
Computer-Assisted

Translation of Programs

from 6502 to 6809

by Edgar Pass

The article discusses techniques
of translating 6502 programs to
run on a 6809·based machine.
Tables, 6809 routines, and
discussion of special problems
are included.

Initial Comparison

From a review of the Motorola 6800
and 6809, and MaS 6502, the instruc­
tion sets of the 6809 and 6502 are both
seen to be derivatives of the (older)
6800 instruction set. However, the ex­
tensions and changes made in the 6809
and 6502 instruction sets have been in
quite different directions. Table 1
presents the programming models for
each of the processors, to indicate the
flavor of sorne of the changes and
extensions.

Register Comparison

The similarities and differences in
the register structures of the processors
are apparent in table 1. Of the three
processors, the 6809 has the most ver­
satile register structure with its two
8-bit accumulators, 8-bit direct page
register, two 16-bit index registers, and
two 16-bit stack pointers. The 6502 has
a less versatile register structure than
either of the other two processors, its
only highlight being a second 8-bit in­
dex register. The relative speed of the
processors or relative compactness of
the code are not issues here.

When matching up the register
structures from the 6502 to the 6809,
most registers map to the similarly
named register. The exception is the
6502 A register, which corresponds
more close1y to the 6809 B register than
the A register because of the manner in
which the 6809 TFR and EXG instruc­
tions function.

The condition code registers of the
three processors aH differ in format and
content, with the 6800 and 6809 being
the most similar and the 6502 the most

Table 1: Programmlng Models for the 6800,6809, and 6502

Register Bits Description

6800

A 8 Accumulator
B 8 Accumulator
CC 8 Condition Code Register (llHINZVC)
PC 16 Program Counter
S 16 Stack Pointer
X 16 Index Register

6809

A 8 Accumulator
B 8 Accumulator
CC 8 Condition Code Register [EFHINZVC)
D 16 A and B Registers (Concatenated)
DP 8 Direct Page Register
PC 16 Program Counter
S 16 Stack Pointer
U 16 User Stack Pointer
X 16 Index Register
y 16 Index Register

6502

A 8 Accumulator
CC 8 Condition Code Register (NVOBDIZC)
PC 16 Program Counter
S 8 Stack Pointer (First 8 bits = 01)
X 8 Index Register
y 8 Index Register

where Condition Code Register bits are defined as foHows:

B
C
D
E
F
H
l
N
V
Z

BRK command (6502)
carry/borrow
decimal mode (6502)
entire state on stack (6809)
fast interrupt (6809)
haH carry (6800/6809)
interrupt mask
negative
overflow
zero

No. 50 - July 1982 MICRO - The 6502/6809 Journal 77

z
o
(}1

o
1

C­

c
-<
(CJ
())
N

5':
o
:Il
o
1

-i

:Y
CD
Dl
(}1

o
N
âi
())
o
(CJ

C­
O
c
::;
~

Table B·1 (continued) Table B1 (continued)

Operation	 Mnemonic Immediate Direct Indexed Extended Inherent Operation	 Mnemonic Immediate Direct Indexed Extended Inherent

Transfer Reg' s 1 TFR** 1 1 1 1 1 IF

Left 1 LSLB 1 1 1 1 1 58

Logical shift	 1 LSLA 1 1 1 1 1 48

--------------+--------+---------+---------+---------+---------+--------­
Test. Zero or	 1 TSTA 1 1 1 1 1 4D
1 LSL 1 1 riJ8 1 68* 1 78 1

Minus	 1 TSTB 1 1 1 1 1 5D
--------------+--------+---------+---------+---------+---------+--------­ 1 TST 1 1 riJD 1 6D* 1 7D 1

1 LSRB 1 1 1 1 1 54

Logical Shift	 1 LSRA 1 1 1 1 1 44

--------------+--------+---------+---------+---------+-------~-+---------* Post byte required (see indexed addressing chart)1 LSR 1 1 riJ4 1 64* 1 74 1

** Post byte specifying registers to be used is required.--------------+--------+---------+---------+---------+---------+---------Multiply	 1 MUL 1 1 1 1 1 3D

--------------+--------+---------+---------+---------+---------+---------
Complement. 2 ' si NEGA 1 1 1 1 1 4riJ

1 NEGB 1 1 1 1 1 5riJ

1 NEG 1 1 riJriJ 1 6riJ* 1 7riJ 1
 Table B·2: Branch and Long Branch Instructions

--------------+--------+---------+---------+---------+---------+---------
No Operation	 1 NOP 1 1 1 1 1 12

Operation Mnemonic Relative Direct Indexed Extended--------------+--------+---------+---------+---------+---------+---------
Inclusive OR	 1 ORA 1 8A 1 9A 1 AA* 1 BA 1

1 ORB 1 CA 1 DA 1 EA* 1 FA 1
 Branch if Carry Clear BeC 24 1 1 1

1 ORCC 1 lA 1 1 1 1
 LBce lriJ24 1 1 1

Branch if Carry Set BeS 25 1 1
--------------+--------+---------+---------+--~------+---------+--------- LBCS lriJ25 1

Push Reg' s 1 PSHS** 1 1 1 1 34
 Branch if = Zero BEO 27 1

on Stack 1 PSHU** 1 1 1 1 1 36
 LBEO lriJ27 1

Branch if >- Zero BGE 2e 1
--------------+--------+---------+---------+---------+---------+--------­ LBGE lriJ2e 1

from Stack 1 PULU** 1 1 1 1 1 37

Pull Reg' s	 1 PULS** 1 1 1 1 1 35

Branch if > Zero	 BGT 2E 1

LBGT lriJ2E 1
----------~---+--------+---------+---------+---------+---------+--------- Branch if Higher BHI 22 1

1 ROLB 1 1 1 1 1 59

Rotate Left	 1 ROLA 1 \ 1 1 1 49

LBHI lriJ22 1

1 ROL 1 1 riJ9 1 69* 1 79 1
 Branch if Higher/Same	 BHS 24 1

LBHS lriJ24 1
--------------+--------+---------+---------+---------+---------+--------- Branch if <~ Zero BLE 2F 1

1 RORB 1 1 1 1 1 56

Rotate Right	 1 RORA 1 1 1 1 1 46

LBLE 1 lriJ2F 1

1 ROR 1 1 riJ6 1 66* 1 76 1
 Branch if Lower	 BLO 25 1

LBLO lriJ25 1
--------------+--------+---------+---------+---------+---------+---------

Subtract with	 1 SBCA 1 82 1 92 1 A2* 1 B2 1
 Branch if Lower/Same BLS 23 1

Carry 1 SBCB 1 C2 1 D2 1 E2* 1 F2 1
 1 LBLS lriJ23 1 1

Branch if < Zero 1 BLT 2D 1 1
--------------+--------+---------+---------+---------+---------+--------­
1 LBLT 102D 1 1

Branch if Minus 1 BMI 2B 1 1

Sign Extènd	 1 SEX 1 1 1 1 1 ID

--------------+--------+---------+---------+---------+---------+--------­ 1 LBMI lriJ2B 1 1

Store 1 STA 1 1 97 1 A7* 1 B7 1
 Branch if Not - Zero 1 BNE 26 1 1

1 STB 1 1 DT 1 E7* 1 F7 1
 1 LBNE lriJ26 1 1

1 STD 1 1 DD 1 ED* 1 FD 1
 Branch if Plus 1 BPL 2A 1 1

1 STS 1 1 lriJDF 1 lriJEF* 1 lriJFF 1
 1 LBPL lriJ2A 1 1

1 STU 1 1 DF 1 EF* 1 FF 1
 Branch Always 1 BRA 2riJ 1 1

1 STX 1 1 9F 1 AF* 1 BF 1
 1 LBRA 16 1 1

1 STY 1 1 1riJ9F 1 lriJAF* 1 10BF 1
 Branch Never	 1 BRN 21 1 1

1 LBRN lriJ21 1 1
--------------+--------+---------+---------+---------+---------+---------
Subtract	 1 SUBA 1 8riJ 1 90 1 AriJ* 1 BriJ 1
 Branch if V Clear 1 BVC 28 1 1

1 SUBB 1 CriJ 1 DriJ 1 E0* 1 FriJ 1
 1 LBVC lriJ28 1 1

1 SUBD 1 83 1 93 1 A3* 1 B3 1
 Branch if V Set	 1 BVS 29 1 1 1

1 LBVS 1029 1 1 1
--------------+--------+---------+---------+---------+---------+---------
Branch to Subroutine 1 BSR 8D 1 1 1

Interrupt 1 SWI2 1 1 1 1 1 103F

Software	 1 SWI 1 1 1 1 1 3F

1 LBSR	 17 1 1 1

1 SWI3 1 1 1 1 1 ll3F
 Jump 1	 JMP 1 riJE 1 6E* 1 7E

Jump to Subroutine 1	 JSR 1 9D 1 AD* 1 BD--------------+--------+---------+---------+---------+---------+--------- Return fram Interrupt 1 RTI 3B (Implied) 1 1

Sync to Int. 1 SYNe 1 1 1 1 1 13
 Return fram Subroutine 1	 RTS 39 (Implied) 1 1

--------------+--------+---------+---------+---------+---------+--------­ -----------------------+---------+---------+---------+----------+-------­* Post byte required (see indexed addressing chart)

())
(CJ

(0
o

;;:
o
:JJ o

1

--i
cr
CD

Ol

(]l
o
N
fi
(»
o
(0

C­
O
c
3
~

z
9
(]l
o
1

C­
c
-<
(0
(»
N

Table C: 6502 Op·Codes and Mnemonics

Operation Mnemonic Code Addressing Operation Mnemonic Code Addressing1

------------------------------------+-------------------------------------
Add with	 ADC 61 INDIRECT,X Compare CMP Cl INDIRECT,X1

Carry	 ADC 65 ZERO PAGE 1 Accumulator CMP CS ZERO PAGE
ADC 69 IMMEDIATE 1 CMP C9 IMMEDIATE
ADC 6D ABSOLUTE 1 CMP CD ABSOLUTE
ADC 71 INDIRECT,Y 1 CMP Dl INDIRECT,Y
ADC 75 ZERO PAGE,XI CMP D5 ZERO PAGE,X
ADC 79 ABSOLUTE,Y 1 CMP D9 ABSOLUTE,Y
ADC 7D ABSOLUTE,X 1 CMP DD ABSOLUTE,X

------------------------------------1-----------------------------------­
And	 AND 21 INDIRECT,X 1 Compare X CPX E0 IMMEDIATE

AND 25 ZERO PAGE 1 CPX E4 ZERO PAGE
AND 29 IMMEDIATE 1 CPX EC ABSOLUTE
AND 2D ABSOLUTE 1-----------------------------------­
AND 31 INDIRECT,Y 1 Compare Y CPY C0 IMMEDIATE
AND 35 ZERO PAGE,xl CPY c4 ZERO PAGE
AND 39 ABSOLUTE,Y 1 CPY CC ABSOLUTE
AND 3D ABSOLUTE,X------------------------------------11------------------------------------

Decrement DEC C6 ZERO PAGE
Arithmetic ASL 06 ZERO PAGE 1 DEC CE ABSOLUTE
Shift Left ASL 0A ACCUMULATORI DEC D6 ZERO PAGE,X

ASL 0E ABSOLUTE 1 DEC DE ABSOLUTE,X
ASL 16 ZERO PAGE,XI------------------------------------ ­
ASL lE ABSOLUTE,X 1 Decrement-X DEX CA IMPLIED

------------------------------------1-------------------------------------Branch	 BCC 90 RELATIVE 1 Decrement-Y DEY 88 IMPLIED
BCS B0 RELATIVE 1------------------------------------­
BEQ F0 RELATIVE Exclusive EOR 41 INDIRECT,X1

BMI 30 RELATIVE 1 Or EOR 45 ZERO PAGE
BNE D0 RELATIVE 1 EOR 49 IMMEDIATE
BPL 10 RELATIVE 1 EOR 4D ABSOLUTE
BVC 50 RELATIVE 1 EOR 51 INDIRECT,Y
BVS 70 RELATIVE 1 EOR 55 ZERO PAGE,X

------------------------------------1 EOR 59 ABSOLUTE,Y
Bit Test	 BIT 24 ZERO PAGE EOR 5D ABSOLUTE,X1

BIT 2c ABSOLUTE------------------------------------11-------------------------------------
Increment INC E6 ZERO PAGE

Break	 BRK 00 IMPLIED 1 INC EE ABSOLUTE
------------------------------------1 INC F6 ZERO PAGE,X
Clr Carry	 CLC la IMPLIED 1 INC FE ABSOLUTE,X

------------------------------------1-------------------------------------Clr Dec Mode	 CLD D8 IMPLIED 1 Increment-X INX E8 IMPLIED
------------------------------------1-------------------------------------
Clr Int Mask	 CLI 58 IMPLIED Increment-Y INY ca IMPLIED1

------------------------------------1-------------------------------------
Clr Overflow CLV B8 IMPLIED 1 Jump JMP 4C ABSOLUTE
------------------------------------1 JMP 6c INDIRECT

+ -------------------------------------
Jump to SR JSR 20 RELATIVE 1 Rotate Left ROL 26 ZERO PAGE
------------------------------------1 ROL 2A ACCUMULATOR
Load LDA Al INDIRECT,X 1 ROL 2E ABSOLUTE
Accumulator LDA AS ZERO PAGE 1 ROL 36 ZERO PAGE,X

LDA A9 IMMEDIATE 1 ROL 3E ABSOLUTE,X
LDA AD ABSOLUTE 1------------------------------------­
LDA Bl INDIRECT,Y 1 Rotate ROR 66 ZERO PAGE
LDA B5 ZERO PAGE,xl Right ROR 6A ACCUMULATOR
LDA B9 ABSOLUTE,Y 1 ROR 6E ABSOLUTE
LDA BD ABSOLUTE,X 1 ROR 76 ZERO PAGE,X

------------------------------------1 ROR 7E ABSOLUTE,X
1------------------------------------­

Table C (continued)

operation Mnemonic Code Addressing 1 Operation Mnemonic Code Addressing
------------------------------------+-------------------------------------
Load X	 LDX A2 IMMEDIATE

LDX A6 ZERO PAGE 1 Ret. flInt. RTl 40 IMPLIED
LDX AE ABSOLUTE 1------------------------------------­
LDX B6 ZERO PAGE,YI Ret. f/sR RTS 60 IMPLIED
LDX BE ABSOLUTE,Y 1------------------------------------­

----------------------~-------------I Subtract SBC El INDIRECT,X
Load Y	 LDY A0 IMMEDIATE 1 with Carry SBC ES ZERO PAGE

LDY A4 ZERO PAGE 1 SBC E9 IMMEDIATE
LDY AC ABSOLUTE 1 SBC ED ABSOLUTE
LDY B4 ZERO PAGE,xl SBC Fl INDIRECT,Y
LDY BC ABSOLUTE,X 1 SBC F5 ZERO PAGE,X

------------------------------------1 SBC F9 ABSOLUTE,Y
Logical	 LSR 46 ZERO PAGE 1 SBC FD ABSOLUTE,X
Shift Right	 LSR 4A ACCUMULATORI------------------------------------ ­

LSR 4E ABSOLUTE 1 Set Carry SEC 38 IMPLIED
LSR 56 ZERO PAGE,XI------------------------------------ ­
LSR SE ABSOLUTE 1 Set Decimal SEO F8 IMPLIED

------------------------------------1----------------------------------~--
No Oper.	 NOP EA IMPLIED 1 Set Int Msk SEI 78 IMPLIED
------------------------------------1------------------------------------­
Inclusive ORA 01 INDlRECT,X 1 Store STA 81 INDlRECT,X
OR ORA 05 ZERO PAGE 1 Accumulator STA 85 ZERO PAGE

ORA 09 IMMEDIATE 1 STA 8D ABSOLUTE
ORA 0D ABSOLUTE 1 STA 91 INDIRECT,Y
ORA Il INDlRECT,Y 1 STA 95 ZERO PAGE,X
ORA 15 ZERO PAGE,xl STA 99 ABSOLUTE,Y
ORA 19 ABSOLUTE,Y 1 STA 9D ABSOLUTE,X
ORA ID ABSOLUTE,X 1------------------------------------­------------------------------------1 Store X STX 86 ZERO PAGE

Push Data	 PRA 48 IMPLIED 1 STX 8E ABSOLUTE
PHP 08 IMPLIED 1 STX 96 ZERO PAGE,Y

------------------------------------1------------------------------------­
Pull Data	 PLA 68 IMPLIED 1 Store Y STY 84 ZERO PAGE

PLP 28 IMPLIED 1 STY SC ABSOLUTE
------------------------------------1 STY 94 ZERO PAGE,X+-------------------------------------
Transfer TAX AA IMPLIED 1
Registers TAY

TSX
A8
BA

IMPLIED
IMPLIED

1
1

TXA SA IMPLIED 1
TXS 9A IMPLIED 1
TYA 98 IMPLIED 1

------------------------------------+
Note that, on the 6502, Absolute
low-order-byte-first sequence.

addresses appear in

I\ICAO'"

unlike. All three condition code
registers contain carry/borrow, inter­
rupt mask, negative, overflow, and zero
bits, although the interpretation and
setting of bits may vary considerably
among the three.

The 6502 "V" flag is modified by
far fewer instructions than the "V"
flags on the 6800 and 6809 processors.
The 6502 "B" flag allows an interrupt
processing routine to determine the dif­
ference between an external interrupt
and an internaI interrupt generated by a
BRK commando The 6502 "D" flag
determines whether the AOC and SBC
commands will operate in decimal or
binary mode. There are no directly cor­
responding flags for "B" and "0" on
the 6800 or 6809 processors. The Inearly)
equivalent functions are performed in
quite different ways.

The addressing modes supported by
each of the processors are generally
similar, although there are a few
significant differences. Table 2 presents
the addressing modes of interest in
each of the processors of interest.

One significant difference between
the 6502 and the other two processors
lies in the storage format of a 16-bit
address. Whereas the Motorola proces­
sors store 16-bit addresses as high-order
8-bits, then low-order 8-bits in suc­
cessive locations, the 6502 stores
16-bit addresses as low order 8-bits,
then high-order 8-bits in successive
locations. This difference appears in
the format of instructions containing
16-bit addresses and offsets, return
addresses in the stack, 16-bit indirect
addresses, interrupt vectors, jump
tables, etc.

There are several differences in the
use of the S registers on the 6502, 6800,
and 6809. The most obvious is that the
6800 and 6809 use a 16-bit S register,
whereas the 6502 uses an 8-bit S
register and prefixes these 8-bits with
an 8-bit constant 01 to form a 16-bit ad­
dress. Thus the 6502 stack is restricted
to addresses $0100-$01FF. The 6800
and 6502 decrement the stack pointer
after placing a new item into it, where­
as the 6809 decrements it before. Thus
the 6800 and 6502 stack pointers
always point to one address below the
current stack limit, whereas the 6809
stack pointer always points ta the last
item placed onto the stack [if any). The
TSX and TXS instructions on the 6800
(but not on the 6502) take this into ac­
count by adding one to the X register
after transferring the contents of the
the S register to it and by subtracting
one from the S register after transfer­
ring the X register to it.

This difference can cause a problem
when you translate programs from the
6800 ta the 6809. However, because of
the highly restricted nature of the 6502
S register, it should cause little diffi­
culty in translating programs from the
6502 to the 6809. The main problem
stems from the 6800 trick of using the
stack pointer as a second index register.
However, the 6502 Y register functions
as a second index register in many ad­
dressing modes, and the 6502 S register
is restricted to page 01 in memory ad­
dresses, eliminating it as an effective
third index register on the 6502.

Table 3 summarizes many of the
differences and similarities already
discussed concerning the 6502, 6800,
and 6809, in terms of the 6502 instruc­
tion set. This set has 56 members, as
opposed to 97 members for the 6800
and 58 members for the 6809. How­
ever, counting address mode and regis­
ter variations, the 6502 can execute ap­
proximately 100 instructions, the 6800
can execute approximately 200 instruc­
tions, and the 6809 can execute approx­
imately 750 instructions. Complete in­
struction sets for each of the 6502,
6800, and 6809 processors may be

Table 2: Addressing Modes

Mode Description
Inherent
(Accumulator,
Implied)

Changes registers or processor states without
explicit regard for memory addressing

Direct
(Zero-Page)

Prefixes 8-bit address in instruction with 8-bit
00 (OP on 6809) to provide 16-bit effective address

Extended
(Absolute)

Uses 16-bit address in instruction directly as
effective address

Immediate Uses 8-bit or 16-bit value in instruction directly,
and not as a memory address

Relative Adds 8-bit offset in instruction to address of next
sequential instruction to provide effective address
of next instruction to be executed

Indexed 16800) Adds 8-bit offset in instruction to value in X
register to provide 16-bit effective address

Indexed (6809) Uses one or more post-byte values in instruction
to indicate an entire range of register and direct,
indirect, or non-indirect addressing schemes

Zero Page Indexed
[6502)

Adds 8-bit offset in instruction to value in X or Y
register to compute 8~bit value; prefixed this value
with 8-bit 00 to provide 16-bit effective address

Absolute Indexed
16502)

Adds 16-bit offset in instruction to value in X or Y
register to provide a 16-bit effective address

Indirect 16502) Uses the 16-bit address in instruction to provide a
16-bit effective addressj uses the contents of the
locations at that address and at the next address to
provide a 16-bit memory address

Indexed Indirect
(6502)

Adds the 8-bit offset in instruction to value in X or
y register to provide an 8-bit value, which is
prefixed by an 8-bit 00 to form a 16-bit effective
addressi the locations at that address and at the
next address to provide a 16-bit effective address

Indirect Indexed
(6502)

Prefixes 8-bit address in instruction with 8-bit 00
to provide a 16-bit effective address; uses the
contents of the locations at that address and at the
next address to provide a 16-bit effective address

No. 50 - July 1982 MICRO - The 6502/6809 Journal 79

found at the end of this article. An
asterisk in table 3 indicates that the in­
struction has the indicated address
mode. An entry under Condition-Code­
Reg Form indicates the conversion of
the Condition-Code format. An entry
under Stack indicates stack manipula­
tion, and an entry under X/Y indicates
X or Y register modification. The en­
tries under 6809 Condition-Cade-Reg
indicate the results provided by the
translation suggested later in this
article.

Emulation Discussion

The additional registers and instruc­
tions on the 6809 make possible an
almost exact emulation of the 6502.
The 6809 code will not generally have
the same length as the 6502 code, nor
will it require the same amount of time
ta execute. Because the translation is
being done before assembler time, no
run-time instruction modification is
assumed.

Certain features of the two pro­
cessors are similar but not identical. If
the incremental cast of the exact
emulation of a 6502 instruction or
feature exceeds its incremental utility
in a specifie program or subroutine, it
would be highly desirable ta be able ta
trade off the exact emulation for a
speed and space reduction in the 6809
code. For instance, the format and con­
tents of the 6502 and 6809 condition
code registers are different. Assuming
that the "B" and "D" flags of the 6502
are handled separately, many 6502 pro­
grams would run correctly with no or
minor changes (after translationl on the
6809, even with the 6809 format of
condition code register.

The following differences in the
processors' instruction sets cause time
and space problems in the emulation
process:

• reversed	 arder of absolute address
high and low bytes

•	 stack restriction ta $OlXX address
range

•	 "B", "D", and "V" flag handling in
many instructions

• format of condition code register

• page-zero wraparound	 in several ad­
dressing modes

• 8-bit X and Y register limitations

Other major tradeoffs will be discussed in
relation ta the individual instructions.

Table 3: Summary Table

6502 Abso1ute/ Condition-Code-Reg Stack Zero Indirect X/Y
Opcode Zero-Page 6502 6809 Forro Wrap Wrap

NV0BDIZC EFHINZVC

ADC NV ZC .. H.NZVC*	 * *
AND N Z NZ ..*	 * *
ASL N ZC NZ.C

BCC

BCS

BEQ

BIT NV Z.....NZV.

*	 *

*
BMI

BNE

BPL

BRK ... 1.1 1 -3

BVC

BVS

CLC 0 0

CLD .. •• 0 ... RESET D

CLI 0 0

CLV • 0 0.

CMP N ••••• ZC NZ.C
 * *
CPX N ••••• ZC NZ.C*
CPY N ••••• ZCNZ.C

DEC N Z • NZ ..
*	 *
DEX N Z •NZ .. X
DEY N Z. NZ .. Y

Opcode Abso1ute/ Condition-Code-Reg Stack Zero Indirect X/Y
Zero-Page 6502 6809 Forro Wrap Wrap

NV0BDIZC EFHINZVC

EOR N ••••• Z NZ ..

INC N Z NZ ..

*	 * *
*

INX N Z NZ .. X

INY N Z NZ .. Y

JMP

JSR -2

LDA N..... Z.. , .. NZ ..

LDX N ••••• Z ••••• NZ .. X

*	 * *
*	 *

LDY N Z NZ ..	 Y*	 *
LSR 0 ZC 0Z.C*
NOP
DRA N ••••• Z. '" .NZ ..

PHA -1

PHP TD -1

PLA N..... Z..... NZ .. +1

PLP NV0BDIZC EFHINZVC FROM +1

ROL N ZC NZVC

*	 *

*
ROR N ZC NZ.C

RTl NV0BDIZC EFHINZVC +3

RTS +2

SBC NV ZC NZVC

SEC 1 1

SED .••• 1. •• SET D

SEI 1 1

STA

*	 * *

*	 * *
STX	 X*	 *
STY	 Y*	 *
TAX N Z NZ .. X
TAY N Z NZ .. Y
TSX N ••••• Z ••••• NZ .. X
TXA N••••• Z ••••• NZ .. X
TXS X+1 X
TYA N••••• Z ••••• NZ .. Y

Reversed Address Bytes	 TFR CC,DP Save CC Register
LDU address Load Address

Ta reverse the arder of high and low EXG U,D Move Address
address bytes on the 6809 from the EXG A,B Reverse Bytes
6502, several approaches are possible. EXG D,U Put Address in U
The most direct method, which still Register
maintains an exact emulation, is ta TFR Dr,CC Restore Cç: Register
assume that aIl extended address bytes,
except within instructions, are reversed. Executing this code is time­
You must include 6809 code of the consuming and wasteful if it is not
following form ta actively flip the ad­ needed. The definition of the 6502
dress before use: .WORD (or. equivalent) assembler

MICRO - The 6502/6809 Journal	 No. 50 - July 1982 80

Table 4: Translation Analysis Table 4 (ContinuedJ

6502 Opcode 6809 Code Comments 6502 Opcode 6809 Code Comments

ADC Operand	 AOC Operand Add with Carry STA SEVFLG Set V Flag Byte
TFR CC,DP Save CC Register "' Warning: Decimal Flag Not Honored
TFR CC,A TFR DP/CC Restare CC Register
A,"lDA #$02 SEC ORCC #$01 Set C Flag
STA SEVFLG Set V Flag Byte SED TFR CC,A Save CC Register
TST SEDFLG Check D Flag STA SEDFLG Set D Flag Byre
BEQ • + 7 TFR ArCC Restore CC Register
TFR DP,CC Restare CC Register SEI ORCC #$ IO Set 1 Flag
DAA CJnvert ta Decimal STA Operand TFR CC/OP Save CC Register
BRA * 1"4 STB Operand Store Accumulator
TFR DP,CC Restore CC Registèf TFR OP/CC Restore CC Register

AND Operand AND Operand AND Accurnulator
 STX Operand EXG X,D Prepare for Store

ASL Operand ASL Operand Arithmetîc Shift Lei!
 TFR CC,DP Save CC Register

BCC Operand BCC Operand Check C Flag
 STB Operand Store X Regisrer

BCS Operand BCS Operand Check C Flag
 TFR DPICC Restore cc Register

BEQ Operand BEQ Operand Check Z Flag
 EXG D!X Restore D and X

BIT Operand ANDA Operand Bit Test
 STY Operand	 EXG Y!D Prepare for Store

* N and V Flags Not Set TfR CCIDP Save CC Register

BMIOperand BMI Operand Check N Flag
 STB Operand Store X Register

BNE Operand BNE Operand Check Z Flag
 TFR DP,CC Restore CC Register

BPL Operand BPL Operand Check N Flag
 EXG D,Y Restore D and Y

BRK SWI (Requires Vector)
 TAX	 LDA #$00 Clear MS B Bits, Not C Flag

* Intenupt Handler May Convert CC Format TSTB Set CC Register

BVC Operand TFR CC,DP Save CC Regisrer
 TFR D,X Set X to Accumulator

TST SEVFLG Check V Flag Byte TAY LDA #$00 Clear MS 8 Bits, Not C Flag
BNE '" + 6 Change 6 ta 7 fOI LERA TSTB Set Condition Code
TFR DP,CC ReseoTe CC Register TFR D! Y Set Y to Accumulator
HRA Operand Braneh if V Clear TSX TFR DI U Save D Register
TFR DP, CC Restore CC Register TFR S,D Get S Register

BVS Operand TFR CC,DP Save CC Register
 LDA #$00 Clear MS 8 Bits, Nor C Flag
TST SEVFLG Check V Flag Byte DECB Correct Value
BEQ • + 6 Change 6 ta 7 for LBRA TFR D!X Set X Register
TFR DP,CC Restore CC Register TFR U,D Restorc 0 Register
BRA Operand Branch if V Set TXA TFR X,D Move X ta Accumulator
TFR DP,CC Restore CC Register TSTB Set CC Register

CLC ANDCC #$FE Clear C Flag
 TXS TFR DI U Save D Register

CLD TFR CC,DP Save CC Register
 TFR X,D Get X Register

CLR SEDFLG Clear D Flag Byte TFR CC!DP Save CC Register
TFR DP,CC Restore CC Register L'\JCB Correct Value

CL! ANDCC #$EF Clear 1 Flag
 TFR DP ,CC Restore CC Register

CLV TFR CC,DP Save CC Register
 TFR D,S Set S Register

CLR SEVFLG Clear V Flag Byte TFR UrD Restore V Register
TFR DP,CC Restore CC Regis,er TYA TFR y ID Move Y ta Accumulator

CMP Operand CMPB Operand Compare Accumulator TSTB Set CC Register
CPX Operand	 EXG D,X Prepare for Compare

CMPB Operand Compare X Register

EXG X,D

CPY Operand	 EXG D,Y Prepare for Compare

CMPB Operand Compare Y Register

EXG Y,D

DEC DECB Bump Accumulator Dawn

DEX EXG X,D Prepare for DEX

LDA #$00 Clear MS B Bits, Not C Flag
 COLOR COMPUTER USERS
DECB Bump X Dawn

EXG D,X Correct D and X
 THE POWERfUL HEX DISK OPERATING SYSTEM WITHDEY	 EXG Y,D Prepare for DEY

LDA #$00 Clea, MS 8 Bits, Not C Flag
 HUNDREDS Of SOFTWARE PACKAGES IS NOW AVAILABLE!

DECB	 Bump y Dawn Now you can run FLEX, 08-9 and Radio you can run it and even change it!! YO\J
EXG D,Y Correct 0 and Y Shack disk software on your Coler Com­ can \oad Coler Computer cassette soft­

EOR Operand EORB Operand EOR Accumulator puter, If you have a 32K Coler Computer ware and save it ta FLEX dlSk. Single
INC	 INCB Bump Accumulator wlth the Radio Shack disk system, ail you Drive Copy, Format and Setup com­
INX	 EXG X,D Prepare for INX need te do 15 make a trivial modification mands plus an online help system are in­

LDA #$00 Clear MS 8 Bits, Not C Flag ta access the hidden 32K, as descr\bed in cluded.
INCB Bump X Up 'he Feb, Issue of COLOR COMPUTER Installing FLEX is S'Impie. Insert theEXG D,X Correct 0 and X NEWS and the April issue of '68' Micro disk and type:INY	 EXG Y,D Prepare for INY You can get FLEX fram us right now.
LDA #$00 Clear MS B Bits, Not C Flag 08-9 will be ready by summer. Please RUN "FLEX"

INCB Bump Y Up
 note that tnis will only work with the That's ail there i5 ta it! You are now upEXG D, y Correct D and Y RadiO Shack disk system and 32K164K and running in the most popular disk
JMP Operand	 JMP Operand Jump memory chips tha, RS calls 32K. Maybe operating system for the 6809. There are
JSR Operand	 TSR Operand Subroutine Call they put 64K'5 in yours, too. If you don't hundreds of software packages now run·
LDA Operand	 LDA Operand Load Accumulator have a copy of the article, send a legal ning under the FLEX system. Open your
LDX Operand	 EXG X,D Prepare for LDX size SASE (40; stamps) and we'll send it Col or Computer to a whole new world of

LDA #$00 Clear MS B Bits, Not C Flag to you. software with FLEX.
LDB Operand Load Value ln case you don't understand now this FLEX $99.00
EXG D,X Correct D and X works, 1'11 Qive you a brief explanation. INCLUDES OVER 25 UTILITIES!

LDY Operand	 EXG Y,D Prepare for LDY The Color Computer was designed 50
FLEX Edltor $ 50.00LDA #$00 Clear MS 8 Bits, Not C Flag that the roms in the system could Oe
FLEX Assembler $ 50 00

LDB Operand Load Value turned off under software control. ln a FLEX Standard BASIC $ 6500
normal Color Computer this would only EXG D, Y Correct D and Y FLEX Extended BUSiness BASIC $10000

LSR Operand	 LSR Operand Logical ShHr Right make It go away. However, if you put a Other languages available include;
NOP	 NOP No Operation program in memery to do something first FORTH, Pascal, Fortran77, 'C," AiBASIC
ORA Operand ORB Operand Or Accumulator (Iike boat in FLEX or OS-9), when you turn Compiler, plus more.

PHA PSHS B Push Accumulator
 off the roms, you will have a full 64K RAM Application packages ",clude; AiR, GIL,
PHP "' Execute Cond Code Translation from 6809 System with which to run your program. AlP, Inventory, Electronic Spreadsheets,

Now, we need the other half of 'he 64K Accounting, Database programs and
PLA PULS B Pull Accumulator

PSHS A Push 6502 CC Register
ram chips ta work, and this seems ta be more. SEN D FOR LIST.

TSTB Set CC Register the case most of the time, as the article
TRS·BO COLOR COMPUTER COMPLETE states. Of course, you cou Id also put 64KPLP	 PULS A Pull 6502 CC Register WITH 64K RAM, 24K ROM, SINGLE DiSK chips in. • Execute Cond Code Translation ta 6809 DRIVE AND FLEX, SET UP AND READY

ROL Operand	 ROL Operand Roll Left Sorne neat utilities are included TO RUN FOR ONLY $1,275. Includes 60
ROR Operand	 ROR Operand Roll Right MOVEROM moves Coler Basic tram day extended warranty. If you have a
RTl	 RTl Return from Interrupt ROM ta RAM. Because ifs moved ta RAM Computer, cali about RS disk controllers

• Interrupt Handler May Convert CC Format you can not only access it tram FLEX, and drives.
RTS RTS Exit Subroutine

SBC Operand SBC Operand Subtract with Barrow

TFR CC,OP Save CC Register
 FRANK HOGG LABORATORY, INe.
130 MIDTOWN PLAZA " SYRACUSE NEW YORK 13210 " (315}474-7856TFR CC,A

ANDA #$02

(Continued)

No. 50 - July 1982	 MICRO - The 6502/6809 Journal 83

(Continued from page 81)
The 6809 has more instructions

that modify the "V" flag than does the
6502, in which only the ADC, BIT,
CLV, PLP, RTl, and SBC instructions
modify the "V" flag. The 6502 "V"
flag is thus easily emulated in the same
manner as the "D" flag, with the same
potential problems during interrupt
processing.

Condition Code Register Format

Since the 6809 condition code
register has format' 'EFHINZVC' " and
the 6502 condition code register has
format "NVOBDIZC' " two routines
must be defined for the 6502 emula­
tion, one to reformat condition codes in
each direction. The routines are very
similarj the following reformats the
6809 condition code register into 6502
format:

TFR CC,DP Save CC Register
TFRD,U Save D Register
TFR CC,A
CLRB Zero 6502 Register
BITA #$10 l Flag
BEQ * +4
ORAB #$04
BITA #$08 N Flag
BEQ * +4
ORAB #$80
BITA #$04 Z Flag
BEQ * +4
ORAB #$20
TST SEVFLG V Flag
BEQ * +4
ORAB #$40
BITA #$01 C Flag
BEQ * +4
ORAB #$01
TST SEDFLG D Flag
BEQ * +4
ORAB #$80
TFR DP,CC Restore CC Register
TFR B,DP
TFR U,D Restore D Register
TFRDP,A 6502 CC in A Register

Again, since most programs never
for seldoml require the particular for­
mat of the 6502 condition code register,
a programmer may decide to use the
6809-format condition code register
and manually change the translated
program, as required.

Page Zero Wraparound

Page zero wraparound is another at­
tribute of the 6502 which is not present
on the 6809 and must be handled by the

translator through additional code if ex­
act emulation is required. This prob­
lem occurs in the 6502 zero-page­
indexed and indexed-indirect address
modes. In the zero-page-indexed mode,
the 8-bit offset in the 6502 instruction
is added to the 8-bit value in the X or Y
register to provide an 8-bit value,
which is prefixed with 8-bit 00 to pro­
vide a 16-bit effective address. The
6809 code inserted by the translator
would be in the following form:

TFR CC,DP	 Save CC Register
LEAU ((address) AND

$FFI,X Compute Address
EXG U,D
CLRA Truncate to 8 Bits
EXG D,U Address in U Register
TFR DP,CC Restore CC Register
OPC,U Perform Original

Operation

The alternative to emulation would
be to treat zero-page-indexed address
mode as if it were absolute-indexed ad­
dress mode. In this case the program­
mer would be responsible for ensuring
that the correct effective address is
ca1culated in each case. In the indexed­
indirect mode, the 8-bit offset in the in­
struction is added ta the 8-bit value in
the X or Y register to form an 8-bit
result, which is prefixed by an 8-bit 00
to form a 16-bit effective address. The
contents of the locations at that address
and at the next address are used to pro­
vide a 16-bit effective address. The
6809 code inserted by the translator
would be similar to that provided
earlier, with the exception of the last
line, which would use indirect address­
ing and would be in the following form:

OPC [,U]	 Perform Original
Operation

assuming that no indirect addresses are
placed at $OOFF and $0000. An alter­
native to emulation would be to directly
use the 6809 indirect address facility,
manually correcting any cases in which
the contents of the X or Y register plus
the offset exceeds $OOFE.

The 8-Bit Limitation of X and y

The 6502 8-bit X and Y register
limitations affect the following 6502
instructions: DEX, DEY, INX, INY,
LDX, LDY, STX, STY, TAX, TAY,
TSX, TXA, TXS, TYA. In virtually

every case, the 8-bit value being pro­
cessed must be moved through the D
register in arder to properly extend or
truncate the value. For instance, the
translator-generated 6809 code for INX
would be:

EXGX,D Move X Register for
Truncation

LDA #$00 Clear MS 8 Bits, Not C
Flag

INCB Bump Last 8 Bits of X
EXGD,X Restore New X Register

The magnitude of the problems asso­
ciated with the conversion of the trans­
lated program ta fully use the 16-bit X
and Y registers of the 6809 would de­
pend on the program being translated.
However, they may be severe, and the
emulation overhead will usually be
small.

Translation Analysis

Table 4 presents a simplified
representation of the required trans­
lator actions in the conversion of each
6502 instruction to 6809 instructions.
The following assumptions are made
implicitly in this table:

• address	 mode processing is handled
separately but always presents a
16-bit effective address

• absolute addresses are stored in 6809
format (high, then low bytes)

•	 stack register is handled using 6809
16-bit format and is not restricted to
$OlXX range

• format conversion of the condition
code register is not handled:

no "B" flag handling is required
"D" and "V" flags are handled as
separate flag bytes

• X and Y registers are restricted	 ta 8
bits

• situations such as "too-Iong" branches
must be handled by the programmer
after translation

Conversion Analysis

Most computer programs, even on
microcomputers, do not run stand­
alone but run under control of an
operating system or use external IIO,
math, or service subroutines. Thus,
even if the translation from 6502 to
6809 is exactly correct on an
instruction-by-instruction basis, many
6502 programs would not run after
translation without modification. The

MICRO - The 6502/6809 Jou rnal	 No. 50 - July 1982 84

IAICRO
on the Apple

$24.95*

More than 40 new programs on
diskette ta help you get more from
your Apple:

•	 Machine-Language Aids
•	 1/0 Enhancements
•	 Applesoft Aids
•	 Graphies and Games
•	 Reference 1nformation

19 choice articles
43 tested programs on diskette
(16 sector DOS 3.3 format)

Volumes 1 & 2 also available at $24,95'

Together MICRO on the Apple 1,
2, & 3 provide more than 110 pro­
grams on diskette for less than
$1.00 each. No need ta type in
hundreds of lines of code.

MICRO makes it easy ta arder:
Send check (payable ta MICRO) ta:

MICRO INK
Dept. MA3
P.O. Box 6502
Chelmsford, MA 01624

Cali our toll·lree number:

1·800·345·8112
(In PA, 1-800-662-2444)

VISA and MasterCard accepted

Also avallable at your local computer store.

'Add $2.00 shipping per book.

MA residents add 5%.

portions of programs requiring change
in a practical environment will gener­
ally be in the following areas:

•	 monitor, operating system, and
subroutine library entry points

• Il0 addresses and hardware

• memory-mapped video facilities

•	 miscellaneous tradeoffs made in
translation.

Entry points may cause difficulties
in terms of addresses, parameters, and
functions. The address problems are
usually the simplest to solve, since
these generally involve merely chang­
ing addresses in EQU statements. The
parameter-passing problem encom­
passes addresses and values passed to
and from subroutines, monitor entry
points, and operating system routines,
and may be far more complex. The
number of variations in table and con­
trol block format and usage, control
value interpretation, data structure
representation, method of returning
results, etc., is astronomical.

The best plan of attack on these
problems varies with the nature of the
effort. In the case of a well-defined
subroutine library or set of operating
system routines being referenced, it
may be possible and advantageous to
code a set of 6809 routines to interface
to a similar functional library or
routines. Then this interface may be
used in any program with few other
changes in logic required.

I/O address and hardware differ­
ences may cause problems in conver­
sion. Simply changing the EQU state­
ments will probably not affect the com­
plete conversion because of the dif­
ferences in handling of the various Il0
devices, such as VIO's, VIA's, PIA's,
ACIA's, etc. These differences may be
handled by coding interface subrou­
tines, by modifing the code to handle
the new 1I0 device in native mode, by
using similar functional routines
already available in the 6809 operating
system, etc. In the worst case, the 6502
hardware facility may not even be
available on the 6809, requiring exten­
sive modifications.

Memory-mapped video facilities are
available on many of the appliance
computers as standard features but are
not generally directly available on 6809
systems, with the notable exception of
the Radio Shack Color Computer. If a
6502 program makes extensive use of
memory-mapped video hardware, but
the facility is not available on the 6809
or is available but is handled differently,

MICRO - The 6502/6809 Journal

several methods of translating the run­
ning 6502 program to become a running
6809 program are possible. The obvious
means of performing the conversion,
though sometimes the most difficult,
would be to rewrite the 6502 code after
translation to drive the video board or
terminal used on the 6809 directly.
Another method would be to write a
terminal emulation routine which
would make the same output appear on
an output device on a 6809 as on a
video monitor on a 6502. The method
used in a given case will depend upon
the situation.

The other primary reason for
manual intervention in the conversion
process involves the tradeoffs made in
the translation. The changes required
by this may benefit from some of the
same organized attacks as suggested for
the 1I0 and hardware problems. Other
changes may be desirable to take ad­
vantage of the additional instructions
and addressing modes of the 6809 ver­
sus the 6502.

Summary

The preceding discussion has
presented a method to convert 6502
source programs to 6809 source pro­
grams. This conversion is performed in
two phases.

The first phase is a low-Ievel
linstruction-by-instruction) translation
process which could be performed
manually or by using a computer pro­
gram. The instruction emulation level
may be varied to cause the translated
program to have certain attributes
closer to the 6502 or to the 6809 ar­
chitectures, as desired.

The second phase is higher-Ievel,
and must generally be performed
manually (although possibly with the
assistance of an editing or special­
purpose computer program) since it
usually involves creativity and
cleverness on a level not yet found in
the most advanced computer programs.
This process involves the resolution of
the remaining differences between the
translated 6502 program and the 6809
environment in which the 6809 pro­
gram will mn, and the final debugging
and checkout.

Tables summarizing the instruction
sets of the 6502, 6800, and 6809 pro­
cessors fol1ow.

Edgar Pass may be comacted at Computer
Systems Consultants, Ine., 1454 Latta
Lane, Conyers, GA 30207.

No. 50 - July 1982 86

1

z
<:>
ln
o

C­
c:
-<
<D
CD
N

s::
o
Il
o
1

-1

:::T
(1)

(J)
ln
o
N
m
CD
o
<D
C­
O
c:
:;
OJ

Table A·1 (continued)Table A·1: 6800,01,02,03,08 Op-Codes and Mnemonics

Operation	 Mnemonic Immediate Direct Indexed Extended Inherent Operation	 Mnemonic Immediate Direct Indexed Extended Inherent

Shift Left 1 ASL 1 1 1 68 1 78 1

1 ADDB 1 CB \ DB 1 EB FB

Add	 1 ADDA 1 8B 1 9B 1 AB BB
Arithmetic 1 ASLA 1 1 1 1 1 4B

Add Double Acc 1 ADDD* 1 C3 1 D3 1 E3 F3
 1 ASLB 1 1 1 1 1 SB

Add Accurn. 1 ABA 1 1 1 lB
 Double 1 ASLD* 1 1 1 1 1 05

Add With Carry 1 ADCA 1 89 1 99 1 A9 B9
 --------------+--------+---------+---------+---------+---------+--------­

1 ADCB 1 C9 1 D9 1 E9 F9 Shift Right	 1 ASR 1 1 1 67 1 77 1

Arithmetic 1 ASRA 1 1 1 1 1 47

And 1 ANDA 1 84 1 94 1 A4 1 B4 1

--------------+--------+---------+---------+---------+---------+--------­

1 ASRB 1 1 1 1 1 57

1 ANDB 1 C4 1 D4 1 E4 1 F4 1
 --------------+--------+---------+---------+---------+---------+---------

Shift Right	 1 LSR 1 1 1 64 1 74 1
--------------+--------+---------+---------+---------+---------+---------
Logical 1 LSRA 1 1 1 1 1 44

1 BITB 1 CS 1 D5 1 ES 1 F5 1

Bit Test	 1 BITA 1 85 1 95 1 AS 1 B5 1

1 LSRB 1 1 1 1 1 54

Double 1 LSRD* 1 1 1 1 1 04

Clear 1 CLR 1 1 1 6F 1 7F 1

--------------+--------+---------+---------+---------+---------+--------­ --------------+--------+---------+---------+---------+---------+---------

Store Accum 1 STAA 1 1 97 1 A7 1 B7 1

1 CLRB 1 1 1 1 1 5F

1 CLRA 1 1 1 1 1 4F

1 STAB 1 1 D7 1 E7 1 F7 1

Doub. Accum. 1 STAD* 1 1 DD 1 ED 1 FD 1
--------------+--------+---------+---------+---------+---------+--------­

Compare	 1 CMPA 1 81 1 91 1 AliBI 1
 --------------+--------+---------+---------+---------+---------+---------
Subtract 1 SUBA 1 80 1 90 1 A0 1 B0 1

Compare Accurn. 1 CBA 1 1 1 1 1 11

1 CMPB 1 Cl 1 Dl 1 El 1 FI 1

1 SUBB 1 C0 1 D0 1 E0 1 F0 1
Double 1 SUBD* 1 83 1 93 1 A3 1 B3 1

Complement, 1 , s 1 COM 1 1 1 63 1 73 1

--------------+--------+---------+---------+---------+---------+--------­ --------------+--------+---------+---------+---------+---------+---------

Subtract Acc. 1 SEA 1 1 1 1 1 10

1 COMB 1 1 1 1 1 53

1 COMA 1 1 1 1 1 43

--------------+--------+---------+---------+---------+---------+---------
Subtract 1 SBCA 1 82 1 92 1 A2 1 B2 1

Complement, 2 , s 1 NEG 1 1 1 60 1 70 1

--------------+--------+---------+---------+---------+---------+---------

With Carry 1 SBCB 1 C2 1 D2 1 E2 1 F2 1

1 NEGA 1 1 1 1 1 40
 --------------+--------+---------+---------+---------+---------+--------­
1 NEGB 1 1 1 1 1 50
 Transfer	 1 TAB 1 1 1 1 1 16

--------------+--------+---------+-------~-+---------+---------+--------- Accumulators 1 TBA 1 1 1 1 1 17

Dec Adj Acc. 1 DAA 1 1 1 1 1 19
 --------------+--------+---------+---------+---------+---------+---------

Test Zero or 1 TST 1 1 1 6D 1 7D 1

Decrement 1 DEC 1 1 1 6A 1 7A 1

--------------+--------+---------+---------+---------+---------+--------­

Minus 1 TSTA 1 1 1 1 1 4D

1 DECA 1 1 1 1 1 4A
 1 TSTB 1 1 1 1 1 5D

1 DECB 1 1 1 1 1 SA
 --------------+--------+---------+---------+---------+---------+--------­

* Not available in 6800,6802,or 6808

Exclusive	 OR 1 EORA 1 88 1 98 1 A8 1 B8 1

1 EORB 1 C8 1 D8 1 E8 1 F8 1

--------------+--------+---------+---------+---------+---------+--------­

Table A·2: Index Register and Stack Manipulation Instructions--------------+--------+---------+---------+---------+---------+---------
Increment	 1 INC 1 1 1 6c 1 7C \

1 INCA 1 1 1 1 1 4C

1 INCB 1 1 1 1 1 5C
 Operation	 Mnemonic Immediate Direct Indexed Extended Implied--------------+--------+---------+---------+---------+---------+--------­

Load' Accum.	 1 LDAA 1 86 1 96 \ A6 1 B6 1
 Compare IXR	 1 CPX 9C AC 1 BC8C 1
1 LDAB 1 c6 1 D6 1 E6 1 F6 1
Decrement IXR	 1 DEX 1 1	 09

Load Doub Acc	 1 LDAD* 1 CC 1 DC 1 EC 1 FC 1
 Decrment SP	 1 DES 1 1	 34
--------------+--------+---------+---------+---------+---------+--------- Increment IXR INX1
 1 1 08

Multiply 1 MUL* 1 1 1 1 1 3D
 1 1 31

Load IXR LDX

Increment SP	 lINS

CE DE1
 EE 1 FE- I

Inclusive OR 1 ORAA 1 8A 1 9A 1 AA 1 BA 1

--------------+--------+---------+---------+---------+---------+---------

Load SP LDS 8E1
 9E AE 1 BE 1

1 ORAa 1 CA 1 DA 1 EA 1 FA 1
 Store IXR	 1 STX DF EF 1 FF 1
Store SP 1 STS 9F AF 1 BF 1
--------------+--------+---------+---------+---------+---------+--------­
IXR-->SP	 1 TXSPush Data	 1 PSHA 1 1 1 1 1 36
 1 1 35

1 PSHB 1 1 1 1 1 37
 SP-->IXR	 1 TSX 1 1 30

Add B to X 1 ABX*
 1 1 3A--------------+--------+---------+---------+---------+---------+---------
Push IXR	 1 PSHX* 1 1 3c

1 PULB 1 1 1 1 1 33

Pull Data	 1 PULA 1 1 1 1 1 32

Pull IXR PULX*1
 1 1	 38

--------------+--------+---------+---------+---------+---------+--------­--------------+--------+---------+---------+---------+---------+---------
Rotate Right 1 ROR 1 1 1 66 1 76 1

1 ROLA 1 1 1 1 1 49

Rotate Left	 1 ROL 1 1 1 69 1 79 1

1 RORA 1 1 1 1 1 46

1 ROLB 1 1 1 1 1 59
 1 RORE 1 1 1 1 1 56

--------------+--------+---------+---------+---------+---------+--------­ --------------+--------+---------+---------+---------+---------+--------­
* Not available in 6800,6802,or 6808
 * Not available in 6800,6802, or 6808

CD
--J

----------------------- ---

0:>
0:>

s:::
0
JJ
0

1

-i
:::T
(l)

(J)
(J1
0
1\)

âi
ex>
0
CD
c­
0
c

3

~

z
9

(J1

o
1

c­
c
'<
CD
ex>
1\)

Table A-3: 6800,01,02,03,08 Op-Codes and Mnemonics Table 6-1 (continued)

CONDITION CODE REGISTER MANIPULATION INSTRUCTIONS

Operation Mnemonic Immediate Direct Indexed Extended Inherent

Operation Mnemonic Implied

Arithmetic 1 ASLA 1 1 1 1 1 48

Clear Carry 1 CLC 1 0C
 Shift Leit. 1 ASLB 1 1 1 1 1 58

Clear Int Msk 1 CLI 1 0E
 1 ASL 1 1 1'18 1 68* 1 78 1

Clr Overflow 1 CLV 1 0A
 --------------+--------+---------+---------+---------+---------+--------­
Set Carry	 1 SEC 1 0D Arithmetic 1 ASRA 1 1 1 1 1 47

Set Int Msk 1 SEI 1 0F
 Shift Right 1 ASRB 1 1 1 1 1 57

Set Overflow 1 SEV 1 08
 1 ASR 1 1 07 1 67* 1 77 1
Acc A-->CCR 1 TAP 1 06 --------------+--------+---------+---------+---------+---------+---------
CCR-->Acc A	 1 TPA 1 07 Bit Test	 1 BITA 1 85 1 95 1 A5* 1 B5 1

1 BITB 1 CS 1 D5 1 E5* 1 F5 1
--------------+--------+---------­
--------------+--------+---------+---------+---------+---------+---------
Clear	 1 CLRA 1 1 1 1 1 4F

Table A-4: Jump and 6ranch Instructions 1 CLRB i 1 1 1 1 5F

1 CLR 1 1 l'lF 1 6F* 1 7F 1

---~--- --------------+--------+---------+---------+---------+---------+---------Operation Mnemonic Relative Indexed Extended Implied Compare	 1 CMPA 1 81 91 1 Al * 1 BI 1

1 CMPB 1 Cl Dl 1 El* 1 FI 1

8ranch Always BRA 1 20 1
 1 CMPD 1 1083 1093 1 10A3* 1 10B3 1

Branch if Carry Clear Bce 1 24 1
 1 CMPS 1 118C 119C 1 llAC* 1 IlBC 1

Branch if Carry Sét Bes 1 25 1
 1 CMPU 1 1183 1193 1 llA3* 1 IlB3 1

Branch if = Zero BEQ 1 27 1
 1 CMPX 1 BC 9c 1 AC* 1 BC 1

Branch if >= Zero BGE 1 2e 1
 1 CMPY 1 108C 109c 1 10AC* 1 10BC 1

Branch if > Zero BGT 1 2E 1
 --------------+--------+---------+---------+---------+---------+--------­
B,anch if Higher BHI 1 22 1
 Complement, l 'si COMA 1 1 1 1 1 43

Branch if <= Zero BLE 2F 1
 1 COMB 1 1 1 1 1 53

Branch if Lower/Same BLS 23 1
 1 COM 1 1 1'13 1 63* 1 73 1

Branch if < Zero BLT 2D 1
 --------------+--------+---------+---------+---------+---------+---------
Branch if Minus BMI 2B 1
 Wait for int. 1 CWAI 1 1 1 1 1 3C

Branch if Not = Zero BNE 26 1
 --------------+--------+---------+---------+---------+---------+---------
Branch if V elear Bve 2B 1	 1
 Dec. adj Acc_ 1 DAA 1 1 1 1 1 19

Branch if V Set BVS 2~ 1 1
 --------------+--------+---------+---------+---------+---------+---------
Branch if Plus BPL 2A 1 1

Branch to Subroutine BSR BD 1 1
 Decrement 1 DECA 1 1 1 1 1 4A

Jump 1 JMP 1 6E 7E 1
 1 DECB 1 1 1 1 1 SA

Jump to Subroutine 1 JSR 1 AD BD 1
 1 DEC 1 1 <lA 1 6A* 1 7A 1

No Operation 1 NOP 1 1 01
 --------------+--------+---------+---------+---------+---------+--------­

Exclusive OR 1 EORI'> 1 88 1 98 1 A8* 1 B8 1

Return from Subroutine 1 RTS 1 1 39

Return from Interrupt 1 RTl 1	 1 3B

1 EORB 1 c8 1 D8 1 E8* 1 F8 1

Software Interrupt 1 SWI 1 1 1 3F
 --------------+--------+---------+---------+---------+---------+---------
Exchange Reg' si EXG*' 1 1 1 IllE
Wait for Interrupt 1 WAI 1 1	 1 3E

--------------+--------+---------+---------+---------+---------+--------­-----------------------+---------+---------+---------+---------+---------
Increment	 1 INCA 1 1 1 1 1 4c

1 INCB 1 i 1 1 1 SC
 "1

1 INC 1 1 0C 1 6C* 1 7c 1

Table 8·1: 6809 Op-Codes and Mnemonics --------------+--------+---------+---------+---------+---------+---------

Load 1 LDA 1 86 1 96 1 A6· 1 B6 1

1 LDB 1 c6 1 D6 1 E6* 1 F6 1

Operation Mnemonic Immediate Direct Indexed Extended Inherent
 1 LDD 1 CC 1 DC 1 EC* 1 FC 1

1 LDS 1 10CE 1 10DE 1 10EE* 1 1l'lFE 1

Md B to X 1 ABX 1 1 1 1 1 3A
 1 LDU 1 CE 1 DE 1 EE* 1 FE 1

1 LDX 1 8E 1 9E 1 AE* 1 BE 1

Add w/ carry 1 ADCA 1 B9 1 99 1 A9* 1 B9 1

--------------+--------+---------+---------+---------+---------+--------­

1 LDY 1 lo8E 1 109E 1 10AÈ* 1 10BE 1

1 ADeB 1 c9 1 D9 1 E9* 1 F9 1
 --------------+--------+---------+---------+---------+---------+---------

Load Effective 1 LEAS 1 1 1 32* 1 1

Add 1 ADDA 1 8B 1 9B 1 AB* 1 BB 1

--------------+--------+---------+---------+---------+---------+---------

Address 1 LEAU 1 1 1 33* 1 1

1 ADDB 1 CB 1 DB 1 EB* 1 FB 1
 1 LEAX 1 1 1 30,0! 1

1 ADDD 1 C3 1 D3 1 E3* 1 F3 1
 1 LEAY 1 1 1 31 * 1 1

--------------+--------+---------+---------+---------+---------+--------­ --------------+--------+---------+---------~---------+---------+---------
And	 1 ANDh 1 84 1 94 1 A4 * 1 B4 1

1 ANDB 1 C4 1 D4 1 E4* 1 F4 1
 * Post byte required (see indexed addressing chart)1 ANDCC 1	 lC 1 1 1 1

** Post byte specifying registers to be used is required.-_._-----------+--------+---------+---------+---------+---------+--------­

