 734806� 1722 719431 777711

N = 200;M = 4 � 104 LSTD(0:4) 734548� 1674 719187 779267
LSTD(0:6) 736164� 1938 719261 796555
LSTD(0:8) 736094� 1796 719068 776308

LSTD(1:0) 741111� 1871 719748 790014

Bayes net LSTD(0:0) 440511� 59 439372 441052

(ADULT2) LSTD(0:2) 440531� 62 439460 441247
N = 100;M = 105 LSTD(0:4) 440540� 60 439761 441168

LSTD(0:6) 440490� 52 439767 441208
LSTD(0:8) 440484� 67 439267 441152

LSTD(1:0) 440461� 61 439715 441005

Table 6.3. STAGE performance with LSTD(�) on three optimization instances.

Each line summarizes the performance of N trials, each limited to considering M

total search moves.

152 STAGE: EXTENSIONS

0

0.1

0.2

0.3

0.4

0.5

200000 400000 600000 800000 1e+06

M
ap

 e
rr

or
 fu

nc
tio

n

Number of moves considered

TD(0.0)
TD(0.2)
TD(0.4)
TD(0.6)
TD(0.8)
TD(1.0)

0

0.1

0.2

0.3

0.4

0.5

TD(0.0) TD(0.2) TD(0.4) TD(0.6) TD(0.8) TD(1.0)

Figure 6.3. Cartogram performance with LSTD(�)

720000

740000

760000

780000

800000

20000 40000 60000 80000 100000

B
ay

es
 n

et
 s

co
re

Number of moves considered

TD(0.0)
TD(0.2)
TD(0.4)
TD(0.6)
TD(0.8)
TD(1.0)

720000

740000

760000

780000

800000

0.0 0.2 0.4 0.6 0.8 1.0

lambda

Performance after 40,000 moves considered

Figure 6.4. Performance of STAGE with LSTD(�) on Bayes net structure-�nding

instance SYNTH125K. After 40; 000 moves, LSTD(1:0) signi�cantly lagged all other

values for �.

x6.2 TRANSFER 153

439000

440000

441000

442000

443000

444000

445000

20000 40000 60000 80000 100000

B
ay

es
 n

et
 s

co
re

Number of moves considered

TD(0.0)
TD(0.2)
TD(0.4)
TD(0.6)
TD(0.8)
TD(1.0)

439000

440000

441000

442000

443000

444000

445000

0.0 0.2 0.4 0.6 0.8 1.0

lambda

Figure 6.5. Performance of STAGE with LSTD(�) on Bayes net structure-�nding

instance ADULT2

6.2 Transfer

This section concerns a second signi�cant extension to STAGE: enabling transfer

of learned knowledge between related problem instances. I motivate and describe

an algorithm for transfer, X-STAGE, and present empirical results on two problem

families.

6.2.1 Motivation

There is a computational cost to training a function approximator on V �. Learn-

ing from a �-trajectory of length L, with either linear regression or LSTD(�) over

D features, costs STAGE O(D2L + D3) per iteration; quadratic regression costs

O(D4L+D6). In the experiments of Chapter 4, these costs were minimal|typically,

0{10% of total execution time. However, STAGE's extra overhead would become

signi�cant if many more features or more sophisticated function approximators were

used. Furthermore, even if the function approximation is inexpensive, STAGE may

require many trajectories to be sampled in order to obtain su�cient data to �t V �

e�ectively.

For some problems such costs are worth it in comparison with a non-learning

method, because a better or equally good solution is obtained with overall less com-

putation. But in those cases where we use more computation, the STAGE method

154 STAGE: EXTENSIONS

may nevertheless be preferable if we are then asked to solve further similar problems

(e.g., a new channel routing problem with di�erent pin assignments). Then we can

hope that the computation we invested in solving the �rst problem will pay o� in the

second, and future, problems because we will already have a ~V � estimate. This e�ect

is called transfer ; the extent to which it occurs is largely an empirical question.

To investigate the potential for transfer, I re-ran STAGE on a suite of eight prob-

lems from the channel routing literature [Chao and Harper 96]. Table 6.4 summarizes

the results and gives the coe�cients of the linear evaluation function, learned inde-

pendently for each problem. To make the similarities easier to see in the table, I have

normalized the coe�cients so that their squares sum to one; note that the search

behavior of an evaluation function is invariant under positive linear transformations.

Problem lower best-of-3 best-of-3 learned coe�cients

instance bound hillclimbing STAGE < �w; �p; �U >

YK4 10 22 12 < 0:71; 0:05; �0:70 >

HYC1 8 8 8 < 0:52; 0:83; �0:19 >
HYC2 9 9 9 < 0:71; 0:21; �0:67 >

HYC3 11 12 12 < 0:72; 0:30; �0:62 >

HYC4 20 27 23 < 0:71; 0:03; �0:71 >
HYC5 35 39 38 < 0:69; 0:14; �0:71 >

HYC6 50 56 51 < 0:70; 0:05; �0:71 >

HYC7 39 54 42 < 0:71; 0:13; �0:69 >
HYC8 21 29 25 < 0:71; 0:03; �0:70 >

Table 6.4. STAGE results on eight problems from [Chao and Harper 96]. The
coe�cients have been normalized so that their squares sum to one.

The similarities among the learned evaluation functions are striking. Except on

the trivially small instance HYC1, all the STAGE-learned functions assign a relatively

large positive weight to feature w(x), a similarly large negative weight to feature U(x),

and a small positive weight to feature p(x). In Section 5.1.3 (see Eq. 5.1, page 116),

I explained the coe�cients found on instance YK4 as follows: STAGE has learned

that good hillclimbing performance is predicted by an uneven distribution of track

fullness levels (w(x) � U(x)) and by a low analytical bound on the e�ect of further

merging of tracks (p(x)). From Table 6.4, we can conclude that this explanation

holds generally for many channel routing instances. Thus, transfer between instances

should be fruitful.

x6.2 TRANSFER 155

6.2.2 X-STAGE: A Voting Algorithm for Transfer

Many sensible methods for transferring the knowledge learned by STAGE from \train-

ing" problem instances to new instances can be imagined. This section presents one

such method. STAGE's learned knowledge, of course, is represented by the approxi-

mated value function ~V �. We would like to take the ~V � information learned on a set of

training instances fI1; I2; : : : ; INg and use it to guide search on a given new instance

I 0. But how can we ensure that ~V � is meaningful across multiple problem instances

simultaneously, when the various instances may di�er markedly in size, shape, and

attainable objective-function value?

The �rst crucial step is to impose an instance-independent representation on the

features F (x), which comprise the input to ~V �(F (x)). In their algorithm for transfer

between job-shop scheduling instances (which I will discuss in detail in Section 7.2),

Zhang and Dietterich recognize this: they de�ne \a �xed set of summary statistics

describing each state, and use these statistics as inputs to the function approximator"

[Zhang and Dietterich 98]. As it so happens, almost all the feature sets used with

STAGE in this thesis are naturally instance-independent, or can easily be made so

by normalization. For example, in Bayes-net structure-�nding problems (x4.4), the

feature that counts the number of \orphan" nodes can be made instance-independent

simply by changing it to the percentage of total nodes that are orphans.

The second question concerns normalization of the outputs of ~V �(F (x)), which

are predictions of objective-function values. In Table 6.4 above, the nine channel

routing instances all have quite di�erent solution qualities, ranging from 8 tracks

in the case of instance HYC1 to more than 50 tracks in the case of instance HYC6.

If we wish to train a single function approximator to make meaningful predictions

about the expected solution quality on both instances HYC1 and HYC6, then we must

normalize the objective function itself. For example, ~V � could be trained to predict

not the expected reachable Obj value, but the expected reachable percentage above

a known lower bound for each instance. Zhang and Dietterich adopt this approach:

they heuristically normalize each instance's �nal job-shop schedule length by dividing

it by the di�culty level of the starting state [Zhang and Dietterich 98]. This enables

them to train a single neural network over all problem instances.

However, if tight lower bounds are not available, such normalization can be prob-

lematic. Consider the following concrete example:

� There are two similar instances, I1 and I2, which both have the same true

optimal solution, say, Obj(x�) = 130.

� A single set of features f is equally good in both instances, promising to lead

156 STAGE: EXTENSIONS

search to a solution of quality 132 on either.

� The only available lower bounds for the two instances are b1 = 110 and b2 = 120,

respectively.

In this example, normalizing the objective functions to report a percentage above the

available lower bound would result in a target value of 20% for ~V �(f) on I1 and a

target value of 10% for ~V �(f) on I2. At best, these disparate training values add

noise to the training set for ~V �. At worst, they could interact with other inaccurate

training set values and make the non-instance-speci�c ~V � function useless for guiding

search on new instances.

I adopt here a di�erent approach, which eliminates the need to normalize the

objective function across instances. The essential idea is to recognize that each in-

dividually learned ~V �

Ik
function, unnormalized, is already suitable for guiding search

on the new problem I 0: the search behavior of an evaluation function is scale- and

translation-invariant. The X-STAGE algorithm, speci�ed in Table 6.5, combines the

knowledge of multiple ~V �

Ik
functions not by merging them into a single new evaluation

function, but by having them vote on move decisions for the new problem I 0. Note

that after the initial set of value functions has been trained, X-STAGE performs no

further learning when given a new optimization problem I 0 to solve.

Combining ~V �

Ik
decisions by voting rather than, say, averaging, ensures that each

training instance carries equal weight in the decision-making process, regardless of

the range of that instance's objective function. Voting is also robust to \outlier"

functions, such as the one learned on instance HYC1 in Table 6.4 above. Such a

function's move recommendations will simply be outvoted. A drawback to the voting

scheme is that, in theory, loops are possible in which a majority prefers x over x0,

x0 over x00, and x00 over x. However, I have not seen such a loop in practice, and if one

did occur, the patience counter Pat would at least prevent X-STAGE from getting

permanently stuck.

6.2.3 Experiments

I applied the X-STAGE algorithm to the domains of bin-packing and channel rout-

ing. For the bin-packing experiment, I gathered a set of 20 instances from the OR-

Library|the same 20 instances studied in Section 4.2. Using the same STAGE

parameters given in that section (p. 75), I trained ~V � functions for all of the 20

except u250 13, and then applied X-STAGE to test performance on the held-out in-

stance. The performance curves of X-STAGE and, for comparison, ordinary STAGE

are shown in Figure 6.6. The semilog scale of the plot clearly shows that X-STAGE

x6.2 TRANSFER 157

X-STAGE(I1; I2; : : : ; IN ; I
0):

Given:
� a set of training problem instances fI1; : : : ; INg and a test instance I 0.

Each instance has its own objective function and all other STAGE parameters
(see p. 52). It is assumed that each instance's featurizer F : X ! <

D maps

states to the same number D of real-valued features.

1. Run STAGE independently on each of the N training instances.

This produces a set of learned value functions f~V �

I1
; ~V �

I2
; : : : ; ~V �

IN
g.

2. Run STAGE on the new instance I 0, but with STAGE's Step 2c|the step

that searches for a promising new starting state for � (see p. 52)|modi�ed

as follows: instead of performing hillclimbing on a newly learned ~V �, per-
form voting-hillclimbing on the set of previously learned ~V � functions. Voting-
hillclimbing means simply:

Accept a proposed move from state x to state x0 if and only if, for a
majority of the learned value functions, ~V �

Ik
(F (x0)) � ~V �

Ik
(F (x)).

Return the best state found.

Table 6.5. The X-STAGE algorithm for transferring learned knowledge to a new

optimization instance

158 STAGE: EXTENSIONS

reaches good performance levelsmore quickly than STAGE. However, after only about

10 learning iterations and 10,000 evaluations, the average performance of STAGE

exceeds that of X-STAGE. STAGE's ~V � function, �nely tuned for the particular in-

stance under consideration, ultimately outperforms the voting-based restart policy

generated from 19 related instances.

105

110

115

120

125

1000 10000 100000

N
um

be
r

of
 b

in
s

(1
03

 is
 o

pt
im

al
)

Number of moves considered

STAGE
X-STAGE

Figure 6.6. Bin-packing performance on instance u250 13 with transfer (X-STAGE)
and without transfer (STAGE). Note the logarithmic scale of the x-axis.

The channel routing experiment was conducted with the set of 9 instances shown

in Table 6.4 above. Again, all STAGE parameters were set as in the experiments of

Chapter 4 (see p. 81). I trained ~V � functions for the instances HYC1 : : :HYC8, and

applied X-STAGE to test performance on instance YK4. The performance curves of

X-STAGE and ordinary STAGE are shown in Figure 6.7. Again, X-STAGE reaches

good performance levels more quickly than does STAGE. This time, the voting-based

restart policy maintains its superiority over the instance-speci�c learned policy for

the duration of the run.

These preliminary experiments indicate that the knowledge STAGE learns dur-

ing problem-solving can indeed be pro�tably transferred to novel problem instances.

Future work will consider ways of combining previously learned knowledge with new

knowledge learned during a run, so as to have the best of both worlds: exploiting

x6.3 DISCUSSION 159

10

15

20

25

30

35

40

45

50

5000 50000 500000

A
re

a
of

 c
irc

ui
t l

ay
ou

t

Number of moves considered

STAGE
X-STAGE

Figure 6.7. Channel routing performance on instance YK4 with transfer (X-STAGE)
and without transfer (STAGE). Note the logarithmic scale of the x-axis.

general knowledge about a family of instances to reach good solutions quickly, and

exploiting instance-speci�c knowledge to reach the best possible solutions.

6.3 Discussion

This chapter has presented two signi�cant extensions to STAGE: the Least-Squares

TD(�) algorithm for e�cient reinforcement learning of ~V �; and the X-STAGE al-

gorithm for transferring ~V � functions learned on a set of problem instances to new,

similar instances. Many further interesting extensions to STAGE are possible. Af-

ter giving a survey of related work in Chapter 7, I will present a number of as-yet

unexplored ideas for STAGE in the concluding chapter.

160

161

Chapter 7

Related Work

Heuristic methods for global optimization have assuredly not been overlooked in

the literature. Their practical applications are important and numerous, and the

literature is correspondingly immense. There is also a signi�cant, if not quite as

overwhelming, literature on learning evaluation functions for heuristic search in game-

playing and problem-solving. In this chapter, I review the prior work most relevant

to STAGE from both these literatures. The reviewed topics are organized as follows:

� x7.1: adaptive multi-restart techniques for local search;

� x7.2: reinforcement learning for combinatorial optimization, especially the study

of Zhang and Dietterich [95];

� x7.3: simulation-based methods for improving AI search in game-playing and

problem-solving domains, including techniques based on \rollouts" and on learn-

ing evaluation functions; and

� x7.4: genetic algorithms.

I defer a high-level discussion of STAGE's novel contributions to the next, concluding

chapter.

7.1 Adaptive Multi-Restart Techniques

An iteration of hillclimbing typically reaches a local optimum very quickly. Thus, in

the time required to perform a single iteration of (say) simulated annealing, one can

run many hillclimbing iterations from di�erent random starting points (or even from

the same starting point, if move operators are sampled stochastically) and report

the best result. Empirically, random multi-start hillclimbing has produced excellent

solutions on practical computer vision tasks [Beveridge et al. 96], outperformed sim-

ulated annealing on the Traveling Salesman Problem (TSP) [Johnson and McGeoch

95], and outperformed genetic algorithms and genetic programming on several large-

scale testbeds [Juels and Wattenberg 96].

162 RELATED WORK

Nevertheless, the e�ectiveness of random multi-start local search is limited in

many cases by a \central limit catastrophe" [Boese et al. 94]: random local optima

in large problems tend to all have average quality, with little variance [Martin and

Otto 94]. This means the chance of �nding an improved solution diminishes quickly

from one iteration to the next. To improve on these chances, an adaptive multi-start

approach|designed to select restart states with better-than-average odds of �nding

an improved solution|seems appropriate. Indeed, in the theoretical model of local

search proposed by Aldous and Vazirani [94], a given performance level that takes

O(n) restarts to reach by a random starting policy can instead be reached with as

few as O(log n) restarts when an adaptive policy, which uses successful early runs to

seed later starting states, is used.

Many adaptive multi-start techniques have been proposed. One particularly rel-

evant study has recently been conducted by Boese [95, 96]. On a �xed, well-known

instance of the TSP, he ran local search 2500 times to produce 2500 locally optimal

solutions. Then, for each of those solutions, he computed the average distance to the

other 2499 solutions, measured by a natural distance metric on TSP tours. The results

showed a stunning correlation between solution quality and average distance: high-

quality local optima tended to have small average distance to the other optima|they

were \centrally" located|while worse local optima tended to have greater average

distance to the others; they were at the \outskirts" of the space. Similar correlations

were found in a variety of other optimization domains, including circuit/graph parti-

tioning, satis�ability, number partitioning, and job-shop scheduling. Boese concluded

that many practical optimization problems exhibit a \globally convex" or so-called

\big valley" structure, in which the set of local optima appears convex with one central

global optimum. Boese's intuitive diagram of the big valley structure is reproduced

in Figure 7.1.

The big valley structure is auspicious for a STAGE-like approach. Indeed, Boese's

intuitive diagram, motivated by his experiments on large-scale complex problems,

bears a striking resemblance to the 1-D wave function of Figure 3.4 (p. 48), which

I contrived as an example of the kind of problem at which STAGE would excel.

Working from the assumption of the big valley structure, Boese recommended the

following two-phase adaptive multi-start methodology for optimization:

Phase One: GenerateR random starting solutions and run Greedy Descent

from each to determine a set of corresponding random local minima.

Phase Two: Based on the local minima obtained so far, construct adap-

tive starting solutions and run Greedy DescentA times from each one

to yield corresponding adaptive local minima.

x7.1 ADAPTIVE MULTI-RESTART TECHNIQUES 163

Figure 7.1. Intuitive picture of the \big valley" solution space structure. (Adapted
from [Boese 95].)

Intuitively, the two phases respectively develop, then exploit, a structural

picture of the cost surface. [Boese et al. 94]

At this level of description, the two phases of Boese's recommended search regime

correspond almost exactly with the two alternating phases of STAGE. The main

di�erence is that Boese hand-builds a problem-speci�c routine for adaptively con-

structing new starting states, whereas STAGE uses machine learning to do the same

automatically. Another di�erence is that STAGE's learned heuristic for constructing

starting states is based on full hillclimbing trajectories, not just the local minima

obtained so far.

A similar methodology underlies the current best heuristic for solving large Travel-

ing Salesman problems, \Chained Local Optimization" (CLO) [Martin and Otto 94].

CLO performs ordinary hillclimbing to reach a local optimum z, and then applies

a special large-step stochastic operator designed to \kick" the search from z into a

nearby but di�erent attracting basin. Hillclimbing from this new starting point pro-

duces a new local optimum z0; if this turns out to be much poorer than z, then CLO

returns to z, undoing the kick. In e�ect, CLO constructs a new high-level search space:

the new operators consist of large-step kick moves, and the new objective function

is calculated by �rst applying hillclimbing in the low-level space, then evaluating the

resulting local optimum. (A similar trick is often applied with genetic algorithms, as

I discuss in Section 7.4 below.) In the TSP, the kick designed by Martin and Otto [94]

is a so-called \double-bridge" operation, chosen because such moves cannot be easily

found nor easily undone by Lin-Kernighan local search moves [Johnson and McGeoch

95]. Like Boese's adaptive multi-start, CLO relies on manually designed kick steps

for �nding a good new starting state, as opposed to STAGE's learned restart policy.

164 RELATED WORK

Furthermore, STAGE's \kicks" place search in not just a random nearby basin, but

one speci�cally predicted to produce an improved local optimum.

The big valley diagram, like my 1-D wave function, conveys the notion of a global

structure over the local optima. Unlike the wave function, it also conveys one poten-

tially misleading intuition: that starting from low-cost solutions is necessarily better

than starting from high-cost solutions. In his survey of local search techniques for the

TSP, Johnson [95] considered four di�erent randomized heuristics for constructing

starting tours from which to begin local search. He found signi�cant di�erences in

the quality of �nal solutions. Interestingly, the heuristic that constructed the best-

quality starting tours (namely, the \Clarke-Wright" heuristic) was also the one that

led search to the worst -quality �nal solutions|even worse than starting from a very

poor, completely random tour. Such \deceptiveness" can cause trouble for simulated

annealing and genetic algorithms. Large-step methods such as CLO may evade some

such deceits by \stepping over" high-cost regions. STAGE confronts the deceit head-

on: it explicitly detects when features other than the objective function are better

predictors of �nal solution quality, and can learn to ignore the objective function

altogether when searching for a good start state.

Many other sensible heuristics for adaptive restarting have been shown e�ective

in the literature. The widely applied methodology of \tabu search" [Glover and

Laguna 93] is fundamentally a set of adaptive heuristics for escaping local optima,

like CLO's kick steps. Hagen and Kahng's \Clustered Adaptive Multi-Start" achieves

excellent results on the VLSI netlist partitioning task [Hagen and Kahng 97]; like

CLO, it alternates between search with high-level operators (constructed adaptively

by clustering elements of previous good solutions) and ordinary local search. Jagota's

\Stochastic Steep Descent with Reinforcement Learning" heuristically rewards good

starting states and punishes poor starting states in a multi-start hillclimbing context

[Jagota et al. 96,Jagota 96]. The precise reward mechanism is heuristically determined

and appears to be quite problem-speci�c, as opposed to STAGE's uniform mechanism

of predicting search outcomes by value function approximation. As such, a direct

empirical comparison would be di�cult.

7.2 Reinforcement Learning for Optimization

Value function approximation has previously been applied to a large-scale combina-

torial optimization task: the Space Shuttle Payload Processing domain [Zhang and

Dietterich 95,Zhang 96]. I will discuss this application in some detail, because both

the similarities and di�erences to STAGE are instructive. Please refer back to Sec-

tion 2.1 for details on the algorithms and notation of value function approximation.

x7.2 REINFORCEMENT LEARNING FOR OPTIMIZATION 165

The Space Shuttle Payload Processing (SSPP) domain is a form of job-shop

scheduling: given a partially ordered set of jobs and the resources required by each,

assign them start times so as to respect the partial order, meet constraints on si-

multaneous resource usage, and minimize the total execution time. Following the

\repair-based scheduling" paradigm of Zweben [94], Zhang and Dietterich de�ned a

search over the space of fully speci�ed schedules that meet the ordering constraints

but not necessarily the resource constraints. Search begins at a �xed start state, the

\critical path schedule," and proceeds by the application of two types of determin-

istic operators: Reassign-Pool and Move. To keep the number of instantiated

operators small, they considered only operations which would repair the schedule's

earliest constraint violation. Search terminates as soon as a violation-free schedule is

reached.

Zhang and Dietterich applied reinforcement learning to this domain in order to

obtain transfer : their goal was to learn a value function which captured knowledge

about not a single instance of a scheduling problem, but rather a large family of

related scheduling instances. Thus, the input to their value function approximator

(a neural network) consisted of abstract instance-independent features, such as the

percentage of the schedule containing a violation and the mean and standard deviation

of certain slack times. Likewise, the ultimate measure of schedule quality which the

neural network was learning to predict had to be normalized so that it spanned the

same range regardless of problem di�culty. (The voting-based approach to transfer

introduced in Section 6.2.2 of this thesis allows such normalization to be avoided.)

Trained on many scheduling instances, the neural network could then be applied to

guide search on a novel scheduling instance, hopefully producing a good solution

quickly.

Unlike STAGE, which seeks to learn V �, the predicted outcome of a prespeci�ed

optimization policy �|the Zhang and Dietterich approach seeks to learn V �, the

predicted outcome of the best possible optimization policy. Before discussing how they

approached this ambitious goal, we must address how the \best possible optimization

policy" is even de�ned, since optimization policies face two con
icting objectives:

\produce good solutions" and \�nish quickly." In the SSPP domain, Zhang and

Dietterich measured the total cost of a search trajectory (x0; x1; : : : ; xN ;end) by

Obj(xN) + 0:001N

E�ectively, since Obj(x) is near 1:0 in this problem, this cost function means that a

1% improvement in �nal solution quality is worth about 10 extra search steps [Zhang

and Dietterich 98]. The goal of learning, then, was to produce a policy �� to optimize

this balance between trajectory length and �nal solution quality.

166 RELATED WORK

Following Tesauro's methodology for learning V � on backgammon, Zhang and

Dietterich applied optimistic TD(�) to the SSPP domain. Rather than training only a

single neural network, they trained a pool of 8{12 networks, using di�erent parameter

settings for each. They trained the networks on a set of small problem instances.

Training continued until performance stopped improving on a validation set of other

problem instances. Then, the N best-performing networks were saved and used in a

round-robin fashion for comparisons against Zweben's iterative-repair system [Zweben

et al. 94], the previously best scheduler. The results showed that searches with the

learned evaluation functions produced schedules as good as Zweben's in less than half

the CPU time.

Getting these good results required substantial tuning. One complication involves

state-space cycles. Since the move operators are deterministic, a learned policy may

easily enter an in�nite loop, which makes its value function unde�ned. Loops are fairly

infrequent in the SSPP domain because most operators repair constraint violations,

lengthening the schedule; still, Zhang and Dietterich had to include a loop-detection

and escape mechanism, clouding the interpretation of V �. To attack other combina-

torial optimization domains with their method, they suggest that \it is important to

formulate problem spaces so that they are acyclic" [Zhang and Dietterich 98]|but

such formulations are unnatural for most local search applications, in which the op-

erators typically allow any solution to be reached from any other solution. STAGE

�nesses this issue by �xing � to be a proper policy such as hillclimbing.

STAGE also manages to �nesse three other algorithmic complications which Zhang

and Dietterich found it necessary to introduce: experience replay [Lin 93], random

exploration (slowly decreasing over time), and random-sample greedy search. Expe-

rience replay, i.e., saving the best trajectories in memory and occasionally retraining

on them, is unnecessary in STAGE because the regression matrices always maintain

the su�cient statistics of all historical training data. Adding random exploration

is unnecessary because empirically, STAGE's baseline policy � (e.g., stochastic hill-

climbing or WALKSAT) provides enough exploration inherently. This is in contrast

to the SSPP formulation, where actions are deterministic. Finally, STAGE does

not face the branching factor problem which led Zhang and Dietterich to introduce

random-sample greedy search (RSGS). Brie
y, the problem is that when hundreds or

thousands of legal operators are available, selecting the greedy action, as optimistic

TD(�) requires, is too costly. RSGS uses a heuristic to select an approximately greedy

move from a subset of the available moves. Again, this clouds the interpretation of

V �. In STAGE, each decision is simply whether to accept or reject a single available

move, and the interpretation of V � is clear.

x7.3 ROLLOUTS AND LEARNING FOR AI SEARCH 167

To summarize, STAGE avoids most of the algorithmic complexities of Zhang and

Dietterich's method because it is solving a fundamentally simpler problem: estimat-

ing V � from a �xed stochastic �, rather than discovering an optimal deterministic

policy �� and value function V �. It also avoids many issues of normalizing problem

instances and designing training architectures by virtue of the fact that it applies in

the context of a single problem instance. However, an advantage of the Zhang and

Dietterich approach is that it holds out the potential of identifying a truly optimal

or near-optimal policy ��. STAGE can only claim to learn an improvement over the

prespeci�ed policy �.

Another published work, the \Ant-Q" system [Dorigo and Gambardella 95], is also

billed as a reinforcement learning approach to combinatorial optimization. Based on

an extensive metaphor with the behavior of ant colonies, it has been applied only to

the TSP; it is unclear how it would be applied to other optimization domains.

7.3 Rollouts and Learning for AI Search

Ordinary hillclimbing, simulated annealing and genetic algorithms evaluate the qual-

ity of each neighboring state x0 by its objective function value Obj(x0). STAGE

evaluates x0 by how promising its features make it appear, ~V �(F (x0)). A third possi-

bility is to evaluate x0 by performing one or more actual sample runs of hillclimbing

starting from x0. This is the principle of so-called \rollout algorithms" [Bertsekas et

al. 97, Tesauro and Galperin 97], a term borrowed from the backgammon-strategy

literature [Woolsey 91]. Like STAGE, rollout methods evaluate each neighbor based

upon its long-term promise as a starting state for a �xed policy �. Selecting ac-

tions in this way is tantamount to performing a single round of the policy iteration

algorithm [Howard 60] and can be guaranteed to improve upon � [Bertsekas et al. 97].

Unlike STAGE, rollout methods do not cache the results of their lookahead searches

in a function approximator ~V �. In this way they avoid the biases that feature represen-

tations and function approximation introduce, perhaps allowing more accurate moves.

However, the computational cost of replacing function approximator evaluations by

full sample runs is extremely high. This cost may be tolerable in a game-playing sce-

nario where several seconds are available for each move selection; but would probably

be deadly for practical optimization algorithms, where (in the words of Buntine [97])

a general maxim applies: \speed over smarts."

In fact, an earlier study of Abramson [90] demonstrated the power of rollout

methods for game-playing, although he was apparently unaware of the connection to

Markov decision processes and policy iteration. In his \expected-outcome" model,

moves in the game of Othello were made by computing, via multiple rollouts for each

168 RELATED WORK

legal move, the expected probability of winning assuming both sides play randomly

from that point on. Though this assumption is clearly inaccurate, Abramson reported

empirical good play at Othello:

Given no expert information, the ability to evaluate only leaves, and a

good deal of computation time, [expected-outcome functions] were able

to play better than a competent (albeit non-masterful) function that had

been handcrafted by an expert. [Abramson 90]

This improvement is consistent with the experience of Tesauro and Galperin [97], who

found that a rollout-based player (implemented on a parallel IBM supercomputer)

dramatically improved the performance of both weak and strong evaluation functions.

Abramson [90] went on to propose and test learning the expected-outcome function

with linear regression over state features, just as STAGE does. Reinterpreted in the

language of reinforcement learning, Abramson's method �xed a policy � (both players

play randomly), inducing a Markov chain on the game space. He collected samples

of the policy value function V �(x) by running � multiple times from each of 5000

random starting states; trained a linear predictor from the samples; and �nally, used

the predictor as a static evaluation function ~V �(F (x)) to select moves. STAGE can be

seen as extending Abramson's work from game-playing into the realm of combinatorial

optimization. A key di�erence is that STAGE uses a high-quality baseline policy �,

such as hillclimbing or WALKSAT, in place of Abramson's random policy. STAGE

also interleaves its training and decision-making phases, which enables it to adapt its

training distribution over time to focus on high-quality states.

Abramson's work is one of many examples in the Arti�cial Intelligence literature of

learning evaluation functions for game-playing. Samuel's pioneering work on checkers

[Samuel 59,Samuel 67], Christensen's work on chess [Christensen 86], and Lee's work

on Othello [Lee and Mahajan 88] fall into this category; I have already discussed

these in Section 2.1.2 of this thesis. More recently, the successful application of

reinforcement learning to backgammon [Tesauro 92, Boyan 92] has inspired similar

investigations in chess [Thrun 95,Baxter et al. 97], Go [Schraudolph et al. 94], and

other games.

Moving from game-playing to problem-solving domains, a study by Rendell [83]

addressed evaluation function learning in the sliding-tiles puzzle (15-puzzle). His

method, when abstracted of many details, bears signi�cant similarities to STAGE:

it learns to approximate a function which measures the promise of each state as a

starting state for a given policy. In particular, the policy � is a best-�rst search (with

backtracking) guided by a given evaluation function f(x); and the measurement being

approximated is not a value function but a so-called \penetrance" measure at each

x7.4 GENETIC ALGORITHMS 169

state, as de�ned by Doran and Michie [66]. In STAGE-like notation, the penetrance

is de�ned as

P �(x)
def
=

length of discovered path from x to solution

total nodes expanded by � during search from x

For example, in the 15-puzzle, given a constant evaluation function f(x) � 1, the

policy � reduces to breadth-�rst search, and P �(x) is on the order of 10�9 for random

starting states x; whereas a perfect evaluation function f(x) � V �(x) would give rise

to a backtracking-free policy � with penetrance P �(x) = 1 everywhere. Rendell �ts a

linear approximation to the penetrance, then applies the �t to improve search control

using a complex bootstrapping and normalization procedure.

7.4 Genetic Algorithms

Genetic algorithms (GAs)|algorithms based on metaphors of biological evolution

such as natural selection, mutation, and recombination|represent another heuristic

approach to combinatorial optimization [Goldberg 89]. Translated into the terminol-

ogy of local search, \natural selection" means rejecting high-cost states in favor of

low-cost states, like hillclimbing; \mutation" means a small-step local search oper-

ation; and \recombination" means adaptively creating a new state from previously

good solutions. GAs have much in common with the adaptive multi-start hillclimb-

ing approaches discussed above in Section 7.1. In broad terms, the GA population

carries out multiple restarts of hillclimbing in parallel, culling poor-performing runs

and replacing them with new adaptively constructed starting states.

To apply GAs to an optimization problem, the con�guration space X must be

represented as a space of discrete feature vectors|typically �xed-length bitstrings

f0; 1gL|and the mapping must be a bijection, so that a solution bitstring in the

feature space can be converted back to a con�guration in X. (This contrasts to

STAGE, where features can be any real-valued vector function of the state, and the

mapping need not be invertible.) Typically, a GA mutation operator consists of

ipping a single bit, and a recombination operator consists of merging the bits of two

\parent" bitstrings into the new \child" bitstring. The e�ectiveness of GA search

depends critically on the suitability of these operators to the particular bitstring

representation chosen for the problem.

Of course, the e�ectiveness of any local search algorithm depends on the neigh-

borhood operators available; but genetic algorithms generally allow less
exibility in

designing the neighborhood, since mutations are represented as bit-
ips. Hillclimb-

ing and simulated annealing, by contrast, allow sophisticated, domain-speci�c search

170 RELATED WORK

operators, such as the partition-graph manipulations used in simulated annealing

applications of VLSI channel routing [Wong et al. 88]. On the other hand, genetic

algorithms have a built-in mechanism for combining features of previously discovered

good solutions into new starting states. STAGE can be seen as providing the best of

both worlds: sophisticated search operators and adaptive restarts based on arbitrary

domain features.

Some GA implementations do manage to take advantage of local search operators

more sophisticated than bit-
ips, using the trick of embedding a hillclimbing search

into each objective function evaluation [Hinton and Nowlan 87]. That is, the GA's

population of bitstrings actually serves as a population not of �nal solutions but of

starting states for hillclimbing. The most successful GA approaches to the Traveling

Salesman Problem all work this way so that they can exploit the sophisticated Lin-

Kernighan local search moves [Johnson and McGeoch 95]. Here, the GA operators

play a role analogous to the large-step \kick moves" of Chained Local Optimization

[Martin and Otto 94], as described in Section 7.1 above. Depending on the particular

implementation, the next generation's population may consist of not only the best

starting states from the previous generation, but also the best �nal states found

by hillclimbing runs|a kind of Lamarckian evolution in which learned traits are

inheritable [Ackley and Littman 93,Johnson and McGeoch 95].

In such a GA, the population may be seen as implicitly maintaining a global

predictive model of where, in bitstring-space, the best starting points are to be found.

The COMIT algorithm of Baluja and Davies [97], a descendant of PBIL [Baluja

and Caruana 95] and MIMIC [de Bonet et al. 97], makes this viewpoint explicit: it

generates adaptive starting points not by random genetic recombination, but rather

by �rst building an explicit probabilistic model of the population and then sampling

that model. COMIT's learned probability model is similar in spirit to STAGE's V �

function. Di�erences include the following:

� COMIT is restricted to bijective bitstring-like representations, whereas STAGE

can use any feature mapping; and

� COMIT's model is trained from only the set of best-quality states found so

far, ignoring the di�erences between their outcomes; whereas STAGE's value

function is trained from all states seen on all trajectories, good and bad, paying

attention to the outcome values. Boese's experimental data and \big valley

structure" hypothesis (see page 163) indicate that there is often useful informa-

tion to be gained by modelling the weaker areas of the solution space, too [Boese

et al. 94]. In particular, this gives STAGE the power for directed extrapolation

beyond the support of its training set.

x7.5 DISCUSSION 171

In preliminary experiments in the Boolean satis�ability domain, on the same 32-bit

parity instances described in Section 4.7, COMIT (using WALKSAT as a subroutine)

did not perform as well as STAGE [Davies and Baluja 98].

7.5 Discussion

The studies described in the last four sections make it clear that STAGE bears close

relationships to previous work done in the optimization, reinforcement learning, and

AI problem-solving communities. A concise summary of this chapter might read as

follows:

STAGE takes its main idea|learn an evaluation function to improve

search performance|from the AI literature on problem-solving. It grounds

that idea in the theory of value function approximation. And it applies

that idea in the successful framework of adaptive multi-start approaches

to global optimization.

STAGE uni�es these lines of research in an algorithmwhich is nonetheless quite simple

to explain and to implement. In the next, concluding chapter, I will summarize the

novel contributions made by STAGE and suggest a number of future directions for

integrating reinforcement learning into e�ective optimization algorithms.

172

173

Chapter 8

Conclusions

Reinforcement learning o�ers the tantalizing promise of software systems that au-

tonomously improve their performance on sequential decision-making tasks, according

to the following methodology:

1. Collect data by observing simulations of the task.

2. Statistically learn to predict the long-term outcomes of the chosen decisions.

3. Use those predictions as an evaluation function to guide future decisions with

great foresight.

In this dissertation, I have described and analyzed a practical method for applying

this methodology to general combinatorial optimization tasks. I have also introduced

several new algorithms for e�cient reinforcement learning in large state spaces.

This concluding chapter �rst reviews the dissertation's scienti�c contributions to

the state of the art in reinforcement learning, heuristic search, and global optimiza-

tion. It then outlines a number of promising directions for future research in learning

evaluation functions.

8.1 Contributions

The principal contributions of this thesis may be summarized as follows:

� (Chapter 2) I have introduced two novel value-function-approximation

algorithms: Grow-Support for deterministic problems (x2.2) and ROUT for

stochastic acyclic problems (x2.3). Their primary innovation is that, without

falling prey to the curse of dimensionality, they are able to explicitly represent

which states are already solved and which are not yet solved. Using this infor-

mation, they \work backwards," computing accurate V � values at targeted un-

solved states. By treating solved and unsolved states di�erently, Grow-Support

and ROUT eliminate the possibility of divergence caused by repeated value

re-estimation.

174 CONCLUSIONS

� (x3.1.3) In the context of global optimization, I have recognized that addi-

tional features of each state, other than the state's objective-function value,

can provide useful information for decision making in search. Traditional al-

gorithms either ignore this information or incorporate it in an ad hoc manner.

STAGE provides a principled, automatic mechanism for exploiting additional

state features.

� (x3.2) I have de�ned the predictive value function of a local search pro-

cedure, V �(x); described the conditions under which it corresponds to the

value function of a Markov chain; and described how it may be learned from

simulation data by a function approximator.

� (x3.2) I have introduced STAGE, a straightforward algorithm for exploiting

the learned approximation of V � to guide future search. STAGE is general: it

can be applied to any optimization problem to which hillclimbing applies. It

may be viewed as an adaptive multi-restart approach to optimization; the adap-

tive component is automatically learned from simulation data on each problem

instance.

� (x3.3) I have presented two illustrative domains|the 1-D wave minimization

example and the bin-packing example|and demonstrated how STAGE succeeds

on them. These examples provide clear intuitions of how learning evaluation

functions can improve search performance.

� (x3.4) I have analyzed the theoretical conditions under which STAGE is

well-de�ned and e�cient. Speci�cally, I have shown that V � is well-de�ned

for any local search procedure �, as long as the objective function is bounded

below; however, STAGE learns to approximate V � most e�ciently if � is proper,

Markovian, and monotonic. I have provided several methods for converting

improper and nonmonotonic procedures into a form suitable for STAGE.

� (Chapters 4 and 5) I have contributed empirical evidence that STAGE is

applicable, practical and e�ective on a wide variety of large-scale optimization

tasks. On most tested instances, STAGE outperforms both multi-start hill-

climbing and a good implementation of simulated annealing. On challenging

instances of the Boolean satis�ability task, STAGE successfully learned from

WALKSAT, a non-greedy local search procedure|and produced the best pub-

lished solutions to date. The empirical analyses of Chapter 5 demonstrate

STAGE's overall robustness with various parameter settings, and also explain

x8.2 FUTURE DIRECTIONS 175

under what circumstances STAGE will fail to improve optimization perfor-

mance.

� (x6.1) I have introduced a least-squares formulation of the TD(�) algo-

rithm, extending the work of Bradtke and Barto [96]. I empirically demonstrate

the improved data e�ciency of this formulation, and give a new intuitive expla-

nation for the source of this e�ciency: the statistics kept by LSTD(�) amount

to a compressed model of the underlying Markov process.

� (x6.2) I have motivated, described and tested a new approach to transferring

learned information from previously solved optimization problem instances

to new ones. By using a voting mechanism, the X-STAGE algorithm avoids

having to normalize the objective function across disparate instances.

� (Chapter 7) I have surveyed the literatures of several related areas: value

function approximation (x2.1.2, x7.2); adaptive multi-restart techniques for local

search (x7.1), including genetic algorithms (x7.4); and simulation-based learning

methods for improving AI search (x7.3). Taken together, these surveys provide

a useful collection of references for researchers interested in automatic learning

and tuning of evaluation functions.

8.2 Future Directions

The main conclusion of this thesis is that learning evaluation functions can improve

global optimization performance. STAGE is a simple, practical technique that demon-

strates this. STAGE's simplicity enables many potentially useful extensions; I suggest

some of these in Section 8.2.1. Beyond STAGE, there are at least two conceptually

di�erent ways of utilizing value function approximation in global optimization; I dis-

cuss these in Section 8.2.2. Finally, in Section 8.2.3, I consider the potential for

learning evaluation functions by non-VFA-based, direct meta-optimization methods.

8.2.1 Extending STAGE

Many modi�cations to and extensions of STAGE, such as varying the regression model

and training technique used to approximate V �, have been investigated in Chapters 5

and 6 of this thesis. However, many further interesting modi�cations remain untried.

I describe several of these here:

Non-polynomial function approximators. My study of Section 5.2.2 was limited

to �rst- through �fth-order polynomial models of V �. It would be interesting to

176 CONCLUSIONS

see whether other linear architectures|such as CMACs, radial basis function

networks, and random-representation neural networks|could produce better

�ts and better performance.

A more ambitious study could investigate e�cient ways to use nonlinear archi-

tectures, such as multi-layer perceptrons or memory-based �tters, with STAGE.

In the context of transfer, the training speed of the function approximator is less

crucial. One intriguing possibility is to learn a nonlinear representation from

a set of training instances, then freeze the nonlinear components so that fast

least-squares methods can be used on the test instances. For example, STAGE

could learn a neural network representation of V � from training instances, then

freeze the input-to-hidden weights of the network to allow linear learning on a

new test instance. This could be a useful way to construct a feature set for a

linear architecture automatically. (Related ideas are discussed in [Utgo� 96].)

More aggressive optimization of ~V�. On each iteration, in order to �nd a promis-

ing new starting state for the baseline procedure �, STAGE optimizes ~V � by per-

forming �rst-improvement hillclimbing. A more aggressive optimization tech-

nique, such as simulated annealing, could instead be applied at that stage; and

that may well improve performance.

Steepest descent. With the exception of the WALKSAT results of Section 4.7 and

the experiments of Section 5.2.3, STAGE has been trained to predict and im-

prove upon the baseline procedure of � = �rst-improvement hillclimbing. How-

ever, in some optimization problems|particularly, those with relatively few

moves available from each state|steepest-descent (best-improvement) search

may be more e�ective. Steepest-descent is proper, Markovian, and monotonic,

so STAGE applies directly; and it would be interesting to compare its e�ective-

ness with �rst-improvement hillclimbing's.

Continuous optimization. This dissertation has focused on discrete global opti-

mization problems. However, STAGE applies without modi�cation to continu-

ous global optimization problems (i.e., �nd x� = argminObj : <K
! <) as well.

The cartogram design problem of Section 4.6 is an example of such a problem;

however, much more sophisticated neighborhood operators than the point per-

turbations I de�ned for that domain are available. For example, the downhill

simplex method of Nelder and Mead (described in [Press et al. 92, x10.4]) pro-

vides an e�ective set of local search moves for continuous optimization. Downhill

simplex reaches a local optimum quickly, and Press et al. [92] recommend em-

x8.2 FUTURE DIRECTIONS 177

bedding it within a multiple-restart or simulated-annealing framework. STAGE

could provide an e�ective learning framework for multi-restart simplex search.

Con�dence intervals. STAGE identi�es good restart points by optimizing ~V �(x),

the predicted expected outcome of search from x. However, in the context of a

long run involving many restarts, it may be better to start search from a state

with worse expected outcome but higher outcome variance. After all, what

we really want to minimize is not the outcome of any one trajectory, but the

minimum outcome over the whole collection of trajectories STAGE generates.

One possible heuristic along these lines would be to exploit con�dence intervals

on ~V �'s predictions to guide search. For example, STAGE could evaluate the

promise of a state x by, instead of the expected value of ~V �(x), a more optimistic

measure such as

� the 25th-percentile prediction of ~V �(x), or

� the probability that ~V �(x) exceeds the best value seen so far on this run.

Such strategies could have the e�ect of both encouraging exploration of state-

space regions where ~V � is poorly modeled (similar to the Interval-Estimation

[Kaelbling 93] and IEMAX [Moore and Schneider 96] algorithms) and encour-

aging repeated visits to states that promise to lead occasionally to excellent

solutions.

8.2.2 Other Uses of VFA for Optimization

STAGE exploits the value function V � for the purpose of guiding search to new

starting points for �. However, value functions can also aid optimization in at least

two further ways: �ltering and sampling.

Filtering refers to the early cuto� of an unpromising search trajectory|before it

even reaches a local optimum|to conserve time for additional restarts and bet-

ter trajectories. Heuristic methods for �ltering have been investigated by, e.g.,

[Nakakuki and Sadeh 94]. Perkins et al. [97] have suggested that reinforcement-

learning methods could provide a principled mechanism for deciding when to

abort a trajectory. In the context of STAGE, �ltering could be implemented

simply as follows: cut o� any �-trajectory when its predicted eventual outcome
~V �(x) is worse than, say, the mean of all �-outcomes seen thus far. This tech-

nique would allow STAGE to exploit its learned predictions during both stages

of search.

178 CONCLUSIONS

Sampling refers to the selection of candidate moves for evaluation during search.

In this dissertation, I have assumed that candidate moves are generated with

a probability distribution that remains stationary throughout the optimization

run. In optimization practice, however, it is often more e�ective to modify

the candidate distribution over the course of the search|for example, to gen-

erate large-step candidate moves more frequently early in the search process,

and to generate small-step, �ne-tuning moves more frequently later in search.

Cohn reviews techniques for adapting the sampling distribution of candidate

moves, including one \based on their probability of success and on their e�ect

on improving the cost function" [Cohn 92, x2.4.4]. In order to estimate these

quantities without having to invoke the (presumably expensive) objective func-

tion, Cohn's move generator maintains statistics for each category of move that

has been tried recently in the run|a simple kind of reinforcement learning.

A more sophisticated approach has recently been proposed by Su et al. [98].

Their method learns, over multiple simulated-annealing runs, to predict the

long-term outcome achieved by starting search at state x and with initial ac-

tion a.1 In reinforcement-learning terminology, their method learns to approx-

imate the task's state-action value function Q�(x; a) [Watkins 89]. This form

of value function allows the e�ects of various actions a to be predicted with-

out having to actually apply the action or invoke the objective function. Their

method uses the learned value function to preselect the most promising out of

�ve random candidate moves before each step of simulated annealing, thereby

saving time that would have been spent evaluating bad candidate moves. In

optimization domains where objective function evaluations are costly, the Q�

value-function formulation o�ers the potential for signi�cant speedups. It re-

mains for future research to determine how best to combine �ltering, sampling,

and search-guiding uses of value functions in optimization.

8.2.3 Direct Meta-Optimization

All the approaches discussed in this thesis have built evaluation functions by approxi-

mating a value function V � or V �, functions which predict the long-term outcomes of a

search policy. However, an alternative approach not based on value function approxi-

mation, which I call direct meta-optimization, also applies. Direct meta-optimization

methods assume a �xed parametric form for the evaluation function and optimize

those parameters directly with respect to the ultimate objective, sampled by Monte

1Note that the state vector x for simulated annealing consists of both the current con�guration
x and the current temperature T .

x8.2 FUTURE DIRECTIONS 179

Carlo simulation. In symbols, given an evaluation function ~V (xj~w) parametrized by

weights ~w, we seek to learn ~w by directly optimizing the meta-objective function

M(~w) = the expected performance of search using evaluation function ~V (xj~w) :

The evaluation functions ~V learned by such methods are not constrained by the

Bellman equations: the values they produce for any given state have no semantic

interpretation in terms of long-term predictions. The lack of such constraints means

that less information for training the function can be gleaned from a simulation run.

The temporal-di�erence goal of explicitly caching values from lookahead search into

the static evaluation function is discarded; only the �nal costs of completed simulation

runs are available. However, there are several reasons to believe that a direct approach

may be e�ective:

� Not having to meet the Bellman constraints may actually make learning eas-

ier. For example, even if a domain's true value function is very jagged, meta-

optimization may discover a quite di�erent, smooth ~V that performs well. (This

point was also made in [Utgo� and Clouse 91].)

� Direct approaches do not depend on the Markov property. Since they treat

the baseline search procedure as a black box, they can be applied to optimize

the evaluation function for backtracking search algorithms such as A�, or in

sequential decision problems involving hidden state.

� Similarly, extra algorithmic parameters such as hillclimbing's patience level and

simulated annealing's temperature schedule can be included along with the

evaluation function coe�cients in the meta-optimization.

Further arguments supporting the direct approach are given in [Moriarty et al. 97].

Direct meta-optimization methods have been applied to learning evaluation func-

tions before, particularly in the game-playing literature. Genetic-algorithmapproaches

to game learning generally fall into this category (e.g., [Tunstall-Pedoe 91]). Re-

cently, Pollack et al. attacked backgammon by hillclimbing over the 3980 weights of

a neural network [Pollack et al. 96]. Surprisingly, this procedure developed a good

backgammon player, though not on the level of Tesauro's TD-Gammon networks.

Meta-optimization has also been applied successfully to aid combinatorial optimiza-

tion. Ochotta's simulated annealing system for synthesizing analog circuit cells made

use of a sophisticated cost function parametrized by 46 real numbers [Ochotta 94].

These and 10 other parameters of the annealer were optimized using Powell's method

as described in [Press et al. 92]. Each parameter setting was evaluated by summing

180 CONCLUSIONS

the mean, median and minimum �nal results of 200 annealing runs on a small repre-

sentative problem instance. After several months of real time and four years of CPU

time (!), Powell's method produced an evaluation function which performed well and

generalized robustly to larger instances.

I believe that the computational requirements of direct meta-optimization can be

signi�cantly reduced by the use of new memory-based stochastic optimization tech-

niques [Moore and Schneider 96, Moore et al. 98]. These techniques are designed

to optimize functions for which samples are both expensive to gather and poten-

tially very noisy. The meta-objective function M certainly �ts this characteriza-

tion, since sampling M means performing a complete run of the baseline stochastic

search procedure and reporting the �nal result. An important future direction for

reinforcement-learning research is to carefully compare the empirical performance of

direct meta-optimization and value function approximation methods.

8.3 Concluding Remarks

In the decade since the deep connection between AI heuristic search and Markov de-

cision process theory was �rst identi�ed, the �eld of reinforcement learning has made

much progress. Algorithms for learning sequential decision-making from simulation

data are now well understood for tasks in which the value function can be represented

exactly. This thesis has addressed the more di�cult case in which the value function

must be represented compactly by a function approximator. Its primary contribution

is a practical algorithm, built on reinforcement-learning foundations, that e�ciently

learns and exploits a predictive model of a search procedure's performance. Ulti-

mately, I believe such methods will lead to more e�ective solutions to large sequential

decision problems in industry, science, and government, and thereby improve society.

181

Appendix A

Proofs

A.1 The Best-So-Far Procedure Is Markovian

Here, I prove Proposition 2 of Section 3.4.1. This proposition gives us a way to apply

a natural patience-based termination criterion to a nonmonotonic search procedure

such as WALKSAT|yet still maintain the Markov property that makes the target

of STAGE's learning well-de�ned|by using the device of the best-so-far abstraction

bsf(�), as de�ned in De�nition 6 on page 61. The statement is as follows:

Proposition (#2, p. 62). If local search procedure � is Markovian over a �nite state

space X, and �0 is the procedure that results by adding patience-based termination to

�, then procedure bsf(�0) is proper, Markovian, and strictly monotonic.

In outline, the proof follows these three steps:

1. The procedure �0 is proper, but not necessarily Markovian in the state space

X. However, �0 is proper and Markovian in an augmented state space Z.

2. We apply a lemma that the Y -abstraction (de�ned below) of any proper and

Markovian procedure is also proper and Markovian. bsf(�0) is such an abstrac-

tion, which proves that it is proper and Markovian in the augmented state space

Z.

3. Finally, we show that the Markov property still holds when trajectories of

bsf(�0) are projected back down to the original state space X. The property

of strict monotonicity also follows trivially.

Before explaining these steps in detail, I present the de�nition of a Y -abstraction

and the lemma that Step 2 requires.

De�nition 7. Let � be a proper local search procedure de�ned over a state space

Z[fendg, and let Y � Z be an arbitrary subset of states. Then the Y -abstraction of

procedure � is a new policy �0, de�ned over the smaller state space Y [fendg, which

is derived from � as follows: starting from any state y0 2 Y , �0 generates trajectories

by following � but �ltering out all states belonging to Z n Y (see Figure A.1).

182 PROOFS

x2x1

x3
x4

x5

x6

x7

x8

x9
x0

Y

Z

Figure A.1. Illustration of the Y -abstraction procedure. Given a trajectory
(x0; : : : ; x9) (straight solid lines) generated by procedure � in state space Z, the
Y -abstraction produces a corresponding shorter trajectory (dotted lines) that is re-
stricted to the subspace Y .

Lemma 1. Suppose procedure � is proper and Markovian over state space Z[fendg,

and that procedure �0 is the Y -abstraction of Z for any given subset Y � Z. Then �0

is proper and Markovian over the subspace Y 0 = Y [fendg.

Proof of Lemma 1. First, note that if we apply � starting from any state x0 2 Z,

we get a trajectory � which must eventually visit a state y 2 Y 0, since � is assumed

proper and Y 0 includes the terminal state. Let Enter(�; Y 0) be the �rst state in Y 0

that � visits after leaving x0. Then, over the full distribution of trajectories that �

may generate from x0, the probability that y is the �rst state subsequently visited in

Y 0 is given by p(yjx0), computed as follows:

8x0 2 Z; y 2 Y 0 : p(yjx0)
def
=

X
f�2T :Enter(�;Y 0)=yg

P (� jx�0 = x0) (A.1)

Now consider a trajectory of the Y -abstraction policy �0, starting at a state y0 2 Y .

By de�nition of �0, this trajectory will be built by applying the original policy � and

�ltering out the states in ZnY . Thus, the �rst transition will be to some state y1 2 Y 0

xA.1 THE BEST-SO-FAR PROCEDURE IS MARKOVIAN 183

with probability given precisely by p(y1jy0) as de�ned in Equation A.1. Furthermore,

by the Markov assumption on �, the future transitions from y1 will be independent

of the trajectory history and obey the same probabilities p(yi+1jyi) 8i � 0. Thus, �0

is Markovian over Y 0. �0 is also clearly proper, by inheritance from �.

I now �ll in the details of the proof of Proposition 2, following the three-part

outline sketched above.

Proof of Proposition 2.

1. In the statement of the proposition, �0 is de�ned to be the procedure that results

when patience-based termination is imposed on a procedure � that is Markovian,

but not necessarily proper. Recall that patience-based termination means, for

a given patience level Pat � 1, that any trajectory will end deterministically

as soon as Pat consecutive steps are taken with no improvement over the best

state found so far. That is, for all trajectories � produced by �0:

(t � Pat) ^ (x�
t�Pat

= min
fj:0�j�tg

Obj(x�
j
))) x�

t+1 = end:

Since the state space X is assumed �nite, �0 is certainly proper: the Obj val-

ues cannot keep decreasing forever. However, �0 is not necessarily Markovian.

Because of the new termination condition, the transition probability

P(x�
i+1 = xi+1 j x

�

0 = x0; x
�

1 = x1; : : : ; x
�

i
= xi)

is not independent of the history x0; : : : ; xi�1 as required by De�nition 3 (page 57).

In particular, the probability of termination depends not just on the current

state, but also on how recently the best-so-far state was found, and what the

Obj value at that state was.

However, the procedure �0 can be made Markovian by augmenting the state

space with these relevant extra variables. De�ne the augmented state space

Z = X �<� N, where the three components of a state z 2 Z are given by

a(z) 2 X; representing a state x in the original state space

b(z) 2 <; representing the best Obj value seen on the current trajectory

c(z) 2 N; representing the count of non-improving steps since �nding b(z).

In this augmented space, a trajectory of procedure �0 begins at the state z�0 =

hx�0;Obj(x
�

0); 0i. All future state transitions depend only on the current state

184 PROOFS

z�
i
. There are three kinds of possible transitions: (1) the patience counter may

expire, causing deterministic termination; (2) a new best-so-far state may be

discovered, in which case b(z) is updated and c(z) is reset to zero; or (3) an

ordinary transition to a non-best-so-far state occurs, in which case c(z) is simply

incremented. These give rise to the following Markovian transition probabilities:

8z 2 Z; z0 2 Z [fendg,

P(z�
i+1 = z0 j z�

i
= z) =8>>><

>>>:
1 if (c(z) = Pat) ^ (z0 = end)

p(a(z0)ja(z)) if (Obj(a(z0)) < b(z)) ^ (b(z0) = Obj(a(z0))) ^ (c(z0) = 0)

p(a(z0)ja(z)) if (Obj(a(z0)) � b(z)) ^ (b(z0) = b(z)) ^ (c(z0) = c(z) + 1)

0 otherwise.

Thus, �0 is proper and Markovian over the space Z [fendg, concluding the

�rst segment of our proof.

2. We now apply Lemma 1 to show that the best-so-far abstraction of �0, denoted

bsf(�0), is also proper and Markovian in the augmented state space Z. Let the

subset Y be de�ned by

Y = fz 2 Z : (b(z) = Obj(a(z))) ^ (c(z) = 0)g:

Y consists of precisely the best-so-far states on any trajectory of �0. By Lemma 1,

bsf(�0) is proper and Markovian over the subspace Y [fendg. That is, fol-

lowing procedure bsf(�0), the transitions from any state y are given by �xed

probabilities p(y0jy) independent of any past history of the procedure.

3. Finally, we note that every state y 2 Y has the form hx;Obj(x); 0i. All the

information about the state y is determined by the �rst component, the under-

lying state in the un-augmented space. It follows that the procedure bsf(�0)

is Markovian in the underlying space X [fendg, with transition probabilities

given simply by

P(x�
i+1 = x0 j x�

i
= x) = p(hx0;Obj(x0); 0i j hx;Obj(x); 0i):

We note that the property of strict monotonicity follows trivially from the de�nition

of bsf, completing the proof of Proposition 2.

xA.2 LEAST-SQUARES TD(1) IS EQUIVALENT TO LINEAR REGRESSION 185

A.2 Least-Squares TD(1) Is Equivalent to Linear Regression

This section demonstrates that the incremental algorithm LSTD(1), which is a special

case of the LSTD(�) procedure introduced in Section 6.1.2, produces an approximate

value function which is equivalent to that which would be generated by standard,

non-incremental, least-squares linear regression.

To be precise, assume we are given a sample trajectory (x0; x1; : : : ; xL;end) of a

Markov chain, with one-step rewards of R(xj; xj+1) on each step. From this trajectory,

a supervised learning system would generate the training pairs:

�0 7! R(x0; x1) +R(x1; x2) + � � �+R(xL;end)

�1 7! R(x1; x2) + � � � +R(xL;end)

... 7!
...

�L 7! R(xL;end)

where �i is the vector of features representing state xi. Performing standard least-

squares linear regression on the above training set, as described for STAGE in Chap-

ter 3 (Equation 3.8, page 67), produces the following regression matrices:

ALR =

LX
i=0

�i�
T

i
bLR =

LX
i=0

�iyi

where yi =

LX
j=i

R(xj ; xj+1)

I now show that, thanks to the algebraic trick of the eligibility vectors zt, LSTD(1)

builds the equivalent A and b fully incrementally|without having to store the tra-

jectory while waiting to observe the eventual outcome yi. Please refer to Table 6.1.1

(p. 140) for the de�nition of the algorithm.

Proof. With simple algebraic manipulations, the sums built by LSTD(1)'s A and b

telescope neatly into ALR and bLR, as follows:

A =

LX
i=0

zt
�
�i � �i+1

�T

=

LX
i=0

� iX
j=0

�j

�
(�i � �i+1)

T (by de�nition of zt)

=

LX
i=0

iX
j=0

�j�
T

i
�

LX
i=0

iX
j=0

�j�
T

i+1

186 PROOFS

=
�
�0�

T

0 +

LX
i=1

iX
j=0

�j�
T

i

�
�
�L+1X
k=1

k�1X
j=0

�j�
T

k

�
(substituting k � i+ 1)

= �0�
T

0 +

LX
i=1

iX
j=0

�j�
T

i
�

LX
k=1

k�1X
j=0

�j�
T

k
(since �L+1

def
= 0)

= �0�
T

0 +

LX
i=1

� iX
j=0

�j�
T

i
�

i�1X
j=0

�j�
T

i

�
(substituting i � k)

=

LX
i=0

�i�
T

i

= ALR; as desired;

and

b =

LX
i=0

ziR(xi; xi+1)

=

LX
i=0

� iX
j=0

�j

�
R(xi; xi+1) (by de�nition of zt)

=

LX
i=0

LX
j=0

1(j � i)�jR(xi; xi+1) (where 1(True)
def
= 1, 1(False)

def
= 0)

=

LX
j=0

LX
i=0

1(j � i)�jR(xi; xi+1)

=

LX
j=0

�j

LX
i=j

R(xi; xi+1)

= bLR; as desired.

These reductions prove that the contributions to A and b by any single trajectory

are identical in LSTD(1) and least-squares linear regression. In both algorithms,

contributions from multiple trajectories are simply summed into the matrices. Thus,

LSTD(1) and linear regression compute the same statistics and, ultimately, the same

coe�cients for the approximated value function.

187

Appendix B

Simulated Annealing

B.1 Annealing Schedules

Simulated annealing (SA) is described by the template in Table B.1. The main imple-

mentation challenge is to choose an e�ective annealing schedule for the temperature

parameter. The temperature ti controls the probability of accepting a step to a worse

neighbor: when ti = +1, SA accepts any step, acting as a random walk; whereas

when ti = 0, SA rejects all worsening steps, acting as stochastic hillclimbing with

equi-cost moves.

Simulated-Annealing(X, S, N , Obj, TotEvals, Schedule):
Given:
� a state space X
� starting states S � X
� a neighborhood structure N : X ! 2X

� an objective function, Obj : X ! <, to be minimized
� TotEvals, the number of state evaluations allotted for this run
� an annealing Schedule which determines the temperature on each iteration

1. Let x0 2 S be a random starting state for search;

let t0 := the initial temperature of Schedule

2. For i := 0 to TotEvals� 1, do:

(a) Choose x0 := a random element from N(xi)

(b) xi+1 :=

(
x0 if rand[0,1) < e[Obj(xi)�Obj(x

0)]=ti

xi otherwise

(c) Update temperature ti+1 according to Schedule

3. Return the best state found.

Table B.1. A template for the simulated annealing algorithm

The temperature annealing schedule has been the subject of extensive theoreti-

188 SIMULATED ANNEALING

cal and experimental analysis in the simulated annealing literature [Boese 96]. The

possibilities include the following:

� Logarithmic: ti =
= log(i+ 2). For su�ciently high
, a schedule of this form

guarantees that SA will converge with probability one to the globally optimal

solution [Mitra et al. 86,Hajek 88]. Unfortunately, this guarantee only applies

in the limit as TotEvals!1. Logarithmic schedules are generally too slow

for practical use.

� Geometric: for a �xed initial temperature t0, cooling rate � 2 (0; 1) and round

length L � 1, de�ne ti = t0 � �
bi=Lc. This is the original schedule proposed by

Kirkpatrick [83], and is still widely used in practice [Johnson et al. 89,Johnson

et al. 91,Press et al. 92]. However, the parameters t0, L, and � must be tuned

for each problem instance.

� Adaptive: a variety of adaptive schedules have been proposed, with both the-

oretical and practical motivations. [Boese 96] summarizes the most notable of

these, including the schedules of [Aarts and van Laarhoven 85], [Huang et al. 86],

and [Lam and Delosme 88]. According to [Ochotta 94],

Results for the Lam schedule are quite impressive. When compared

with other general-purpose annealing schedules such as [Huang et

al. 86] and even hand-crafted schedules like the one in [Sechen and

Sangiovanni-Vincentelli 86], it often provides speed-ups of 50% while

actually improving the quality of the �nal answers [Lam and Delosme

88]. Simulated annealing with the Lam schedule even compares fa-

vorably with heuristic combinatorial optimization methods tuned to

speci�c problems like partitioning and the travelling salesman prob-

lem [Lam 88].

B.2 The \Modi�ed Lam" Schedule

For the purposes of comparing against STAGE, I sought to implement simulated an-

nealing with a cooling schedule which would both perform very well and would require

little tuning from one problem instance to the next. After some experimentation, I

settled on an adaptive schedule similar to that used in [Ochotta 94], which in turn was

based on Swartz's modi�cation of the Lam schedule [Swartz and Sechen 90]. Swartz

observed that for each of a large number of annealing runs using the Lam schedule,

the accept ratio|that is, the ratio of moves accepted to moves considered|followed

an almost identical pattern with respect to the move counter i [Ochotta 94, p. 137]:

xB.2 THE \MODIFIED LAM" SCHEDULE 189

The accept rate starts at about 100%, decreases exponentially until it sta-

bilizes (about 15% of the way through the run) at about 44%, and remains

there until about 65% of the way through the run. It then continues its

exponential decline until the end of the annealing process. Based on this

observation, Swartz duplicated the e�ect of the Lam schedule by using a

simple feedback loop to control the temperature and force the accept ratio

to follow the curve in Figure [B.1]. In comparing the modi�ed schedule to

the original schedule, Swartz reported almost no di�erence in the quality

of the �nal answers [Swartz and Sechen 90]. One additional bene�t of the

modi�ed Lam schedule is that, in contrast to the original schedule, the

total number of moves in the annealing run can be speci�ed by the user.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ta
rg

et
 a

cc
ep

t r
at

io

percentage of moves completed

Figure B.1. Accept rate targets for the modi�ed Lam schedule

All details of my implementation of Swartz's modi�ed Lam schedule are given

below in Table B.2. I do not dynamically readjust the neighborhood structure N(x)

over the course of search, as the original Lam schedule did, since such readjustments

cannot be speci�ed in a problem-independent manner.

190 SIMULATED ANNEALING

Simulated-Annealing(X, S, N , Obj, TotEvals,Modi�ed-Lam-Schedule):

1. Let x0 2 S be a random starting state for search;

let AcceptRate:=0.5, t0 := 0:5.

2. For i := 0 to TotEvals� 1, do:

(a) Choose x0 := a random element from N(xi)

(b) xi+1 :=

(
x0 if rand[0,1) < e[Obj(xi)�Obj(x

0)]=ti

xi otherwise

(c) Update temperature ti+1 as follows:

i. let AcceptRate :=

(
1
500

(499 �AcceptRate+ 1) if x0 was accepted
1
500

(499 �AcceptRate) if x0 was rejected

ii. let d := i=TotEvals

iii. let TargRate :=

8><
>:
0:44 + 0:56 � 560�d=0:15 if 0 � d < 0:15

0:44 if 0:15 � d < 0:65

0:44 � 440�(d�0:65)=0:35 if 0:65 � d < 1

iv. let ti+1 :=

(
ti � 0:999 if AcceptRate > TargRate

ti=0:999 otherwise

3. Return the best state found.

Table B.2. Details of the \modi�ed Lam" adaptive simulated annealing schedule,

instantiating the template of Figure B.1. The TargRate function is plotted in
Figure B.1.

xB.3 EXPERIMENTS 191

B.3 Experiments

I certainly do not claim that the modi�ed Lam schedule is perfectly optimized for

every problem attempted in Chapter 4. Getting the best performance from simu-

lated annealing on any given problem is an art that involves re�ning the temperature

schedule, dynamically adjusting the search neighborhood, and tuning the cost func-

tion coe�cients. However, empirically, the simulated annealing algorithm de�ned by

Table B.2 does seem to perform very well on a wide variety of problems without

requiring further tuning.

The following experiments illustrate the e�ectiveness of my implementation. I

consider four of the optimization domains of Chapter 4: bin-packing (x4.2), VLSI

channel routing (x4.3), Bayes net learning (x4.4), and cartogram design (x4.6). For

each of these domains, I compare the performance of the modi�ed Lam schedule

with that of 12 di�erent geometric cooling schedules, de�ned by ti = t0 � �
i for all

combinations of

initial temperature t0 2 f10; 1; 0:1; 0:01g

cooling rate � 2 f0:9999; 0:99999; 0:999999g:

The total length of the schedules is set to TotEvals, the same setting used in the

comparative experiments of Chapter 4: 105 for bin-packing and Bayes net learning,

5 � 105 for channel routing, and 106 for cartogram design.

Results are shown in Figures B.2{B.5. Each �gure plots thirteen boxes: the left-

most box corresponds to the modi�ed Lam schedule results (copied from Chapter 4),

and the other 12 boxes correspond to the performance of the various geometric cool-

ing schedules (averaged over 10 runs each). In all cases, the modi�ed Lam schedule is

nearly as e�ective as, if not more e�ective than, the best of the geometric schedules.

192 SIMULATED ANNEALING

105

110

115

120

125

Lam geo1 geo2 geo3 geo4 geo5 geo6 geo7 geo8 geo9 geo10 geo11 geo12

N
um

be
r

of
 b

in
s

(1
03

 is
 o

pt
im

al
)

Figure B.2. Simulated annealing schedules for bin-packing instance u250 13: Mod-
i�ed Lam schedule (leftmost) versus 12 geometric cooling schedules

10

15

20

25

30

35

40

45

50

Lam geo1 geo2 geo3 geo4 geo5 geo6 geo7 geo8 geo9 geo10 geo11 geo12

A
re

a
of

 c
irc

ui
t l

ay
ou

t (
10

 is
 o

pt
im

al
)

Figure B.3. Simulated annealing schedules for channel routing instance YK4: Mod-

i�ed Lam schedule (leftmost) versus 12 geometric cooling schedules

xB.3 EXPERIMENTS 193

750000

800000

850000

900000

950000

1e+06

Lam geo1 geo2 geo3 geo4 geo5 geo6 geo7 geo8 geo9 geo10 geo11 geo12

B
ay

es
 n

et
 s

co
re

Figure B.4. Simulated annealing schedules for Bayes net structure-�nding instance
SYNTH125K: Modi�ed Lam schedule (leftmost) versus 12 geometric cooling schedules

0

0.1

0.2

0.3

0.4

0.5

Lam geo1 geo2 geo3 geo4 geo5 geo6 geo7 geo8 geo9 geo10 geo11 geo12

M
ap

 e
rr

or
 fu

nc
tio

n

Figure B.5. Simulated annealing schedules for cartogram design instance US49:

Modi�ed Lam schedule (leftmost) versus 12 geometric cooling schedules

194

195

Appendix C

Implementation Details of Problem Instances

This appendix gives implementation details for the optimization problems used in the

experiments of Chapter 4. For further information, including the complete datasets

used in the bin-packing, Bayes net structure-�nding, and cartogram domains, please

access the following web page:

http://www.cs.cmu.edu/~AUTON/stage/ (C.1)

C.1 Bin-packing

The bin-packing problem was introduced in Sections 3.3.2 and 4.2. We are given a bin

capacity C and a list L = (a1; a2; :::an) of items, each having a size s(ai) > 0. The goal

is to pack the items into as few bins as possible, i.e., partition them into a minimum

number m of subsets B1; B2; :::; Bm such that for each Bj ,
P

ai2Bj
s(ai) � C.

In the STAGE experiments, value function approximation was done with respect

to two state features: the objective function itself, and the variance in bin fullness

levels. In terms of the above notation, given a packing x = fB1; B2; : : : ; BMxg (with

all bins Bj assumed non-empty), we have

Obj(x)
def
= Mx

Var(x)
def
=

1

Mx

MxX
j=1

fullness(Bj)
2

!
�

1

Mx � C

nX
i=1

s(ai)

!2

where

fullness(Bj)
def
=

1

C

X
ai2Bj

s(ai) :

The illustrative example of Section 3.3.2 consisted of the following 30 items, to be

packed into bins of capacity 100:

(27, 23, 23, 23, 27, 26, 26, 51, 26, 23,

51, 23, 51, 23, 23, 51, 23, 23, 27, 23,

51, 27, 51, 26, 27, 23, 26, 27, 26, 23)

196 IMPLEMENTATION DETAILS OF PROBLEM INSTANCES

These particular item sizes were motivated by Figure 2.5 of [Co�man et al. 96], which

depicts a template of a worst-case example for the \First Fit Decreasing" o�ine bin-

packing heuristic. The optimal packing �lls 9 bins exactly to capacity.

The twenty instances of the u250 class were contributed to the Operations Re-

search Library by Falkenauer [96]. They may be downloaded from the web page

referenced at the start of this section, or directly from the OR-Library web site at

http://www.ms.ic.ac.uk/info.html :

C.2 VLSI Channel Routing

My implementation of channel routing follows that of the SACR system [Wong et

al. 88]. This system allows a restricted form of doglegging, whereby a net may be

split horizontally only at columns containing a pin belonging to that net.

Most of the experiments in this dissertation were conducted on the instance YK4.

That instance is speci�ed by the following pin columns:

Upper: 17 9 23 33 0 17 34 33 32 31 32 20 9 10 21 34 0 31 22 10 0 22 1 3 16 0 0 0 9

19 7 0 16 14 7 51 43 57 67 0 51 68 67 66 65 66 54 43 44 55 68 0 65 56 44 0 56

35 37 50 0 0 0 43 53 41 0 50 48 41 85 77 91 101 0 85 102 101 100 99 100 88 77

78 89 102 0 99 90 78 0 90 69 71 84 0 0 0 77 87 75 0 84 82 75 119 111 125 135 0

119 136 135 134 133 134 122 111 112 123 136 0 133 124 112 0 124 103 105 118

0 0 0 111 121 109 0 118 116 109

Lower: 0 0 0 24 10 0 4 2 21 2 4 23 1 4 24 1 4 2 0 1 4 0 3 19 2 3 20 2 3 14 3 1 9 24 0

0 0 0 58 44 0 38 36 55 36 38 57 35 38 58 35 38 36 0 35 38 0 37 53 36 37 54 36

37 48 37 35 43 58 0 0 0 0 92 78 0 72 70 89 70 72 91 69 72 92 69 72 70 0 69 72 0

71 87 70 71 88 70 71 82 71 69 77 92 0 0 0 0 126 112 0 106 104 123 104 106 125

103 106 126 103 106 104 0 103 106 0 105 121 104 105 122 104 105 116 105 103

111 126 0

These pin columns correspond to Example 1 (Figure 25) of [Yoshimura and Kuh

82], but multiplied four times and placed side by side. By \cloning" the problem in

this manner, we maintain the known global optimum (in this case, 10 tracks when

restricted doglegging is allowed), but make the problem much more di�cult for local

search.

In Section 6.2, I applied STAGE to eight additional channel routing instances,

HYC1 through HYC8. The pin columns for these problems may be found in [Chao

and Harper 96] and are also available on the STAGE web page.

xC.3 BAYES NETWORK LEARNING 197

C.3 Bayes Network Learning

For the experimentswith the Bayes-net structure-�nding domain (Sections 4.4 and 6.1.5),

three datasets were used: MPG, ADULT2, and SYNTH125K.

� The MPG dataset contains information on the horsepower, weight, gas mileage,

and other such data (10 total attributes) for 392 automobiles. It is derived from

the \Auto-Mpg" dataset available from the UCI Machine Learning repository

[Merz and Murphy 98], but modi�ed by coarsely discretizing all continuous

variables.

� The ADULT2 dataset was also obtained from the UCI repository. It consists of

census data related to the job, wealth, nationality, etc. (15 total attributes) on

30,162 individuals.

� The SYNTH125K dataset was generated synthetically from the probability dis-

tribution given by the Bayes net in Figure 4.7 (p. 86), designed by Moore and

Lee [98].

All three datasets are available for downloading from the STAGE web page.

C.4 Radiotherapy Treatment Planning

The radiotherapy treatment planning domain of Section 4.5 is too complex to explain

in full detail here. Please refer to the web page for more information. Here, I describe

the domain in enough detail to illustrate its complexity|in particular, to show why

we must resort to using local search rather than, say, linear programming to solve

it. The form of my objective function was based on discussions with domain experts;

however, I did not have access to a medically accurate implementation of the dose

calculations and penalty functions. Thus, I claim only that the optimization problem

solved here retains most of the overall structure and geometry of tradeo�s found in

the true medical domain.

I formulated the problem as follows. The treatment area is discretized into an

80 � 80 rectangular grid. The radiation dosage dosep(x) at each pixel p can then

be calculated from the current plan x according to a known forward model. Pixels

within the area of the tumor t have a target dose targt and incur a penalty based on

the ratio rp =
dosep(x)

targt
:

Penalty(p) =

(
exp(1=max(rp; 0:1)) if rp < 1 (underdose)

rp � 1 if rp � 1 (overdose)

198 IMPLEMENTATION DETAILS OF PROBLEM INSTANCES

Pixels within a sensitive structure s have a maximum acceptable dose acceps and

incur a penalty based on the ratio rp =
dosep(x)

acceps
:

Penalty(p) =

(
rp if rp � 1 (safe dose)

exp(rp) if rp > 1 (overdose)

These two penalty functions are plotted in Figure C.1. Finally, the overall objective

function is calculated as a weighted sum of all the per-pixel penalties. The weights

are �xed and re
ect the relative importance of the various structures being targeted

or protected.

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 0.5 1 1.5 2 2.5

P
en

al
ty

 p
er

 p
ix

el

Ratio of received dose to tumor target dose

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 0.5 1 1.5 2 2.5

P
en

al
ty

 p
er

 p
ix

el

Ratio of received dose to acceptable dose for sensitive structure

Figure C.1. The per-pixel penalty for pixels within a tumor (left) or within a
sensitive structure (right). Note the logarithmic scale on the y-axis.

This problem formulation is nearly suitable for a linear programming solution: the

dose incurred at each pixel is a linear combination of the beam intensities, and the

objective function is a linearly weighted sum of penalty terms. If the penalty functions

of Figure C.1 had been de�ned to be piecewise linear and convex, and the beam

intensities were allowed to vary continuously over [0; 1], then the optimal treatment

plan x� would be obtainable by linear programming. However, with 0/1 discrete beam

intensities and non-convex penalty functions, as assumed in the experiments of this

thesis, we must resort to heuristic search.

xC.5 CARTOGRAM DESIGN 199

C.5 Cartogram Design

The cartogram design problem was introduced in Section 4.6. This thesis investigated

a single instance, US49. Instance US49 is de�ned by the 49 polygons of the continental

U.S. map (48 states plus the District of Columbia) and their respective target areas,

which are based on the 1990{2000 electoral vote for U.S. President. This dataset is

available from the STAGE web page.

Local search moves in this domain consist of choosing one of the 162 points and

perturbing it slightly. These points are chosen randomly, but with a bias toward

those points that contribute most to the current map error function. To be precise:

�rst a state is chosen with probability proportional to its contribution to Obj(x), and

then one point on that state is chosen uniformly at random. The perturbation is then

generated by adding uniformly random numbers in [�1:5; 1:5] to each coordinate.

The objective function is de�ned as the sum of four penalty terms:

Obj(x) = �Area(x) + �Gape(x) + �Orient(x) + �Segfrac(x)

The penalty terms are de�ned as follows:

�Area(x) =
10

#States

X
s2States

�
max

� Areax(s)

Areatarg(s)
;

Areatarg(s)

max(Areax(s); 0:001)

�
� 1
�2

�Gape(x) =
1

#Bends

X
\ABC2Bends

�
measurex(\ABC)�measureorig(\ABC)

�2
�Orient(x) =

1

#Bends

X
\ABC2Bends

�
measurex(\AB)�measureorig(\AB)

�2
�Segfrac(x) =

10

#Bends

X
\ABC2Bends

� lengthx(AB)

perimx(State(\ABC))
�

lengthorig(AB)

perimorig(State(\ABC))

�2
The \Bends" above index each angle of each polygon in the map. The notation

\\AB " refers to the angle made between line
$

AB and the x-axis (a �xed horizontal

line). Finally, the constants 1 and 10 in these penalty terms were chosen by trial and

error to create aesthetically appealing cartograms.

C.6 Boolean Satis�ability

The di�cult \32-bit parity function learning" instances tested in Section 4.7 are

described in [Crawford 93]. The complete formulas are available for downloading

from the STAGE web page, and also from the DIMACS satis�ability archive:

ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf/ :

200

201

References

E. H. L. Aarts and P. J. M. van Laarhoven. A new polynomial-time cooling schedule.

In Proc. IEEE Intl. Conf. on Computer-Aided Design, pages 206{208, 1985. (p. 188)

B. Abramson. Expected-outcome: A general model of static evaluation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12(2):182{193, February

1990. (pp. 167, 168)

D. H. Ackley and M. L. Littman. A case for distributed Lamarckian evolution. In
C. Langton, C. Taylor, J. D. Farmer, and S. Ramussen, editors, Arti�cial Life III:

Santa Fe Institute Studies in the Sciences of Complexity, volume 10, pages 487{509.
Addison-Wesley, Redwood City, CA, 1993. (p. 170)

J. S. Albus. Brains, Behavior, and Robotics. Byte Books, Peterborough, NH, 1981.
(p. 65)

D. Aldous and U. Vazirani. \Go with the winners" algorithms. In Proceedings of the

35th Symposium on Foundations of Computer Science, pages 492{501, 1994. (p. 162)

D. Applegate, R. Bixby, V. Chvatal, and B. Cook. Finding cuts in the TSP (A
preliminary report). Technical Report 95-05, DIMACS, April 10, 1995. (p. 42)

C. G. Atkeson and J. C. Santamaria. A comparison of direct and model-based
reinforcement learning. In International Conference on Robotics and Automation,
1997. (p. 145)

C. G. Atkeson. Using local trajectory optimizers to speed up global optimization
in dynamic programming. In J. D. Cowan, G. Tesauro, and J. Alspector, editors,

Advances in Neural Information Processing Systems 6. Morgan Kaufmann, 1994.

(p. 25)

L. Baird. Residual algorithms: Reinforcement learning with function approximation.

In Machine Learning: Proceedings of the Twelfth International Conference, 1995.

(pp. 13, 23)

S. Baluja and R. Caruana. Removing the genetics from the standard genetic algo-

rithm. In Proc. 12th International Conference on Machine Learning, pages 38{46.

Morgan Kaufmann, 1995. (p. 170)

S. Baluja and S. Davies. Combining multiple optimization runs with optimal depen-

dency trees. Technical Report CMU-CS-97-157, Carnegie Mellon University School

of Computer Science, 1997. (pp. 74, 170)

202

R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende, and W. R. Stewart. Design-

ing and reporting on computational experiments with heuristic methods. Journal of
Heuristics, 1(1):9{32, 1995. (pp. 70, 72)

A. Barto, R. Sutton, and C. Watkins. Learning and sequential decision making.
Technical Report COINS 89-95, University of Massachusetts, 1989. (p. 20)

A. G. Barto, S. J. Bradtke, and S. P. Singh. Real-time learning and control using

asynchronous dynamic programming. Arti�cial Intelligence, 1995. (pp. 20, 21)

J. Baxter, A. Tridgell, and L. Weaver. KnightCap: A chess program that learns by
combining TD(�) with minimax search. Technical report, Department of Systems
Engineering, Australian National University, Canberra, Australia, November 1997.
(p. 168)

R. Bellman, R. Kalaba, and B. Kotkin. Polynomial approximation|a new compu-

tational technique in dynamic programming: Allocation processes. Mathematics Of
Computation, 17, 1963. (p. 20)

R. Bellman. Dynamic Programming. Princeton University Press, 1957. (pp. 13, 19)

R. Bellman. An Introduction to Arti�cial Intelligence: Can Computers Think? Boyd
& Fraser Publishing Company, 1978. (p. 20)

D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experiments.

Chapman and Hall, 1985. (p. 32)

D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scienti�c,

Belmont, MA, 1996. (pp. 13, 19, 20, 21, 23, 24, 64, 66, 137, 138, 139, 141, 142, 143, 150)

D. Bertsekas, J. Tsitsiklis, and C. Wu. Rollout algorithms for combinatorial op-

timization. Technical Report LIDS-P 2386, MIT Laboratory for Information and

Decision Systems, 1997. (p. 167)

D. Bertsekas. A counterexample to temporal di�erences learning. Neural Computa-
tion, 7:270{9, 1995. (p. 13)

J.R. Beveridge, C. Graves, and C. E. Lesher. Local search as a tool for horizon line
matching. Technical Report CS-96-109, Colorado State University, 1996. (pp. 41, 70,

161)

K. D. Boese, A. B. Kahng, and S. Muddu. A new adaptive multi-start technique for

combinatorial global optimizations. Operations Research Letters, 16:101{113, 1994.

(pp. 162, 163, 170)

203

K. D. Boese. Cost versus distance in the traveling salesman problem. Technical

Report CSD-950018, UCLA Computer Science Department, May 1995. (pp. 162,

163)

K. D. Boese. Models for Iterative Global Optimization. PhD thesis, UCLA Computer

Science Department, 1996. (pp. 162, 188)

J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely
approximating the value function. In G. Tesauro, D. S. Touretzky, and T. K. Leen,

editors, Advances In Neural Information Processing Systems 7. MIT Press, 1995.
(pp. 13, 14, 23, 25, 27)

J. A. Boyan and A. W. Moore. Learning evaluation functions for large acyclic

domains. In L. Saitta, editor, Machine Learning: Proceedings of the Thirteenth

International Conference. Morgan Kaufmann, 1996. (pp. 14, 25)

J. A. Boyan and A. W. Moore. Using prediction to improve combinatorial opti-
mization search. In Proceedings of the Sixth International Workshop on Arti�cial
Intelligence and Statistics (AISTATS), January 1997. (p. 14)

J. A. Boyan and A. W. Moore. Learning evaluation functions for global optimization

and Boolean satis�ability. In Proceedings of the Fifteenth National Conference on
Arti�cial Intelligence (AAAI), 1998. (Outstanding Paper Award). (p. 14)

J. A. Boyan, A. W. Moore, and R. S. Sutton, editors. Proceedings of the Workshop

on Value Function Approximation, Machine Learning Conference, July 1995. CMU-
CS-95-206. Internet resource available at http://www.cs.cmu.edu/~reinf/ml95/.

(pp. 13, 19)

J. A. Boyan, D. Freitag, and T. Joachims. A machine learning architecture for
optimizing web search engines. Technical Report AAAI Technical Report WS-96-06,

Proceedings of the AAAI workshop on Internet-Based Information Systems, 1996.
(p. 41)

J. A. Boyan. Modular neural networks for learning context-dependent game strate-

gies. Master's thesis, University of Cambridge, Department of Engineering and

Computer Laboratory, 1992. (pp. 13, 21, 168)

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal di�er-

ence learning. Machine Learning, 22(1/2/3):33{57, 1996. (pp. 15, 137, 143, 175)

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classi�cation and
regression trees. Technical report, Wadsworth International, Monterey, CA, 1984.

(p. 65)

204

W. L. Buntine, L. Su, R. Newton, and A. Mayer. Adaptive methods for netlist

partitioning. In Proceedings of ICCAD-97, San Jose, CA, November 1997. (p. 167)

M. S. Campbell. Deep Blue: The IBM chess machine. Talk given at Carnegie Mellon

University, March 1998. (p. 12)

Y. Censor, M. D. Altschuler, and W. D. Powlis. A computational solution of the

inverse problem in radiation-therapy treatment planning. Applied Mathematics and

Computation, 25:57{87, 1988. (pp. 90, 91)

H-Y. Chao and M. P. Harper. An e�cient lower bound algorithm for channel routing.
Integration: The VLSI Journal, 1996. (pp. 79, 154, 196)

D. M. Chickering, D. Geiger, and D. Heckerman. Learning bayesian networks is

NP-hard. Technical Report MSR-TR-94-17, Microsoft Research, November 1994.
(pp. 84, 85)

J. Christensen and R. Korf. A uni�ed theory of heuristic evaluation functions and its

application to learning. In Proceedings of the 4th National Conference on Arti�cial

Intelligence, pages 148{152, 1986. (p. 20)

J. Christensen. Learning static evaluation functions by linear regression. In
T. Mitchell, J. Carbonell, and R. Michalski, editors, Machine learning: A guide

to current research, pages 39{42. Kluwer, Boston, 1986. (pp. 20, 168)

W. S. Cleveland and S. J. Devlin. Locally weighted regression: An approach to
regression analysis by local �tting. Journal of the American Statistical Association,
83(403):596{610, September 1988. (pp. 38, 65)

E. G. Co�man, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin

packing: a survey. In D. Hochbaum, editor, Approximation Algorithms for NP-Hard

Problems. PWS Publishing, 1996. (pp. 42, 43, 76, 196)

J. M. Cohn. Automatic Device Placement for Analog Cells in KOAN. PhD thesis,

Carnegie Mellon University Department of Electrical and Computer Engineering,

February 1992. (pp. 47, 178)

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990. (p. 24)

J. Crawford. Propositional versions of parity learning problems. Internet resource

available by anonymous FTP, at ftp://dimacs.rutgers.edu/pub/challenge/-

sat/contributed/crawford/README, July 1993. (pp. 96, 199)

205

R. Crites and A. Barto. Improving elevator performance using reinforcement learn-

ing. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in Neural

Information Processing Systems 8, 1996. (pp. 13, 21)

S. Davies and S. Baluja. Personal communication, April 1998. (p. 171)

J. S. de Bonet, C. L. Isbell Jr., and P. Viola. MIMIC: Finding optima by estimating
probability densities. In Michael C. Mozer, Michael I. Jordan, and Thomas Petsche,

editors, Advances in Neural Information Processing Systems, volume 9, page 424.
The MIT Press, 1997. (p. 170)

R. Dearden, N. Friedman, and S. Russell. Bayesian Q-Learning. In Proceedings of

the Fifteenth National Conference on Arti�cial Intelligence (AAAI), 1998. (p. 130)

F. D'Epenoux. A probabilistic production and inventory problem. Management
Science, 10:98{108, 1963. (p. 19)

D. N. Deutsch. A `dogleg' channel router. In Proceedings of the 13th ACM/IEEE
Design Automation Conference, pages 425{433, 1976. (p. 79)

J. Doran and D. Michie. Experiments with the graph traverser program. Proceedings

of the Royal Society of London, 294, Series A:235{259, 1966. (p. 169)

M. Dorigo and L. Gambardella. Ant-Q: A reinforcement learning approach to combi-
natorial optimization. Technical Report 95-01, Irdia, Universit�e Libre de Bruxelles,
1995. (p. 167)

D. Dorling. Cartograms for visualizing human geography. In H. M. Hearnshaw

and D. J. Unwin, editors, Visualization in Geographical Information Systems, pages
85{102. Wiley, 1994. (p. 93)

D. Dorling. Area cartograms: their use and creation. Number 59 in Concepts

and Techniques in Modern Geography. University of East Anglia: Environmental
Publications, 1996. (p. 93)

Q. Duan, S. Sorooshian, and V. Gupta. E�ective and e�cient global optimization
of conceptual rainfall-runo� models. Water Resources Research, 28(4):1015{1031,

1992. (p. 41)

S. Fahlman and C. Lebiere. The Cascade-Correlation learning architecture. In

D. Touretzky, editor, Advances in Neural Information Processing Systems 2. Morgan

Kaufmann, 1990. (p. 65)

E. Falkenauer and A. Delchambre. A genetic algorithm for bin packing and line
balancing. In Proc. of the IEEE 1992 International Conference on Robotics and

Automation, pages 1186{1192, Nice, France, May 1992. (pp. 47, 74)

206

E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of

Heuristics, 2(1):5{30, 1996. (pp. 74, 76, 77, 196)

N. Friedman and Z. Yakhini. On the sample complexity of learning Bayesian net-

works. In Proc. 12th Conference on Uncertainty in Arti�cial Intelligence, 1996.
(p. 84)

J. H. Friedman. Multivariate adaptive regression splines. Annals of Statistics,

19(1):1{67, 1991. (p. 65)

N. Friedman. Learning belief networks in the presence of missing values and hidden

variables. In Proc. 14th International Conference on Machine Learning, pages 125{
133. Morgan Kaufmann, 1997. (pp. 84, 85)

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, 1979. (pp. 42, 72, 95)

F. Glover and M. Laguna. Tabu search. In Modern Heuristic Techniques for Com-
binatorial Problems. Scienti�c Publications, Oxford, 1993. (p. 164)

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, Mass., 1989. (p. 169)

G. Gordon. Stable function approximation in dynamic programming. In Proceedings
of the 12th International Conference on Machine Learning. Morgan Kaufmann, 1995.
(pp. 13, 23, 27)

S. M. Gusein-Zade and V. S. Tikunov. A new technique for constructing continu-
ous cartograms. Cartography and Geographic Information Systems, 20(3):167{173,

1993. (p. 93)

L. W. Hagen and A. B. Kahng. Combining problem reduction and adaptive multi-

start: A new technique for superior iterative partitioning. IEEE Transactions on
CAD, 16(7):709{717, 1997. (p. 164)

B. Hajek. Cooling schedules for optimal annealing. Math. Oper. Res., 13(2):311{329,
1988. (p. 188)

M. Harmon, L. Baird, and A. H. Klopf. Advantage updating applied to a di�erential
game. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances In Neural

Information Processing Systems 7. MIT Press, 1995. (p. 18)

D. Heckerman, D. Geiger, and M. Chickering. Learning Bayesian networks: The

combination of knowledge and statistical data. Technical Report MSR-TR-94-09,
Microsoft Research, 1994. (pp. 84, 85)

207

G. E. Hinton and S. J. Nowlan. How learning can guide evolution. Complex Systems,

1(1):495{502, June 1987. (p. 170)

R. Howard. Dynamic Programming and Markov Processes. MIT Press and John

Wiley & Sons, 1960. (pp. 19, 167)

F. Hsu, T. S. Anantharaman, M. S. Campbell, and A. Nowatzyk. A grandmaster

chess machine. Scienti�c American, 263(4):44{50, October 1990. (p. 12)

M. D. Huang, F. Romeo, and A. Sangiovanni-Vincentelli. An e�cient general cooling

schedule for simulated annealing. In Proceedings of the International Conference on
Computer-Aided Design, pages 381{384, November 1986. (p. 188)

A. Jagota, L. Sanchis, and R. Ganesan. Approximating maximumclique using neural

network and related heuristics. In D. S. Johnson and M. A. Trick, editors, DIMACS

Series: Second DIMACS Challenge. American Mathematical Society, 1996. (p. 164)

A. Jagota. An adaptive, multiple restarts neural network algorithm for graph color-

ing. European J. of Oper. Res., 93:257{270, 1996. (p. 164)

Y. Jiang, H. Kautz, and B. Selman. Solving problems with hard and soft constraints
using a stochastic algorithm for MAX-SAT. In First International Joint Workshop on
Arti�cial Intelligence and Operations Research, Timberline, Oregon, 1995. (p. 102)

D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case study

in local optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in

Combinatorial Optimization. Wiley and Sons, 1995. (to appear). (pp. 161, 163, 164,

170)

D. S. Johnson, C. R. Aragon, L. A. Mcgeoch, and C. Schevon. Optimization by

simulated annealing: an experimental evaluation; part I, graph partitioning. Oper.
Res., 37:865{892, 1989. (p. 188)

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by sim-

ulated annealing: an experimental evaluation; part II, graph colouring and number

partitioning. Operations Research, 39:378{406, 1991. (p. 188)

S. A. Johnson, J. R. Stedinger, C. A. Shoemaker, Y. Li, and J. A. Tejada-Guibert.
Numerical solution of continuous-state dynamic programs using linear and spline

interpolation. Operations Research, 41(3):484{500, 1993. (p. 20)

D. S. Johnson. A theoretician's guide to the experimental analysis of algorithms.

Unpublished manuscript, April 1996. (p. 70)

208

A. Juels and M. Wattenberg. Stochastic hillclimbing as a baseline mathod for evalu-

ating genetic algorithms. In David S. Touretzky, Michael C. Mozer, and Michael E.
Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8,

pages 430{436. The MIT Press, 1996. (p. 161)

L. P. Kaelbling. Learning in Embedded Systems. The MIT Press, Cambridge, MA,

1993. (p. 177)

R. Karp. Algorithms as a tool for molecular biology. Talk given at Carnegie Mel-

lon University, archived on Internet at http://ulserver.speech.cs.cmu.edu/-

v/karp/, September 1997. (p. 41)

H. Kautz. Personal communication, April 1998. (p. 99)

C. Kenyon. Best-�t bin-packing with random order. In Proceedings of the Sev-
enth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 359{364, 1996.

(p. 76)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimisation by simulated annealing.
Science, 220:671{680, 1983. (pp. 44, 188)

L. Kuvayev and R. Sutton. Approximation in model-based learning. In C. G. Atke-
son and G. J. Gordon, editors, ICML-97 Workshop on Modelling in Reinforcement

Learning, 1997. Internet resource available at http://www.cs.cmu.edu/~ggordon/-
ml97ws/. (p. 145)

W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach based on

the MDL principle. Computational Intelligence, 10(4), 1994. (p. 84)

J. Lam and J.-M. Delosme. Performance of a new annealing schedule. In ACM/IEEE,
editor, Proceedings of the 25th ACM/IEEE Design Automation Conference, pages

306{311, Anaheim, CA, June 1988. IEEE Computer Society Press. (pp. 71, 188)

J. Lam. An E�cient Simulated Annealing Schedule. PhD thesis, Computer Science

Department, Yale University, 1988. (p. 188)

K.-F. Lee and S. Mahajan. A pattern classi�cation approach to evaluation function

learning. Arti�cial Intelligence, 36, 1988. (pp. 20, 168)

S. Lin and B. W. Kernighan. An e�ective heuristic algorithm for the traveling

salesman problem. Operations Research, 21:498{516, 1973. (pp. 12, 43)

Z.-M. Lin. An e�cient optimum channel routing algorithm. In IEEE Proceedings

of the SOUTHEASTCON, volume 2, pages 1179{1183, 1991. (p. 79)

209

L.-J. Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis,

Carnegie Mellon University, 1993. (pp. 142, 166)

M. L. Littman and C. Szepesv�ari. A generalized reinforcement-learning model: Con-

vergence and applications. In L. Saitta, editor, Machine Learning: Proceedings of

the Thirteenth International Conference. Morgan Kaufmann, 1996. (pp. 13, 18, 32)

M. L. Littman. Markov games as a framework for multi-agent reinforcement learning.

In Proc. 11th International Conference on Machine Learning, pages 157{163. Morgan
Kaufmann, 1994. (p. 18)

M. L. Littman. Algorithms for Sequential Decision Making. PhD thesis, Department

of Computer Science, Brown University, Providence, RI, 1996. Also Technical Report
CS-96-09. (p. 18)

S. Mahadevan, N. Marchalleck, T. K. Das, and A. Gosavi. Self-improving factory
simulation using continuous-time average-reward reinforcement learning. In Proc.

14th International Conference on Machine Learning, pages 202{210. Morgan Kauf-
mann, 1997. (p. 18)

O. C. Martin and S. W. Otto. Combining simulated annealing with local search
heuristics. Technical Report CS/E 94-016, Oregon Graduate Institute Department

of Computer Science and Engineering, June 1994. (pp. 162, 163, 170)

D. McAllester, H. Kautz, and B. Selman. Evidence for invariants in local search. In
Proceedings of AAAI-97, 1997. (p. 96)

C.J. Merz and P.M. Murphy. UCI repository of machine learning databases,

1998. Internet resource available at http://www.ics.uci.edu/~mlearn/-

MLRepository.html. (p. 197)

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997. (p. 84)

D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli. Convergence and �nite-time

behavior of simulated annealing. Adv. in Applied Probability, 18:747{771, 1986.
(p. 188)

R.Moll, A. Barto, T. Perkins, and R. Sutton. Reinforcement and local search: A case

study. Technical Report UM-CS-1997-044, University of Massachusetts, Amherst,

Computer Science, October, 1997. (pp. 64, 106)

J. Moody and C. J. Darken. Fast learning in networks of locally-tuned processing
units. Neural Computation, 1(2):281{294, 1989. (p. 65)

A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with

less data and less time. Machine Learning, 13:103{130, 1993. (pp. 13, 19, 130, 145)

210

A.W. Moore and M. S. Lee. Cached su�cient statistics for e�cient machine learning

with large datasets. Journal of Arti�cial Intelligence Research, 8:67{91, 1998. (pp. 85,
86, 197)

A. W. Moore and J. Schneider. Memory-based stochastic optimization. In D. S.
Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Neural Information Processing

Systems 8. MIT Press, 1996. (pp. 177, 180)

A.W. Moore, J. G. Schneider, J. A. Boyan, and M. S. Lee. Q2: Memory-based active

learning for optimizing noisy continuous functions. In Proceedings of the Fifteenth

Interational Conference on Machine Learning (ICML), 1998. (p. 180)

D. Moriarty, A. Schultz, and J. Grefenstette. Reinforcement learning through evo-

lutionary computation. Technical Report NCARAI Report AIC-97-015, Naval Re-
search Laboratory, 1997. (p. 179)

Y. Nakakuki and N. M. Sadeh. Increasing the e�ciency of simulated annealing search

by learning to recognize (un)promising runs. Technical Report CMU-RI-TR-94-30,
CMU Robotics Institute, 1994. (p. 177)

A. Neumaier. Molecular modeling of proteins and mathematical prediction of protein
structure. SIAM Rev., 39:407{460, 1997. (p. 41)

N.J. Nilsson. Principles of Arti�cial Intelligence. McGraw-Hill, 1980. (p. 12)

E. Ochotta. Synthesis of High-Performance Analog Cells in ASTRX/OBLX. PhD

thesis, Carnegie Mellon University Department of Electrical and Computer Engi-

neering, April 1994. (pp. 179, 188)

T. Perkins, R. Moll, and S. Zilberstein. Filtering to improve the performance

of multi-trial optimization algorithms. Unpublished manuscript, November 1997.
(p. 177)

J. Pollack, A. Blair, and M. Land. Coevolution of a backgammon player. In C.G.

Langton, editor, Proceedings of Arti�cial Life 5. MIT Press, 1996. (p. 179)

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes

in C: The Art of Scienti�c Computing. Cambridge University Press, second edition,

1992. (pp. 67, 142, 176, 179, 188)

M. L. Puterman and M. C. Shin. Modi�ed policy iteration algorithms for discounted
Markov decision processes. Management Science, 24:1127{1137, 1978. (p. 19)

M. L. Puterman. Markov Decision Processes|Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, Inc., New York, NY, 1994. (pp. 12, 13)

211

L. A. Rendell. A new basis for state-space learning systems and a successful imple-

mentation. Arti�cial Intelligence, 20:369{392, July 1983. (p. 168)

D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations by

error propagation. In D. Rumelhart and J. McClelland, editors, Parallel Distributed

Processing, volume 1, chapter 8. MIT Press, 1986. (p. 65)

G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist sys-

tems. Technical Report CUED/F-INFENG/TR166, Cambridge University Engi-

neering Department, 1994. (p. 19)

S. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach. Prentice Hall,
1995. (p. 44)

J. Rust. Numerical dynamic programming in economics. In Handbook of Compu-
tational Economics. Elsevier, North Holland, 1996. (p. 20)

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3:211{229, 1959. (pp. 20, 168)

A. L. Samuel. Some studies in machine learning using the game of checkers II|
Recent progress. IBM Journal of Research and Development, 11(6):601{617, 1967.

(pp. 20, 168)

J. G. Schneider, J. A. Boyan, and A. W. Moore. Value function based production
scheduling. In Proceedings of the Fifteenth Interational Conference on Machine

Learning (ICML), 1998. (p. 35)

N. Schraudolph, P. Dayan, and T. Sejnowski. Using TD(�) to learn an evaluation
function for the game of Go. In J. D. Cowan, G. Tesauro, and J. Alspector, editors,

NIPS-6. Morgan Kaufmann, 1994. (p. 168)

C. Sechen and A. Sangiovanni-Vincentelli. TimberWolf 3.2: A new standard cell
placement and global routing package. In Proceedings of the IEEE/ACM Design

Automation Conference, pages 432{439, 1986. (p. 188)

B. Selman and H. A. Kautz. An empirical study of greedy local search for satis�abil-
ity testing. In Proceedings of the 11th National Conference on Arti�cial Intelligence,

pages 46{53, Menlo Park, CA, USA, July 1993. AAAI Press. (p. 43)

B. Selman, H. Kautz, and B. Cohen. Local search strategies for satis�ability testing.

In Cliques, Coloring, and Satis�ability: Second DIMACS Implementation Challenge,

DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Amer-

ican Mathematical Society, 1996. (pp. 44, 95, 96)

212

B. Selman, H. Kautz, and D. McAllester. Ten challenges in propositional reason-

ing and search. In Proceedings of the Fifteenth International Joint Conference on
Arti�cial Intelligence (IJCAI), 1997. (p. 96)

S. Singh and D. Bertsekas. Reinforcement learning for dynamic channel allocation

in cellular telephone systems. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,

Advances in Neural Information Processing Systems, volume 9, page 974. The MIT
Press, 1997. (p. 150)

S. P. Singh and R. S. Sutton. Reinforcement learning with replacing eligibility traces.
Machine Learning, 22:123{158, 1996. (pp. 19, 139)

S. P. Singh and R. Yee. An upper bound on the loss from approximate optimal-value

functions (Technical Note). Machine Learning, 1994. (p. 23)

S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesv�ari. Convergence results for
single-step on-policy reinforcement learning algorithms. Machine Learning, 1998. To
appear. (pp. 19, 21, 22)

L. Su, W. L. Buntine, R. Newton, and B. Peters. Learning as applied to stochastic
optimization for standard cell placement. International Conference on Computer

Design (Submitted), 1998. (p. 178)

R. Subramanian, R. P. Sche� Jr., J. D. Quillinan, D. S. Wiper, and R. E. Marsten.

Coldstart: Fleet assignment at delta air lines. Interfaces, 24(1):104{120, Jan.-Feb.

1994. (pp. 41, 42)

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998. (p. 138)

R. S. Sutton and S. D. Whitehead. Online Learning with Random Representations.
In Machine Learning: Proceedings of the Tenth International Conference, pages

314{321, San Mateo, CA, 1993. Morgan Kaufmann. (pp. 65, 66)

R. S. Sutton. Implementation details of the TD(�) procedure for the case of vector

predictions and backpropagation. Technical Note TN87-509.1, GTE Laboratories,

May 1987. (p. 22)

R. S. Sutton. Learning to predict by the methods of temporal di�erences. Machine
Learning, 3, 1988. (pp. 13, 19, 21, 137, 138, 139)

R. S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International

Conference on Machine Learning. Morgan Kaufmann, 1990. (pp. 19, 20, 145)

213

R. S. Sutton. Gain adaptation beats least squares. In Proceedings of the 7th Yale

Workshop on Adaptive and Learning Systems, pages 161{166, 1992. (p. 150)

R. S. Sutton. Generalization in reinforcement learning: Successful examples using

sparse coarse coding. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors,

Advances in Neural Information Processing Systems, volume 8, pages 1038{1044.

The MIT Press, 1996. (pp. 23, 27, 139)

W. Swartz and C. Sechen. New algorithms for the placement and routing of macro

cells. In Satoshi Sangiovanni-Vincentelli, Alberto; Goto, editor, Proceedings of the

IEEE International Conference on Computer-Aided Design, pages 336{339, Santa
Clara, CA, November 1990. IEEE Computer Society Press. (pp. 71, 188, 189)

S. Szykman and J. Cagan. A simulated annealing-based approach to three-

dimensional component packing. ASME Journal of Mechanical Design, 117, June
1995. (pp. 41, 47)

T. G. Szymanski. Dogleg channel routing is NP-complete. IEEE Transactions on
Computer-Aided Design, CAD-4:31{40, 1985. (p. 79)

G. Tesauro and G. R. Galperin. On-line policy improvement using Monte-Carlo

search. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural

Information Processing Systems, volume 9. MIT Press, 1997. (pp. 167, 168)

G. Tesauro. Practical issues in temporal di�erence learning. Machine Learning,

8(3/4), May 1992. (pp. 13, 20, 21, 168)

G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation, 6(2):215{219, 1994. (p. 20)

S. Thrun. E�cient exploration in reinforcement learning. Technical Report CMU-
CS-92-102, Carnegie Mellon University, March 1992. (pp. 21, 22, 130)

S. Thrun. Learning to play the game of chess. In G. Tesauro, D. Touretzky, and

T. Leen, editors, Advances in Neural Information Processing Systems 7, pages 1069{

1076. The MIT Press, Cambridge, MA, 1995. (p. 168)

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-di�erence learning with
function approximation. Technical Report LIDS-P-2322, MIT, 1996. (pp. 13, 21, 23,

137, 139)

W. Tunstall-Pedoe. Genetic algorithms optimizing evaluation functions. Interna-

tional Computer Chess Association Journal, 14(3):119{128, 1991. (p. 179)

214

P. Utgo� and J. Clouse. Two kinds of training information for evaluation func-

tion learning. In Proceedings of the National Conference on Arti�cial Intelligence
(AAAI), 1991. (p. 179)

P. E. Utgo�. Feature function learning for value function approximation. Technical

Report UM-CS-1996-009, University of Massachusetts, Amherst, Computer Science,
January, 1996. (p. 176)

C. Watkins. Learning From Delayed Rewards. PhD thesis, Cambridge University,

1989. (pp. 13, 19, 20, 178)

S. Webb. Optimization by simulated annealing of three-dimensional conformal treat-

ment planning for radiation �elds de�ned by a multileaf collimator. Phys. Med. Biol.,
36:1201{1226, 1991. (pp. 41, 91)

S. Webb. Optimising the planning of intensity-modulated radiotherapy. Phys. Med.
Biol., 39:2229{2246, 1994. (p. 91)

A. Wilk. Constraint satisfaction channel routing. Technical Report CS96-04, De-
partment of Applied Mathematics and Computer Science, Weizmann Institute of
Science, 1996. (pp. 79, 80)

D. F. Wong, H.W. Leong, and C.L. Liu. Simulated Annealing for VLSI Design.
Kluwer, 1988. (pp. 12, 41, 46, 79, 80, 81, 82, 111, 114, 119, 170, 196)

K. Woolsey. Rollouts. Inside Backgammon, 1(5):4{7, September-October 1991.
(p. 167)

T. Yoshimura and E. S. Kuh. E�cient algorithms for channel routing. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, CAD-1(1):21{
35, January 1982. (pp. 79, 196)

W. Zhang and T. G. Dietterich. A reinforcement learning approach to job-shop

scheduling. In Proceedings of the International Joint Conference on Arti�cial Intel-

ligence (IJCAI), pages 1114{1120, 1995. (pp. 13, 21, 161, 164)

W. Zhang and T. G. Dietterich. Solving combinatorial optimization tasks by rein-

forcement learning: A general methodology applied to resource-constrained schedul-

ing. Submitted for publication, 1998. (pp. 155, 165, 166)

W. Zhang. Reinforcement Learning for Job-Shop Scheduling. PhD thesis, Oregon

State University, 1996. (p. 164)

M. Zweben, B. Daun, and M. Deale. Scheduling and rescheduling with iterative

repair. In M. Zweben and M. S. Fox, editors, Intelligent Scheduling, chapter 8,

pages 241{255. Morgan Kaufmann, 1994. (pp. 165, 166)

